ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.36 by root, Thu Nov 1 13:11:11 2007 UTC vs.
Revision 1.70 by root, Tue Nov 6 00:52:32 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
75/**/
76
51#ifndef EV_USE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
52# ifdef CLOCK_MONOTONIC
53# define EV_USE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
54# endif
55#endif 79#endif
56 80
57#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
59#endif 83#endif
60 84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
61#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
62# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
63#endif 91#endif
64 92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1
107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
65#ifndef CLOCK_REALTIME 116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
66# define EV_USE_REALTIME 0 118# define EV_USE_REALTIME 0
67#endif 119#endif
68#ifndef EV_USE_REALTIME 120
69# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 121/**/
70#endif
71 122
72#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
73#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
74#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
75#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
76 127
77#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
78 143
79typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
80typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
81typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
82 147
83static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
84ev_tstamp ev_now;
85int ev_method;
86 149
87static int have_monotonic; /* runtime */ 150#if WIN32
88 151/* note: the comment below could not be substantiated, but what would I care */
89static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
90static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
91static void (*method_poll)(ev_tstamp timeout); 154#endif
92 155
93/*****************************************************************************/ 156/*****************************************************************************/
94 157
95ev_tstamp 158static void (*syserr_cb)(const char *msg);
159
160void ev_set_syserr_cb (void (*cb)(const char *msg))
161{
162 syserr_cb = cb;
163}
164
165static void
166syserr (const char *msg)
167{
168 if (!msg)
169 msg = "(libev) system error";
170
171 if (syserr_cb)
172 syserr_cb (msg);
173 else
174 {
175 perror (msg);
176 abort ();
177 }
178}
179
180static void *(*alloc)(void *ptr, long size);
181
182void ev_set_allocator (void *(*cb)(void *ptr, long size))
183{
184 alloc = cb;
185}
186
187static void *
188ev_realloc (void *ptr, long size)
189{
190 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
191
192 if (!ptr && size)
193 {
194 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
195 abort ();
196 }
197
198 return ptr;
199}
200
201#define ev_malloc(size) ev_realloc (0, (size))
202#define ev_free(ptr) ev_realloc ((ptr), 0)
203
204/*****************************************************************************/
205
206typedef struct
207{
208 WL head;
209 unsigned char events;
210 unsigned char reify;
211} ANFD;
212
213typedef struct
214{
215 W w;
216 int events;
217} ANPENDING;
218
219#if EV_MULTIPLICITY
220
221struct ev_loop
222{
223# define VAR(name,decl) decl;
224# include "ev_vars.h"
225};
226# undef VAR
227# include "ev_wrap.h"
228
229#else
230
231# define VAR(name,decl) static decl;
232# include "ev_vars.h"
233# undef VAR
234
235#endif
236
237/*****************************************************************************/
238
239inline ev_tstamp
96ev_time (void) 240ev_time (void)
97{ 241{
98#if EV_USE_REALTIME 242#if EV_USE_REALTIME
99 struct timespec ts; 243 struct timespec ts;
100 clock_gettime (CLOCK_REALTIME, &ts); 244 clock_gettime (CLOCK_REALTIME, &ts);
104 gettimeofday (&tv, 0); 248 gettimeofday (&tv, 0);
105 return tv.tv_sec + tv.tv_usec * 1e-6; 249 return tv.tv_sec + tv.tv_usec * 1e-6;
106#endif 250#endif
107} 251}
108 252
109static ev_tstamp 253inline ev_tstamp
110get_clock (void) 254get_clock (void)
111{ 255{
112#if EV_USE_MONOTONIC 256#if EV_USE_MONOTONIC
113 if (have_monotonic) 257 if (expect_true (have_monotonic))
114 { 258 {
115 struct timespec ts; 259 struct timespec ts;
116 clock_gettime (CLOCK_MONOTONIC, &ts); 260 clock_gettime (CLOCK_MONOTONIC, &ts);
117 return ts.tv_sec + ts.tv_nsec * 1e-9; 261 return ts.tv_sec + ts.tv_nsec * 1e-9;
118 } 262 }
119#endif 263#endif
120 264
121 return ev_time (); 265 return ev_time ();
122} 266}
123 267
268ev_tstamp
269ev_now (EV_P)
270{
271 return rt_now;
272}
273
124#define array_roundsize(base,n) ((n) | 4 & ~3) 274#define array_roundsize(base,n) ((n) | 4 & ~3)
125 275
126#define array_needsize(base,cur,cnt,init) \ 276#define array_needsize(base,cur,cnt,init) \
127 if ((cnt) > cur) \ 277 if (expect_false ((cnt) > cur)) \
128 { \ 278 { \
129 int newcnt = cur; \ 279 int newcnt = cur; \
130 do \ 280 do \
131 { \ 281 { \
132 newcnt = array_roundsize (base, newcnt << 1); \ 282 newcnt = array_roundsize (base, newcnt << 1); \
133 } \ 283 } \
134 while ((cnt) > newcnt); \ 284 while ((cnt) > newcnt); \
135 \ 285 \
136 base = realloc (base, sizeof (*base) * (newcnt)); \ 286 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
137 init (base + cur, newcnt - cur); \ 287 init (base + cur, newcnt - cur); \
138 cur = newcnt; \ 288 cur = newcnt; \
139 } 289 }
290
291#define array_slim(stem) \
292 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
293 { \
294 stem ## max = array_roundsize (stem ## cnt >> 1); \
295 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
296 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
297 }
298
299#define array_free(stem, idx) \
300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
140 301
141/*****************************************************************************/ 302/*****************************************************************************/
142
143typedef struct
144{
145 struct ev_io *head;
146 unsigned char events;
147 unsigned char reify;
148} ANFD;
149
150static ANFD *anfds;
151static int anfdmax;
152 303
153static void 304static void
154anfds_init (ANFD *base, int count) 305anfds_init (ANFD *base, int count)
155{ 306{
156 while (count--) 307 while (count--)
161 312
162 ++base; 313 ++base;
163 } 314 }
164} 315}
165 316
166typedef struct
167{
168 W w;
169 int events;
170} ANPENDING;
171
172static ANPENDING *pendings;
173static int pendingmax, pendingcnt;
174
175static void 317static void
176event (W w, int events) 318event (EV_P_ W w, int events)
177{ 319{
178 if (w->pending) 320 if (w->pending)
179 { 321 {
180 pendings [w->pending - 1].events |= events; 322 pendings [ABSPRI (w)][w->pending - 1].events |= events;
181 return; 323 return;
182 } 324 }
183 325
184 w->pending = ++pendingcnt; 326 w->pending = ++pendingcnt [ABSPRI (w)];
185 array_needsize (pendings, pendingmax, pendingcnt, ); 327 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
186 pendings [pendingcnt - 1].w = w; 328 pendings [ABSPRI (w)][w->pending - 1].w = w;
187 pendings [pendingcnt - 1].events = events; 329 pendings [ABSPRI (w)][w->pending - 1].events = events;
188} 330}
189 331
190static void 332static void
191queue_events (W *events, int eventcnt, int type) 333queue_events (EV_P_ W *events, int eventcnt, int type)
192{ 334{
193 int i; 335 int i;
194 336
195 for (i = 0; i < eventcnt; ++i) 337 for (i = 0; i < eventcnt; ++i)
196 event (events [i], type); 338 event (EV_A_ events [i], type);
197} 339}
198 340
199static void 341static void
200fd_event (int fd, int events) 342fd_event (EV_P_ int fd, int events)
201{ 343{
202 ANFD *anfd = anfds + fd; 344 ANFD *anfd = anfds + fd;
203 struct ev_io *w; 345 struct ev_io *w;
204 346
205 for (w = anfd->head; w; w = w->next) 347 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
206 { 348 {
207 int ev = w->events & events; 349 int ev = w->events & events;
208 350
209 if (ev) 351 if (ev)
210 event ((W)w, ev); 352 event (EV_A_ (W)w, ev);
211 } 353 }
212} 354}
213 355
214/*****************************************************************************/ 356/*****************************************************************************/
215 357
216static int *fdchanges;
217static int fdchangemax, fdchangecnt;
218
219static void 358static void
220fd_reify (void) 359fd_reify (EV_P)
221{ 360{
222 int i; 361 int i;
223 362
224 for (i = 0; i < fdchangecnt; ++i) 363 for (i = 0; i < fdchangecnt; ++i)
225 { 364 {
227 ANFD *anfd = anfds + fd; 366 ANFD *anfd = anfds + fd;
228 struct ev_io *w; 367 struct ev_io *w;
229 368
230 int events = 0; 369 int events = 0;
231 370
232 for (w = anfd->head; w; w = w->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
233 events |= w->events; 372 events |= w->events;
234 373
235 anfd->reify = 0; 374 anfd->reify = 0;
236 375
237 if (anfd->events != events)
238 {
239 method_modify (fd, anfd->events, events); 376 method_modify (EV_A_ fd, anfd->events, events);
240 anfd->events = events; 377 anfd->events = events;
241 }
242 } 378 }
243 379
244 fdchangecnt = 0; 380 fdchangecnt = 0;
245} 381}
246 382
247static void 383static void
248fd_change (int fd) 384fd_change (EV_P_ int fd)
249{ 385{
250 if (anfds [fd].reify || fdchangecnt < 0) 386 if (anfds [fd].reify)
251 return; 387 return;
252 388
253 anfds [fd].reify = 1; 389 anfds [fd].reify = 1;
254 390
255 ++fdchangecnt; 391 ++fdchangecnt;
256 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 392 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
257 fdchanges [fdchangecnt - 1] = fd; 393 fdchanges [fdchangecnt - 1] = fd;
258} 394}
259 395
396static void
397fd_kill (EV_P_ int fd)
398{
399 struct ev_io *w;
400
401 while ((w = (struct ev_io *)anfds [fd].head))
402 {
403 ev_io_stop (EV_A_ w);
404 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
405 }
406}
407
260/* called on EBADF to verify fds */ 408/* called on EBADF to verify fds */
261static void 409static void
262fd_recheck (void) 410fd_ebadf (EV_P)
263{ 411{
264 int fd; 412 int fd;
265 413
266 for (fd = 0; fd < anfdmax; ++fd) 414 for (fd = 0; fd < anfdmax; ++fd)
267 if (anfds [fd].events) 415 if (anfds [fd].events)
268 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 416 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
269 while (anfds [fd].head) 417 fd_kill (EV_A_ fd);
418}
419
420/* called on ENOMEM in select/poll to kill some fds and retry */
421static void
422fd_enomem (EV_P)
423{
424 int fd;
425
426 for (fd = anfdmax; fd--; )
427 if (anfds [fd].events)
270 { 428 {
271 ev_io_stop (anfds [fd].head); 429 fd_kill (EV_A_ fd);
272 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 430 return;
273 } 431 }
432}
433
434/* usually called after fork if method needs to re-arm all fds from scratch */
435static void
436fd_rearm_all (EV_P)
437{
438 int fd;
439
440 /* this should be highly optimised to not do anything but set a flag */
441 for (fd = 0; fd < anfdmax; ++fd)
442 if (anfds [fd].events)
443 {
444 anfds [fd].events = 0;
445 fd_change (EV_A_ fd);
446 }
274} 447}
275 448
276/*****************************************************************************/ 449/*****************************************************************************/
277 450
278static struct ev_timer **timers;
279static int timermax, timercnt;
280
281static struct ev_periodic **periodics;
282static int periodicmax, periodiccnt;
283
284static void 451static void
285upheap (WT *timers, int k) 452upheap (WT *heap, int k)
286{ 453{
287 WT w = timers [k]; 454 WT w = heap [k];
288 455
289 while (k && timers [k >> 1]->at > w->at) 456 while (k && heap [k >> 1]->at > w->at)
290 { 457 {
291 timers [k] = timers [k >> 1]; 458 heap [k] = heap [k >> 1];
292 timers [k]->active = k + 1; 459 ((W)heap [k])->active = k + 1;
293 k >>= 1; 460 k >>= 1;
294 } 461 }
295 462
296 timers [k] = w; 463 heap [k] = w;
297 timers [k]->active = k + 1; 464 ((W)heap [k])->active = k + 1;
298 465
299} 466}
300 467
301static void 468static void
302downheap (WT *timers, int N, int k) 469downheap (WT *heap, int N, int k)
303{ 470{
304 WT w = timers [k]; 471 WT w = heap [k];
305 472
306 while (k < (N >> 1)) 473 while (k < (N >> 1))
307 { 474 {
308 int j = k << 1; 475 int j = k << 1;
309 476
310 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 477 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
311 ++j; 478 ++j;
312 479
313 if (w->at <= timers [j]->at) 480 if (w->at <= heap [j]->at)
314 break; 481 break;
315 482
316 timers [k] = timers [j]; 483 heap [k] = heap [j];
317 timers [k]->active = k + 1; 484 ((W)heap [k])->active = k + 1;
318 k = j; 485 k = j;
319 } 486 }
320 487
321 timers [k] = w; 488 heap [k] = w;
322 timers [k]->active = k + 1; 489 ((W)heap [k])->active = k + 1;
323} 490}
324 491
325/*****************************************************************************/ 492/*****************************************************************************/
326 493
327typedef struct 494typedef struct
328{ 495{
329 struct ev_signal *head; 496 WL head;
330 sig_atomic_t volatile gotsig; 497 sig_atomic_t volatile gotsig;
331} ANSIG; 498} ANSIG;
332 499
333static ANSIG *signals; 500static ANSIG *signals;
334static int signalmax; 501static int signalmax;
350} 517}
351 518
352static void 519static void
353sighandler (int signum) 520sighandler (int signum)
354{ 521{
522#if WIN32
523 signal (signum, sighandler);
524#endif
525
355 signals [signum - 1].gotsig = 1; 526 signals [signum - 1].gotsig = 1;
356 527
357 if (!gotsig) 528 if (!gotsig)
358 { 529 {
530 int old_errno = errno;
359 gotsig = 1; 531 gotsig = 1;
360 write (sigpipe [1], &signum, 1); 532 write (sigpipe [1], &signum, 1);
533 errno = old_errno;
361 } 534 }
362} 535}
363 536
364static void 537static void
365sigcb (struct ev_io *iow, int revents) 538sigcb (EV_P_ struct ev_io *iow, int revents)
366{ 539{
367 struct ev_signal *w; 540 WL w;
368 int sig; 541 int signum;
369 542
370 read (sigpipe [0], &revents, 1); 543 read (sigpipe [0], &revents, 1);
371 gotsig = 0; 544 gotsig = 0;
372 545
373 for (sig = signalmax; sig--; ) 546 for (signum = signalmax; signum--; )
374 if (signals [sig].gotsig) 547 if (signals [signum].gotsig)
375 { 548 {
376 signals [sig].gotsig = 0; 549 signals [signum].gotsig = 0;
377 550
378 for (w = signals [sig].head; w; w = w->next) 551 for (w = signals [signum].head; w; w = w->next)
379 event ((W)w, EV_SIGNAL); 552 event (EV_A_ (W)w, EV_SIGNAL);
380 } 553 }
381} 554}
382 555
383static void 556static void
384siginit (void) 557siginit (EV_P)
385{ 558{
559#ifndef WIN32
386 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 560 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
387 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 561 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
388 562
389 /* rather than sort out wether we really need nb, set it */ 563 /* rather than sort out wether we really need nb, set it */
390 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 564 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
391 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 565 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
566#endif
392 567
393 ev_io_set (&sigev, sigpipe [0], EV_READ); 568 ev_io_set (&sigev, sigpipe [0], EV_READ);
394 ev_io_start (&sigev); 569 ev_io_start (EV_A_ &sigev);
570 ev_unref (EV_A); /* child watcher should not keep loop alive */
395} 571}
396 572
397/*****************************************************************************/ 573/*****************************************************************************/
398 574
399static struct ev_idle **idles; 575#ifndef WIN32
400static int idlemax, idlecnt;
401
402static struct ev_prepare **prepares;
403static int preparemax, preparecnt;
404
405static struct ev_check **checks;
406static int checkmax, checkcnt;
407
408/*****************************************************************************/
409 576
410static struct ev_child *childs [PID_HASHSIZE]; 577static struct ev_child *childs [PID_HASHSIZE];
411static struct ev_signal childev; 578static struct ev_signal childev;
412 579
413#ifndef WCONTINUED 580#ifndef WCONTINUED
414# define WCONTINUED 0 581# define WCONTINUED 0
415#endif 582#endif
416 583
417static void 584static void
418childcb (struct ev_signal *sw, int revents) 585child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
419{ 586{
420 struct ev_child *w; 587 struct ev_child *w;
588
589 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
590 if (w->pid == pid || !w->pid)
591 {
592 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
593 w->rpid = pid;
594 w->rstatus = status;
595 event (EV_A_ (W)w, EV_CHILD);
596 }
597}
598
599static void
600childcb (EV_P_ struct ev_signal *sw, int revents)
601{
421 int pid, status; 602 int pid, status;
422 603
423 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 604 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
424 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 605 {
425 if (w->pid == pid || w->pid == -1) 606 /* make sure we are called again until all childs have been reaped */
426 { 607 event (EV_A_ (W)sw, EV_SIGNAL);
427 w->status = status; 608
428 event ((W)w, EV_CHILD); 609 child_reap (EV_A_ sw, pid, pid, status);
429 } 610 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
611 }
430} 612}
613
614#endif
431 615
432/*****************************************************************************/ 616/*****************************************************************************/
433 617
618#if EV_USE_KQUEUE
619# include "ev_kqueue.c"
620#endif
434#if EV_USE_EPOLL 621#if EV_USE_EPOLL
435# include "ev_epoll.c" 622# include "ev_epoll.c"
436#endif 623#endif
624#if EV_USE_POLL
625# include "ev_poll.c"
626#endif
437#if EV_USE_SELECT 627#if EV_USE_SELECT
438# include "ev_select.c" 628# include "ev_select.c"
439#endif 629#endif
440 630
441int 631int
448ev_version_minor (void) 638ev_version_minor (void)
449{ 639{
450 return EV_VERSION_MINOR; 640 return EV_VERSION_MINOR;
451} 641}
452 642
453int ev_init (int flags) 643/* return true if we are running with elevated privileges and should ignore env variables */
644static int
645enable_secure (void)
454{ 646{
647#ifdef WIN32
648 return 0;
649#else
650 return getuid () != geteuid ()
651 || getgid () != getegid ();
652#endif
653}
654
655int
656ev_method (EV_P)
657{
658 return method;
659}
660
661static void
662loop_init (EV_P_ int methods)
663{
455 if (!ev_method) 664 if (!method)
456 { 665 {
457#if EV_USE_MONOTONIC 666#if EV_USE_MONOTONIC
458 { 667 {
459 struct timespec ts; 668 struct timespec ts;
460 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 669 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
461 have_monotonic = 1; 670 have_monotonic = 1;
462 } 671 }
463#endif 672#endif
464 673
465 ev_now = ev_time (); 674 rt_now = ev_time ();
466 now = get_clock (); 675 mn_now = get_clock ();
676 now_floor = mn_now;
467 diff = ev_now - now; 677 rtmn_diff = rt_now - mn_now;
468 678
469 if (pipe (sigpipe)) 679 if (methods == EVMETHOD_AUTO)
470 return 0; 680 if (!enable_secure () && getenv ("LIBEV_METHODS"))
471 681 methods = atoi (getenv ("LIBEV_METHODS"));
682 else
472 ev_method = EVMETHOD_NONE; 683 methods = EVMETHOD_ANY;
684
685 method = 0;
686#if EV_USE_WIN32
687 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
688#endif
689#if EV_USE_KQUEUE
690 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
691#endif
473#if EV_USE_EPOLL 692#if EV_USE_EPOLL
474 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 693 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
694#endif
695#if EV_USE_POLL
696 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
475#endif 697#endif
476#if EV_USE_SELECT 698#if EV_USE_SELECT
477 if (ev_method == EVMETHOD_NONE) select_init (flags); 699 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
478#endif 700#endif
479 701
702 ev_watcher_init (&sigev, sigcb);
703 ev_set_priority (&sigev, EV_MAXPRI);
704 }
705}
706
707void
708loop_destroy (EV_P)
709{
710 int i;
711
712#if EV_USE_WIN32
713 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
714#endif
715#if EV_USE_KQUEUE
716 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
717#endif
718#if EV_USE_EPOLL
719 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
720#endif
721#if EV_USE_POLL
722 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
723#endif
724#if EV_USE_SELECT
725 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
726#endif
727
728 for (i = NUMPRI; i--; )
729 array_free (pending, [i]);
730
731 array_free (fdchange, );
732 array_free (timer, );
733 array_free (periodic, );
734 array_free (idle, );
735 array_free (prepare, );
736 array_free (check, );
737
738 method = 0;
739}
740
741static void
742loop_fork (EV_P)
743{
744#if EV_USE_EPOLL
745 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
746#endif
747#if EV_USE_KQUEUE
748 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
749#endif
750
751 if (ev_is_active (&sigev))
752 {
753 /* default loop */
754
755 ev_ref (EV_A);
756 ev_io_stop (EV_A_ &sigev);
757 close (sigpipe [0]);
758 close (sigpipe [1]);
759
760 while (pipe (sigpipe))
761 syserr ("(libev) error creating pipe");
762
763 siginit (EV_A);
764 }
765
766 postfork = 0;
767}
768
769#if EV_MULTIPLICITY
770struct ev_loop *
771ev_loop_new (int methods)
772{
773 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
774
775 memset (loop, 0, sizeof (struct ev_loop));
776
777 loop_init (EV_A_ methods);
778
779 if (ev_method (EV_A))
780 return loop;
781
782 return 0;
783}
784
785void
786ev_loop_destroy (EV_P)
787{
788 loop_destroy (EV_A);
789 ev_free (loop);
790}
791
792void
793ev_loop_fork (EV_P)
794{
795 postfork = 1;
796}
797
798#endif
799
800#if EV_MULTIPLICITY
801struct ev_loop default_loop_struct;
802static struct ev_loop *default_loop;
803
804struct ev_loop *
805#else
806static int default_loop;
807
808int
809#endif
810ev_default_loop (int methods)
811{
812 if (sigpipe [0] == sigpipe [1])
813 if (pipe (sigpipe))
814 return 0;
815
816 if (!default_loop)
817 {
818#if EV_MULTIPLICITY
819 struct ev_loop *loop = default_loop = &default_loop_struct;
820#else
821 default_loop = 1;
822#endif
823
824 loop_init (EV_A_ methods);
825
480 if (ev_method) 826 if (ev_method (EV_A))
481 { 827 {
482 ev_watcher_init (&sigev, sigcb);
483 siginit (); 828 siginit (EV_A);
484 829
830#ifndef WIN32
485 ev_signal_init (&childev, childcb, SIGCHLD); 831 ev_signal_init (&childev, childcb, SIGCHLD);
832 ev_set_priority (&childev, EV_MAXPRI);
486 ev_signal_start (&childev); 833 ev_signal_start (EV_A_ &childev);
834 ev_unref (EV_A); /* child watcher should not keep loop alive */
835#endif
487 } 836 }
837 else
838 default_loop = 0;
488 } 839 }
489 840
490 return ev_method; 841 return default_loop;
842}
843
844void
845ev_default_destroy (void)
846{
847#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop;
849#endif
850
851 ev_ref (EV_A); /* child watcher */
852 ev_signal_stop (EV_A_ &childev);
853
854 ev_ref (EV_A); /* signal watcher */
855 ev_io_stop (EV_A_ &sigev);
856
857 close (sigpipe [0]); sigpipe [0] = 0;
858 close (sigpipe [1]); sigpipe [1] = 0;
859
860 loop_destroy (EV_A);
861}
862
863void
864ev_default_fork (void)
865{
866#if EV_MULTIPLICITY
867 struct ev_loop *loop = default_loop;
868#endif
869
870 if (method)
871 postfork = 1;
491} 872}
492 873
493/*****************************************************************************/ 874/*****************************************************************************/
494 875
495void
496ev_fork_prepare (void)
497{
498 /* nop */
499}
500
501void
502ev_fork_parent (void)
503{
504 /* nop */
505}
506
507void
508ev_fork_child (void)
509{
510#if EV_USE_EPOLL
511 if (ev_method == EVMETHOD_EPOLL)
512 epoll_postfork_child ();
513#endif
514
515 ev_io_stop (&sigev);
516 close (sigpipe [0]);
517 close (sigpipe [1]);
518 pipe (sigpipe);
519 siginit ();
520}
521
522/*****************************************************************************/
523
524static void 876static void
525call_pending (void) 877call_pending (EV_P)
526{ 878{
879 int pri;
880
881 for (pri = NUMPRI; pri--; )
527 while (pendingcnt) 882 while (pendingcnt [pri])
528 { 883 {
529 ANPENDING *p = pendings + --pendingcnt; 884 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
530 885
531 if (p->w) 886 if (p->w)
532 { 887 {
533 p->w->pending = 0; 888 p->w->pending = 0;
534 p->w->cb (p->w, p->events); 889 p->w->cb (EV_A_ p->w, p->events);
535 } 890 }
536 } 891 }
537} 892}
538 893
539static void 894static void
540timers_reify (void) 895timers_reify (EV_P)
541{ 896{
542 while (timercnt && timers [0]->at <= now) 897 while (timercnt && ((WT)timers [0])->at <= mn_now)
543 { 898 {
544 struct ev_timer *w = timers [0]; 899 struct ev_timer *w = timers [0];
900
901 assert (("inactive timer on timer heap detected", ev_is_active (w)));
545 902
546 /* first reschedule or stop timer */ 903 /* first reschedule or stop timer */
547 if (w->repeat) 904 if (w->repeat)
548 { 905 {
549 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 906 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
550 w->at = now + w->repeat; 907 ((WT)w)->at = mn_now + w->repeat;
551 downheap ((WT *)timers, timercnt, 0); 908 downheap ((WT *)timers, timercnt, 0);
552 } 909 }
553 else 910 else
554 ev_timer_stop (w); /* nonrepeating: stop timer */ 911 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
555 912
556 event ((W)w, EV_TIMEOUT); 913 event (EV_A_ (W)w, EV_TIMEOUT);
557 } 914 }
558} 915}
559 916
560static void 917static void
561periodics_reify (void) 918periodics_reify (EV_P)
562{ 919{
563 while (periodiccnt && periodics [0]->at <= ev_now) 920 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
564 { 921 {
565 struct ev_periodic *w = periodics [0]; 922 struct ev_periodic *w = periodics [0];
923
924 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
566 925
567 /* first reschedule or stop timer */ 926 /* first reschedule or stop timer */
568 if (w->interval) 927 if (w->interval)
569 { 928 {
570 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 929 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
571 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 930 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
572 downheap ((WT *)periodics, periodiccnt, 0); 931 downheap ((WT *)periodics, periodiccnt, 0);
573 } 932 }
574 else 933 else
575 ev_periodic_stop (w); /* nonrepeating: stop timer */ 934 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
576 935
577 event ((W)w, EV_PERIODIC); 936 event (EV_A_ (W)w, EV_PERIODIC);
578 } 937 }
579} 938}
580 939
581static void 940static void
582periodics_reschedule (ev_tstamp diff) 941periodics_reschedule (EV_P)
583{ 942{
584 int i; 943 int i;
585 944
586 /* adjust periodics after time jump */ 945 /* adjust periodics after time jump */
587 for (i = 0; i < periodiccnt; ++i) 946 for (i = 0; i < periodiccnt; ++i)
588 { 947 {
589 struct ev_periodic *w = periodics [i]; 948 struct ev_periodic *w = periodics [i];
590 949
591 if (w->interval) 950 if (w->interval)
592 { 951 {
593 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 952 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
594 953
595 if (fabs (diff) >= 1e-4) 954 if (fabs (diff) >= 1e-4)
596 { 955 {
597 ev_periodic_stop (w); 956 ev_periodic_stop (EV_A_ w);
598 ev_periodic_start (w); 957 ev_periodic_start (EV_A_ w);
599 958
600 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 959 i = 0; /* restart loop, inefficient, but time jumps should be rare */
601 } 960 }
602 } 961 }
603 } 962 }
604} 963}
605 964
965inline int
966time_update_monotonic (EV_P)
967{
968 mn_now = get_clock ();
969
970 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
971 {
972 rt_now = rtmn_diff + mn_now;
973 return 0;
974 }
975 else
976 {
977 now_floor = mn_now;
978 rt_now = ev_time ();
979 return 1;
980 }
981}
982
606static void 983static void
607time_update (void) 984time_update (EV_P)
608{ 985{
609 int i; 986 int i;
610 987
611 ev_now = ev_time (); 988#if EV_USE_MONOTONIC
612
613 if (have_monotonic) 989 if (expect_true (have_monotonic))
614 { 990 {
615 ev_tstamp odiff = diff; 991 if (time_update_monotonic (EV_A))
616
617 for (i = 4; --i; ) /* loop a few times, before making important decisions */
618 { 992 {
619 now = get_clock (); 993 ev_tstamp odiff = rtmn_diff;
994
995 for (i = 4; --i; ) /* loop a few times, before making important decisions */
996 {
620 diff = ev_now - now; 997 rtmn_diff = rt_now - mn_now;
621 998
622 if (fabs (odiff - diff) < MIN_TIMEJUMP) 999 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
623 return; /* all is well */ 1000 return; /* all is well */
624 1001
625 ev_now = ev_time (); 1002 rt_now = ev_time ();
1003 mn_now = get_clock ();
1004 now_floor = mn_now;
1005 }
1006
1007 periodics_reschedule (EV_A);
1008 /* no timer adjustment, as the monotonic clock doesn't jump */
1009 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
626 } 1010 }
627
628 periodics_reschedule (diff - odiff);
629 /* no timer adjustment, as the monotonic clock doesn't jump */
630 } 1011 }
631 else 1012 else
1013#endif
632 { 1014 {
633 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 1015 rt_now = ev_time ();
1016
1017 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
634 { 1018 {
635 periodics_reschedule (ev_now - now); 1019 periodics_reschedule (EV_A);
636 1020
637 /* adjust timers. this is easy, as the offset is the same for all */ 1021 /* adjust timers. this is easy, as the offset is the same for all */
638 for (i = 0; i < timercnt; ++i) 1022 for (i = 0; i < timercnt; ++i)
639 timers [i]->at += diff; 1023 ((WT)timers [i])->at += rt_now - mn_now;
640 } 1024 }
641 1025
642 now = ev_now; 1026 mn_now = rt_now;
643 } 1027 }
644} 1028}
645 1029
646int ev_loop_done; 1030void
1031ev_ref (EV_P)
1032{
1033 ++activecnt;
1034}
647 1035
1036void
1037ev_unref (EV_P)
1038{
1039 --activecnt;
1040}
1041
1042static int loop_done;
1043
1044void
648void ev_loop (int flags) 1045ev_loop (EV_P_ int flags)
649{ 1046{
650 double block; 1047 double block;
651 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1048 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
652 1049
653 do 1050 do
654 { 1051 {
655 /* queue check watchers (and execute them) */ 1052 /* queue check watchers (and execute them) */
656 if (preparecnt) 1053 if (expect_false (preparecnt))
657 { 1054 {
658 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1055 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
659 call_pending (); 1056 call_pending (EV_A);
660 } 1057 }
661 1058
1059 /* we might have forked, so reify kernel state if necessary */
1060 if (expect_false (postfork))
1061 loop_fork (EV_A);
1062
662 /* update fd-related kernel structures */ 1063 /* update fd-related kernel structures */
663 fd_reify (); 1064 fd_reify (EV_A);
664 1065
665 /* calculate blocking time */ 1066 /* calculate blocking time */
666 1067
667 /* we only need this for !monotonic clockor timers, but as we basically 1068 /* we only need this for !monotonic clockor timers, but as we basically
668 always have timers, we just calculate it always */ 1069 always have timers, we just calculate it always */
1070#if EV_USE_MONOTONIC
1071 if (expect_true (have_monotonic))
1072 time_update_monotonic (EV_A);
1073 else
1074#endif
1075 {
669 ev_now = ev_time (); 1076 rt_now = ev_time ();
1077 mn_now = rt_now;
1078 }
670 1079
671 if (flags & EVLOOP_NONBLOCK || idlecnt) 1080 if (flags & EVLOOP_NONBLOCK || idlecnt)
672 block = 0.; 1081 block = 0.;
673 else 1082 else
674 { 1083 {
675 block = MAX_BLOCKTIME; 1084 block = MAX_BLOCKTIME;
676 1085
677 if (timercnt) 1086 if (timercnt)
678 { 1087 {
679 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1088 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
680 if (block > to) block = to; 1089 if (block > to) block = to;
681 } 1090 }
682 1091
683 if (periodiccnt) 1092 if (periodiccnt)
684 { 1093 {
685 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1094 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
686 if (block > to) block = to; 1095 if (block > to) block = to;
687 } 1096 }
688 1097
689 if (block < 0.) block = 0.; 1098 if (block < 0.) block = 0.;
690 } 1099 }
691 1100
692 method_poll (block); 1101 method_poll (EV_A_ block);
693 1102
694 /* update ev_now, do magic */ 1103 /* update rt_now, do magic */
695 time_update (); 1104 time_update (EV_A);
696 1105
697 /* queue pending timers and reschedule them */ 1106 /* queue pending timers and reschedule them */
698 timers_reify (); /* relative timers called last */ 1107 timers_reify (EV_A); /* relative timers called last */
699 periodics_reify (); /* absolute timers called first */ 1108 periodics_reify (EV_A); /* absolute timers called first */
700 1109
701 /* queue idle watchers unless io or timers are pending */ 1110 /* queue idle watchers unless io or timers are pending */
702 if (!pendingcnt) 1111 if (!pendingcnt)
703 queue_events ((W *)idles, idlecnt, EV_IDLE); 1112 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
704 1113
705 /* queue check watchers, to be executed first */ 1114 /* queue check watchers, to be executed first */
706 if (checkcnt) 1115 if (checkcnt)
707 queue_events ((W *)checks, checkcnt, EV_CHECK); 1116 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
708 1117
709 call_pending (); 1118 call_pending (EV_A);
710 } 1119 }
711 while (!ev_loop_done); 1120 while (activecnt && !loop_done);
712 1121
713 if (ev_loop_done != 2) 1122 if (loop_done != 2)
714 ev_loop_done = 0; 1123 loop_done = 0;
1124}
1125
1126void
1127ev_unloop (EV_P_ int how)
1128{
1129 loop_done = how;
715} 1130}
716 1131
717/*****************************************************************************/ 1132/*****************************************************************************/
718 1133
719static void 1134inline void
720wlist_add (WL *head, WL elem) 1135wlist_add (WL *head, WL elem)
721{ 1136{
722 elem->next = *head; 1137 elem->next = *head;
723 *head = elem; 1138 *head = elem;
724} 1139}
725 1140
726static void 1141inline void
727wlist_del (WL *head, WL elem) 1142wlist_del (WL *head, WL elem)
728{ 1143{
729 while (*head) 1144 while (*head)
730 { 1145 {
731 if (*head == elem) 1146 if (*head == elem)
736 1151
737 head = &(*head)->next; 1152 head = &(*head)->next;
738 } 1153 }
739} 1154}
740 1155
741static void 1156inline void
742ev_clear_pending (W w) 1157ev_clear_pending (EV_P_ W w)
743{ 1158{
744 if (w->pending) 1159 if (w->pending)
745 { 1160 {
746 pendings [w->pending - 1].w = 0; 1161 pendings [ABSPRI (w)][w->pending - 1].w = 0;
747 w->pending = 0; 1162 w->pending = 0;
748 } 1163 }
749} 1164}
750 1165
751static void 1166inline void
752ev_start (W w, int active) 1167ev_start (EV_P_ W w, int active)
753{ 1168{
1169 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1170 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1171
754 w->active = active; 1172 w->active = active;
1173 ev_ref (EV_A);
755} 1174}
756 1175
757static void 1176inline void
758ev_stop (W w) 1177ev_stop (EV_P_ W w)
759{ 1178{
1179 ev_unref (EV_A);
760 w->active = 0; 1180 w->active = 0;
761} 1181}
762 1182
763/*****************************************************************************/ 1183/*****************************************************************************/
764 1184
765void 1185void
766ev_io_start (struct ev_io *w) 1186ev_io_start (EV_P_ struct ev_io *w)
767{ 1187{
1188 int fd = w->fd;
1189
768 if (ev_is_active (w)) 1190 if (ev_is_active (w))
769 return; 1191 return;
770 1192
771 int fd = w->fd;
772
773 assert (("ev_io_start called with negative fd", fd >= 0)); 1193 assert (("ev_io_start called with negative fd", fd >= 0));
774 1194
775 ev_start ((W)w, 1); 1195 ev_start (EV_A_ (W)w, 1);
776 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1196 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
777 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1197 wlist_add ((WL *)&anfds[fd].head, (WL)w);
778 1198
779 fd_change (fd); 1199 fd_change (EV_A_ fd);
780} 1200}
781 1201
782void 1202void
783ev_io_stop (struct ev_io *w) 1203ev_io_stop (EV_P_ struct ev_io *w)
784{ 1204{
785 ev_clear_pending ((W)w); 1205 ev_clear_pending (EV_A_ (W)w);
786 if (!ev_is_active (w)) 1206 if (!ev_is_active (w))
787 return; 1207 return;
788 1208
789 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1209 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
790 ev_stop ((W)w); 1210 ev_stop (EV_A_ (W)w);
791 1211
792 fd_change (w->fd); 1212 fd_change (EV_A_ w->fd);
793} 1213}
794 1214
795void 1215void
796ev_timer_start (struct ev_timer *w) 1216ev_timer_start (EV_P_ struct ev_timer *w)
797{ 1217{
798 if (ev_is_active (w)) 1218 if (ev_is_active (w))
799 return; 1219 return;
800 1220
801 w->at += now; 1221 ((WT)w)->at += mn_now;
802 1222
803 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1223 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
804 1224
805 ev_start ((W)w, ++timercnt); 1225 ev_start (EV_A_ (W)w, ++timercnt);
806 array_needsize (timers, timermax, timercnt, ); 1226 array_needsize (timers, timermax, timercnt, );
807 timers [timercnt - 1] = w; 1227 timers [timercnt - 1] = w;
808 upheap ((WT *)timers, timercnt - 1); 1228 upheap ((WT *)timers, timercnt - 1);
809}
810 1229
1230 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1231}
1232
811void 1233void
812ev_timer_stop (struct ev_timer *w) 1234ev_timer_stop (EV_P_ struct ev_timer *w)
813{ 1235{
814 ev_clear_pending ((W)w); 1236 ev_clear_pending (EV_A_ (W)w);
815 if (!ev_is_active (w)) 1237 if (!ev_is_active (w))
816 return; 1238 return;
817 1239
1240 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1241
818 if (w->active < timercnt--) 1242 if (((W)w)->active < timercnt--)
819 { 1243 {
820 timers [w->active - 1] = timers [timercnt]; 1244 timers [((W)w)->active - 1] = timers [timercnt];
821 downheap ((WT *)timers, timercnt, w->active - 1); 1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
822 } 1246 }
823 1247
824 w->at = w->repeat; 1248 ((WT)w)->at = w->repeat;
825 1249
826 ev_stop ((W)w); 1250 ev_stop (EV_A_ (W)w);
827} 1251}
828 1252
829void 1253void
830ev_timer_again (struct ev_timer *w) 1254ev_timer_again (EV_P_ struct ev_timer *w)
831{ 1255{
832 if (ev_is_active (w)) 1256 if (ev_is_active (w))
833 { 1257 {
834 if (w->repeat) 1258 if (w->repeat)
835 { 1259 {
836 w->at = now + w->repeat; 1260 ((WT)w)->at = mn_now + w->repeat;
837 downheap ((WT *)timers, timercnt, w->active - 1); 1261 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
838 } 1262 }
839 else 1263 else
840 ev_timer_stop (w); 1264 ev_timer_stop (EV_A_ w);
841 } 1265 }
842 else if (w->repeat) 1266 else if (w->repeat)
843 ev_timer_start (w); 1267 ev_timer_start (EV_A_ w);
844} 1268}
845 1269
846void 1270void
847ev_periodic_start (struct ev_periodic *w) 1271ev_periodic_start (EV_P_ struct ev_periodic *w)
848{ 1272{
849 if (ev_is_active (w)) 1273 if (ev_is_active (w))
850 return; 1274 return;
851 1275
852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1276 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
853 1277
854 /* this formula differs from the one in periodic_reify because we do not always round up */ 1278 /* this formula differs from the one in periodic_reify because we do not always round up */
855 if (w->interval) 1279 if (w->interval)
856 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1280 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
857 1281
858 ev_start ((W)w, ++periodiccnt); 1282 ev_start (EV_A_ (W)w, ++periodiccnt);
859 array_needsize (periodics, periodicmax, periodiccnt, ); 1283 array_needsize (periodics, periodicmax, periodiccnt, );
860 periodics [periodiccnt - 1] = w; 1284 periodics [periodiccnt - 1] = w;
861 upheap ((WT *)periodics, periodiccnt - 1); 1285 upheap ((WT *)periodics, periodiccnt - 1);
862}
863 1286
1287 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1288}
1289
864void 1290void
865ev_periodic_stop (struct ev_periodic *w) 1291ev_periodic_stop (EV_P_ struct ev_periodic *w)
866{ 1292{
867 ev_clear_pending ((W)w); 1293 ev_clear_pending (EV_A_ (W)w);
868 if (!ev_is_active (w)) 1294 if (!ev_is_active (w))
869 return; 1295 return;
870 1296
1297 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1298
871 if (w->active < periodiccnt--) 1299 if (((W)w)->active < periodiccnt--)
872 { 1300 {
873 periodics [w->active - 1] = periodics [periodiccnt]; 1301 periodics [((W)w)->active - 1] = periodics [periodiccnt];
874 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1302 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
875 } 1303 }
876 1304
877 ev_stop ((W)w); 1305 ev_stop (EV_A_ (W)w);
878} 1306}
879 1307
880void 1308void
881ev_signal_start (struct ev_signal *w) 1309ev_idle_start (EV_P_ struct ev_idle *w)
882{ 1310{
883 if (ev_is_active (w)) 1311 if (ev_is_active (w))
884 return; 1312 return;
885 1313
1314 ev_start (EV_A_ (W)w, ++idlecnt);
1315 array_needsize (idles, idlemax, idlecnt, );
1316 idles [idlecnt - 1] = w;
1317}
1318
1319void
1320ev_idle_stop (EV_P_ struct ev_idle *w)
1321{
1322 ev_clear_pending (EV_A_ (W)w);
1323 if (ev_is_active (w))
1324 return;
1325
1326 idles [((W)w)->active - 1] = idles [--idlecnt];
1327 ev_stop (EV_A_ (W)w);
1328}
1329
1330void
1331ev_prepare_start (EV_P_ struct ev_prepare *w)
1332{
1333 if (ev_is_active (w))
1334 return;
1335
1336 ev_start (EV_A_ (W)w, ++preparecnt);
1337 array_needsize (prepares, preparemax, preparecnt, );
1338 prepares [preparecnt - 1] = w;
1339}
1340
1341void
1342ev_prepare_stop (EV_P_ struct ev_prepare *w)
1343{
1344 ev_clear_pending (EV_A_ (W)w);
1345 if (ev_is_active (w))
1346 return;
1347
1348 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1349 ev_stop (EV_A_ (W)w);
1350}
1351
1352void
1353ev_check_start (EV_P_ struct ev_check *w)
1354{
1355 if (ev_is_active (w))
1356 return;
1357
1358 ev_start (EV_A_ (W)w, ++checkcnt);
1359 array_needsize (checks, checkmax, checkcnt, );
1360 checks [checkcnt - 1] = w;
1361}
1362
1363void
1364ev_check_stop (EV_P_ struct ev_check *w)
1365{
1366 ev_clear_pending (EV_A_ (W)w);
1367 if (ev_is_active (w))
1368 return;
1369
1370 checks [((W)w)->active - 1] = checks [--checkcnt];
1371 ev_stop (EV_A_ (W)w);
1372}
1373
1374#ifndef SA_RESTART
1375# define SA_RESTART 0
1376#endif
1377
1378void
1379ev_signal_start (EV_P_ struct ev_signal *w)
1380{
1381#if EV_MULTIPLICITY
1382 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1383#endif
1384 if (ev_is_active (w))
1385 return;
1386
886 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1387 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
887 1388
888 ev_start ((W)w, 1); 1389 ev_start (EV_A_ (W)w, 1);
889 array_needsize (signals, signalmax, w->signum, signals_init); 1390 array_needsize (signals, signalmax, w->signum, signals_init);
890 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1391 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
891 1392
892 if (!w->next) 1393 if (!((WL)w)->next)
893 { 1394 {
1395#if WIN32
1396 signal (w->signum, sighandler);
1397#else
894 struct sigaction sa; 1398 struct sigaction sa;
895 sa.sa_handler = sighandler; 1399 sa.sa_handler = sighandler;
896 sigfillset (&sa.sa_mask); 1400 sigfillset (&sa.sa_mask);
897 sa.sa_flags = 0; 1401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
898 sigaction (w->signum, &sa, 0); 1402 sigaction (w->signum, &sa, 0);
1403#endif
899 } 1404 }
900} 1405}
901 1406
902void 1407void
903ev_signal_stop (struct ev_signal *w) 1408ev_signal_stop (EV_P_ struct ev_signal *w)
904{ 1409{
905 ev_clear_pending ((W)w); 1410 ev_clear_pending (EV_A_ (W)w);
906 if (!ev_is_active (w)) 1411 if (!ev_is_active (w))
907 return; 1412 return;
908 1413
909 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1414 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
910 ev_stop ((W)w); 1415 ev_stop (EV_A_ (W)w);
911 1416
912 if (!signals [w->signum - 1].head) 1417 if (!signals [w->signum - 1].head)
913 signal (w->signum, SIG_DFL); 1418 signal (w->signum, SIG_DFL);
914} 1419}
915 1420
916void 1421void
917ev_idle_start (struct ev_idle *w) 1422ev_child_start (EV_P_ struct ev_child *w)
918{ 1423{
1424#if EV_MULTIPLICITY
1425 assert (("child watchers are only supported in the default loop", loop == default_loop));
1426#endif
919 if (ev_is_active (w)) 1427 if (ev_is_active (w))
920 return; 1428 return;
921 1429
922 ev_start ((W)w, ++idlecnt); 1430 ev_start (EV_A_ (W)w, 1);
923 array_needsize (idles, idlemax, idlecnt, ); 1431 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
924 idles [idlecnt - 1] = w;
925} 1432}
926 1433
927void 1434void
928ev_idle_stop (struct ev_idle *w) 1435ev_child_stop (EV_P_ struct ev_child *w)
929{ 1436{
930 ev_clear_pending ((W)w); 1437 ev_clear_pending (EV_A_ (W)w);
931 if (ev_is_active (w)) 1438 if (ev_is_active (w))
932 return; 1439 return;
933 1440
934 idles [w->active - 1] = idles [--idlecnt];
935 ev_stop ((W)w);
936}
937
938void
939ev_prepare_start (struct ev_prepare *w)
940{
941 if (ev_is_active (w))
942 return;
943
944 ev_start ((W)w, ++preparecnt);
945 array_needsize (prepares, preparemax, preparecnt, );
946 prepares [preparecnt - 1] = w;
947}
948
949void
950ev_prepare_stop (struct ev_prepare *w)
951{
952 ev_clear_pending ((W)w);
953 if (ev_is_active (w))
954 return;
955
956 prepares [w->active - 1] = prepares [--preparecnt];
957 ev_stop ((W)w);
958}
959
960void
961ev_check_start (struct ev_check *w)
962{
963 if (ev_is_active (w))
964 return;
965
966 ev_start ((W)w, ++checkcnt);
967 array_needsize (checks, checkmax, checkcnt, );
968 checks [checkcnt - 1] = w;
969}
970
971void
972ev_check_stop (struct ev_check *w)
973{
974 ev_clear_pending ((W)w);
975 if (ev_is_active (w))
976 return;
977
978 checks [w->active - 1] = checks [--checkcnt];
979 ev_stop ((W)w);
980}
981
982void
983ev_child_start (struct ev_child *w)
984{
985 if (ev_is_active (w))
986 return;
987
988 ev_start ((W)w, 1);
989 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
990}
991
992void
993ev_child_stop (struct ev_child *w)
994{
995 ev_clear_pending ((W)w);
996 if (ev_is_active (w))
997 return;
998
999 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1441 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1000 ev_stop ((W)w); 1442 ev_stop (EV_A_ (W)w);
1001} 1443}
1002 1444
1003/*****************************************************************************/ 1445/*****************************************************************************/
1004 1446
1005struct ev_once 1447struct ev_once
1009 void (*cb)(int revents, void *arg); 1451 void (*cb)(int revents, void *arg);
1010 void *arg; 1452 void *arg;
1011}; 1453};
1012 1454
1013static void 1455static void
1014once_cb (struct ev_once *once, int revents) 1456once_cb (EV_P_ struct ev_once *once, int revents)
1015{ 1457{
1016 void (*cb)(int revents, void *arg) = once->cb; 1458 void (*cb)(int revents, void *arg) = once->cb;
1017 void *arg = once->arg; 1459 void *arg = once->arg;
1018 1460
1019 ev_io_stop (&once->io); 1461 ev_io_stop (EV_A_ &once->io);
1020 ev_timer_stop (&once->to); 1462 ev_timer_stop (EV_A_ &once->to);
1021 free (once); 1463 ev_free (once);
1022 1464
1023 cb (revents, arg); 1465 cb (revents, arg);
1024} 1466}
1025 1467
1026static void 1468static void
1027once_cb_io (struct ev_io *w, int revents) 1469once_cb_io (EV_P_ struct ev_io *w, int revents)
1028{ 1470{
1029 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1471 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1030} 1472}
1031 1473
1032static void 1474static void
1033once_cb_to (struct ev_timer *w, int revents) 1475once_cb_to (EV_P_ struct ev_timer *w, int revents)
1034{ 1476{
1035 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1477 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1036} 1478}
1037 1479
1038void 1480void
1039ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1040{ 1482{
1041 struct ev_once *once = malloc (sizeof (struct ev_once)); 1483 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1042 1484
1043 if (!once) 1485 if (!once)
1044 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1486 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1045 else 1487 else
1046 { 1488 {
1049 1491
1050 ev_watcher_init (&once->io, once_cb_io); 1492 ev_watcher_init (&once->io, once_cb_io);
1051 if (fd >= 0) 1493 if (fd >= 0)
1052 { 1494 {
1053 ev_io_set (&once->io, fd, events); 1495 ev_io_set (&once->io, fd, events);
1054 ev_io_start (&once->io); 1496 ev_io_start (EV_A_ &once->io);
1055 } 1497 }
1056 1498
1057 ev_watcher_init (&once->to, once_cb_to); 1499 ev_watcher_init (&once->to, once_cb_to);
1058 if (timeout >= 0.) 1500 if (timeout >= 0.)
1059 { 1501 {
1060 ev_timer_set (&once->to, timeout, 0.); 1502 ev_timer_set (&once->to, timeout, 0.);
1061 ev_timer_start (&once->to); 1503 ev_timer_start (EV_A_ &once->to);
1062 } 1504 }
1063 } 1505 }
1064} 1506}
1065 1507
1066/*****************************************************************************/
1067
1068#if 0
1069
1070struct ev_io wio;
1071
1072static void
1073sin_cb (struct ev_io *w, int revents)
1074{
1075 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1076}
1077
1078static void
1079ocb (struct ev_timer *w, int revents)
1080{
1081 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1082 ev_timer_stop (w);
1083 ev_timer_start (w);
1084}
1085
1086static void
1087scb (struct ev_signal *w, int revents)
1088{
1089 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1090 ev_io_stop (&wio);
1091 ev_io_start (&wio);
1092}
1093
1094static void
1095gcb (struct ev_signal *w, int revents)
1096{
1097 fprintf (stderr, "generic %x\n", revents);
1098
1099}
1100
1101int main (void)
1102{
1103 ev_init (0);
1104
1105 ev_io_init (&wio, sin_cb, 0, EV_READ);
1106 ev_io_start (&wio);
1107
1108 struct ev_timer t[10000];
1109
1110#if 0
1111 int i;
1112 for (i = 0; i < 10000; ++i)
1113 {
1114 struct ev_timer *w = t + i;
1115 ev_watcher_init (w, ocb, i);
1116 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1117 ev_timer_start (w);
1118 if (drand48 () < 0.5)
1119 ev_timer_stop (w);
1120 }
1121#endif
1122
1123 struct ev_timer t1;
1124 ev_timer_init (&t1, ocb, 5, 10);
1125 ev_timer_start (&t1);
1126
1127 struct ev_signal sig;
1128 ev_signal_init (&sig, scb, SIGQUIT);
1129 ev_signal_start (&sig);
1130
1131 struct ev_check cw;
1132 ev_check_init (&cw, gcb);
1133 ev_check_start (&cw);
1134
1135 struct ev_idle iw;
1136 ev_idle_init (&iw, gcb);
1137 ev_idle_start (&iw);
1138
1139 ev_loop (0);
1140
1141 return 0;
1142}
1143
1144#endif
1145
1146
1147
1148

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines