ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.70 by root, Tue Nov 6 00:52:32 2007 UTC vs.
Revision 1.134 by root, Fri Nov 23 19:13:33 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
53# endif 97# endif
54 98
55#endif 99#endif
56 100
57#include <math.h> 101#include <math.h>
58#include <stdlib.h> 102#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 103#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 104#include <stddef.h>
63 105
64#include <stdio.h> 106#include <stdio.h>
65 107
66#include <assert.h> 108#include <assert.h>
67#include <errno.h> 109#include <errno.h>
68#include <sys/types.h> 110#include <sys/types.h>
111#include <time.h>
112
113#include <signal.h>
114
69#ifndef WIN32 115#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h>
70# include <sys/wait.h> 118# include <sys/wait.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
71#endif 124# endif
72#include <sys/time.h> 125#endif
73#include <time.h>
74 126
75/**/ 127/**/
76 128
77#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
79#endif 135#endif
80 136
81#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
83#endif 139#endif
84 140
85#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
87#endif 147#endif
88 148
89#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
91#endif 151#endif
92 152
93#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
95#endif 155#endif
96 156
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
106# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
107#endif 159#endif
108 160
109/**/ 161/**/
110 162
111#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
116#ifndef CLOCK_REALTIME 168#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 169# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 170# define EV_USE_REALTIME 0
119#endif 171#endif
120 172
173#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h>
175#endif
176
121/**/ 177/**/
122 178
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
127 183
184#ifdef EV_H
185# include EV_H
186#else
128#include "ev.h" 187# include "ev.h"
188#endif
129 189
130#if __GNUC__ >= 3 190#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 192# define inline static inline
133#else 193#else
134# define expect(expr,value) (expr) 194# define expect(expr,value) (expr)
135# define inline static 195# define inline static
136#endif 196#endif
137 197
139#define expect_true(expr) expect ((expr) != 0, 1) 199#define expect_true(expr) expect ((expr) != 0, 1)
140 200
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 202#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 203
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */
206
144typedef struct ev_watcher *W; 207typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL; 208typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 209typedef struct ev_watcher_time *WT;
147 210
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 212
150#if WIN32 213#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 214# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 215#endif
155 216
156/*****************************************************************************/ 217/*****************************************************************************/
157 218
158static void (*syserr_cb)(const char *msg); 219static void (*syserr_cb)(const char *msg);
206typedef struct 267typedef struct
207{ 268{
208 WL head; 269 WL head;
209 unsigned char events; 270 unsigned char events;
210 unsigned char reify; 271 unsigned char reify;
272#if EV_SELECT_IS_WINSOCKET
273 SOCKET handle;
274#endif
211} ANFD; 275} ANFD;
212 276
213typedef struct 277typedef struct
214{ 278{
215 W w; 279 W w;
216 int events; 280 int events;
217} ANPENDING; 281} ANPENDING;
218 282
219#if EV_MULTIPLICITY 283#if EV_MULTIPLICITY
220 284
221struct ev_loop 285 struct ev_loop
222{ 286 {
287 ev_tstamp ev_rt_now;
288 #define ev_rt_now ((loop)->ev_rt_now)
223# define VAR(name,decl) decl; 289 #define VAR(name,decl) decl;
224# include "ev_vars.h" 290 #include "ev_vars.h"
225};
226# undef VAR 291 #undef VAR
292 };
227# include "ev_wrap.h" 293 #include "ev_wrap.h"
294
295 static struct ev_loop default_loop_struct;
296 struct ev_loop *ev_default_loop_ptr;
228 297
229#else 298#else
230 299
300 ev_tstamp ev_rt_now;
231# define VAR(name,decl) static decl; 301 #define VAR(name,decl) static decl;
232# include "ev_vars.h" 302 #include "ev_vars.h"
233# undef VAR 303 #undef VAR
304
305 static int ev_default_loop_ptr;
234 306
235#endif 307#endif
236 308
237/*****************************************************************************/ 309/*****************************************************************************/
238 310
239inline ev_tstamp 311ev_tstamp
240ev_time (void) 312ev_time (void)
241{ 313{
242#if EV_USE_REALTIME 314#if EV_USE_REALTIME
243 struct timespec ts; 315 struct timespec ts;
244 clock_gettime (CLOCK_REALTIME, &ts); 316 clock_gettime (CLOCK_REALTIME, &ts);
263#endif 335#endif
264 336
265 return ev_time (); 337 return ev_time ();
266} 338}
267 339
340#if EV_MULTIPLICITY
268ev_tstamp 341ev_tstamp
269ev_now (EV_P) 342ev_now (EV_P)
270{ 343{
271 return rt_now; 344 return ev_rt_now;
272} 345}
346#endif
273 347
274#define array_roundsize(base,n) ((n) | 4 & ~3) 348#define array_roundsize(type,n) (((n) | 4) & ~3)
275 349
276#define array_needsize(base,cur,cnt,init) \ 350#define array_needsize(type,base,cur,cnt,init) \
277 if (expect_false ((cnt) > cur)) \ 351 if (expect_false ((cnt) > cur)) \
278 { \ 352 { \
279 int newcnt = cur; \ 353 int newcnt = cur; \
280 do \ 354 do \
281 { \ 355 { \
282 newcnt = array_roundsize (base, newcnt << 1); \ 356 newcnt = array_roundsize (type, newcnt << 1); \
283 } \ 357 } \
284 while ((cnt) > newcnt); \ 358 while ((cnt) > newcnt); \
285 \ 359 \
286 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
287 init (base + cur, newcnt - cur); \ 361 init (base + cur, newcnt - cur); \
288 cur = newcnt; \ 362 cur = newcnt; \
289 } 363 }
290 364
291#define array_slim(stem) \ 365#define array_slim(type,stem) \
292 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
293 { \ 367 { \
294 stem ## max = array_roundsize (stem ## cnt >> 1); \ 368 stem ## max = array_roundsize (stem ## cnt >> 1); \
295 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
296 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
297 } 371 }
298 372
299#define array_free(stem, idx) \ 373#define array_free(stem, idx) \
300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
312 386
313 ++base; 387 ++base;
314 } 388 }
315} 389}
316 390
317static void 391void
318event (EV_P_ W w, int events) 392ev_feed_event (EV_P_ void *w, int revents)
319{ 393{
320 if (w->pending) 394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
321 { 397 {
322 pendings [ABSPRI (w)][w->pending - 1].events |= events; 398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
323 return; 399 return;
324 } 400 }
325 401
402 if (expect_false (!w_->cb))
403 return;
404
326 w->pending = ++pendingcnt [ABSPRI (w)]; 405 w_->pending = ++pendingcnt [ABSPRI (w_)];
327 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
328 pendings [ABSPRI (w)][w->pending - 1].w = w; 407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
329 pendings [ABSPRI (w)][w->pending - 1].events = events; 408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
330} 409}
331 410
332static void 411static void
333queue_events (EV_P_ W *events, int eventcnt, int type) 412queue_events (EV_P_ W *events, int eventcnt, int type)
334{ 413{
335 int i; 414 int i;
336 415
337 for (i = 0; i < eventcnt; ++i) 416 for (i = 0; i < eventcnt; ++i)
338 event (EV_A_ events [i], type); 417 ev_feed_event (EV_A_ events [i], type);
339} 418}
340 419
341static void 420inline void
342fd_event (EV_P_ int fd, int events) 421fd_event (EV_P_ int fd, int revents)
343{ 422{
344 ANFD *anfd = anfds + fd; 423 ANFD *anfd = anfds + fd;
345 struct ev_io *w; 424 struct ev_io *w;
346 425
347 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
348 { 427 {
349 int ev = w->events & events; 428 int ev = w->events & revents;
350 429
351 if (ev) 430 if (ev)
352 event (EV_A_ (W)w, ev); 431 ev_feed_event (EV_A_ (W)w, ev);
353 } 432 }
433}
434
435void
436ev_feed_fd_event (EV_P_ int fd, int revents)
437{
438 fd_event (EV_A_ fd, revents);
354} 439}
355 440
356/*****************************************************************************/ 441/*****************************************************************************/
357 442
358static void 443inline void
359fd_reify (EV_P) 444fd_reify (EV_P)
360{ 445{
361 int i; 446 int i;
362 447
363 for (i = 0; i < fdchangecnt; ++i) 448 for (i = 0; i < fdchangecnt; ++i)
369 int events = 0; 454 int events = 0;
370 455
371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
372 events |= w->events; 457 events |= w->events;
373 458
459#if EV_SELECT_IS_WINSOCKET
460 if (events)
461 {
462 unsigned long argp;
463 anfd->handle = _get_osfhandle (fd);
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
465 }
466#endif
467
374 anfd->reify = 0; 468 anfd->reify = 0;
375 469
376 method_modify (EV_A_ fd, anfd->events, events); 470 backend_modify (EV_A_ fd, anfd->events, events);
377 anfd->events = events; 471 anfd->events = events;
378 } 472 }
379 473
380 fdchangecnt = 0; 474 fdchangecnt = 0;
381} 475}
382 476
383static void 477static void
384fd_change (EV_P_ int fd) 478fd_change (EV_P_ int fd)
385{ 479{
386 if (anfds [fd].reify) 480 if (expect_false (anfds [fd].reify))
387 return; 481 return;
388 482
389 anfds [fd].reify = 1; 483 anfds [fd].reify = 1;
390 484
391 ++fdchangecnt; 485 ++fdchangecnt;
392 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
393 fdchanges [fdchangecnt - 1] = fd; 487 fdchanges [fdchangecnt - 1] = fd;
394} 488}
395 489
396static void 490static void
397fd_kill (EV_P_ int fd) 491fd_kill (EV_P_ int fd)
399 struct ev_io *w; 493 struct ev_io *w;
400 494
401 while ((w = (struct ev_io *)anfds [fd].head)) 495 while ((w = (struct ev_io *)anfds [fd].head))
402 { 496 {
403 ev_io_stop (EV_A_ w); 497 ev_io_stop (EV_A_ w);
404 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
405 } 499 }
500}
501
502inline int
503fd_valid (int fd)
504{
505#ifdef _WIN32
506 return _get_osfhandle (fd) != -1;
507#else
508 return fcntl (fd, F_GETFD) != -1;
509#endif
406} 510}
407 511
408/* called on EBADF to verify fds */ 512/* called on EBADF to verify fds */
409static void 513static void
410fd_ebadf (EV_P) 514fd_ebadf (EV_P)
411{ 515{
412 int fd; 516 int fd;
413 517
414 for (fd = 0; fd < anfdmax; ++fd) 518 for (fd = 0; fd < anfdmax; ++fd)
415 if (anfds [fd].events) 519 if (anfds [fd].events)
416 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 520 if (!fd_valid (fd) == -1 && errno == EBADF)
417 fd_kill (EV_A_ fd); 521 fd_kill (EV_A_ fd);
418} 522}
419 523
420/* called on ENOMEM in select/poll to kill some fds and retry */ 524/* called on ENOMEM in select/poll to kill some fds and retry */
421static void 525static void
429 fd_kill (EV_A_ fd); 533 fd_kill (EV_A_ fd);
430 return; 534 return;
431 } 535 }
432} 536}
433 537
434/* usually called after fork if method needs to re-arm all fds from scratch */ 538/* usually called after fork if backend needs to re-arm all fds from scratch */
435static void 539static void
436fd_rearm_all (EV_P) 540fd_rearm_all (EV_P)
437{ 541{
438 int fd; 542 int fd;
439 543
487 591
488 heap [k] = w; 592 heap [k] = w;
489 ((W)heap [k])->active = k + 1; 593 ((W)heap [k])->active = k + 1;
490} 594}
491 595
596inline void
597adjustheap (WT *heap, int N, int k)
598{
599 upheap (heap, k);
600 downheap (heap, N, k);
601}
602
492/*****************************************************************************/ 603/*****************************************************************************/
493 604
494typedef struct 605typedef struct
495{ 606{
496 WL head; 607 WL head;
517} 628}
518 629
519static void 630static void
520sighandler (int signum) 631sighandler (int signum)
521{ 632{
522#if WIN32 633#if _WIN32
523 signal (signum, sighandler); 634 signal (signum, sighandler);
524#endif 635#endif
525 636
526 signals [signum - 1].gotsig = 1; 637 signals [signum - 1].gotsig = 1;
527 638
532 write (sigpipe [1], &signum, 1); 643 write (sigpipe [1], &signum, 1);
533 errno = old_errno; 644 errno = old_errno;
534 } 645 }
535} 646}
536 647
648void
649ev_feed_signal_event (EV_P_ int signum)
650{
651 WL w;
652
653#if EV_MULTIPLICITY
654 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
655#endif
656
657 --signum;
658
659 if (signum < 0 || signum >= signalmax)
660 return;
661
662 signals [signum].gotsig = 0;
663
664 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666}
667
537static void 668static void
538sigcb (EV_P_ struct ev_io *iow, int revents) 669sigcb (EV_P_ struct ev_io *iow, int revents)
539{ 670{
540 WL w;
541 int signum; 671 int signum;
542 672
543 read (sigpipe [0], &revents, 1); 673 read (sigpipe [0], &revents, 1);
544 gotsig = 0; 674 gotsig = 0;
545 675
546 for (signum = signalmax; signum--; ) 676 for (signum = signalmax; signum--; )
547 if (signals [signum].gotsig) 677 if (signals [signum].gotsig)
548 { 678 ev_feed_signal_event (EV_A_ signum + 1);
549 signals [signum].gotsig = 0; 679}
550 680
551 for (w = signals [signum].head; w; w = w->next) 681static void
552 event (EV_A_ (W)w, EV_SIGNAL); 682fd_intern (int fd)
553 } 683{
684#ifdef _WIN32
685 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
687#else
688 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif
554} 691}
555 692
556static void 693static void
557siginit (EV_P) 694siginit (EV_P)
558{ 695{
559#ifndef WIN32 696 fd_intern (sigpipe [0]);
560 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 697 fd_intern (sigpipe [1]);
561 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
562
563 /* rather than sort out wether we really need nb, set it */
564 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
565 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
566#endif
567 698
568 ev_io_set (&sigev, sigpipe [0], EV_READ); 699 ev_io_set (&sigev, sigpipe [0], EV_READ);
569 ev_io_start (EV_A_ &sigev); 700 ev_io_start (EV_A_ &sigev);
570 ev_unref (EV_A); /* child watcher should not keep loop alive */ 701 ev_unref (EV_A); /* child watcher should not keep loop alive */
571} 702}
572 703
573/*****************************************************************************/ 704/*****************************************************************************/
574 705
575#ifndef WIN32
576
577static struct ev_child *childs [PID_HASHSIZE]; 706static struct ev_child *childs [PID_HASHSIZE];
707
708#ifndef _WIN32
709
578static struct ev_signal childev; 710static struct ev_signal childev;
579 711
580#ifndef WCONTINUED 712#ifndef WCONTINUED
581# define WCONTINUED 0 713# define WCONTINUED 0
582#endif 714#endif
590 if (w->pid == pid || !w->pid) 722 if (w->pid == pid || !w->pid)
591 { 723 {
592 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
593 w->rpid = pid; 725 w->rpid = pid;
594 w->rstatus = status; 726 w->rstatus = status;
595 event (EV_A_ (W)w, EV_CHILD); 727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
596 } 728 }
597} 729}
598 730
599static void 731static void
600childcb (EV_P_ struct ev_signal *sw, int revents) 732childcb (EV_P_ struct ev_signal *sw, int revents)
602 int pid, status; 734 int pid, status;
603 735
604 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
605 { 737 {
606 /* make sure we are called again until all childs have been reaped */ 738 /* make sure we are called again until all childs have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */
607 event (EV_A_ (W)sw, EV_SIGNAL); 740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
608 741
609 child_reap (EV_A_ sw, pid, pid, status); 742 child_reap (EV_A_ sw, pid, pid, status);
610 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
611 } 744 }
612} 745}
613 746
614#endif 747#endif
615 748
616/*****************************************************************************/ 749/*****************************************************************************/
617 750
751#if EV_USE_PORT
752# include "ev_port.c"
753#endif
618#if EV_USE_KQUEUE 754#if EV_USE_KQUEUE
619# include "ev_kqueue.c" 755# include "ev_kqueue.c"
620#endif 756#endif
621#if EV_USE_EPOLL 757#if EV_USE_EPOLL
622# include "ev_epoll.c" 758# include "ev_epoll.c"
642 778
643/* return true if we are running with elevated privileges and should ignore env variables */ 779/* return true if we are running with elevated privileges and should ignore env variables */
644static int 780static int
645enable_secure (void) 781enable_secure (void)
646{ 782{
647#ifdef WIN32 783#ifdef _WIN32
648 return 0; 784 return 0;
649#else 785#else
650 return getuid () != geteuid () 786 return getuid () != geteuid ()
651 || getgid () != getegid (); 787 || getgid () != getegid ();
652#endif 788#endif
653} 789}
654 790
655int 791unsigned int
656ev_method (EV_P) 792ev_supported_backends (void)
657{ 793{
658 return method; 794 unsigned int flags = 0;
659}
660 795
661static void 796 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
662loop_init (EV_P_ int methods) 797 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
798 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
799 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
800 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
801
802 return flags;
803}
804
805unsigned int
806ev_recommended_backends (void)
663{ 807{
664 if (!method) 808 unsigned int flags = ev_supported_backends ();
809
810#ifndef __NetBSD__
811 /* kqueue is borked on everything but netbsd apparently */
812 /* it usually doesn't work correctly on anything but sockets and pipes */
813 flags &= ~EVBACKEND_KQUEUE;
814#endif
815#ifdef __APPLE__
816 // flags &= ~EVBACKEND_KQUEUE; for documentation
817 flags &= ~EVBACKEND_POLL;
818#endif
819
820 return flags;
821}
822
823unsigned int
824ev_embeddable_backends (void)
825{
826 return EVBACKEND_EPOLL
827 | EVBACKEND_KQUEUE
828 | EVBACKEND_PORT;
829}
830
831unsigned int
832ev_backend (EV_P)
833{
834 return backend;
835}
836
837static void
838loop_init (EV_P_ unsigned int flags)
839{
840 if (!backend)
665 { 841 {
666#if EV_USE_MONOTONIC 842#if EV_USE_MONOTONIC
667 { 843 {
668 struct timespec ts; 844 struct timespec ts;
669 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 845 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
670 have_monotonic = 1; 846 have_monotonic = 1;
671 } 847 }
672#endif 848#endif
673 849
674 rt_now = ev_time (); 850 ev_rt_now = ev_time ();
675 mn_now = get_clock (); 851 mn_now = get_clock ();
676 now_floor = mn_now; 852 now_floor = mn_now;
677 rtmn_diff = rt_now - mn_now; 853 rtmn_diff = ev_rt_now - mn_now;
678 854
679 if (methods == EVMETHOD_AUTO) 855 if (!(flags & EVFLAG_NOENV)
680 if (!enable_secure () && getenv ("LIBEV_METHODS")) 856 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS"))
681 methods = atoi (getenv ("LIBEV_METHODS")); 858 flags = atoi (getenv ("LIBEV_FLAGS"));
682 else
683 methods = EVMETHOD_ANY;
684 859
685 method = 0; 860 if (!(flags & 0x0000ffffUL))
686#if EV_USE_WIN32 861 flags |= ev_recommended_backends ();
687 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 862
863 backend = 0;
864#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
688#endif 866#endif
689#if EV_USE_KQUEUE 867#if EV_USE_KQUEUE
690 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
691#endif 869#endif
692#if EV_USE_EPOLL 870#if EV_USE_EPOLL
693 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 871 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
694#endif 872#endif
695#if EV_USE_POLL 873#if EV_USE_POLL
696 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 874 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
697#endif 875#endif
698#if EV_USE_SELECT 876#if EV_USE_SELECT
699 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 877 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
700#endif 878#endif
701 879
702 ev_watcher_init (&sigev, sigcb); 880 ev_init (&sigev, sigcb);
703 ev_set_priority (&sigev, EV_MAXPRI); 881 ev_set_priority (&sigev, EV_MAXPRI);
704 } 882 }
705} 883}
706 884
707void 885static void
708loop_destroy (EV_P) 886loop_destroy (EV_P)
709{ 887{
710 int i; 888 int i;
711 889
712#if EV_USE_WIN32 890#if EV_USE_PORT
713 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
714#endif 892#endif
715#if EV_USE_KQUEUE 893#if EV_USE_KQUEUE
716 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 894 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
717#endif 895#endif
718#if EV_USE_EPOLL 896#if EV_USE_EPOLL
719 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 897 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
720#endif 898#endif
721#if EV_USE_POLL 899#if EV_USE_POLL
722 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 900 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
723#endif 901#endif
724#if EV_USE_SELECT 902#if EV_USE_SELECT
725 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
726#endif 904#endif
727 905
728 for (i = NUMPRI; i--; ) 906 for (i = NUMPRI; i--; )
729 array_free (pending, [i]); 907 array_free (pending, [i]);
730 908
909 /* have to use the microsoft-never-gets-it-right macro */
731 array_free (fdchange, ); 910 array_free (fdchange, EMPTY0);
732 array_free (timer, ); 911 array_free (timer, EMPTY0);
912#if EV_PERIODICS
733 array_free (periodic, ); 913 array_free (periodic, EMPTY0);
914#endif
734 array_free (idle, ); 915 array_free (idle, EMPTY0);
735 array_free (prepare, ); 916 array_free (prepare, EMPTY0);
736 array_free (check, ); 917 array_free (check, EMPTY0);
737 918
738 method = 0; 919 backend = 0;
739} 920}
740 921
741static void 922static void
742loop_fork (EV_P) 923loop_fork (EV_P)
743{ 924{
925#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif
928#if EV_USE_KQUEUE
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif
744#if EV_USE_EPOLL 931#if EV_USE_EPOLL
745 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
746#endif
747#if EV_USE_KQUEUE
748 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
749#endif 933#endif
750 934
751 if (ev_is_active (&sigev)) 935 if (ev_is_active (&sigev))
752 { 936 {
753 /* default loop */ 937 /* default loop */
766 postfork = 0; 950 postfork = 0;
767} 951}
768 952
769#if EV_MULTIPLICITY 953#if EV_MULTIPLICITY
770struct ev_loop * 954struct ev_loop *
771ev_loop_new (int methods) 955ev_loop_new (unsigned int flags)
772{ 956{
773 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 957 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
774 958
775 memset (loop, 0, sizeof (struct ev_loop)); 959 memset (loop, 0, sizeof (struct ev_loop));
776 960
777 loop_init (EV_A_ methods); 961 loop_init (EV_A_ flags);
778 962
779 if (ev_method (EV_A)) 963 if (ev_backend (EV_A))
780 return loop; 964 return loop;
781 965
782 return 0; 966 return 0;
783} 967}
784 968
796} 980}
797 981
798#endif 982#endif
799 983
800#if EV_MULTIPLICITY 984#if EV_MULTIPLICITY
801struct ev_loop default_loop_struct;
802static struct ev_loop *default_loop;
803
804struct ev_loop * 985struct ev_loop *
986ev_default_loop_init (unsigned int flags)
805#else 987#else
806static int default_loop;
807
808int 988int
989ev_default_loop (unsigned int flags)
809#endif 990#endif
810ev_default_loop (int methods)
811{ 991{
812 if (sigpipe [0] == sigpipe [1]) 992 if (sigpipe [0] == sigpipe [1])
813 if (pipe (sigpipe)) 993 if (pipe (sigpipe))
814 return 0; 994 return 0;
815 995
816 if (!default_loop) 996 if (!ev_default_loop_ptr)
817 { 997 {
818#if EV_MULTIPLICITY 998#if EV_MULTIPLICITY
819 struct ev_loop *loop = default_loop = &default_loop_struct; 999 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
820#else 1000#else
821 default_loop = 1; 1001 ev_default_loop_ptr = 1;
822#endif 1002#endif
823 1003
824 loop_init (EV_A_ methods); 1004 loop_init (EV_A_ flags);
825 1005
826 if (ev_method (EV_A)) 1006 if (ev_backend (EV_A))
827 { 1007 {
828 siginit (EV_A); 1008 siginit (EV_A);
829 1009
830#ifndef WIN32 1010#ifndef _WIN32
831 ev_signal_init (&childev, childcb, SIGCHLD); 1011 ev_signal_init (&childev, childcb, SIGCHLD);
832 ev_set_priority (&childev, EV_MAXPRI); 1012 ev_set_priority (&childev, EV_MAXPRI);
833 ev_signal_start (EV_A_ &childev); 1013 ev_signal_start (EV_A_ &childev);
834 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1014 ev_unref (EV_A); /* child watcher should not keep loop alive */
835#endif 1015#endif
836 } 1016 }
837 else 1017 else
838 default_loop = 0; 1018 ev_default_loop_ptr = 0;
839 } 1019 }
840 1020
841 return default_loop; 1021 return ev_default_loop_ptr;
842} 1022}
843 1023
844void 1024void
845ev_default_destroy (void) 1025ev_default_destroy (void)
846{ 1026{
847#if EV_MULTIPLICITY 1027#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop; 1028 struct ev_loop *loop = ev_default_loop_ptr;
849#endif 1029#endif
850 1030
1031#ifndef _WIN32
851 ev_ref (EV_A); /* child watcher */ 1032 ev_ref (EV_A); /* child watcher */
852 ev_signal_stop (EV_A_ &childev); 1033 ev_signal_stop (EV_A_ &childev);
1034#endif
853 1035
854 ev_ref (EV_A); /* signal watcher */ 1036 ev_ref (EV_A); /* signal watcher */
855 ev_io_stop (EV_A_ &sigev); 1037 ev_io_stop (EV_A_ &sigev);
856 1038
857 close (sigpipe [0]); sigpipe [0] = 0; 1039 close (sigpipe [0]); sigpipe [0] = 0;
862 1044
863void 1045void
864ev_default_fork (void) 1046ev_default_fork (void)
865{ 1047{
866#if EV_MULTIPLICITY 1048#if EV_MULTIPLICITY
867 struct ev_loop *loop = default_loop; 1049 struct ev_loop *loop = ev_default_loop_ptr;
868#endif 1050#endif
869 1051
870 if (method) 1052 if (backend)
871 postfork = 1; 1053 postfork = 1;
872} 1054}
873 1055
874/*****************************************************************************/ 1056/*****************************************************************************/
875 1057
876static void 1058static int
1059any_pending (EV_P)
1060{
1061 int pri;
1062
1063 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri])
1065 return 1;
1066
1067 return 0;
1068}
1069
1070inline void
877call_pending (EV_P) 1071call_pending (EV_P)
878{ 1072{
879 int pri; 1073 int pri;
880 1074
881 for (pri = NUMPRI; pri--; ) 1075 for (pri = NUMPRI; pri--; )
882 while (pendingcnt [pri]) 1076 while (pendingcnt [pri])
883 { 1077 {
884 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
885 1079
886 if (p->w) 1080 if (expect_true (p->w))
887 { 1081 {
888 p->w->pending = 0; 1082 p->w->pending = 0;
889 p->w->cb (EV_A_ p->w, p->events); 1083 EV_CB_INVOKE (p->w, p->events);
890 } 1084 }
891 } 1085 }
892} 1086}
893 1087
894static void 1088inline void
895timers_reify (EV_P) 1089timers_reify (EV_P)
896{ 1090{
897 while (timercnt && ((WT)timers [0])->at <= mn_now) 1091 while (timercnt && ((WT)timers [0])->at <= mn_now)
898 { 1092 {
899 struct ev_timer *w = timers [0]; 1093 struct ev_timer *w = timers [0];
902 1096
903 /* first reschedule or stop timer */ 1097 /* first reschedule or stop timer */
904 if (w->repeat) 1098 if (w->repeat)
905 { 1099 {
906 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101
907 ((WT)w)->at = mn_now + w->repeat; 1102 ((WT)w)->at += w->repeat;
1103 if (((WT)w)->at < mn_now)
1104 ((WT)w)->at = mn_now;
1105
908 downheap ((WT *)timers, timercnt, 0); 1106 downheap ((WT *)timers, timercnt, 0);
909 } 1107 }
910 else 1108 else
911 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
912 1110
913 event (EV_A_ (W)w, EV_TIMEOUT); 1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
914 } 1112 }
915} 1113}
916 1114
917static void 1115#if EV_PERIODICS
1116inline void
918periodics_reify (EV_P) 1117periodics_reify (EV_P)
919{ 1118{
920 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
921 { 1120 {
922 struct ev_periodic *w = periodics [0]; 1121 struct ev_periodic *w = periodics [0];
923 1122
924 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1123 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
925 1124
926 /* first reschedule or stop timer */ 1125 /* first reschedule or stop timer */
927 if (w->interval) 1126 if (w->reschedule_cb)
928 { 1127 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1130 downheap ((WT *)periodics, periodiccnt, 0);
1131 }
1132 else if (w->interval)
1133 {
929 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
930 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
931 downheap ((WT *)periodics, periodiccnt, 0); 1136 downheap ((WT *)periodics, periodiccnt, 0);
932 } 1137 }
933 else 1138 else
934 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
935 1140
936 event (EV_A_ (W)w, EV_PERIODIC); 1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
937 } 1142 }
938} 1143}
939 1144
940static void 1145static void
941periodics_reschedule (EV_P) 1146periodics_reschedule (EV_P)
945 /* adjust periodics after time jump */ 1150 /* adjust periodics after time jump */
946 for (i = 0; i < periodiccnt; ++i) 1151 for (i = 0; i < periodiccnt; ++i)
947 { 1152 {
948 struct ev_periodic *w = periodics [i]; 1153 struct ev_periodic *w = periodics [i];
949 1154
1155 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
950 if (w->interval) 1157 else if (w->interval)
951 {
952 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
953
954 if (fabs (diff) >= 1e-4)
955 {
956 ev_periodic_stop (EV_A_ w);
957 ev_periodic_start (EV_A_ w);
958
959 i = 0; /* restart loop, inefficient, but time jumps should be rare */
960 }
961 }
962 } 1159 }
1160
1161 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i);
963} 1164}
1165#endif
964 1166
965inline int 1167inline int
966time_update_monotonic (EV_P) 1168time_update_monotonic (EV_P)
967{ 1169{
968 mn_now = get_clock (); 1170 mn_now = get_clock ();
969 1171
970 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
971 { 1173 {
972 rt_now = rtmn_diff + mn_now; 1174 ev_rt_now = rtmn_diff + mn_now;
973 return 0; 1175 return 0;
974 } 1176 }
975 else 1177 else
976 { 1178 {
977 now_floor = mn_now; 1179 now_floor = mn_now;
978 rt_now = ev_time (); 1180 ev_rt_now = ev_time ();
979 return 1; 1181 return 1;
980 } 1182 }
981} 1183}
982 1184
983static void 1185inline void
984time_update (EV_P) 1186time_update (EV_P)
985{ 1187{
986 int i; 1188 int i;
987 1189
988#if EV_USE_MONOTONIC 1190#if EV_USE_MONOTONIC
992 { 1194 {
993 ev_tstamp odiff = rtmn_diff; 1195 ev_tstamp odiff = rtmn_diff;
994 1196
995 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
996 { 1198 {
997 rtmn_diff = rt_now - mn_now; 1199 rtmn_diff = ev_rt_now - mn_now;
998 1200
999 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1000 return; /* all is well */ 1202 return; /* all is well */
1001 1203
1002 rt_now = ev_time (); 1204 ev_rt_now = ev_time ();
1003 mn_now = get_clock (); 1205 mn_now = get_clock ();
1004 now_floor = mn_now; 1206 now_floor = mn_now;
1005 } 1207 }
1006 1208
1209# if EV_PERIODICS
1007 periodics_reschedule (EV_A); 1210 periodics_reschedule (EV_A);
1211# endif
1008 /* no timer adjustment, as the monotonic clock doesn't jump */ 1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1009 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1010 } 1214 }
1011 } 1215 }
1012 else 1216 else
1013#endif 1217#endif
1014 { 1218 {
1015 rt_now = ev_time (); 1219 ev_rt_now = ev_time ();
1016 1220
1017 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1018 { 1222 {
1223#if EV_PERIODICS
1019 periodics_reschedule (EV_A); 1224 periodics_reschedule (EV_A);
1225#endif
1020 1226
1021 /* adjust timers. this is easy, as the offset is the same for all */ 1227 /* adjust timers. this is easy, as the offset is the same for all */
1022 for (i = 0; i < timercnt; ++i) 1228 for (i = 0; i < timercnt; ++i)
1023 ((WT)timers [i])->at += rt_now - mn_now; 1229 ((WT)timers [i])->at += ev_rt_now - mn_now;
1024 } 1230 }
1025 1231
1026 mn_now = rt_now; 1232 mn_now = ev_rt_now;
1027 } 1233 }
1028} 1234}
1029 1235
1030void 1236void
1031ev_ref (EV_P) 1237ev_ref (EV_P)
1045ev_loop (EV_P_ int flags) 1251ev_loop (EV_P_ int flags)
1046{ 1252{
1047 double block; 1253 double block;
1048 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1254 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1049 1255
1050 do 1256 while (activecnt)
1051 { 1257 {
1052 /* queue check watchers (and execute them) */ 1258 /* queue check watchers (and execute them) */
1053 if (expect_false (preparecnt)) 1259 if (expect_false (preparecnt))
1054 { 1260 {
1055 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1261 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1063 /* update fd-related kernel structures */ 1269 /* update fd-related kernel structures */
1064 fd_reify (EV_A); 1270 fd_reify (EV_A);
1065 1271
1066 /* calculate blocking time */ 1272 /* calculate blocking time */
1067 1273
1068 /* we only need this for !monotonic clockor timers, but as we basically 1274 /* we only need this for !monotonic clock or timers, but as we basically
1069 always have timers, we just calculate it always */ 1275 always have timers, we just calculate it always */
1070#if EV_USE_MONOTONIC 1276#if EV_USE_MONOTONIC
1071 if (expect_true (have_monotonic)) 1277 if (expect_true (have_monotonic))
1072 time_update_monotonic (EV_A); 1278 time_update_monotonic (EV_A);
1073 else 1279 else
1074#endif 1280#endif
1075 { 1281 {
1076 rt_now = ev_time (); 1282 ev_rt_now = ev_time ();
1077 mn_now = rt_now; 1283 mn_now = ev_rt_now;
1078 } 1284 }
1079 1285
1080 if (flags & EVLOOP_NONBLOCK || idlecnt) 1286 if (flags & EVLOOP_NONBLOCK || idlecnt)
1081 block = 0.; 1287 block = 0.;
1082 else 1288 else
1083 { 1289 {
1084 block = MAX_BLOCKTIME; 1290 block = MAX_BLOCKTIME;
1085 1291
1086 if (timercnt) 1292 if (timercnt)
1087 { 1293 {
1088 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1294 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1089 if (block > to) block = to; 1295 if (block > to) block = to;
1090 } 1296 }
1091 1297
1298#if EV_PERIODICS
1092 if (periodiccnt) 1299 if (periodiccnt)
1093 { 1300 {
1094 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1301 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1095 if (block > to) block = to; 1302 if (block > to) block = to;
1096 } 1303 }
1304#endif
1097 1305
1098 if (block < 0.) block = 0.; 1306 if (expect_false (block < 0.)) block = 0.;
1099 } 1307 }
1100 1308
1101 method_poll (EV_A_ block); 1309 backend_poll (EV_A_ block);
1102 1310
1103 /* update rt_now, do magic */ 1311 /* update ev_rt_now, do magic */
1104 time_update (EV_A); 1312 time_update (EV_A);
1105 1313
1106 /* queue pending timers and reschedule them */ 1314 /* queue pending timers and reschedule them */
1107 timers_reify (EV_A); /* relative timers called last */ 1315 timers_reify (EV_A); /* relative timers called last */
1316#if EV_PERIODICS
1108 periodics_reify (EV_A); /* absolute timers called first */ 1317 periodics_reify (EV_A); /* absolute timers called first */
1318#endif
1109 1319
1110 /* queue idle watchers unless io or timers are pending */ 1320 /* queue idle watchers unless io or timers are pending */
1111 if (!pendingcnt) 1321 if (idlecnt && !any_pending (EV_A))
1112 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1322 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1113 1323
1114 /* queue check watchers, to be executed first */ 1324 /* queue check watchers, to be executed first */
1115 if (checkcnt) 1325 if (expect_false (checkcnt))
1116 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1326 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1117 1327
1118 call_pending (EV_A); 1328 call_pending (EV_A);
1329
1330 if (expect_false (loop_done))
1331 break;
1119 } 1332 }
1120 while (activecnt && !loop_done);
1121 1333
1122 if (loop_done != 2) 1334 if (loop_done != 2)
1123 loop_done = 0; 1335 loop_done = 0;
1124} 1336}
1125 1337
1185void 1397void
1186ev_io_start (EV_P_ struct ev_io *w) 1398ev_io_start (EV_P_ struct ev_io *w)
1187{ 1399{
1188 int fd = w->fd; 1400 int fd = w->fd;
1189 1401
1190 if (ev_is_active (w)) 1402 if (expect_false (ev_is_active (w)))
1191 return; 1403 return;
1192 1404
1193 assert (("ev_io_start called with negative fd", fd >= 0)); 1405 assert (("ev_io_start called with negative fd", fd >= 0));
1194 1406
1195 ev_start (EV_A_ (W)w, 1); 1407 ev_start (EV_A_ (W)w, 1);
1196 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1408 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1197 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1409 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1198 1410
1199 fd_change (EV_A_ fd); 1411 fd_change (EV_A_ fd);
1200} 1412}
1201 1413
1202void 1414void
1203ev_io_stop (EV_P_ struct ev_io *w) 1415ev_io_stop (EV_P_ struct ev_io *w)
1204{ 1416{
1205 ev_clear_pending (EV_A_ (W)w); 1417 ev_clear_pending (EV_A_ (W)w);
1206 if (!ev_is_active (w)) 1418 if (expect_false (!ev_is_active (w)))
1207 return; 1419 return;
1420
1421 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1208 1422
1209 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1423 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1210 ev_stop (EV_A_ (W)w); 1424 ev_stop (EV_A_ (W)w);
1211 1425
1212 fd_change (EV_A_ w->fd); 1426 fd_change (EV_A_ w->fd);
1213} 1427}
1214 1428
1215void 1429void
1216ev_timer_start (EV_P_ struct ev_timer *w) 1430ev_timer_start (EV_P_ struct ev_timer *w)
1217{ 1431{
1218 if (ev_is_active (w)) 1432 if (expect_false (ev_is_active (w)))
1219 return; 1433 return;
1220 1434
1221 ((WT)w)->at += mn_now; 1435 ((WT)w)->at += mn_now;
1222 1436
1223 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1437 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1224 1438
1225 ev_start (EV_A_ (W)w, ++timercnt); 1439 ev_start (EV_A_ (W)w, ++timercnt);
1226 array_needsize (timers, timermax, timercnt, ); 1440 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1227 timers [timercnt - 1] = w; 1441 timers [timercnt - 1] = w;
1228 upheap ((WT *)timers, timercnt - 1); 1442 upheap ((WT *)timers, timercnt - 1);
1229 1443
1230 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1444 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1231} 1445}
1232 1446
1233void 1447void
1234ev_timer_stop (EV_P_ struct ev_timer *w) 1448ev_timer_stop (EV_P_ struct ev_timer *w)
1235{ 1449{
1236 ev_clear_pending (EV_A_ (W)w); 1450 ev_clear_pending (EV_A_ (W)w);
1237 if (!ev_is_active (w)) 1451 if (expect_false (!ev_is_active (w)))
1238 return; 1452 return;
1239 1453
1240 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1454 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1241 1455
1242 if (((W)w)->active < timercnt--) 1456 if (expect_true (((W)w)->active < timercnt--))
1243 { 1457 {
1244 timers [((W)w)->active - 1] = timers [timercnt]; 1458 timers [((W)w)->active - 1] = timers [timercnt];
1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1246 } 1460 }
1247 1461
1248 ((WT)w)->at = w->repeat; 1462 ((WT)w)->at -= mn_now;
1249 1463
1250 ev_stop (EV_A_ (W)w); 1464 ev_stop (EV_A_ (W)w);
1251} 1465}
1252 1466
1253void 1467void
1256 if (ev_is_active (w)) 1470 if (ev_is_active (w))
1257 { 1471 {
1258 if (w->repeat) 1472 if (w->repeat)
1259 { 1473 {
1260 ((WT)w)->at = mn_now + w->repeat; 1474 ((WT)w)->at = mn_now + w->repeat;
1261 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1475 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1262 } 1476 }
1263 else 1477 else
1264 ev_timer_stop (EV_A_ w); 1478 ev_timer_stop (EV_A_ w);
1265 } 1479 }
1266 else if (w->repeat) 1480 else if (w->repeat)
1481 {
1482 w->at = w->repeat;
1267 ev_timer_start (EV_A_ w); 1483 ev_timer_start (EV_A_ w);
1484 }
1268} 1485}
1269 1486
1487#if EV_PERIODICS
1270void 1488void
1271ev_periodic_start (EV_P_ struct ev_periodic *w) 1489ev_periodic_start (EV_P_ struct ev_periodic *w)
1272{ 1490{
1273 if (ev_is_active (w)) 1491 if (expect_false (ev_is_active (w)))
1274 return; 1492 return;
1275 1493
1494 if (w->reschedule_cb)
1495 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1496 else if (w->interval)
1497 {
1276 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1498 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1277
1278 /* this formula differs from the one in periodic_reify because we do not always round up */ 1499 /* this formula differs from the one in periodic_reify because we do not always round up */
1279 if (w->interval)
1280 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1500 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1501 }
1281 1502
1282 ev_start (EV_A_ (W)w, ++periodiccnt); 1503 ev_start (EV_A_ (W)w, ++periodiccnt);
1283 array_needsize (periodics, periodicmax, periodiccnt, ); 1504 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1284 periodics [periodiccnt - 1] = w; 1505 periodics [periodiccnt - 1] = w;
1285 upheap ((WT *)periodics, periodiccnt - 1); 1506 upheap ((WT *)periodics, periodiccnt - 1);
1286 1507
1287 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1508 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1288} 1509}
1289 1510
1290void 1511void
1291ev_periodic_stop (EV_P_ struct ev_periodic *w) 1512ev_periodic_stop (EV_P_ struct ev_periodic *w)
1292{ 1513{
1293 ev_clear_pending (EV_A_ (W)w); 1514 ev_clear_pending (EV_A_ (W)w);
1294 if (!ev_is_active (w)) 1515 if (expect_false (!ev_is_active (w)))
1295 return; 1516 return;
1296 1517
1297 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1518 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1298 1519
1299 if (((W)w)->active < periodiccnt--) 1520 if (expect_true (((W)w)->active < periodiccnt--))
1300 { 1521 {
1301 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1522 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1302 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1523 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1303 } 1524 }
1304 1525
1305 ev_stop (EV_A_ (W)w); 1526 ev_stop (EV_A_ (W)w);
1306} 1527}
1307 1528
1308void 1529void
1530ev_periodic_again (EV_P_ struct ev_periodic *w)
1531{
1532 /* TODO: use adjustheap and recalculation */
1533 ev_periodic_stop (EV_A_ w);
1534 ev_periodic_start (EV_A_ w);
1535}
1536#endif
1537
1538void
1309ev_idle_start (EV_P_ struct ev_idle *w) 1539ev_idle_start (EV_P_ struct ev_idle *w)
1310{ 1540{
1311 if (ev_is_active (w)) 1541 if (expect_false (ev_is_active (w)))
1312 return; 1542 return;
1313 1543
1314 ev_start (EV_A_ (W)w, ++idlecnt); 1544 ev_start (EV_A_ (W)w, ++idlecnt);
1315 array_needsize (idles, idlemax, idlecnt, ); 1545 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1316 idles [idlecnt - 1] = w; 1546 idles [idlecnt - 1] = w;
1317} 1547}
1318 1548
1319void 1549void
1320ev_idle_stop (EV_P_ struct ev_idle *w) 1550ev_idle_stop (EV_P_ struct ev_idle *w)
1321{ 1551{
1322 ev_clear_pending (EV_A_ (W)w); 1552 ev_clear_pending (EV_A_ (W)w);
1323 if (ev_is_active (w)) 1553 if (expect_false (!ev_is_active (w)))
1324 return; 1554 return;
1325 1555
1326 idles [((W)w)->active - 1] = idles [--idlecnt]; 1556 idles [((W)w)->active - 1] = idles [--idlecnt];
1327 ev_stop (EV_A_ (W)w); 1557 ev_stop (EV_A_ (W)w);
1328} 1558}
1329 1559
1330void 1560void
1331ev_prepare_start (EV_P_ struct ev_prepare *w) 1561ev_prepare_start (EV_P_ struct ev_prepare *w)
1332{ 1562{
1333 if (ev_is_active (w)) 1563 if (expect_false (ev_is_active (w)))
1334 return; 1564 return;
1335 1565
1336 ev_start (EV_A_ (W)w, ++preparecnt); 1566 ev_start (EV_A_ (W)w, ++preparecnt);
1337 array_needsize (prepares, preparemax, preparecnt, ); 1567 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1338 prepares [preparecnt - 1] = w; 1568 prepares [preparecnt - 1] = w;
1339} 1569}
1340 1570
1341void 1571void
1342ev_prepare_stop (EV_P_ struct ev_prepare *w) 1572ev_prepare_stop (EV_P_ struct ev_prepare *w)
1343{ 1573{
1344 ev_clear_pending (EV_A_ (W)w); 1574 ev_clear_pending (EV_A_ (W)w);
1345 if (ev_is_active (w)) 1575 if (expect_false (!ev_is_active (w)))
1346 return; 1576 return;
1347 1577
1348 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1578 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1349 ev_stop (EV_A_ (W)w); 1579 ev_stop (EV_A_ (W)w);
1350} 1580}
1351 1581
1352void 1582void
1353ev_check_start (EV_P_ struct ev_check *w) 1583ev_check_start (EV_P_ struct ev_check *w)
1354{ 1584{
1355 if (ev_is_active (w)) 1585 if (expect_false (ev_is_active (w)))
1356 return; 1586 return;
1357 1587
1358 ev_start (EV_A_ (W)w, ++checkcnt); 1588 ev_start (EV_A_ (W)w, ++checkcnt);
1359 array_needsize (checks, checkmax, checkcnt, ); 1589 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1360 checks [checkcnt - 1] = w; 1590 checks [checkcnt - 1] = w;
1361} 1591}
1362 1592
1363void 1593void
1364ev_check_stop (EV_P_ struct ev_check *w) 1594ev_check_stop (EV_P_ struct ev_check *w)
1365{ 1595{
1366 ev_clear_pending (EV_A_ (W)w); 1596 ev_clear_pending (EV_A_ (W)w);
1367 if (ev_is_active (w)) 1597 if (expect_false (!ev_is_active (w)))
1368 return; 1598 return;
1369 1599
1370 checks [((W)w)->active - 1] = checks [--checkcnt]; 1600 checks [((W)w)->active - 1] = checks [--checkcnt];
1371 ev_stop (EV_A_ (W)w); 1601 ev_stop (EV_A_ (W)w);
1372} 1602}
1377 1607
1378void 1608void
1379ev_signal_start (EV_P_ struct ev_signal *w) 1609ev_signal_start (EV_P_ struct ev_signal *w)
1380{ 1610{
1381#if EV_MULTIPLICITY 1611#if EV_MULTIPLICITY
1382 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1612 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1383#endif 1613#endif
1384 if (ev_is_active (w)) 1614 if (expect_false (ev_is_active (w)))
1385 return; 1615 return;
1386 1616
1387 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1617 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1388 1618
1389 ev_start (EV_A_ (W)w, 1); 1619 ev_start (EV_A_ (W)w, 1);
1390 array_needsize (signals, signalmax, w->signum, signals_init); 1620 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1391 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1621 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1392 1622
1393 if (!((WL)w)->next) 1623 if (!((WL)w)->next)
1394 { 1624 {
1395#if WIN32 1625#if _WIN32
1396 signal (w->signum, sighandler); 1626 signal (w->signum, sighandler);
1397#else 1627#else
1398 struct sigaction sa; 1628 struct sigaction sa;
1399 sa.sa_handler = sighandler; 1629 sa.sa_handler = sighandler;
1400 sigfillset (&sa.sa_mask); 1630 sigfillset (&sa.sa_mask);
1406 1636
1407void 1637void
1408ev_signal_stop (EV_P_ struct ev_signal *w) 1638ev_signal_stop (EV_P_ struct ev_signal *w)
1409{ 1639{
1410 ev_clear_pending (EV_A_ (W)w); 1640 ev_clear_pending (EV_A_ (W)w);
1411 if (!ev_is_active (w)) 1641 if (expect_false (!ev_is_active (w)))
1412 return; 1642 return;
1413 1643
1414 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1644 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1415 ev_stop (EV_A_ (W)w); 1645 ev_stop (EV_A_ (W)w);
1416 1646
1420 1650
1421void 1651void
1422ev_child_start (EV_P_ struct ev_child *w) 1652ev_child_start (EV_P_ struct ev_child *w)
1423{ 1653{
1424#if EV_MULTIPLICITY 1654#if EV_MULTIPLICITY
1425 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1655 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1426#endif 1656#endif
1427 if (ev_is_active (w)) 1657 if (expect_false (ev_is_active (w)))
1428 return; 1658 return;
1429 1659
1430 ev_start (EV_A_ (W)w, 1); 1660 ev_start (EV_A_ (W)w, 1);
1431 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1661 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1432} 1662}
1433 1663
1434void 1664void
1435ev_child_stop (EV_P_ struct ev_child *w) 1665ev_child_stop (EV_P_ struct ev_child *w)
1436{ 1666{
1437 ev_clear_pending (EV_A_ (W)w); 1667 ev_clear_pending (EV_A_ (W)w);
1438 if (ev_is_active (w)) 1668 if (expect_false (!ev_is_active (w)))
1439 return; 1669 return;
1440 1670
1441 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1671 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1442 ev_stop (EV_A_ (W)w); 1672 ev_stop (EV_A_ (W)w);
1443} 1673}
1674
1675#if EV_MULTIPLICITY
1676static void
1677embed_cb (EV_P_ struct ev_io *io, int revents)
1678{
1679 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io));
1680
1681 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1682 ev_loop (w->loop, EVLOOP_NONBLOCK);
1683}
1684
1685void
1686ev_embed_start (EV_P_ struct ev_embed *w)
1687{
1688 if (expect_false (ev_is_active (w)))
1689 return;
1690
1691 {
1692 struct ev_loop *loop = w->loop;
1693 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1694 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1695 }
1696
1697 ev_io_start (EV_A_ &w->io);
1698 ev_start (EV_A_ (W)w, 1);
1699}
1700
1701void
1702ev_embed_stop (EV_P_ struct ev_embed *w)
1703{
1704 ev_clear_pending (EV_A_ (W)w);
1705 if (expect_false (!ev_is_active (w)))
1706 return;
1707
1708 ev_io_stop (EV_A_ &w->io);
1709 ev_stop (EV_A_ (W)w);
1710}
1711#endif
1444 1712
1445/*****************************************************************************/ 1713/*****************************************************************************/
1446 1714
1447struct ev_once 1715struct ev_once
1448{ 1716{
1478} 1746}
1479 1747
1480void 1748void
1481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1749ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1482{ 1750{
1483 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1751 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1484 1752
1485 if (!once) 1753 if (expect_false (!once))
1754 {
1486 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1755 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1487 else 1756 return;
1488 { 1757 }
1758
1489 once->cb = cb; 1759 once->cb = cb;
1490 once->arg = arg; 1760 once->arg = arg;
1491 1761
1492 ev_watcher_init (&once->io, once_cb_io); 1762 ev_init (&once->io, once_cb_io);
1493 if (fd >= 0) 1763 if (fd >= 0)
1494 { 1764 {
1495 ev_io_set (&once->io, fd, events); 1765 ev_io_set (&once->io, fd, events);
1496 ev_io_start (EV_A_ &once->io); 1766 ev_io_start (EV_A_ &once->io);
1497 } 1767 }
1498 1768
1499 ev_watcher_init (&once->to, once_cb_to); 1769 ev_init (&once->to, once_cb_to);
1500 if (timeout >= 0.) 1770 if (timeout >= 0.)
1501 { 1771 {
1502 ev_timer_set (&once->to, timeout, 0.); 1772 ev_timer_set (&once->to, timeout, 0.);
1503 ev_timer_start (EV_A_ &once->to); 1773 ev_timer_start (EV_A_ &once->to);
1504 }
1505 } 1774 }
1506} 1775}
1507 1776
1777#ifdef __cplusplus
1778}
1779#endif
1780

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines