ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.10 by root, Wed Oct 31 07:36:03 2007 UTC vs.
Revision 1.70 by root, Tue Nov 6 00:52:32 2007 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
56
1#include <math.h> 57#include <math.h>
2#include <stdlib.h> 58#include <stdlib.h>
3#include <unistd.h> 59#include <unistd.h>
4#include <fcntl.h> 60#include <fcntl.h>
5#include <signal.h> 61#include <signal.h>
62#include <stddef.h>
6 63
7#include <stdio.h> 64#include <stdio.h>
8 65
9#include <assert.h> 66#include <assert.h>
10#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
11#include <sys/time.h> 72#include <sys/time.h>
12#include <time.h> 73#include <time.h>
13 74
75/**/
76
14#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
15# ifdef CLOCK_MONOTONIC
16# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
17# endif 102# endif
18#endif 103#endif
19 104
20#ifndef HAVE_SELECT
21# define HAVE_SELECT 1
22#endif
23
24#ifndef HAVE_EPOLL
25# define HAVE_EPOLL 0
26#endif
27
28#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
29# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
30#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
31 122
32#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
33#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
34 127
35#include "ev.h" 128#include "ev.h"
36 129
37struct ev_watcher { 130#if __GNUC__ >= 3
38 EV_WATCHER (ev_watcher); 131# define expect(expr,value) __builtin_expect ((expr),(value))
39}; 132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
40 137
41struct ev_watcher_list { 138#define expect_false(expr) expect ((expr) != 0, 0)
42 EV_WATCHER_LIST (ev_watcher_list); 139#define expect_true(expr) expect ((expr) != 0, 1)
43}; 140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
44 143
45typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
46typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT;
47 147
48static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
49ev_tstamp ev_now;
50int ev_method;
51 149
52static int have_monotonic; /* runtime */ 150#if WIN32
53 151/* note: the comment below could not be substantiated, but what would I care */
54static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
55static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
56static void (*method_poll)(ev_tstamp timeout); 154#endif
57 155
58/*****************************************************************************/ 156/*****************************************************************************/
59 157
60ev_tstamp 158static void (*syserr_cb)(const char *msg);
159
160void ev_set_syserr_cb (void (*cb)(const char *msg))
161{
162 syserr_cb = cb;
163}
164
165static void
166syserr (const char *msg)
167{
168 if (!msg)
169 msg = "(libev) system error";
170
171 if (syserr_cb)
172 syserr_cb (msg);
173 else
174 {
175 perror (msg);
176 abort ();
177 }
178}
179
180static void *(*alloc)(void *ptr, long size);
181
182void ev_set_allocator (void *(*cb)(void *ptr, long size))
183{
184 alloc = cb;
185}
186
187static void *
188ev_realloc (void *ptr, long size)
189{
190 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
191
192 if (!ptr && size)
193 {
194 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
195 abort ();
196 }
197
198 return ptr;
199}
200
201#define ev_malloc(size) ev_realloc (0, (size))
202#define ev_free(ptr) ev_realloc ((ptr), 0)
203
204/*****************************************************************************/
205
206typedef struct
207{
208 WL head;
209 unsigned char events;
210 unsigned char reify;
211} ANFD;
212
213typedef struct
214{
215 W w;
216 int events;
217} ANPENDING;
218
219#if EV_MULTIPLICITY
220
221struct ev_loop
222{
223# define VAR(name,decl) decl;
224# include "ev_vars.h"
225};
226# undef VAR
227# include "ev_wrap.h"
228
229#else
230
231# define VAR(name,decl) static decl;
232# include "ev_vars.h"
233# undef VAR
234
235#endif
236
237/*****************************************************************************/
238
239inline ev_tstamp
61ev_time (void) 240ev_time (void)
62{ 241{
63#if HAVE_REALTIME 242#if EV_USE_REALTIME
64 struct timespec ts; 243 struct timespec ts;
65 clock_gettime (CLOCK_REALTIME, &ts); 244 clock_gettime (CLOCK_REALTIME, &ts);
66 return ts.tv_sec + ts.tv_nsec * 1e-9; 245 return ts.tv_sec + ts.tv_nsec * 1e-9;
67#else 246#else
68 struct timeval tv; 247 struct timeval tv;
69 gettimeofday (&tv, 0); 248 gettimeofday (&tv, 0);
70 return tv.tv_sec + tv.tv_usec * 1e-6; 249 return tv.tv_sec + tv.tv_usec * 1e-6;
71#endif 250#endif
72} 251}
73 252
74static ev_tstamp 253inline ev_tstamp
75get_clock (void) 254get_clock (void)
76{ 255{
77#if HAVE_MONOTONIC 256#if EV_USE_MONOTONIC
78 if (have_monotonic) 257 if (expect_true (have_monotonic))
79 { 258 {
80 struct timespec ts; 259 struct timespec ts;
81 clock_gettime (CLOCK_MONOTONIC, &ts); 260 clock_gettime (CLOCK_MONOTONIC, &ts);
82 return ts.tv_sec + ts.tv_nsec * 1e-9; 261 return ts.tv_sec + ts.tv_nsec * 1e-9;
83 } 262 }
84#endif 263#endif
85 264
86 return ev_time (); 265 return ev_time ();
87} 266}
88 267
268ev_tstamp
269ev_now (EV_P)
270{
271 return rt_now;
272}
273
274#define array_roundsize(base,n) ((n) | 4 & ~3)
275
89#define array_needsize(base,cur,cnt,init) \ 276#define array_needsize(base,cur,cnt,init) \
90 if ((cnt) > cur) \ 277 if (expect_false ((cnt) > cur)) \
91 { \ 278 { \
92 int newcnt = cur ? cur << 1 : 16; \ 279 int newcnt = cur; \
93 fprintf (stderr, "resize(" # base ") from %d to %d\n", cur, newcnt);\ 280 do \
281 { \
282 newcnt = array_roundsize (base, newcnt << 1); \
283 } \
284 while ((cnt) > newcnt); \
285 \
94 base = realloc (base, sizeof (*base) * (newcnt)); \ 286 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
95 init (base + cur, newcnt - cur); \ 287 init (base + cur, newcnt - cur); \
96 cur = newcnt; \ 288 cur = newcnt; \
97 } 289 }
290
291#define array_slim(stem) \
292 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
293 { \
294 stem ## max = array_roundsize (stem ## cnt >> 1); \
295 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
296 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
297 }
298
299#define array_free(stem, idx) \
300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
98 301
99/*****************************************************************************/ 302/*****************************************************************************/
100 303
101typedef struct
102{
103 struct ev_io *head;
104 unsigned char wev, rev; /* want, received event set */
105} ANFD;
106
107static ANFD *anfds;
108static int anfdmax;
109
110static int *fdchanges;
111static int fdchangemax, fdchangecnt;
112
113static void 304static void
114anfds_init (ANFD *base, int count) 305anfds_init (ANFD *base, int count)
115{ 306{
116 while (count--) 307 while (count--)
117 { 308 {
118 base->head = 0; 309 base->head = 0;
119 base->wev = base->rev = EV_NONE; 310 base->events = EV_NONE;
311 base->reify = 0;
312
120 ++base; 313 ++base;
121 } 314 }
122} 315}
123 316
124typedef struct
125{
126 W w;
127 int events;
128} ANPENDING;
129
130static ANPENDING *pendings;
131static int pendingmax, pendingcnt;
132
133static void 317static void
134event (W w, int events) 318event (EV_P_ W w, int events)
135{ 319{
320 if (w->pending)
321 {
322 pendings [ABSPRI (w)][w->pending - 1].events |= events;
323 return;
324 }
325
136 w->pending = ++pendingcnt; 326 w->pending = ++pendingcnt [ABSPRI (w)];
137 array_needsize (pendings, pendingmax, pendingcnt, ); 327 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
138 pendings [pendingcnt - 1].w = w; 328 pendings [ABSPRI (w)][w->pending - 1].w = w;
139 pendings [pendingcnt - 1].events = events; 329 pendings [ABSPRI (w)][w->pending - 1].events = events;
140} 330}
141 331
142static void 332static void
333queue_events (EV_P_ W *events, int eventcnt, int type)
334{
335 int i;
336
337 for (i = 0; i < eventcnt; ++i)
338 event (EV_A_ events [i], type);
339}
340
341static void
143fd_event (int fd, int events) 342fd_event (EV_P_ int fd, int events)
144{ 343{
145 ANFD *anfd = anfds + fd; 344 ANFD *anfd = anfds + fd;
146 struct ev_io *w; 345 struct ev_io *w;
147 346
148 for (w = anfd->head; w; w = w->next) 347 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
149 { 348 {
150 int ev = w->events & events; 349 int ev = w->events & events;
151 350
152 if (ev) 351 if (ev)
153 event ((W)w, ev); 352 event (EV_A_ (W)w, ev);
154 } 353 }
155} 354}
156 355
356/*****************************************************************************/
357
157static void 358static void
158queue_events (W *events, int eventcnt, int type) 359fd_reify (EV_P)
159{ 360{
160 int i; 361 int i;
161 362
162 for (i = 0; i < eventcnt; ++i) 363 for (i = 0; i < fdchangecnt; ++i)
163 event (events [i], type); 364 {
365 int fd = fdchanges [i];
366 ANFD *anfd = anfds + fd;
367 struct ev_io *w;
368
369 int events = 0;
370
371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
372 events |= w->events;
373
374 anfd->reify = 0;
375
376 method_modify (EV_A_ fd, anfd->events, events);
377 anfd->events = events;
378 }
379
380 fdchangecnt = 0;
381}
382
383static void
384fd_change (EV_P_ int fd)
385{
386 if (anfds [fd].reify)
387 return;
388
389 anfds [fd].reify = 1;
390
391 ++fdchangecnt;
392 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
393 fdchanges [fdchangecnt - 1] = fd;
394}
395
396static void
397fd_kill (EV_P_ int fd)
398{
399 struct ev_io *w;
400
401 while ((w = (struct ev_io *)anfds [fd].head))
402 {
403 ev_io_stop (EV_A_ w);
404 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
405 }
406}
407
408/* called on EBADF to verify fds */
409static void
410fd_ebadf (EV_P)
411{
412 int fd;
413
414 for (fd = 0; fd < anfdmax; ++fd)
415 if (anfds [fd].events)
416 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
417 fd_kill (EV_A_ fd);
418}
419
420/* called on ENOMEM in select/poll to kill some fds and retry */
421static void
422fd_enomem (EV_P)
423{
424 int fd;
425
426 for (fd = anfdmax; fd--; )
427 if (anfds [fd].events)
428 {
429 fd_kill (EV_A_ fd);
430 return;
431 }
432}
433
434/* usually called after fork if method needs to re-arm all fds from scratch */
435static void
436fd_rearm_all (EV_P)
437{
438 int fd;
439
440 /* this should be highly optimised to not do anything but set a flag */
441 for (fd = 0; fd < anfdmax; ++fd)
442 if (anfds [fd].events)
443 {
444 anfds [fd].events = 0;
445 fd_change (EV_A_ fd);
446 }
164} 447}
165 448
166/*****************************************************************************/ 449/*****************************************************************************/
167 450
168static struct ev_timer **atimers;
169static int atimermax, atimercnt;
170
171static struct ev_timer **rtimers;
172static int rtimermax, rtimercnt;
173
174static void 451static void
175upheap (struct ev_timer **timers, int k) 452upheap (WT *heap, int k)
176{ 453{
177 struct ev_timer *w = timers [k]; 454 WT w = heap [k];
178 455
179 while (k && timers [k >> 1]->at > w->at) 456 while (k && heap [k >> 1]->at > w->at)
180 { 457 {
181 timers [k] = timers [k >> 1]; 458 heap [k] = heap [k >> 1];
182 timers [k]->active = k + 1; 459 ((W)heap [k])->active = k + 1;
183 k >>= 1; 460 k >>= 1;
184 } 461 }
185 462
186 timers [k] = w; 463 heap [k] = w;
187 timers [k]->active = k + 1; 464 ((W)heap [k])->active = k + 1;
188 465
189} 466}
190 467
191static void 468static void
192downheap (struct ev_timer **timers, int N, int k) 469downheap (WT *heap, int N, int k)
193{ 470{
194 struct ev_timer *w = timers [k]; 471 WT w = heap [k];
195 472
196 while (k < (N >> 1)) 473 while (k < (N >> 1))
197 { 474 {
198 int j = k << 1; 475 int j = k << 1;
199 476
200 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 477 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
201 ++j; 478 ++j;
202 479
203 if (w->at <= timers [j]->at) 480 if (w->at <= heap [j]->at)
204 break; 481 break;
205 482
206 timers [k] = timers [j]; 483 heap [k] = heap [j];
207 timers [k]->active = k + 1; 484 ((W)heap [k])->active = k + 1;
208 k = j; 485 k = j;
209 } 486 }
210 487
211 timers [k] = w; 488 heap [k] = w;
212 timers [k]->active = k + 1; 489 ((W)heap [k])->active = k + 1;
213} 490}
214 491
215/*****************************************************************************/ 492/*****************************************************************************/
216 493
217typedef struct 494typedef struct
218{ 495{
219 struct ev_signal *head; 496 WL head;
220 sig_atomic_t gotsig; 497 sig_atomic_t volatile gotsig;
221} ANSIG; 498} ANSIG;
222 499
223static ANSIG *signals; 500static ANSIG *signals;
224static int signalmax; 501static int signalmax;
225 502
226static int sigpipe [2]; 503static int sigpipe [2];
227static sig_atomic_t gotsig; 504static sig_atomic_t volatile gotsig;
228static struct ev_io sigev; 505static struct ev_io sigev;
229 506
230static void 507static void
231signals_init (ANSIG *base, int count) 508signals_init (ANSIG *base, int count)
232{ 509{
233 while (count--) 510 while (count--)
234 { 511 {
235 base->head = 0; 512 base->head = 0;
236 base->gotsig = 0; 513 base->gotsig = 0;
514
237 ++base; 515 ++base;
238 } 516 }
239} 517}
240 518
241static void 519static void
242sighandler (int signum) 520sighandler (int signum)
243{ 521{
522#if WIN32
523 signal (signum, sighandler);
524#endif
525
244 signals [signum - 1].gotsig = 1; 526 signals [signum - 1].gotsig = 1;
245 527
246 if (!gotsig) 528 if (!gotsig)
247 { 529 {
530 int old_errno = errno;
248 gotsig = 1; 531 gotsig = 1;
249 write (sigpipe [1], &gotsig, 1); 532 write (sigpipe [1], &signum, 1);
533 errno = old_errno;
250 } 534 }
251} 535}
252 536
253static void 537static void
254sigcb (struct ev_io *iow, int revents) 538sigcb (EV_P_ struct ev_io *iow, int revents)
255{ 539{
256 struct ev_signal *w; 540 WL w;
257 int sig; 541 int signum;
258 542
543 read (sigpipe [0], &revents, 1);
259 gotsig = 0; 544 gotsig = 0;
260 read (sigpipe [0], &revents, 1);
261 545
262 for (sig = signalmax; sig--; ) 546 for (signum = signalmax; signum--; )
263 if (signals [sig].gotsig) 547 if (signals [signum].gotsig)
264 { 548 {
265 signals [sig].gotsig = 0; 549 signals [signum].gotsig = 0;
266 550
267 for (w = signals [sig].head; w; w = w->next) 551 for (w = signals [signum].head; w; w = w->next)
268 event ((W)w, EV_SIGNAL); 552 event (EV_A_ (W)w, EV_SIGNAL);
269 } 553 }
270} 554}
271 555
272static void 556static void
273siginit (void) 557siginit (EV_P)
274{ 558{
559#ifndef WIN32
275 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 560 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
276 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 561 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
277 562
278 /* rather than sort out wether we really need nb, set it */ 563 /* rather than sort out wether we really need nb, set it */
279 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 564 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
280 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 565 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
566#endif
281 567
282 evio_set (&sigev, sigpipe [0], EV_READ); 568 ev_io_set (&sigev, sigpipe [0], EV_READ);
283 evio_start (&sigev); 569 ev_io_start (EV_A_ &sigev);
570 ev_unref (EV_A); /* child watcher should not keep loop alive */
284} 571}
285 572
286/*****************************************************************************/ 573/*****************************************************************************/
287 574
288static struct ev_idle **idles; 575#ifndef WIN32
289static int idlemax, idlecnt;
290 576
291static struct ev_check **checks; 577static struct ev_child *childs [PID_HASHSIZE];
292static int checkmax, checkcnt; 578static struct ev_signal childev;
579
580#ifndef WCONTINUED
581# define WCONTINUED 0
582#endif
583
584static void
585child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
586{
587 struct ev_child *w;
588
589 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
590 if (w->pid == pid || !w->pid)
591 {
592 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
593 w->rpid = pid;
594 w->rstatus = status;
595 event (EV_A_ (W)w, EV_CHILD);
596 }
597}
598
599static void
600childcb (EV_P_ struct ev_signal *sw, int revents)
601{
602 int pid, status;
603
604 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
605 {
606 /* make sure we are called again until all childs have been reaped */
607 event (EV_A_ (W)sw, EV_SIGNAL);
608
609 child_reap (EV_A_ sw, pid, pid, status);
610 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
611 }
612}
613
614#endif
293 615
294/*****************************************************************************/ 616/*****************************************************************************/
295 617
618#if EV_USE_KQUEUE
619# include "ev_kqueue.c"
620#endif
296#if HAVE_EPOLL 621#if EV_USE_EPOLL
297# include "ev_epoll.c" 622# include "ev_epoll.c"
298#endif 623#endif
624#if EV_USE_POLL
625# include "ev_poll.c"
626#endif
299#if HAVE_SELECT 627#if EV_USE_SELECT
300# include "ev_select.c" 628# include "ev_select.c"
301#endif 629#endif
302 630
303int ev_init (int flags) 631int
632ev_version_major (void)
304{ 633{
634 return EV_VERSION_MAJOR;
635}
636
637int
638ev_version_minor (void)
639{
640 return EV_VERSION_MINOR;
641}
642
643/* return true if we are running with elevated privileges and should ignore env variables */
644static int
645enable_secure (void)
646{
647#ifdef WIN32
648 return 0;
649#else
650 return getuid () != geteuid ()
651 || getgid () != getegid ();
652#endif
653}
654
655int
656ev_method (EV_P)
657{
658 return method;
659}
660
661static void
662loop_init (EV_P_ int methods)
663{
664 if (!method)
665 {
305#if HAVE_MONOTONIC 666#if EV_USE_MONOTONIC
306 { 667 {
307 struct timespec ts; 668 struct timespec ts;
308 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 669 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
309 have_monotonic = 1; 670 have_monotonic = 1;
310 } 671 }
311#endif 672#endif
312 673
313 ev_now = ev_time (); 674 rt_now = ev_time ();
314 now = get_clock (); 675 mn_now = get_clock ();
315 diff = ev_now - now; 676 now_floor = mn_now;
677 rtmn_diff = rt_now - mn_now;
316 678
679 if (methods == EVMETHOD_AUTO)
680 if (!enable_secure () && getenv ("LIBEV_METHODS"))
681 methods = atoi (getenv ("LIBEV_METHODS"));
682 else
683 methods = EVMETHOD_ANY;
684
685 method = 0;
686#if EV_USE_WIN32
687 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
688#endif
689#if EV_USE_KQUEUE
690 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
691#endif
692#if EV_USE_EPOLL
693 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
694#endif
695#if EV_USE_POLL
696 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
697#endif
698#if EV_USE_SELECT
699 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
700#endif
701
702 ev_watcher_init (&sigev, sigcb);
703 ev_set_priority (&sigev, EV_MAXPRI);
704 }
705}
706
707void
708loop_destroy (EV_P)
709{
710 int i;
711
712#if EV_USE_WIN32
713 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
714#endif
715#if EV_USE_KQUEUE
716 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
717#endif
718#if EV_USE_EPOLL
719 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
720#endif
721#if EV_USE_POLL
722 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
723#endif
724#if EV_USE_SELECT
725 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
726#endif
727
728 for (i = NUMPRI; i--; )
729 array_free (pending, [i]);
730
731 array_free (fdchange, );
732 array_free (timer, );
733 array_free (periodic, );
734 array_free (idle, );
735 array_free (prepare, );
736 array_free (check, );
737
738 method = 0;
739}
740
741static void
742loop_fork (EV_P)
743{
744#if EV_USE_EPOLL
745 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
746#endif
747#if EV_USE_KQUEUE
748 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
749#endif
750
751 if (ev_is_active (&sigev))
752 {
753 /* default loop */
754
755 ev_ref (EV_A);
756 ev_io_stop (EV_A_ &sigev);
757 close (sigpipe [0]);
758 close (sigpipe [1]);
759
760 while (pipe (sigpipe))
761 syserr ("(libev) error creating pipe");
762
763 siginit (EV_A);
764 }
765
766 postfork = 0;
767}
768
769#if EV_MULTIPLICITY
770struct ev_loop *
771ev_loop_new (int methods)
772{
773 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
774
775 memset (loop, 0, sizeof (struct ev_loop));
776
777 loop_init (EV_A_ methods);
778
779 if (ev_method (EV_A))
780 return loop;
781
782 return 0;
783}
784
785void
786ev_loop_destroy (EV_P)
787{
788 loop_destroy (EV_A);
789 ev_free (loop);
790}
791
792void
793ev_loop_fork (EV_P)
794{
795 postfork = 1;
796}
797
798#endif
799
800#if EV_MULTIPLICITY
801struct ev_loop default_loop_struct;
802static struct ev_loop *default_loop;
803
804struct ev_loop *
805#else
806static int default_loop;
807
808int
809#endif
810ev_default_loop (int methods)
811{
812 if (sigpipe [0] == sigpipe [1])
317 if (pipe (sigpipe)) 813 if (pipe (sigpipe))
318 return 0; 814 return 0;
319 815
320 ev_method = EVMETHOD_NONE; 816 if (!default_loop)
321#if HAVE_EPOLL 817 {
322 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 818#if EV_MULTIPLICITY
819 struct ev_loop *loop = default_loop = &default_loop_struct;
820#else
821 default_loop = 1;
323#endif 822#endif
324#if HAVE_SELECT
325 if (ev_method == EVMETHOD_NONE) select_init (flags);
326#endif
327 823
824 loop_init (EV_A_ methods);
825
826 if (ev_method (EV_A))
827 {
828 siginit (EV_A);
829
830#ifndef WIN32
831 ev_signal_init (&childev, childcb, SIGCHLD);
832 ev_set_priority (&childev, EV_MAXPRI);
833 ev_signal_start (EV_A_ &childev);
834 ev_unref (EV_A); /* child watcher should not keep loop alive */
835#endif
836 }
837 else
838 default_loop = 0;
839 }
840
841 return default_loop;
842}
843
844void
845ev_default_destroy (void)
846{
847#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop;
849#endif
850
851 ev_ref (EV_A); /* child watcher */
852 ev_signal_stop (EV_A_ &childev);
853
854 ev_ref (EV_A); /* signal watcher */
855 ev_io_stop (EV_A_ &sigev);
856
857 close (sigpipe [0]); sigpipe [0] = 0;
858 close (sigpipe [1]); sigpipe [1] = 0;
859
860 loop_destroy (EV_A);
861}
862
863void
864ev_default_fork (void)
865{
866#if EV_MULTIPLICITY
867 struct ev_loop *loop = default_loop;
868#endif
869
328 if (ev_method) 870 if (method)
329 { 871 postfork = 1;
330 evw_init (&sigev, sigcb, 0);
331 siginit ();
332 }
333
334 return ev_method;
335} 872}
336 873
337/*****************************************************************************/ 874/*****************************************************************************/
338 875
339void ev_prefork (void)
340{
341}
342
343void ev_postfork_parent (void)
344{
345}
346
347void ev_postfork_child (void)
348{
349#if HAVE_EPOLL
350 if (ev_method == EVMETHOD_EPOLL)
351 epoll_postfork_child ();
352#endif
353
354 evio_stop (&sigev);
355 close (sigpipe [0]);
356 close (sigpipe [1]);
357 pipe (sigpipe);
358 siginit ();
359}
360
361/*****************************************************************************/
362
363static void 876static void
364fd_reify (void) 877call_pending (EV_P)
365{ 878{
366 int i; 879 int pri;
367 880
368 for (i = 0; i < fdchangecnt; ++i) 881 for (pri = NUMPRI; pri--; )
369 { 882 while (pendingcnt [pri])
370 int fd = fdchanges [i];
371 ANFD *anfd = anfds + fd;
372 struct ev_io *w;
373
374 int wev = 0;
375
376 for (w = anfd->head; w; w = w->next)
377 wev |= w->events;
378
379 if (anfd->wev != wev)
380 { 883 {
381 method_modify (fd, anfd->wev, wev); 884 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
382 anfd->wev = wev;
383 }
384 }
385 885
386 fdchangecnt = 0;
387}
388
389static void
390call_pending ()
391{
392 int i;
393
394 for (i = 0; i < pendingcnt; ++i)
395 {
396 ANPENDING *p = pendings + i;
397
398 if (p->w) 886 if (p->w)
399 { 887 {
400 p->w->pending = 0; 888 p->w->pending = 0;
401 p->w->cb (p->w, p->events); 889 p->w->cb (EV_A_ p->w, p->events);
402 } 890 }
403 } 891 }
404
405 pendingcnt = 0;
406} 892}
407 893
408static void 894static void
409timers_reify (struct ev_timer **timers, int timercnt, ev_tstamp now) 895timers_reify (EV_P)
410{ 896{
411 while (timercnt && timers [0]->at <= now) 897 while (timercnt && ((WT)timers [0])->at <= mn_now)
412 { 898 {
413 struct ev_timer *w = timers [0]; 899 struct ev_timer *w = timers [0];
900
901 assert (("inactive timer on timer heap detected", ev_is_active (w)));
414 902
415 /* first reschedule or stop timer */ 903 /* first reschedule or stop timer */
416 if (w->repeat) 904 if (w->repeat)
417 { 905 {
418 if (w->is_abs) 906 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
419 w->at += floor ((now - w->at) / w->repeat + 1.) * w->repeat;
420 else
421 w->at = now + w->repeat; 907 ((WT)w)->at = mn_now + w->repeat;
422
423 assert (w->at > now);
424
425 downheap (timers, timercnt, 0); 908 downheap ((WT *)timers, timercnt, 0);
426 } 909 }
427 else 910 else
911 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
912
913 event (EV_A_ (W)w, EV_TIMEOUT);
914 }
915}
916
917static void
918periodics_reify (EV_P)
919{
920 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
921 {
922 struct ev_periodic *w = periodics [0];
923
924 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
925
926 /* first reschedule or stop timer */
927 if (w->interval)
428 { 928 {
429 evtimer_stop (w); /* nonrepeating: stop timer */ 929 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
430 --timercnt; /* maybe pass by reference instead? */ 930 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
931 downheap ((WT *)periodics, periodiccnt, 0);
431 } 932 }
933 else
934 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
432 935
433 event ((W)w, EV_TIMEOUT); 936 event (EV_A_ (W)w, EV_PERIODIC);
434 } 937 }
435} 938}
436 939
437static void 940static void
438time_update () 941periodics_reschedule (EV_P)
439{ 942{
440 int i; 943 int i;
441 ev_now = ev_time ();
442 944
443 if (have_monotonic) 945 /* adjust periodics after time jump */
946 for (i = 0; i < periodiccnt; ++i)
444 { 947 {
445 ev_tstamp odiff = diff; 948 struct ev_periodic *w = periodics [i];
446 949
447 /* detecting time jumps is much more difficult */ 950 if (w->interval)
448 for (i = 2; --i; ) /* loop a few times, before making important decisions */
449 { 951 {
450 now = get_clock (); 952 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
451 diff = ev_now - now;
452 953
453 if (fabs (odiff - diff) < MIN_TIMEJUMP) 954 if (fabs (diff) >= 1e-4)
454 return; /* all is well */ 955 {
956 ev_periodic_stop (EV_A_ w);
957 ev_periodic_start (EV_A_ w);
455 958
456 ev_now = ev_time (); 959 i = 0; /* restart loop, inefficient, but time jumps should be rare */
960 }
457 } 961 }
962 }
963}
458 964
459 /* time jump detected, reschedule atimers */ 965inline int
460 for (i = 0; i < atimercnt; ++i) 966time_update_monotonic (EV_P)
967{
968 mn_now = get_clock ();
969
970 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
971 {
972 rt_now = rtmn_diff + mn_now;
973 return 0;
974 }
975 else
976 {
977 now_floor = mn_now;
978 rt_now = ev_time ();
979 return 1;
980 }
981}
982
983static void
984time_update (EV_P)
985{
986 int i;
987
988#if EV_USE_MONOTONIC
989 if (expect_true (have_monotonic))
990 {
991 if (time_update_monotonic (EV_A))
461 { 992 {
462 struct ev_timer *w = atimers [i]; 993 ev_tstamp odiff = rtmn_diff;
463 w->at += ceil ((ev_now - w->at) / w->repeat + 1.) * w->repeat; 994
995 for (i = 4; --i; ) /* loop a few times, before making important decisions */
996 {
997 rtmn_diff = rt_now - mn_now;
998
999 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1000 return; /* all is well */
1001
1002 rt_now = ev_time ();
1003 mn_now = get_clock ();
1004 now_floor = mn_now;
1005 }
1006
1007 periodics_reschedule (EV_A);
1008 /* no timer adjustment, as the monotonic clock doesn't jump */
1009 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
464 } 1010 }
465 } 1011 }
466 else 1012 else
1013#endif
467 { 1014 {
468 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 1015 rt_now = ev_time ();
469 /* time jump detected, adjust rtimers */ 1016
1017 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1018 {
1019 periodics_reschedule (EV_A);
1020
1021 /* adjust timers. this is easy, as the offset is the same for all */
470 for (i = 0; i < rtimercnt; ++i) 1022 for (i = 0; i < timercnt; ++i)
471 rtimers [i]->at += ev_now - now; 1023 ((WT)timers [i])->at += rt_now - mn_now;
1024 }
472 1025
473 now = ev_now; 1026 mn_now = rt_now;
474 } 1027 }
475} 1028}
476 1029
477int ev_loop_done; 1030void
1031ev_ref (EV_P)
1032{
1033 ++activecnt;
1034}
478 1035
1036void
1037ev_unref (EV_P)
1038{
1039 --activecnt;
1040}
1041
1042static int loop_done;
1043
1044void
479void ev_loop (int flags) 1045ev_loop (EV_P_ int flags)
480{ 1046{
481 double block; 1047 double block;
482 ev_loop_done = flags & EVLOOP_ONESHOT; 1048 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
483
484 if (checkcnt)
485 {
486 queue_events ((W *)checks, checkcnt, EV_CHECK);
487 call_pending ();
488 }
489 1049
490 do 1050 do
491 { 1051 {
1052 /* queue check watchers (and execute them) */
1053 if (expect_false (preparecnt))
1054 {
1055 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1056 call_pending (EV_A);
1057 }
1058
1059 /* we might have forked, so reify kernel state if necessary */
1060 if (expect_false (postfork))
1061 loop_fork (EV_A);
1062
492 /* update fd-related kernel structures */ 1063 /* update fd-related kernel structures */
493 fd_reify (); 1064 fd_reify (EV_A);
494 1065
495 /* calculate blocking time */ 1066 /* calculate blocking time */
1067
1068 /* we only need this for !monotonic clockor timers, but as we basically
1069 always have timers, we just calculate it always */
1070#if EV_USE_MONOTONIC
1071 if (expect_true (have_monotonic))
1072 time_update_monotonic (EV_A);
1073 else
1074#endif
1075 {
1076 rt_now = ev_time ();
1077 mn_now = rt_now;
1078 }
1079
496 if (flags & EVLOOP_NONBLOCK || idlecnt) 1080 if (flags & EVLOOP_NONBLOCK || idlecnt)
497 block = 0.; 1081 block = 0.;
498 else 1082 else
499 { 1083 {
500 block = MAX_BLOCKTIME; 1084 block = MAX_BLOCKTIME;
501 1085
502 if (rtimercnt) 1086 if (timercnt)
503 { 1087 {
504 ev_tstamp to = rtimers [0]->at - get_clock () + method_fudge; 1088 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
505 if (block > to) block = to; 1089 if (block > to) block = to;
506 } 1090 }
507 1091
508 if (atimercnt) 1092 if (periodiccnt)
509 { 1093 {
510 ev_tstamp to = atimers [0]->at - ev_time () + method_fudge; 1094 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
511 if (block > to) block = to; 1095 if (block > to) block = to;
512 } 1096 }
513 1097
514 if (block < 0.) block = 0.; 1098 if (block < 0.) block = 0.;
515 } 1099 }
516 1100
517 method_poll (block); 1101 method_poll (EV_A_ block);
518 1102
519 /* update ev_now, do magic */ 1103 /* update rt_now, do magic */
520 time_update (); 1104 time_update (EV_A);
521 1105
522 /* queue pending timers and reschedule them */ 1106 /* queue pending timers and reschedule them */
523 /* absolute timers first */ 1107 timers_reify (EV_A); /* relative timers called last */
524 timers_reify (atimers, atimercnt, ev_now); 1108 periodics_reify (EV_A); /* absolute timers called first */
525 /* relative timers second */
526 timers_reify (rtimers, rtimercnt, now);
527 1109
528 /* queue idle watchers unless io or timers are pending */ 1110 /* queue idle watchers unless io or timers are pending */
529 if (!pendingcnt) 1111 if (!pendingcnt)
530 queue_events ((W *)idles, idlecnt, EV_IDLE); 1112 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
531 1113
532 /* queue check and possibly idle watchers */ 1114 /* queue check watchers, to be executed first */
1115 if (checkcnt)
533 queue_events ((W *)checks, checkcnt, EV_CHECK); 1116 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
534 1117
535 call_pending (); 1118 call_pending (EV_A);
536 } 1119 }
537 while (!ev_loop_done); 1120 while (activecnt && !loop_done);
1121
1122 if (loop_done != 2)
1123 loop_done = 0;
1124}
1125
1126void
1127ev_unloop (EV_P_ int how)
1128{
1129 loop_done = how;
538} 1130}
539 1131
540/*****************************************************************************/ 1132/*****************************************************************************/
541 1133
542static void 1134inline void
543wlist_add (WL *head, WL elem) 1135wlist_add (WL *head, WL elem)
544{ 1136{
545 elem->next = *head; 1137 elem->next = *head;
546 *head = elem; 1138 *head = elem;
547} 1139}
548 1140
549static void 1141inline void
550wlist_del (WL *head, WL elem) 1142wlist_del (WL *head, WL elem)
551{ 1143{
552 while (*head) 1144 while (*head)
553 { 1145 {
554 if (*head == elem) 1146 if (*head == elem)
559 1151
560 head = &(*head)->next; 1152 head = &(*head)->next;
561 } 1153 }
562} 1154}
563 1155
564static void 1156inline void
1157ev_clear_pending (EV_P_ W w)
1158{
1159 if (w->pending)
1160 {
1161 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1162 w->pending = 0;
1163 }
1164}
1165
1166inline void
565ev_start (W w, int active) 1167ev_start (EV_P_ W w, int active)
566{ 1168{
567 w->pending = 0; 1169 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1170 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1171
568 w->active = active; 1172 w->active = active;
1173 ev_ref (EV_A);
569} 1174}
570 1175
571static void 1176inline void
572ev_stop (W w) 1177ev_stop (EV_P_ W w)
573{ 1178{
574 if (w->pending) 1179 ev_unref (EV_A);
575 pendings [w->pending - 1].w = 0;
576
577 w->active = 0; 1180 w->active = 0;
578 /* nop */
579} 1181}
580 1182
581/*****************************************************************************/ 1183/*****************************************************************************/
582 1184
583void 1185void
584evio_start (struct ev_io *w) 1186ev_io_start (EV_P_ struct ev_io *w)
585{ 1187{
1188 int fd = w->fd;
1189
586 if (ev_is_active (w)) 1190 if (ev_is_active (w))
587 return; 1191 return;
588 1192
589 int fd = w->fd; 1193 assert (("ev_io_start called with negative fd", fd >= 0));
590 1194
591 ev_start ((W)w, 1); 1195 ev_start (EV_A_ (W)w, 1);
592 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1196 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
593 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1197 wlist_add ((WL *)&anfds[fd].head, (WL)w);
594 1198
595 ++fdchangecnt; 1199 fd_change (EV_A_ fd);
596 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
597 fdchanges [fdchangecnt - 1] = fd;
598} 1200}
599 1201
600void 1202void
601evio_stop (struct ev_io *w) 1203ev_io_stop (EV_P_ struct ev_io *w)
602{ 1204{
1205 ev_clear_pending (EV_A_ (W)w);
603 if (!ev_is_active (w)) 1206 if (!ev_is_active (w))
604 return; 1207 return;
605 1208
606 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1209 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
607 ev_stop ((W)w); 1210 ev_stop (EV_A_ (W)w);
608 1211
609 ++fdchangecnt; 1212 fd_change (EV_A_ w->fd);
610 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
611 fdchanges [fdchangecnt - 1] = w->fd;
612} 1213}
613 1214
614void 1215void
615evtimer_start (struct ev_timer *w) 1216ev_timer_start (EV_P_ struct ev_timer *w)
616{ 1217{
617 if (ev_is_active (w)) 1218 if (ev_is_active (w))
618 return; 1219 return;
619 1220
620 if (w->is_abs) 1221 ((WT)w)->at += mn_now;
1222
1223 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1224
1225 ev_start (EV_A_ (W)w, ++timercnt);
1226 array_needsize (timers, timermax, timercnt, );
1227 timers [timercnt - 1] = w;
1228 upheap ((WT *)timers, timercnt - 1);
1229
1230 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1231}
1232
1233void
1234ev_timer_stop (EV_P_ struct ev_timer *w)
1235{
1236 ev_clear_pending (EV_A_ (W)w);
1237 if (!ev_is_active (w))
1238 return;
1239
1240 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1241
1242 if (((W)w)->active < timercnt--)
1243 {
1244 timers [((W)w)->active - 1] = timers [timercnt];
1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
621 { 1246 }
622 /* this formula differs from the one in timer_reify becuse we do not round up */ 1247
1248 ((WT)w)->at = w->repeat;
1249
1250 ev_stop (EV_A_ (W)w);
1251}
1252
1253void
1254ev_timer_again (EV_P_ struct ev_timer *w)
1255{
1256 if (ev_is_active (w))
1257 {
623 if (w->repeat) 1258 if (w->repeat)
624 w->at += ceil ((ev_now - w->at) / w->repeat) * w->repeat; 1259 {
625 1260 ((WT)w)->at = mn_now + w->repeat;
626 ev_start ((W)w, ++atimercnt); 1261 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
627 array_needsize (atimers, atimermax, atimercnt, ); 1262 }
628 atimers [atimercnt - 1] = w;
629 upheap (atimers, atimercnt - 1);
630 }
631 else 1263 else
1264 ev_timer_stop (EV_A_ w);
632 { 1265 }
633 w->at += now; 1266 else if (w->repeat)
634 1267 ev_timer_start (EV_A_ w);
635 ev_start ((W)w, ++rtimercnt);
636 array_needsize (rtimers, rtimermax, rtimercnt, );
637 rtimers [rtimercnt - 1] = w;
638 upheap (rtimers, rtimercnt - 1);
639 }
640
641} 1268}
642 1269
643void 1270void
644evtimer_stop (struct ev_timer *w) 1271ev_periodic_start (EV_P_ struct ev_periodic *w)
645{ 1272{
1273 if (ev_is_active (w))
1274 return;
1275
1276 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1277
1278 /* this formula differs from the one in periodic_reify because we do not always round up */
1279 if (w->interval)
1280 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1281
1282 ev_start (EV_A_ (W)w, ++periodiccnt);
1283 array_needsize (periodics, periodicmax, periodiccnt, );
1284 periodics [periodiccnt - 1] = w;
1285 upheap ((WT *)periodics, periodiccnt - 1);
1286
1287 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1288}
1289
1290void
1291ev_periodic_stop (EV_P_ struct ev_periodic *w)
1292{
1293 ev_clear_pending (EV_A_ (W)w);
646 if (!ev_is_active (w)) 1294 if (!ev_is_active (w))
647 return; 1295 return;
648 1296
649 if (w->is_abs) 1297 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
650 { 1298
651 if (w->active < atimercnt--) 1299 if (((W)w)->active < periodiccnt--)
652 {
653 atimers [w->active - 1] = atimers [atimercnt];
654 downheap (atimers, atimercnt, w->active - 1);
655 }
656 } 1300 {
657 else 1301 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1302 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
658 { 1303 }
659 if (w->active < rtimercnt--)
660 {
661 rtimers [w->active - 1] = rtimers [rtimercnt];
662 downheap (rtimers, rtimercnt, w->active - 1);
663 }
664 }
665 1304
666 ev_stop ((W)w); 1305 ev_stop (EV_A_ (W)w);
667} 1306}
668 1307
669void 1308void
670evsignal_start (struct ev_signal *w) 1309ev_idle_start (EV_P_ struct ev_idle *w)
671{ 1310{
672 if (ev_is_active (w)) 1311 if (ev_is_active (w))
673 return; 1312 return;
674 1313
1314 ev_start (EV_A_ (W)w, ++idlecnt);
1315 array_needsize (idles, idlemax, idlecnt, );
1316 idles [idlecnt - 1] = w;
1317}
1318
1319void
1320ev_idle_stop (EV_P_ struct ev_idle *w)
1321{
1322 ev_clear_pending (EV_A_ (W)w);
1323 if (ev_is_active (w))
1324 return;
1325
1326 idles [((W)w)->active - 1] = idles [--idlecnt];
1327 ev_stop (EV_A_ (W)w);
1328}
1329
1330void
1331ev_prepare_start (EV_P_ struct ev_prepare *w)
1332{
1333 if (ev_is_active (w))
1334 return;
1335
1336 ev_start (EV_A_ (W)w, ++preparecnt);
1337 array_needsize (prepares, preparemax, preparecnt, );
1338 prepares [preparecnt - 1] = w;
1339}
1340
1341void
1342ev_prepare_stop (EV_P_ struct ev_prepare *w)
1343{
1344 ev_clear_pending (EV_A_ (W)w);
1345 if (ev_is_active (w))
1346 return;
1347
1348 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1349 ev_stop (EV_A_ (W)w);
1350}
1351
1352void
1353ev_check_start (EV_P_ struct ev_check *w)
1354{
1355 if (ev_is_active (w))
1356 return;
1357
1358 ev_start (EV_A_ (W)w, ++checkcnt);
1359 array_needsize (checks, checkmax, checkcnt, );
1360 checks [checkcnt - 1] = w;
1361}
1362
1363void
1364ev_check_stop (EV_P_ struct ev_check *w)
1365{
1366 ev_clear_pending (EV_A_ (W)w);
1367 if (ev_is_active (w))
1368 return;
1369
1370 checks [((W)w)->active - 1] = checks [--checkcnt];
1371 ev_stop (EV_A_ (W)w);
1372}
1373
1374#ifndef SA_RESTART
1375# define SA_RESTART 0
1376#endif
1377
1378void
1379ev_signal_start (EV_P_ struct ev_signal *w)
1380{
1381#if EV_MULTIPLICITY
1382 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1383#endif
1384 if (ev_is_active (w))
1385 return;
1386
1387 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1388
675 ev_start ((W)w, 1); 1389 ev_start (EV_A_ (W)w, 1);
676 array_needsize (signals, signalmax, w->signum, signals_init); 1390 array_needsize (signals, signalmax, w->signum, signals_init);
677 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1391 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
678 1392
679 if (!w->next) 1393 if (!((WL)w)->next)
680 { 1394 {
1395#if WIN32
1396 signal (w->signum, sighandler);
1397#else
681 struct sigaction sa; 1398 struct sigaction sa;
682 sa.sa_handler = sighandler; 1399 sa.sa_handler = sighandler;
683 sigfillset (&sa.sa_mask); 1400 sigfillset (&sa.sa_mask);
684 sa.sa_flags = 0; 1401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
685 sigaction (w->signum, &sa, 0); 1402 sigaction (w->signum, &sa, 0);
1403#endif
686 } 1404 }
687} 1405}
688 1406
689void 1407void
690evsignal_stop (struct ev_signal *w) 1408ev_signal_stop (EV_P_ struct ev_signal *w)
691{ 1409{
1410 ev_clear_pending (EV_A_ (W)w);
692 if (!ev_is_active (w)) 1411 if (!ev_is_active (w))
693 return; 1412 return;
694 1413
695 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1414 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
696 ev_stop ((W)w); 1415 ev_stop (EV_A_ (W)w);
697 1416
698 if (!signals [w->signum - 1].head) 1417 if (!signals [w->signum - 1].head)
699 signal (w->signum, SIG_DFL); 1418 signal (w->signum, SIG_DFL);
700} 1419}
701 1420
702void evidle_start (struct ev_idle *w) 1421void
1422ev_child_start (EV_P_ struct ev_child *w)
703{ 1423{
1424#if EV_MULTIPLICITY
1425 assert (("child watchers are only supported in the default loop", loop == default_loop));
1426#endif
704 if (ev_is_active (w)) 1427 if (ev_is_active (w))
705 return; 1428 return;
706 1429
707 ev_start ((W)w, ++idlecnt); 1430 ev_start (EV_A_ (W)w, 1);
708 array_needsize (idles, idlemax, idlecnt, ); 1431 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
709 idles [idlecnt - 1] = w;
710} 1432}
711 1433
712void evidle_stop (struct ev_idle *w) 1434void
1435ev_child_stop (EV_P_ struct ev_child *w)
713{ 1436{
714 idles [w->active - 1] = idles [--idlecnt]; 1437 ev_clear_pending (EV_A_ (W)w);
715 ev_stop ((W)w);
716}
717
718void evcheck_start (struct ev_check *w)
719{
720 if (ev_is_active (w)) 1438 if (ev_is_active (w))
721 return; 1439 return;
722 1440
723 ev_start ((W)w, ++checkcnt); 1441 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
724 array_needsize (checks, checkmax, checkcnt, );
725 checks [checkcnt - 1] = w;
726}
727
728void evcheck_stop (struct ev_check *w)
729{
730 checks [w->active - 1] = checks [--checkcnt];
731 ev_stop ((W)w); 1442 ev_stop (EV_A_ (W)w);
732} 1443}
733 1444
734/*****************************************************************************/ 1445/*****************************************************************************/
735 1446
736#if 0 1447struct ev_once
737
738static void
739sin_cb (struct ev_io *w, int revents)
740{ 1448{
741 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
742}
743
744static void
745ocb (struct ev_timer *w, int revents)
746{
747 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
748 evtimer_stop (w);
749 evtimer_start (w);
750}
751
752static void
753scb (struct ev_signal *w, int revents)
754{
755 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
756}
757
758static void
759gcb (struct ev_signal *w, int revents)
760{
761 fprintf (stderr, "generic %x\n", revents);
762}
763
764int main (void)
765{
766 struct ev_io sin; 1449 struct ev_io io;
767
768 ev_init (0);
769
770 evw_init (&sin, sin_cb, 55);
771 evio_set (&sin, 0, EV_READ);
772 evio_start (&sin);
773
774 struct ev_timer t[10000];
775
776#if 0
777 int i;
778 for (i = 0; i < 10000; ++i)
779 {
780 struct ev_timer *w = t + i;
781 evw_init (w, ocb, i);
782 evtimer_set_abs (w, drand48 (), 0.99775533);
783 evtimer_start (w);
784 if (drand48 () < 0.5)
785 evtimer_stop (w);
786 }
787#endif
788
789 struct ev_timer t1; 1450 struct ev_timer to;
790 evw_init (&t1, ocb, 0); 1451 void (*cb)(int revents, void *arg);
791 evtimer_set_abs (&t1, 5, 10); 1452 void *arg;
792 evtimer_start (&t1); 1453};
793 1454
794 struct ev_signal sig; 1455static void
795 evw_init (&sig, scb, 65535); 1456once_cb (EV_P_ struct ev_once *once, int revents)
796 evsignal_set (&sig, SIGQUIT); 1457{
797 evsignal_start (&sig); 1458 void (*cb)(int revents, void *arg) = once->cb;
1459 void *arg = once->arg;
798 1460
799 struct ev_check cw; 1461 ev_io_stop (EV_A_ &once->io);
800 evw_init (&cw, gcb, 0); 1462 ev_timer_stop (EV_A_ &once->to);
801 evcheck_start (&cw); 1463 ev_free (once);
802 1464
803 struct ev_idle iw; 1465 cb (revents, arg);
804 evw_init (&iw, gcb, 0);
805 evidle_start (&iw);
806
807 ev_loop (0);
808
809 return 0;
810} 1466}
811 1467
812#endif 1468static void
1469once_cb_io (EV_P_ struct ev_io *w, int revents)
1470{
1471 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1472}
813 1473
1474static void
1475once_cb_to (EV_P_ struct ev_timer *w, int revents)
1476{
1477 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1478}
814 1479
1480void
1481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1482{
1483 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
815 1484
1485 if (!once)
1486 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1487 else
1488 {
1489 once->cb = cb;
1490 once->arg = arg;
816 1491
1492 ev_watcher_init (&once->io, once_cb_io);
1493 if (fd >= 0)
1494 {
1495 ev_io_set (&once->io, fd, events);
1496 ev_io_start (EV_A_ &once->io);
1497 }
1498
1499 ev_watcher_init (&once->to, once_cb_to);
1500 if (timeout >= 0.)
1501 {
1502 ev_timer_set (&once->to, timeout, 0.);
1503 ev_timer_start (EV_A_ &once->to);
1504 }
1505 }
1506}
1507

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines