ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.70 by root, Tue Nov 6 00:52:32 2007 UTC vs.
Revision 1.370 by root, Sun Jan 30 19:05:41 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
33 61
34# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
63# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
65# endif
66# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
68# endif
69# else
70# ifndef EV_USE_MONOTONIC
71# define EV_USE_MONOTONIC 0
72# endif
73# ifndef EV_USE_REALTIME
74# define EV_USE_REALTIME 0
75# endif
37# endif 76# endif
38 77
78# if HAVE_NANOSLEEP
79# ifndef EV_USE_NANOSLEEP
80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
85# endif
86
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
90# endif
91# else
92# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 93# define EV_USE_SELECT 0
41# endif 94# endif
42 95
43# if HAVE_POLL && HAVE_POLL_H 96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
44# define EV_USE_POLL 1 102# define EV_USE_POLL 0
45# endif 103# endif
46 104
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# ifndef EV_USE_EPOLL
107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# endif
109# else
110# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 111# define EV_USE_EPOLL 0
49# endif 112# endif
50 113
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
115# ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117# endif
118# else
119# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 120# define EV_USE_KQUEUE 0
53# endif 121# endif
122
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# ifndef EV_USE_PORT
125# define EV_USE_PORT EV_FEATURE_BACKENDS
126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
130# endif
54 131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
55#endif 159#endif
56 160
57#include <math.h> 161#include <math.h>
58#include <stdlib.h> 162#include <stdlib.h>
59#include <unistd.h> 163#include <string.h>
60#include <fcntl.h> 164#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 165#include <stddef.h>
63 166
64#include <stdio.h> 167#include <stdio.h>
65 168
66#include <assert.h> 169#include <assert.h>
67#include <errno.h> 170#include <errno.h>
68#include <sys/types.h> 171#include <sys/types.h>
172#include <time.h>
173#include <limits.h>
174
175#include <signal.h>
176
177#ifdef EV_H
178# include EV_H
179#else
180# include "ev.h"
181#endif
182
183EV_CPP(extern "C" {)
184
69#ifndef WIN32 185#ifndef _WIN32
186# include <sys/time.h>
70# include <sys/wait.h> 187# include <sys/wait.h>
188# include <unistd.h>
189#else
190# include <io.h>
191# define WIN32_LEAN_AND_MEAN
192# include <windows.h>
193# ifndef EV_SELECT_IS_WINSOCKET
194# define EV_SELECT_IS_WINSOCKET 1
71#endif 195# endif
72#include <sys/time.h> 196# undef EV_AVOID_STDIO
73#include <time.h> 197#endif
74 198
75/**/ 199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
76 244
77#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
78# define EV_USE_MONOTONIC 1 249# define EV_USE_MONOTONIC 0
250# endif
251#endif
252
253#ifndef EV_USE_REALTIME
254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
79#endif 263#endif
80 264
81#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
83#endif 267#endif
84 268
85#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 270# ifdef _WIN32
271# define EV_USE_POLL 0
272# else
273# define EV_USE_POLL EV_FEATURE_BACKENDS
274# endif
87#endif 275#endif
88 276
89#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
90# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
91#endif 283#endif
92 284
93#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
95#endif 287#endif
96 288
289#ifndef EV_USE_PORT
290# define EV_USE_PORT 0
291#endif
292
97#ifndef EV_USE_WIN32 293#ifndef EV_USE_INOTIFY
98# ifdef WIN32 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
99# define EV_USE_WIN32 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
100# else 296# else
101# define EV_USE_WIN32 0 297# define EV_USE_INOTIFY 0
102# endif 298# endif
103#endif 299#endif
104 300
301#ifndef EV_PID_HASHSIZE
302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
105#ifndef EV_USE_REALTIME 309#ifndef EV_USE_EVENTFD
106# define EV_USE_REALTIME 1 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
107#endif 314# endif
315#endif
108 316
109/**/ 317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
110 364
111#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
114#endif 368#endif
116#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
119#endif 373#endif
120 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381/* hp-ux has it in sys/time.h, which we unconditionally include above */
382# if !defined(_WIN32) && !defined(__hpux)
383# include <sys/select.h>
384# endif
385#endif
386
387#if EV_USE_INOTIFY
388# include <sys/statfs.h>
389# include <sys/inotify.h>
390/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
391# ifndef IN_DONT_FOLLOW
392# undef EV_USE_INOTIFY
393# define EV_USE_INOTIFY 0
394# endif
395#endif
396
397#if EV_SELECT_IS_WINSOCKET
398# include <winsock.h>
399#endif
400
401#if EV_USE_EVENTFD
402/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
403# include <stdint.h>
404# ifndef EFD_NONBLOCK
405# define EFD_NONBLOCK O_NONBLOCK
406# endif
407# ifndef EFD_CLOEXEC
408# ifdef O_CLOEXEC
409# define EFD_CLOEXEC O_CLOEXEC
410# else
411# define EFD_CLOEXEC 02000000
412# endif
413# endif
414EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
415#endif
416
417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437#endif
438
121/**/ 439/**/
122 440
441#if EV_VERIFY >= 3
442# define EV_FREQUENT_CHECK ev_verify (EV_A)
443#else
444# define EV_FREQUENT_CHECK do { } while (0)
445#endif
446
447/*
448 * This is used to avoid floating point rounding problems.
449 * It is added to ev_rt_now when scheduling periodics
450 * to ensure progress, time-wise, even when rounding
451 * errors are against us.
452 * This value is good at least till the year 4000.
453 * Better solutions welcome.
454 */
455#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
456
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 457#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 458#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 459
128#include "ev.h" 460#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
461#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
129 462
130#if __GNUC__ >= 3 463#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 465# define noinline __attribute__ ((noinline))
133#else 466#else
134# define expect(expr,value) (expr) 467# define expect(expr,value) (expr)
135# define inline static 468# define noinline
469# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
470# define inline
471# endif
136#endif 472#endif
137 473
138#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 475#define expect_true(expr) expect ((expr) != 0, 1)
476#define inline_size static inline
140 477
478#if EV_FEATURE_CODE
479# define inline_speed static inline
480#else
481# define inline_speed static noinline
482#endif
483
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
488#else
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
143 491
492#define EMPTY /* required for microsofts broken pseudo-c compiler */
493#define EMPTY2(a,b) /* used to suppress some warnings */
494
144typedef struct ev_watcher *W; 495typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 496typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
147 498
499#define ev_active(w) ((W)(w))->active
500#define ev_at(w) ((WT)(w))->at
501
502#if EV_USE_REALTIME
503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
504/* giving it a reasonably high chance of working on typical architectures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
508#if EV_USE_MONOTONIC
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
149 511
150#if WIN32 512#ifndef EV_FD_TO_WIN32_HANDLE
151/* note: the comment below could not be substantiated, but what would I care */ 513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
152/* MSDN says this is required to handle SIGFPE */ 514#endif
153volatile double SIGFPE_REQ = 0.0f; 515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
520#endif
521
522#ifdef _WIN32
523# include "ev_win32.c"
154#endif 524#endif
155 525
156/*****************************************************************************/ 526/*****************************************************************************/
157 527
528#ifdef __linux
529# include <sys/utsname.h>
530#endif
531
532static unsigned int noinline
533ev_linux_version (void)
534{
535#ifdef __linux
536 unsigned int v = 0;
537 struct utsname buf;
538 int i;
539 char *p = buf.release;
540
541 if (uname (&buf))
542 return 0;
543
544 for (i = 3+1; --i; )
545 {
546 unsigned int c = 0;
547
548 for (;;)
549 {
550 if (*p >= '0' && *p <= '9')
551 c = c * 10 + *p++ - '0';
552 else
553 {
554 p += *p == '.';
555 break;
556 }
557 }
558
559 v = (v << 8) | c;
560 }
561
562 return v;
563#else
564 return 0;
565#endif
566}
567
568/*****************************************************************************/
569
570#if EV_AVOID_STDIO
571static void noinline
572ev_printerr (const char *msg)
573{
574 write (STDERR_FILENO, msg, strlen (msg));
575}
576#endif
577
158static void (*syserr_cb)(const char *msg); 578static void (*syserr_cb)(const char *msg);
159 579
580void
160void ev_set_syserr_cb (void (*cb)(const char *msg)) 581ev_set_syserr_cb (void (*cb)(const char *msg))
161{ 582{
162 syserr_cb = cb; 583 syserr_cb = cb;
163} 584}
164 585
165static void 586static void noinline
166syserr (const char *msg) 587ev_syserr (const char *msg)
167{ 588{
168 if (!msg) 589 if (!msg)
169 msg = "(libev) system error"; 590 msg = "(libev) system error";
170 591
171 if (syserr_cb) 592 if (syserr_cb)
172 syserr_cb (msg); 593 syserr_cb (msg);
173 else 594 else
174 { 595 {
596#if EV_AVOID_STDIO
597 ev_printerr (msg);
598 ev_printerr (": ");
599 ev_printerr (strerror (errno));
600 ev_printerr ("\n");
601#else
175 perror (msg); 602 perror (msg);
603#endif
176 abort (); 604 abort ();
177 } 605 }
178} 606}
179 607
608static void *
609ev_realloc_emul (void *ptr, long size)
610{
611#if __GLIBC__
612 return realloc (ptr, size);
613#else
614 /* some systems, notably openbsd and darwin, fail to properly
615 * implement realloc (x, 0) (as required by both ansi c-89 and
616 * the single unix specification, so work around them here.
617 */
618
619 if (size)
620 return realloc (ptr, size);
621
622 free (ptr);
623 return 0;
624#endif
625}
626
180static void *(*alloc)(void *ptr, long size); 627static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
181 628
629void
182void ev_set_allocator (void *(*cb)(void *ptr, long size)) 630ev_set_allocator (void *(*cb)(void *ptr, long size))
183{ 631{
184 alloc = cb; 632 alloc = cb;
185} 633}
186 634
187static void * 635inline_speed void *
188ev_realloc (void *ptr, long size) 636ev_realloc (void *ptr, long size)
189{ 637{
190 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 638 ptr = alloc (ptr, size);
191 639
192 if (!ptr && size) 640 if (!ptr && size)
193 { 641 {
642#if EV_AVOID_STDIO
643 ev_printerr ("(libev) memory allocation failed, aborting.\n");
644#else
194 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 645 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
646#endif
195 abort (); 647 abort ();
196 } 648 }
197 649
198 return ptr; 650 return ptr;
199} 651}
201#define ev_malloc(size) ev_realloc (0, (size)) 653#define ev_malloc(size) ev_realloc (0, (size))
202#define ev_free(ptr) ev_realloc ((ptr), 0) 654#define ev_free(ptr) ev_realloc ((ptr), 0)
203 655
204/*****************************************************************************/ 656/*****************************************************************************/
205 657
658/* set in reify when reification needed */
659#define EV_ANFD_REIFY 1
660
661/* file descriptor info structure */
206typedef struct 662typedef struct
207{ 663{
208 WL head; 664 WL head;
209 unsigned char events; 665 unsigned char events; /* the events watched for */
666 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
667 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
210 unsigned char reify; 668 unsigned char unused;
669#if EV_USE_EPOLL
670 unsigned int egen; /* generation counter to counter epoll bugs */
671#endif
672#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
673 SOCKET handle;
674#endif
675#if EV_USE_IOCP
676 OVERLAPPED or, ow;
677#endif
211} ANFD; 678} ANFD;
212 679
680/* stores the pending event set for a given watcher */
213typedef struct 681typedef struct
214{ 682{
215 W w; 683 W w;
216 int events; 684 int events; /* the pending event set for the given watcher */
217} ANPENDING; 685} ANPENDING;
218 686
687#if EV_USE_INOTIFY
688/* hash table entry per inotify-id */
689typedef struct
690{
691 WL head;
692} ANFS;
693#endif
694
695/* Heap Entry */
696#if EV_HEAP_CACHE_AT
697 /* a heap element */
698 typedef struct {
699 ev_tstamp at;
700 WT w;
701 } ANHE;
702
703 #define ANHE_w(he) (he).w /* access watcher, read-write */
704 #define ANHE_at(he) (he).at /* access cached at, read-only */
705 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
706#else
707 /* a heap element */
708 typedef WT ANHE;
709
710 #define ANHE_w(he) (he)
711 #define ANHE_at(he) (he)->at
712 #define ANHE_at_cache(he)
713#endif
714
219#if EV_MULTIPLICITY 715#if EV_MULTIPLICITY
220 716
221struct ev_loop 717 struct ev_loop
222{ 718 {
719 ev_tstamp ev_rt_now;
720 #define ev_rt_now ((loop)->ev_rt_now)
223# define VAR(name,decl) decl; 721 #define VAR(name,decl) decl;
224# include "ev_vars.h" 722 #include "ev_vars.h"
225};
226# undef VAR 723 #undef VAR
724 };
227# include "ev_wrap.h" 725 #include "ev_wrap.h"
726
727 static struct ev_loop default_loop_struct;
728 struct ev_loop *ev_default_loop_ptr;
228 729
229#else 730#else
230 731
732 ev_tstamp ev_rt_now;
231# define VAR(name,decl) static decl; 733 #define VAR(name,decl) static decl;
232# include "ev_vars.h" 734 #include "ev_vars.h"
233# undef VAR 735 #undef VAR
234 736
737 static int ev_default_loop_ptr;
738
235#endif 739#endif
740
741#if EV_FEATURE_API
742# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
743# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
744# define EV_INVOKE_PENDING invoke_cb (EV_A)
745#else
746# define EV_RELEASE_CB (void)0
747# define EV_ACQUIRE_CB (void)0
748# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
749#endif
750
751#define EVBREAK_RECURSE 0x80
236 752
237/*****************************************************************************/ 753/*****************************************************************************/
238 754
239inline ev_tstamp 755#ifndef EV_HAVE_EV_TIME
756ev_tstamp
240ev_time (void) 757ev_time (void)
241{ 758{
242#if EV_USE_REALTIME 759#if EV_USE_REALTIME
760 if (expect_true (have_realtime))
761 {
243 struct timespec ts; 762 struct timespec ts;
244 clock_gettime (CLOCK_REALTIME, &ts); 763 clock_gettime (CLOCK_REALTIME, &ts);
245 return ts.tv_sec + ts.tv_nsec * 1e-9; 764 return ts.tv_sec + ts.tv_nsec * 1e-9;
246#else 765 }
766#endif
767
247 struct timeval tv; 768 struct timeval tv;
248 gettimeofday (&tv, 0); 769 gettimeofday (&tv, 0);
249 return tv.tv_sec + tv.tv_usec * 1e-6; 770 return tv.tv_sec + tv.tv_usec * 1e-6;
250#endif
251} 771}
772#endif
252 773
253inline ev_tstamp 774inline_size ev_tstamp
254get_clock (void) 775get_clock (void)
255{ 776{
256#if EV_USE_MONOTONIC 777#if EV_USE_MONOTONIC
257 if (expect_true (have_monotonic)) 778 if (expect_true (have_monotonic))
258 { 779 {
263#endif 784#endif
264 785
265 return ev_time (); 786 return ev_time ();
266} 787}
267 788
789#if EV_MULTIPLICITY
268ev_tstamp 790ev_tstamp
269ev_now (EV_P) 791ev_now (EV_P)
270{ 792{
271 return rt_now; 793 return ev_rt_now;
272} 794}
795#endif
273 796
274#define array_roundsize(base,n) ((n) | 4 & ~3) 797void
798ev_sleep (ev_tstamp delay)
799{
800 if (delay > 0.)
801 {
802#if EV_USE_NANOSLEEP
803 struct timespec ts;
275 804
805 EV_TS_SET (ts, delay);
806 nanosleep (&ts, 0);
807#elif defined(_WIN32)
808 Sleep ((unsigned long)(delay * 1e3));
809#else
810 struct timeval tv;
811
812 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
813 /* something not guaranteed by newer posix versions, but guaranteed */
814 /* by older ones */
815 EV_TV_SET (tv, delay);
816 select (0, 0, 0, 0, &tv);
817#endif
818 }
819}
820
821inline_speed int
822ev_timeout_to_ms (ev_tstamp timeout)
823{
824 int ms = timeout * 1000. + .999999;
825
826 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
827}
828
829/*****************************************************************************/
830
831#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
832
833/* find a suitable new size for the given array, */
834/* hopefully by rounding to a nice-to-malloc size */
835inline_size int
836array_nextsize (int elem, int cur, int cnt)
837{
838 int ncur = cur + 1;
839
840 do
841 ncur <<= 1;
842 while (cnt > ncur);
843
844 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
845 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
846 {
847 ncur *= elem;
848 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
849 ncur = ncur - sizeof (void *) * 4;
850 ncur /= elem;
851 }
852
853 return ncur;
854}
855
856static noinline void *
857array_realloc (int elem, void *base, int *cur, int cnt)
858{
859 *cur = array_nextsize (elem, *cur, cnt);
860 return ev_realloc (base, elem * *cur);
861}
862
863#define array_init_zero(base,count) \
864 memset ((void *)(base), 0, sizeof (*(base)) * (count))
865
276#define array_needsize(base,cur,cnt,init) \ 866#define array_needsize(type,base,cur,cnt,init) \
277 if (expect_false ((cnt) > cur)) \ 867 if (expect_false ((cnt) > (cur))) \
278 { \ 868 { \
279 int newcnt = cur; \ 869 int ocur_ = (cur); \
280 do \ 870 (base) = (type *)array_realloc \
281 { \ 871 (sizeof (type), (base), &(cur), (cnt)); \
282 newcnt = array_roundsize (base, newcnt << 1); \ 872 init ((base) + (ocur_), (cur) - ocur_); \
283 } \
284 while ((cnt) > newcnt); \
285 \
286 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
287 init (base + cur, newcnt - cur); \
288 cur = newcnt; \
289 } 873 }
290 874
875#if 0
291#define array_slim(stem) \ 876#define array_slim(type,stem) \
292 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 877 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
293 { \ 878 { \
294 stem ## max = array_roundsize (stem ## cnt >> 1); \ 879 stem ## max = array_roundsize (stem ## cnt >> 1); \
295 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 880 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
296 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 881 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
297 } 882 }
883#endif
298 884
299#define array_free(stem, idx) \ 885#define array_free(stem, idx) \
300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 886 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
301 887
302/*****************************************************************************/ 888/*****************************************************************************/
303 889
304static void 890/* dummy callback for pending events */
305anfds_init (ANFD *base, int count) 891static void noinline
892pendingcb (EV_P_ ev_prepare *w, int revents)
306{ 893{
307 while (count--) 894}
308 {
309 base->head = 0;
310 base->events = EV_NONE;
311 base->reify = 0;
312 895
313 ++base; 896void noinline
897ev_feed_event (EV_P_ void *w, int revents)
898{
899 W w_ = (W)w;
900 int pri = ABSPRI (w_);
901
902 if (expect_false (w_->pending))
903 pendings [pri][w_->pending - 1].events |= revents;
904 else
314 } 905 {
315} 906 w_->pending = ++pendingcnt [pri];
316 907 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
317static void 908 pendings [pri][w_->pending - 1].w = w_;
318event (EV_P_ W w, int events)
319{
320 if (w->pending)
321 {
322 pendings [ABSPRI (w)][w->pending - 1].events |= events; 909 pendings [pri][w_->pending - 1].events = revents;
323 return;
324 } 910 }
325
326 w->pending = ++pendingcnt [ABSPRI (w)];
327 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
328 pendings [ABSPRI (w)][w->pending - 1].w = w;
329 pendings [ABSPRI (w)][w->pending - 1].events = events;
330} 911}
331 912
332static void 913inline_speed void
914feed_reverse (EV_P_ W w)
915{
916 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
917 rfeeds [rfeedcnt++] = w;
918}
919
920inline_size void
921feed_reverse_done (EV_P_ int revents)
922{
923 do
924 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
925 while (rfeedcnt);
926}
927
928inline_speed void
333queue_events (EV_P_ W *events, int eventcnt, int type) 929queue_events (EV_P_ W *events, int eventcnt, int type)
334{ 930{
335 int i; 931 int i;
336 932
337 for (i = 0; i < eventcnt; ++i) 933 for (i = 0; i < eventcnt; ++i)
338 event (EV_A_ events [i], type); 934 ev_feed_event (EV_A_ events [i], type);
339} 935}
340 936
341static void 937/*****************************************************************************/
938
939inline_speed void
342fd_event (EV_P_ int fd, int events) 940fd_event_nocheck (EV_P_ int fd, int revents)
343{ 941{
344 ANFD *anfd = anfds + fd; 942 ANFD *anfd = anfds + fd;
345 struct ev_io *w; 943 ev_io *w;
346 944
347 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 945 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
348 { 946 {
349 int ev = w->events & events; 947 int ev = w->events & revents;
350 948
351 if (ev) 949 if (ev)
352 event (EV_A_ (W)w, ev); 950 ev_feed_event (EV_A_ (W)w, ev);
353 } 951 }
354} 952}
355 953
356/*****************************************************************************/ 954/* do not submit kernel events for fds that have reify set */
955/* because that means they changed while we were polling for new events */
956inline_speed void
957fd_event (EV_P_ int fd, int revents)
958{
959 ANFD *anfd = anfds + fd;
357 960
358static void 961 if (expect_true (!anfd->reify))
962 fd_event_nocheck (EV_A_ fd, revents);
963}
964
965void
966ev_feed_fd_event (EV_P_ int fd, int revents)
967{
968 if (fd >= 0 && fd < anfdmax)
969 fd_event_nocheck (EV_A_ fd, revents);
970}
971
972/* make sure the external fd watch events are in-sync */
973/* with the kernel/libev internal state */
974inline_size void
359fd_reify (EV_P) 975fd_reify (EV_P)
360{ 976{
361 int i; 977 int i;
362 978
363 for (i = 0; i < fdchangecnt; ++i) 979 for (i = 0; i < fdchangecnt; ++i)
364 { 980 {
365 int fd = fdchanges [i]; 981 int fd = fdchanges [i];
366 ANFD *anfd = anfds + fd; 982 ANFD *anfd = anfds + fd;
367 struct ev_io *w; 983 ev_io *w;
368 984
369 int events = 0; 985 unsigned char o_events = anfd->events;
986 unsigned char o_reify = anfd->reify;
370 987
371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
372 events |= w->events;
373
374 anfd->reify = 0; 988 anfd->reify = 0;
375 989
376 method_modify (EV_A_ fd, anfd->events, events); 990#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
991 if (o_reify & EV__IOFDSET)
992 {
993 unsigned long arg;
994 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
995 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
996 printf ("oi %d %x\n", fd, anfd->handle);//D
997 }
998#endif
999
1000 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1001 {
377 anfd->events = events; 1002 anfd->events = 0;
1003
1004 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1005 anfd->events |= (unsigned char)w->events;
1006
1007 if (o_events != anfd->events)
1008 o_reify = EV__IOFDSET; /* actually |= */
1009 }
1010
1011 if (o_reify & EV__IOFDSET)
1012 backend_modify (EV_A_ fd, o_events, anfd->events);
378 } 1013 }
379 1014
380 fdchangecnt = 0; 1015 fdchangecnt = 0;
381} 1016}
382 1017
383static void 1018/* something about the given fd changed */
1019inline_size void
384fd_change (EV_P_ int fd) 1020fd_change (EV_P_ int fd, int flags)
385{ 1021{
386 if (anfds [fd].reify) 1022 unsigned char reify = anfds [fd].reify;
387 return;
388
389 anfds [fd].reify = 1; 1023 anfds [fd].reify |= flags;
390 1024
1025 if (expect_true (!reify))
1026 {
391 ++fdchangecnt; 1027 ++fdchangecnt;
392 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 1028 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
393 fdchanges [fdchangecnt - 1] = fd; 1029 fdchanges [fdchangecnt - 1] = fd;
1030 }
394} 1031}
395 1032
396static void 1033/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1034inline_speed void
397fd_kill (EV_P_ int fd) 1035fd_kill (EV_P_ int fd)
398{ 1036{
399 struct ev_io *w; 1037 ev_io *w;
400 1038
401 while ((w = (struct ev_io *)anfds [fd].head)) 1039 while ((w = (ev_io *)anfds [fd].head))
402 { 1040 {
403 ev_io_stop (EV_A_ w); 1041 ev_io_stop (EV_A_ w);
404 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1042 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
405 } 1043 }
1044}
1045
1046/* check whether the given fd is actually valid, for error recovery */
1047inline_size int
1048fd_valid (int fd)
1049{
1050#ifdef _WIN32
1051 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1052#else
1053 return fcntl (fd, F_GETFD) != -1;
1054#endif
406} 1055}
407 1056
408/* called on EBADF to verify fds */ 1057/* called on EBADF to verify fds */
409static void 1058static void noinline
410fd_ebadf (EV_P) 1059fd_ebadf (EV_P)
411{ 1060{
412 int fd; 1061 int fd;
413 1062
414 for (fd = 0; fd < anfdmax; ++fd) 1063 for (fd = 0; fd < anfdmax; ++fd)
415 if (anfds [fd].events) 1064 if (anfds [fd].events)
416 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 1065 if (!fd_valid (fd) && errno == EBADF)
417 fd_kill (EV_A_ fd); 1066 fd_kill (EV_A_ fd);
418} 1067}
419 1068
420/* called on ENOMEM in select/poll to kill some fds and retry */ 1069/* called on ENOMEM in select/poll to kill some fds and retry */
421static void 1070static void noinline
422fd_enomem (EV_P) 1071fd_enomem (EV_P)
423{ 1072{
424 int fd; 1073 int fd;
425 1074
426 for (fd = anfdmax; fd--; ) 1075 for (fd = anfdmax; fd--; )
427 if (anfds [fd].events) 1076 if (anfds [fd].events)
428 { 1077 {
429 fd_kill (EV_A_ fd); 1078 fd_kill (EV_A_ fd);
430 return; 1079 break;
431 } 1080 }
432} 1081}
433 1082
434/* usually called after fork if method needs to re-arm all fds from scratch */ 1083/* usually called after fork if backend needs to re-arm all fds from scratch */
435static void 1084static void noinline
436fd_rearm_all (EV_P) 1085fd_rearm_all (EV_P)
437{ 1086{
438 int fd; 1087 int fd;
439 1088
440 /* this should be highly optimised to not do anything but set a flag */
441 for (fd = 0; fd < anfdmax; ++fd) 1089 for (fd = 0; fd < anfdmax; ++fd)
442 if (anfds [fd].events) 1090 if (anfds [fd].events)
443 { 1091 {
444 anfds [fd].events = 0; 1092 anfds [fd].events = 0;
445 fd_change (EV_A_ fd); 1093 anfds [fd].emask = 0;
1094 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
446 } 1095 }
447} 1096}
448 1097
1098/* used to prepare libev internal fd's */
1099/* this is not fork-safe */
1100inline_speed void
1101fd_intern (int fd)
1102{
1103#ifdef _WIN32
1104 unsigned long arg = 1;
1105 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1106#else
1107 fcntl (fd, F_SETFD, FD_CLOEXEC);
1108 fcntl (fd, F_SETFL, O_NONBLOCK);
1109#endif
1110}
1111
449/*****************************************************************************/ 1112/*****************************************************************************/
450 1113
1114/*
1115 * the heap functions want a real array index. array index 0 is guaranteed to not
1116 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1117 * the branching factor of the d-tree.
1118 */
1119
1120/*
1121 * at the moment we allow libev the luxury of two heaps,
1122 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1123 * which is more cache-efficient.
1124 * the difference is about 5% with 50000+ watchers.
1125 */
1126#if EV_USE_4HEAP
1127
1128#define DHEAP 4
1129#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1130#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1131#define UPHEAP_DONE(p,k) ((p) == (k))
1132
1133/* away from the root */
1134inline_speed void
1135downheap (ANHE *heap, int N, int k)
1136{
1137 ANHE he = heap [k];
1138 ANHE *E = heap + N + HEAP0;
1139
1140 for (;;)
1141 {
1142 ev_tstamp minat;
1143 ANHE *minpos;
1144 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1145
1146 /* find minimum child */
1147 if (expect_true (pos + DHEAP - 1 < E))
1148 {
1149 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else if (pos < E)
1155 {
1156 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1157 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1158 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1159 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1160 }
1161 else
1162 break;
1163
1164 if (ANHE_at (he) <= minat)
1165 break;
1166
1167 heap [k] = *minpos;
1168 ev_active (ANHE_w (*minpos)) = k;
1169
1170 k = minpos - heap;
1171 }
1172
1173 heap [k] = he;
1174 ev_active (ANHE_w (he)) = k;
1175}
1176
1177#else /* 4HEAP */
1178
1179#define HEAP0 1
1180#define HPARENT(k) ((k) >> 1)
1181#define UPHEAP_DONE(p,k) (!(p))
1182
1183/* away from the root */
1184inline_speed void
1185downheap (ANHE *heap, int N, int k)
1186{
1187 ANHE he = heap [k];
1188
1189 for (;;)
1190 {
1191 int c = k << 1;
1192
1193 if (c >= N + HEAP0)
1194 break;
1195
1196 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1197 ? 1 : 0;
1198
1199 if (ANHE_at (he) <= ANHE_at (heap [c]))
1200 break;
1201
1202 heap [k] = heap [c];
1203 ev_active (ANHE_w (heap [k])) = k;
1204
1205 k = c;
1206 }
1207
1208 heap [k] = he;
1209 ev_active (ANHE_w (he)) = k;
1210}
1211#endif
1212
1213/* towards the root */
1214inline_speed void
1215upheap (ANHE *heap, int k)
1216{
1217 ANHE he = heap [k];
1218
1219 for (;;)
1220 {
1221 int p = HPARENT (k);
1222
1223 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1224 break;
1225
1226 heap [k] = heap [p];
1227 ev_active (ANHE_w (heap [k])) = k;
1228 k = p;
1229 }
1230
1231 heap [k] = he;
1232 ev_active (ANHE_w (he)) = k;
1233}
1234
1235/* move an element suitably so it is in a correct place */
1236inline_size void
1237adjustheap (ANHE *heap, int N, int k)
1238{
1239 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1240 upheap (heap, k);
1241 else
1242 downheap (heap, N, k);
1243}
1244
1245/* rebuild the heap: this function is used only once and executed rarely */
1246inline_size void
1247reheap (ANHE *heap, int N)
1248{
1249 int i;
1250
1251 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1252 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1253 for (i = 0; i < N; ++i)
1254 upheap (heap, i + HEAP0);
1255}
1256
1257/*****************************************************************************/
1258
1259/* associate signal watchers to a signal signal */
1260typedef struct
1261{
1262 EV_ATOMIC_T pending;
1263#if EV_MULTIPLICITY
1264 EV_P;
1265#endif
1266 WL head;
1267} ANSIG;
1268
1269static ANSIG signals [EV_NSIG - 1];
1270
1271/*****************************************************************************/
1272
1273#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1274
1275static void noinline
1276evpipe_init (EV_P)
1277{
1278 if (!ev_is_active (&pipe_w))
1279 {
1280# if EV_USE_EVENTFD
1281 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1282 if (evfd < 0 && errno == EINVAL)
1283 evfd = eventfd (0, 0);
1284
1285 if (evfd >= 0)
1286 {
1287 evpipe [0] = -1;
1288 fd_intern (evfd); /* doing it twice doesn't hurt */
1289 ev_io_set (&pipe_w, evfd, EV_READ);
1290 }
1291 else
1292# endif
1293 {
1294 while (pipe (evpipe))
1295 ev_syserr ("(libev) error creating signal/async pipe");
1296
1297 fd_intern (evpipe [0]);
1298 fd_intern (evpipe [1]);
1299 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1300 }
1301
1302 ev_io_start (EV_A_ &pipe_w);
1303 ev_unref (EV_A); /* watcher should not keep loop alive */
1304 }
1305}
1306
1307inline_size void
1308evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1309{
1310 if (!*flag)
1311 {
1312 int old_errno = errno; /* save errno because write might clobber it */
1313 char dummy;
1314
1315 *flag = 1;
1316
1317#if EV_USE_EVENTFD
1318 if (evfd >= 0)
1319 {
1320 uint64_t counter = 1;
1321 write (evfd, &counter, sizeof (uint64_t));
1322 }
1323 else
1324#endif
1325 /* win32 people keep sending patches that change this write() to send() */
1326 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1327 /* so when you think this write should be a send instead, please find out */
1328 /* where your send() is from - it's definitely not the microsoft send, and */
1329 /* tell me. thank you. */
1330 write (evpipe [1], &dummy, 1);
1331
1332 errno = old_errno;
1333 }
1334}
1335
1336/* called whenever the libev signal pipe */
1337/* got some events (signal, async) */
451static void 1338static void
452upheap (WT *heap, int k) 1339pipecb (EV_P_ ev_io *iow, int revents)
453{ 1340{
454 WT w = heap [k]; 1341 int i;
455 1342
456 while (k && heap [k >> 1]->at > w->at) 1343#if EV_USE_EVENTFD
457 { 1344 if (evfd >= 0)
458 heap [k] = heap [k >> 1];
459 ((W)heap [k])->active = k + 1;
460 k >>= 1;
461 } 1345 {
1346 uint64_t counter;
1347 read (evfd, &counter, sizeof (uint64_t));
1348 }
1349 else
1350#endif
1351 {
1352 char dummy;
1353 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1354 read (evpipe [0], &dummy, 1);
1355 }
462 1356
463 heap [k] = w; 1357#if EV_SIGNAL_ENABLE
464 ((W)heap [k])->active = k + 1; 1358 if (sig_pending)
1359 {
1360 sig_pending = 0;
465 1361
1362 for (i = EV_NSIG - 1; i--; )
1363 if (expect_false (signals [i].pending))
1364 ev_feed_signal_event (EV_A_ i + 1);
1365 }
1366#endif
1367
1368#if EV_ASYNC_ENABLE
1369 if (async_pending)
1370 {
1371 async_pending = 0;
1372
1373 for (i = asynccnt; i--; )
1374 if (asyncs [i]->sent)
1375 {
1376 asyncs [i]->sent = 0;
1377 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1378 }
1379 }
1380#endif
1381}
1382
1383/*****************************************************************************/
1384
1385void
1386ev_feed_signal (int signum)
1387{
1388#if EV_MULTIPLICITY
1389 EV_P = signals [signum - 1].loop;
1390
1391 if (!EV_A)
1392 return;
1393#endif
1394
1395 signals [signum - 1].pending = 1;
1396 evpipe_write (EV_A_ &sig_pending);
466} 1397}
467 1398
468static void 1399static void
469downheap (WT *heap, int N, int k) 1400ev_sighandler (int signum)
470{ 1401{
471 WT w = heap [k]; 1402#ifdef _WIN32
1403 signal (signum, ev_sighandler);
1404#endif
472 1405
473 while (k < (N >> 1)) 1406 ev_feed_signal (signum);
474 { 1407}
475 int j = k << 1;
476 1408
477 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1409void noinline
478 ++j; 1410ev_feed_signal_event (EV_P_ int signum)
1411{
1412 WL w;
479 1413
480 if (w->at <= heap [j]->at) 1414 if (expect_false (signum <= 0 || signum > EV_NSIG))
1415 return;
1416
1417 --signum;
1418
1419#if EV_MULTIPLICITY
1420 /* it is permissible to try to feed a signal to the wrong loop */
1421 /* or, likely more useful, feeding a signal nobody is waiting for */
1422
1423 if (expect_false (signals [signum].loop != EV_A))
1424 return;
1425#endif
1426
1427 signals [signum].pending = 0;
1428
1429 for (w = signals [signum].head; w; w = w->next)
1430 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1431}
1432
1433#if EV_USE_SIGNALFD
1434static void
1435sigfdcb (EV_P_ ev_io *iow, int revents)
1436{
1437 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1438
1439 for (;;)
1440 {
1441 ssize_t res = read (sigfd, si, sizeof (si));
1442
1443 /* not ISO-C, as res might be -1, but works with SuS */
1444 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1445 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1446
1447 if (res < (ssize_t)sizeof (si))
481 break; 1448 break;
482
483 heap [k] = heap [j];
484 ((W)heap [k])->active = k + 1;
485 k = j;
486 } 1449 }
487
488 heap [k] = w;
489 ((W)heap [k])->active = k + 1;
490} 1450}
1451#endif
1452
1453#endif
491 1454
492/*****************************************************************************/ 1455/*****************************************************************************/
493 1456
494typedef struct 1457#if EV_CHILD_ENABLE
495{ 1458static WL childs [EV_PID_HASHSIZE];
496 WL head;
497 sig_atomic_t volatile gotsig;
498} ANSIG;
499 1459
500static ANSIG *signals;
501static int signalmax;
502
503static int sigpipe [2];
504static sig_atomic_t volatile gotsig;
505static struct ev_io sigev;
506
507static void
508signals_init (ANSIG *base, int count)
509{
510 while (count--)
511 {
512 base->head = 0;
513 base->gotsig = 0;
514
515 ++base;
516 }
517}
518
519static void
520sighandler (int signum)
521{
522#if WIN32
523 signal (signum, sighandler);
524#endif
525
526 signals [signum - 1].gotsig = 1;
527
528 if (!gotsig)
529 {
530 int old_errno = errno;
531 gotsig = 1;
532 write (sigpipe [1], &signum, 1);
533 errno = old_errno;
534 }
535}
536
537static void
538sigcb (EV_P_ struct ev_io *iow, int revents)
539{
540 WL w;
541 int signum;
542
543 read (sigpipe [0], &revents, 1);
544 gotsig = 0;
545
546 for (signum = signalmax; signum--; )
547 if (signals [signum].gotsig)
548 {
549 signals [signum].gotsig = 0;
550
551 for (w = signals [signum].head; w; w = w->next)
552 event (EV_A_ (W)w, EV_SIGNAL);
553 }
554}
555
556static void
557siginit (EV_P)
558{
559#ifndef WIN32
560 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
561 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
562
563 /* rather than sort out wether we really need nb, set it */
564 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
565 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
566#endif
567
568 ev_io_set (&sigev, sigpipe [0], EV_READ);
569 ev_io_start (EV_A_ &sigev);
570 ev_unref (EV_A); /* child watcher should not keep loop alive */
571}
572
573/*****************************************************************************/
574
575#ifndef WIN32
576
577static struct ev_child *childs [PID_HASHSIZE];
578static struct ev_signal childev; 1460static ev_signal childev;
1461
1462#ifndef WIFCONTINUED
1463# define WIFCONTINUED(status) 0
1464#endif
1465
1466/* handle a single child status event */
1467inline_speed void
1468child_reap (EV_P_ int chain, int pid, int status)
1469{
1470 ev_child *w;
1471 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1472
1473 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1474 {
1475 if ((w->pid == pid || !w->pid)
1476 && (!traced || (w->flags & 1)))
1477 {
1478 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1479 w->rpid = pid;
1480 w->rstatus = status;
1481 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1482 }
1483 }
1484}
579 1485
580#ifndef WCONTINUED 1486#ifndef WCONTINUED
581# define WCONTINUED 0 1487# define WCONTINUED 0
582#endif 1488#endif
583 1489
1490/* called on sigchld etc., calls waitpid */
584static void 1491static void
585child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
586{
587 struct ev_child *w;
588
589 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
590 if (w->pid == pid || !w->pid)
591 {
592 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
593 w->rpid = pid;
594 w->rstatus = status;
595 event (EV_A_ (W)w, EV_CHILD);
596 }
597}
598
599static void
600childcb (EV_P_ struct ev_signal *sw, int revents) 1492childcb (EV_P_ ev_signal *sw, int revents)
601{ 1493{
602 int pid, status; 1494 int pid, status;
603 1495
1496 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
604 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1497 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
605 { 1498 if (!WCONTINUED
1499 || errno != EINVAL
1500 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1501 return;
1502
606 /* make sure we are called again until all childs have been reaped */ 1503 /* make sure we are called again until all children have been reaped */
1504 /* we need to do it this way so that the callback gets called before we continue */
607 event (EV_A_ (W)sw, EV_SIGNAL); 1505 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
608 1506
609 child_reap (EV_A_ sw, pid, pid, status); 1507 child_reap (EV_A_ pid, pid, status);
1508 if ((EV_PID_HASHSIZE) > 1)
610 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1509 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
611 }
612} 1510}
613 1511
614#endif 1512#endif
615 1513
616/*****************************************************************************/ 1514/*****************************************************************************/
617 1515
1516#if EV_USE_IOCP
1517# include "ev_iocp.c"
1518#endif
1519#if EV_USE_PORT
1520# include "ev_port.c"
1521#endif
618#if EV_USE_KQUEUE 1522#if EV_USE_KQUEUE
619# include "ev_kqueue.c" 1523# include "ev_kqueue.c"
620#endif 1524#endif
621#if EV_USE_EPOLL 1525#if EV_USE_EPOLL
622# include "ev_epoll.c" 1526# include "ev_epoll.c"
639{ 1543{
640 return EV_VERSION_MINOR; 1544 return EV_VERSION_MINOR;
641} 1545}
642 1546
643/* return true if we are running with elevated privileges and should ignore env variables */ 1547/* return true if we are running with elevated privileges and should ignore env variables */
644static int 1548int inline_size
645enable_secure (void) 1549enable_secure (void)
646{ 1550{
647#ifdef WIN32 1551#ifdef _WIN32
648 return 0; 1552 return 0;
649#else 1553#else
650 return getuid () != geteuid () 1554 return getuid () != geteuid ()
651 || getgid () != getegid (); 1555 || getgid () != getegid ();
652#endif 1556#endif
653} 1557}
654 1558
655int 1559unsigned int
1560ev_supported_backends (void)
1561{
1562 unsigned int flags = 0;
1563
1564 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1565 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1566 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1567 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1568 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1569
1570 return flags;
1571}
1572
1573unsigned int
1574ev_recommended_backends (void)
1575{
1576 unsigned int flags = ev_supported_backends ();
1577
1578#ifndef __NetBSD__
1579 /* kqueue is borked on everything but netbsd apparently */
1580 /* it usually doesn't work correctly on anything but sockets and pipes */
1581 flags &= ~EVBACKEND_KQUEUE;
1582#endif
1583#ifdef __APPLE__
1584 /* only select works correctly on that "unix-certified" platform */
1585 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1586 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1587#endif
1588#ifdef __FreeBSD__
1589 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1590#endif
1591
1592 return flags;
1593}
1594
1595unsigned int
1596ev_embeddable_backends (void)
1597{
1598 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1599
1600 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1601 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1602 flags &= ~EVBACKEND_EPOLL;
1603
1604 return flags;
1605}
1606
1607unsigned int
1608ev_backend (EV_P)
1609{
1610 return backend;
1611}
1612
1613#if EV_FEATURE_API
1614unsigned int
1615ev_iteration (EV_P)
1616{
1617 return loop_count;
1618}
1619
1620unsigned int
656ev_method (EV_P) 1621ev_depth (EV_P)
657{ 1622{
658 return method; 1623 return loop_depth;
659} 1624}
660 1625
661static void 1626void
662loop_init (EV_P_ int methods) 1627ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
663{ 1628{
664 if (!method) 1629 io_blocktime = interval;
1630}
1631
1632void
1633ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1634{
1635 timeout_blocktime = interval;
1636}
1637
1638void
1639ev_set_userdata (EV_P_ void *data)
1640{
1641 userdata = data;
1642}
1643
1644void *
1645ev_userdata (EV_P)
1646{
1647 return userdata;
1648}
1649
1650void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1651{
1652 invoke_cb = invoke_pending_cb;
1653}
1654
1655void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1656{
1657 release_cb = release;
1658 acquire_cb = acquire;
1659}
1660#endif
1661
1662/* initialise a loop structure, must be zero-initialised */
1663static void noinline
1664loop_init (EV_P_ unsigned int flags)
1665{
1666 if (!backend)
665 { 1667 {
1668 origflags = flags;
1669
1670#if EV_USE_REALTIME
1671 if (!have_realtime)
1672 {
1673 struct timespec ts;
1674
1675 if (!clock_gettime (CLOCK_REALTIME, &ts))
1676 have_realtime = 1;
1677 }
1678#endif
1679
666#if EV_USE_MONOTONIC 1680#if EV_USE_MONOTONIC
1681 if (!have_monotonic)
1682 {
1683 struct timespec ts;
1684
1685 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1686 have_monotonic = 1;
1687 }
1688#endif
1689
1690 /* pid check not overridable via env */
1691#ifndef _WIN32
1692 if (flags & EVFLAG_FORKCHECK)
1693 curpid = getpid ();
1694#endif
1695
1696 if (!(flags & EVFLAG_NOENV)
1697 && !enable_secure ()
1698 && getenv ("LIBEV_FLAGS"))
1699 flags = atoi (getenv ("LIBEV_FLAGS"));
1700
1701 ev_rt_now = ev_time ();
1702 mn_now = get_clock ();
1703 now_floor = mn_now;
1704 rtmn_diff = ev_rt_now - mn_now;
1705#if EV_FEATURE_API
1706 invoke_cb = ev_invoke_pending;
1707#endif
1708
1709 io_blocktime = 0.;
1710 timeout_blocktime = 0.;
1711 backend = 0;
1712 backend_fd = -1;
1713 sig_pending = 0;
1714#if EV_ASYNC_ENABLE
1715 async_pending = 0;
1716#endif
1717#if EV_USE_INOTIFY
1718 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1719#endif
1720#if EV_USE_SIGNALFD
1721 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1722#endif
1723
1724 if (!(flags & EVBACKEND_MASK))
1725 flags |= ev_recommended_backends ();
1726
1727#if EV_USE_IOCP
1728 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1729#endif
1730#if EV_USE_PORT
1731 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1732#endif
1733#if EV_USE_KQUEUE
1734 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1735#endif
1736#if EV_USE_EPOLL
1737 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1738#endif
1739#if EV_USE_POLL
1740 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1741#endif
1742#if EV_USE_SELECT
1743 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1744#endif
1745
1746 ev_prepare_init (&pending_w, pendingcb);
1747
1748#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1749 ev_init (&pipe_w, pipecb);
1750 ev_set_priority (&pipe_w, EV_MAXPRI);
1751#endif
1752 }
1753}
1754
1755/* free up a loop structure */
1756void
1757ev_loop_destroy (EV_P)
1758{
1759 int i;
1760
1761#if EV_MULTIPLICITY
1762 /* mimic free (0) */
1763 if (!EV_A)
1764 return;
1765#endif
1766
1767#if EV_CLEANUP_ENABLE
1768 /* queue cleanup watchers (and execute them) */
1769 if (expect_false (cleanupcnt))
1770 {
1771 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1772 EV_INVOKE_PENDING;
1773 }
1774#endif
1775
1776#if EV_CHILD_ENABLE
1777 if (ev_is_active (&childev))
1778 {
1779 ev_ref (EV_A); /* child watcher */
1780 ev_signal_stop (EV_A_ &childev);
1781 }
1782#endif
1783
1784 if (ev_is_active (&pipe_w))
1785 {
1786 /*ev_ref (EV_A);*/
1787 /*ev_io_stop (EV_A_ &pipe_w);*/
1788
1789#if EV_USE_EVENTFD
1790 if (evfd >= 0)
1791 close (evfd);
1792#endif
1793
1794 if (evpipe [0] >= 0)
1795 {
1796 EV_WIN32_CLOSE_FD (evpipe [0]);
1797 EV_WIN32_CLOSE_FD (evpipe [1]);
1798 }
1799 }
1800
1801#if EV_USE_SIGNALFD
1802 if (ev_is_active (&sigfd_w))
1803 close (sigfd);
1804#endif
1805
1806#if EV_USE_INOTIFY
1807 if (fs_fd >= 0)
1808 close (fs_fd);
1809#endif
1810
1811 if (backend_fd >= 0)
1812 close (backend_fd);
1813
1814#if EV_USE_IOCP
1815 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1816#endif
1817#if EV_USE_PORT
1818 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1819#endif
1820#if EV_USE_KQUEUE
1821 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1822#endif
1823#if EV_USE_EPOLL
1824 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1825#endif
1826#if EV_USE_POLL
1827 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1828#endif
1829#if EV_USE_SELECT
1830 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1831#endif
1832
1833 for (i = NUMPRI; i--; )
1834 {
1835 array_free (pending, [i]);
1836#if EV_IDLE_ENABLE
1837 array_free (idle, [i]);
1838#endif
1839 }
1840
1841 ev_free (anfds); anfds = 0; anfdmax = 0;
1842
1843 /* have to use the microsoft-never-gets-it-right macro */
1844 array_free (rfeed, EMPTY);
1845 array_free (fdchange, EMPTY);
1846 array_free (timer, EMPTY);
1847#if EV_PERIODIC_ENABLE
1848 array_free (periodic, EMPTY);
1849#endif
1850#if EV_FORK_ENABLE
1851 array_free (fork, EMPTY);
1852#endif
1853#if EV_CLEANUP_ENABLE
1854 array_free (cleanup, EMPTY);
1855#endif
1856 array_free (prepare, EMPTY);
1857 array_free (check, EMPTY);
1858#if EV_ASYNC_ENABLE
1859 array_free (async, EMPTY);
1860#endif
1861
1862 backend = 0;
1863
1864#if EV_MULTIPLICITY
1865 if (ev_is_default_loop (EV_A))
1866#endif
1867 ev_default_loop_ptr = 0;
1868#if EV_MULTIPLICITY
1869 else
1870 ev_free (EV_A);
1871#endif
1872}
1873
1874#if EV_USE_INOTIFY
1875inline_size void infy_fork (EV_P);
1876#endif
1877
1878inline_size void
1879loop_fork (EV_P)
1880{
1881#if EV_USE_PORT
1882 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1883#endif
1884#if EV_USE_KQUEUE
1885 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1886#endif
1887#if EV_USE_EPOLL
1888 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1889#endif
1890#if EV_USE_INOTIFY
1891 infy_fork (EV_A);
1892#endif
1893
1894 if (ev_is_active (&pipe_w))
1895 {
1896 /* this "locks" the handlers against writing to the pipe */
1897 /* while we modify the fd vars */
1898 sig_pending = 1;
1899#if EV_ASYNC_ENABLE
1900 async_pending = 1;
1901#endif
1902
1903 ev_ref (EV_A);
1904 ev_io_stop (EV_A_ &pipe_w);
1905
1906#if EV_USE_EVENTFD
1907 if (evfd >= 0)
1908 close (evfd);
1909#endif
1910
1911 if (evpipe [0] >= 0)
1912 {
1913 EV_WIN32_CLOSE_FD (evpipe [0]);
1914 EV_WIN32_CLOSE_FD (evpipe [1]);
1915 }
1916
1917#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1918 evpipe_init (EV_A);
1919 /* now iterate over everything, in case we missed something */
1920 pipecb (EV_A_ &pipe_w, EV_READ);
1921#endif
1922 }
1923
1924 postfork = 0;
1925}
1926
1927#if EV_MULTIPLICITY
1928
1929struct ev_loop *
1930ev_loop_new (unsigned int flags)
1931{
1932 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1933
1934 memset (EV_A, 0, sizeof (struct ev_loop));
1935 loop_init (EV_A_ flags);
1936
1937 if (ev_backend (EV_A))
1938 return EV_A;
1939
1940 ev_free (EV_A);
1941 return 0;
1942}
1943
1944#endif /* multiplicity */
1945
1946#if EV_VERIFY
1947static void noinline
1948verify_watcher (EV_P_ W w)
1949{
1950 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1951
1952 if (w->pending)
1953 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1954}
1955
1956static void noinline
1957verify_heap (EV_P_ ANHE *heap, int N)
1958{
1959 int i;
1960
1961 for (i = HEAP0; i < N + HEAP0; ++i)
1962 {
1963 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1964 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1965 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1966
1967 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1968 }
1969}
1970
1971static void noinline
1972array_verify (EV_P_ W *ws, int cnt)
1973{
1974 while (cnt--)
1975 {
1976 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1977 verify_watcher (EV_A_ ws [cnt]);
1978 }
1979}
1980#endif
1981
1982#if EV_FEATURE_API
1983void
1984ev_verify (EV_P)
1985{
1986#if EV_VERIFY
1987 int i;
1988 WL w;
1989
1990 assert (activecnt >= -1);
1991
1992 assert (fdchangemax >= fdchangecnt);
1993 for (i = 0; i < fdchangecnt; ++i)
1994 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1995
1996 assert (anfdmax >= 0);
1997 for (i = 0; i < anfdmax; ++i)
1998 for (w = anfds [i].head; w; w = w->next)
667 { 1999 {
668 struct timespec ts; 2000 verify_watcher (EV_A_ (W)w);
669 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2001 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
670 have_monotonic = 1; 2002 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
671 } 2003 }
672#endif
673 2004
674 rt_now = ev_time (); 2005 assert (timermax >= timercnt);
675 mn_now = get_clock (); 2006 verify_heap (EV_A_ timers, timercnt);
676 now_floor = mn_now;
677 rtmn_diff = rt_now - mn_now;
678 2007
679 if (methods == EVMETHOD_AUTO) 2008#if EV_PERIODIC_ENABLE
680 if (!enable_secure () && getenv ("LIBEV_METHODS")) 2009 assert (periodicmax >= periodiccnt);
681 methods = atoi (getenv ("LIBEV_METHODS")); 2010 verify_heap (EV_A_ periodics, periodiccnt);
682 else
683 methods = EVMETHOD_ANY;
684
685 method = 0;
686#if EV_USE_WIN32
687 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
688#endif
689#if EV_USE_KQUEUE
690 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
691#endif
692#if EV_USE_EPOLL
693 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
694#endif
695#if EV_USE_POLL
696 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
697#endif
698#if EV_USE_SELECT
699 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
700#endif
701
702 ev_watcher_init (&sigev, sigcb);
703 ev_set_priority (&sigev, EV_MAXPRI);
704 }
705}
706
707void
708loop_destroy (EV_P)
709{
710 int i;
711
712#if EV_USE_WIN32
713 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
714#endif
715#if EV_USE_KQUEUE
716 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
717#endif
718#if EV_USE_EPOLL
719 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
720#endif
721#if EV_USE_POLL
722 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
723#endif
724#if EV_USE_SELECT
725 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
726#endif 2011#endif
727 2012
728 for (i = NUMPRI; i--; ) 2013 for (i = NUMPRI; i--; )
729 array_free (pending, [i]); 2014 {
2015 assert (pendingmax [i] >= pendingcnt [i]);
2016#if EV_IDLE_ENABLE
2017 assert (idleall >= 0);
2018 assert (idlemax [i] >= idlecnt [i]);
2019 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2020#endif
2021 }
730 2022
731 array_free (fdchange, ); 2023#if EV_FORK_ENABLE
732 array_free (timer, ); 2024 assert (forkmax >= forkcnt);
733 array_free (periodic, ); 2025 array_verify (EV_A_ (W *)forks, forkcnt);
734 array_free (idle, ); 2026#endif
735 array_free (prepare, );
736 array_free (check, );
737 2027
738 method = 0; 2028#if EV_CLEANUP_ENABLE
739} 2029 assert (cleanupmax >= cleanupcnt);
2030 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2031#endif
740 2032
741static void 2033#if EV_ASYNC_ENABLE
742loop_fork (EV_P) 2034 assert (asyncmax >= asynccnt);
743{ 2035 array_verify (EV_A_ (W *)asyncs, asynccnt);
744#if EV_USE_EPOLL 2036#endif
745 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 2037
2038#if EV_PREPARE_ENABLE
2039 assert (preparemax >= preparecnt);
2040 array_verify (EV_A_ (W *)prepares, preparecnt);
2041#endif
2042
2043#if EV_CHECK_ENABLE
2044 assert (checkmax >= checkcnt);
2045 array_verify (EV_A_ (W *)checks, checkcnt);
2046#endif
2047
2048# if 0
2049#if EV_CHILD_ENABLE
2050 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2051 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2052#endif
746#endif 2053# endif
747#if EV_USE_KQUEUE
748 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
749#endif 2054#endif
750
751 if (ev_is_active (&sigev))
752 {
753 /* default loop */
754
755 ev_ref (EV_A);
756 ev_io_stop (EV_A_ &sigev);
757 close (sigpipe [0]);
758 close (sigpipe [1]);
759
760 while (pipe (sigpipe))
761 syserr ("(libev) error creating pipe");
762
763 siginit (EV_A);
764 }
765
766 postfork = 0;
767} 2055}
2056#endif
768 2057
769#if EV_MULTIPLICITY 2058#if EV_MULTIPLICITY
770struct ev_loop * 2059struct ev_loop *
771ev_loop_new (int methods) 2060#else
772{ 2061int
773 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
774
775 memset (loop, 0, sizeof (struct ev_loop));
776
777 loop_init (EV_A_ methods);
778
779 if (ev_method (EV_A))
780 return loop;
781
782 return 0;
783}
784
785void
786ev_loop_destroy (EV_P)
787{
788 loop_destroy (EV_A);
789 ev_free (loop);
790}
791
792void
793ev_loop_fork (EV_P)
794{
795 postfork = 1;
796}
797
798#endif 2062#endif
799 2063ev_default_loop (unsigned int flags)
2064{
2065 if (!ev_default_loop_ptr)
2066 {
800#if EV_MULTIPLICITY 2067#if EV_MULTIPLICITY
801struct ev_loop default_loop_struct; 2068 EV_P = ev_default_loop_ptr = &default_loop_struct;
802static struct ev_loop *default_loop;
803
804struct ev_loop *
805#else 2069#else
806static int default_loop;
807
808int
809#endif
810ev_default_loop (int methods)
811{
812 if (sigpipe [0] == sigpipe [1])
813 if (pipe (sigpipe))
814 return 0;
815
816 if (!default_loop)
817 {
818#if EV_MULTIPLICITY
819 struct ev_loop *loop = default_loop = &default_loop_struct;
820#else
821 default_loop = 1; 2070 ev_default_loop_ptr = 1;
822#endif 2071#endif
823 2072
824 loop_init (EV_A_ methods); 2073 loop_init (EV_A_ flags);
825 2074
826 if (ev_method (EV_A)) 2075 if (ev_backend (EV_A))
827 { 2076 {
828 siginit (EV_A); 2077#if EV_CHILD_ENABLE
829
830#ifndef WIN32
831 ev_signal_init (&childev, childcb, SIGCHLD); 2078 ev_signal_init (&childev, childcb, SIGCHLD);
832 ev_set_priority (&childev, EV_MAXPRI); 2079 ev_set_priority (&childev, EV_MAXPRI);
833 ev_signal_start (EV_A_ &childev); 2080 ev_signal_start (EV_A_ &childev);
834 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2081 ev_unref (EV_A); /* child watcher should not keep loop alive */
835#endif 2082#endif
836 } 2083 }
837 else 2084 else
838 default_loop = 0; 2085 ev_default_loop_ptr = 0;
839 } 2086 }
840 2087
841 return default_loop; 2088 return ev_default_loop_ptr;
842} 2089}
843 2090
844void 2091void
845ev_default_destroy (void) 2092ev_loop_fork (EV_P)
846{ 2093{
847#if EV_MULTIPLICITY 2094 postfork = 1; /* must be in line with ev_default_fork */
848 struct ev_loop *loop = default_loop;
849#endif
850
851 ev_ref (EV_A); /* child watcher */
852 ev_signal_stop (EV_A_ &childev);
853
854 ev_ref (EV_A); /* signal watcher */
855 ev_io_stop (EV_A_ &sigev);
856
857 close (sigpipe [0]); sigpipe [0] = 0;
858 close (sigpipe [1]); sigpipe [1] = 0;
859
860 loop_destroy (EV_A);
861}
862
863void
864ev_default_fork (void)
865{
866#if EV_MULTIPLICITY
867 struct ev_loop *loop = default_loop;
868#endif
869
870 if (method)
871 postfork = 1;
872} 2095}
873 2096
874/*****************************************************************************/ 2097/*****************************************************************************/
875 2098
876static void 2099void
877call_pending (EV_P) 2100ev_invoke (EV_P_ void *w, int revents)
2101{
2102 EV_CB_INVOKE ((W)w, revents);
2103}
2104
2105unsigned int
2106ev_pending_count (EV_P)
2107{
2108 int pri;
2109 unsigned int count = 0;
2110
2111 for (pri = NUMPRI; pri--; )
2112 count += pendingcnt [pri];
2113
2114 return count;
2115}
2116
2117void noinline
2118ev_invoke_pending (EV_P)
878{ 2119{
879 int pri; 2120 int pri;
880 2121
881 for (pri = NUMPRI; pri--; ) 2122 for (pri = NUMPRI; pri--; )
882 while (pendingcnt [pri]) 2123 while (pendingcnt [pri])
883 { 2124 {
884 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2125 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
885 2126
886 if (p->w)
887 {
888 p->w->pending = 0; 2127 p->w->pending = 0;
889 p->w->cb (EV_A_ p->w, p->events); 2128 EV_CB_INVOKE (p->w, p->events);
890 } 2129 EV_FREQUENT_CHECK;
891 } 2130 }
892} 2131}
893 2132
894static void 2133#if EV_IDLE_ENABLE
2134/* make idle watchers pending. this handles the "call-idle */
2135/* only when higher priorities are idle" logic */
2136inline_size void
895timers_reify (EV_P) 2137idle_reify (EV_P)
896{ 2138{
897 while (timercnt && ((WT)timers [0])->at <= mn_now) 2139 if (expect_false (idleall))
898 { 2140 {
899 struct ev_timer *w = timers [0]; 2141 int pri;
900 2142
901 assert (("inactive timer on timer heap detected", ev_is_active (w))); 2143 for (pri = NUMPRI; pri--; )
902
903 /* first reschedule or stop timer */
904 if (w->repeat)
905 { 2144 {
906 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2145 if (pendingcnt [pri])
907 ((WT)w)->at = mn_now + w->repeat; 2146 break;
908 downheap ((WT *)timers, timercnt, 0);
909 }
910 else
911 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
912 2147
913 event (EV_A_ (W)w, EV_TIMEOUT); 2148 if (idlecnt [pri])
914 }
915}
916
917static void
918periodics_reify (EV_P)
919{
920 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
921 {
922 struct ev_periodic *w = periodics [0];
923
924 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
925
926 /* first reschedule or stop timer */
927 if (w->interval)
928 {
929 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
930 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
931 downheap ((WT *)periodics, periodiccnt, 0);
932 }
933 else
934 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
935
936 event (EV_A_ (W)w, EV_PERIODIC);
937 }
938}
939
940static void
941periodics_reschedule (EV_P)
942{
943 int i;
944
945 /* adjust periodics after time jump */
946 for (i = 0; i < periodiccnt; ++i)
947 {
948 struct ev_periodic *w = periodics [i];
949
950 if (w->interval)
951 {
952 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
953
954 if (fabs (diff) >= 1e-4)
955 { 2149 {
956 ev_periodic_stop (EV_A_ w); 2150 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
957 ev_periodic_start (EV_A_ w); 2151 break;
958
959 i = 0; /* restart loop, inefficient, but time jumps should be rare */
960 } 2152 }
961 } 2153 }
962 } 2154 }
963} 2155}
2156#endif
964 2157
965inline int 2158/* make timers pending */
966time_update_monotonic (EV_P) 2159inline_size void
2160timers_reify (EV_P)
967{ 2161{
968 mn_now = get_clock (); 2162 EV_FREQUENT_CHECK;
969 2163
970 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2164 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
971 {
972 rt_now = rtmn_diff + mn_now;
973 return 0;
974 } 2165 {
975 else 2166 do
2167 {
2168 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2169
2170 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2171
2172 /* first reschedule or stop timer */
2173 if (w->repeat)
2174 {
2175 ev_at (w) += w->repeat;
2176 if (ev_at (w) < mn_now)
2177 ev_at (w) = mn_now;
2178
2179 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2180
2181 ANHE_at_cache (timers [HEAP0]);
2182 downheap (timers, timercnt, HEAP0);
2183 }
2184 else
2185 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2186
2187 EV_FREQUENT_CHECK;
2188 feed_reverse (EV_A_ (W)w);
2189 }
2190 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2191
2192 feed_reverse_done (EV_A_ EV_TIMER);
976 { 2193 }
977 now_floor = mn_now; 2194}
978 rt_now = ev_time (); 2195
979 return 1; 2196#if EV_PERIODIC_ENABLE
2197
2198inline_speed
2199periodic_recalc (EV_P_ ev_periodic *w)
2200{
2201 /* TODO: use slow but potentially more correct incremental algo, */
2202 /* also do not rely on ceil */
2203 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2204}
2205
2206/* make periodics pending */
2207inline_size void
2208periodics_reify (EV_P)
2209{
2210 EV_FREQUENT_CHECK;
2211
2212 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
980 } 2213 {
981} 2214 int feed_count = 0;
982 2215
983static void 2216 do
984time_update (EV_P) 2217 {
2218 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2219
2220 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2221
2222 /* first reschedule or stop timer */
2223 if (w->reschedule_cb)
2224 {
2225 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2226
2227 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2228
2229 ANHE_at_cache (periodics [HEAP0]);
2230 downheap (periodics, periodiccnt, HEAP0);
2231 }
2232 else if (w->interval)
2233 {
2234 periodic_recalc (EV_A_ w);
2235
2236 /* if next trigger time is not sufficiently in the future, put it there */
2237 /* this might happen because of floating point inexactness */
2238 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2239 {
2240 ev_at (w) += w->interval;
2241
2242 /* if interval is unreasonably low we might still have a time in the past */
2243 /* so correct this. this will make the periodic very inexact, but the user */
2244 /* has effectively asked to get triggered more often than possible */
2245 if (ev_at (w) < ev_rt_now)
2246 ev_at (w) = ev_rt_now;
2247 }
2248
2249 ANHE_at_cache (periodics [HEAP0]);
2250 downheap (periodics, periodiccnt, HEAP0);
2251 }
2252 else
2253 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2254
2255 EV_FREQUENT_CHECK;
2256 feed_reverse (EV_A_ (W)w);
2257 }
2258 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2259
2260 feed_reverse_done (EV_A_ EV_PERIODIC);
2261 }
2262}
2263
2264/* simply recalculate all periodics */
2265/* TODO: maybe ensure that at least one event happens when jumping forward? */
2266static void noinline
2267periodics_reschedule (EV_P)
985{ 2268{
986 int i; 2269 int i;
987 2270
2271 /* adjust periodics after time jump */
2272 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2273 {
2274 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2275
2276 if (w->reschedule_cb)
2277 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2278 else if (w->interval)
2279 periodic_recalc (EV_A_ w);
2280
2281 ANHE_at_cache (periodics [i]);
2282 }
2283
2284 reheap (periodics, periodiccnt);
2285}
2286#endif
2287
2288/* adjust all timers by a given offset */
2289static void noinline
2290timers_reschedule (EV_P_ ev_tstamp adjust)
2291{
2292 int i;
2293
2294 for (i = 0; i < timercnt; ++i)
2295 {
2296 ANHE *he = timers + i + HEAP0;
2297 ANHE_w (*he)->at += adjust;
2298 ANHE_at_cache (*he);
2299 }
2300}
2301
2302/* fetch new monotonic and realtime times from the kernel */
2303/* also detect if there was a timejump, and act accordingly */
2304inline_speed void
2305time_update (EV_P_ ev_tstamp max_block)
2306{
988#if EV_USE_MONOTONIC 2307#if EV_USE_MONOTONIC
989 if (expect_true (have_monotonic)) 2308 if (expect_true (have_monotonic))
990 { 2309 {
991 if (time_update_monotonic (EV_A)) 2310 int i;
2311 ev_tstamp odiff = rtmn_diff;
2312
2313 mn_now = get_clock ();
2314
2315 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2316 /* interpolate in the meantime */
2317 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
992 { 2318 {
993 ev_tstamp odiff = rtmn_diff; 2319 ev_rt_now = rtmn_diff + mn_now;
2320 return;
2321 }
994 2322
2323 now_floor = mn_now;
2324 ev_rt_now = ev_time ();
2325
995 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2326 /* loop a few times, before making important decisions.
2327 * on the choice of "4": one iteration isn't enough,
2328 * in case we get preempted during the calls to
2329 * ev_time and get_clock. a second call is almost guaranteed
2330 * to succeed in that case, though. and looping a few more times
2331 * doesn't hurt either as we only do this on time-jumps or
2332 * in the unlikely event of having been preempted here.
2333 */
2334 for (i = 4; --i; )
996 { 2335 {
997 rtmn_diff = rt_now - mn_now; 2336 rtmn_diff = ev_rt_now - mn_now;
998 2337
999 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2338 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1000 return; /* all is well */ 2339 return; /* all is well */
1001 2340
1002 rt_now = ev_time (); 2341 ev_rt_now = ev_time ();
1003 mn_now = get_clock (); 2342 mn_now = get_clock ();
1004 now_floor = mn_now; 2343 now_floor = mn_now;
1005 } 2344 }
1006 2345
2346 /* no timer adjustment, as the monotonic clock doesn't jump */
2347 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2348# if EV_PERIODIC_ENABLE
2349 periodics_reschedule (EV_A);
2350# endif
2351 }
2352 else
2353#endif
2354 {
2355 ev_rt_now = ev_time ();
2356
2357 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2358 {
2359 /* adjust timers. this is easy, as the offset is the same for all of them */
2360 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2361#if EV_PERIODIC_ENABLE
1007 periodics_reschedule (EV_A); 2362 periodics_reschedule (EV_A);
1008 /* no timer adjustment, as the monotonic clock doesn't jump */ 2363#endif
1009 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1010 } 2364 }
1011 }
1012 else
1013#endif
1014 {
1015 rt_now = ev_time ();
1016 2365
1017 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1018 {
1019 periodics_reschedule (EV_A);
1020
1021 /* adjust timers. this is easy, as the offset is the same for all */
1022 for (i = 0; i < timercnt; ++i)
1023 ((WT)timers [i])->at += rt_now - mn_now;
1024 }
1025
1026 mn_now = rt_now; 2366 mn_now = ev_rt_now;
1027 } 2367 }
1028} 2368}
1029 2369
1030void 2370void
1031ev_ref (EV_P)
1032{
1033 ++activecnt;
1034}
1035
1036void
1037ev_unref (EV_P)
1038{
1039 --activecnt;
1040}
1041
1042static int loop_done;
1043
1044void
1045ev_loop (EV_P_ int flags) 2371ev_run (EV_P_ int flags)
1046{ 2372{
1047 double block; 2373#if EV_FEATURE_API
1048 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2374 ++loop_depth;
2375#endif
2376
2377 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2378
2379 loop_done = EVBREAK_CANCEL;
2380
2381 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1049 2382
1050 do 2383 do
1051 { 2384 {
2385#if EV_VERIFY >= 2
2386 ev_verify (EV_A);
2387#endif
2388
2389#ifndef _WIN32
2390 if (expect_false (curpid)) /* penalise the forking check even more */
2391 if (expect_false (getpid () != curpid))
2392 {
2393 curpid = getpid ();
2394 postfork = 1;
2395 }
2396#endif
2397
2398#if EV_FORK_ENABLE
2399 /* we might have forked, so queue fork handlers */
2400 if (expect_false (postfork))
2401 if (forkcnt)
2402 {
2403 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2404 EV_INVOKE_PENDING;
2405 }
2406#endif
2407
2408#if EV_PREPARE_ENABLE
1052 /* queue check watchers (and execute them) */ 2409 /* queue prepare watchers (and execute them) */
1053 if (expect_false (preparecnt)) 2410 if (expect_false (preparecnt))
1054 { 2411 {
1055 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2412 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1056 call_pending (EV_A); 2413 EV_INVOKE_PENDING;
1057 } 2414 }
2415#endif
2416
2417 if (expect_false (loop_done))
2418 break;
1058 2419
1059 /* we might have forked, so reify kernel state if necessary */ 2420 /* we might have forked, so reify kernel state if necessary */
1060 if (expect_false (postfork)) 2421 if (expect_false (postfork))
1061 loop_fork (EV_A); 2422 loop_fork (EV_A);
1062 2423
1063 /* update fd-related kernel structures */ 2424 /* update fd-related kernel structures */
1064 fd_reify (EV_A); 2425 fd_reify (EV_A);
1065 2426
1066 /* calculate blocking time */ 2427 /* calculate blocking time */
2428 {
2429 ev_tstamp waittime = 0.;
2430 ev_tstamp sleeptime = 0.;
1067 2431
1068 /* we only need this for !monotonic clockor timers, but as we basically 2432 /* remember old timestamp for io_blocktime calculation */
1069 always have timers, we just calculate it always */ 2433 ev_tstamp prev_mn_now = mn_now;
1070#if EV_USE_MONOTONIC 2434
1071 if (expect_true (have_monotonic)) 2435 /* update time to cancel out callback processing overhead */
1072 time_update_monotonic (EV_A); 2436 time_update (EV_A_ 1e100);
1073 else 2437
1074#endif 2438 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1075 { 2439 {
1076 rt_now = ev_time ();
1077 mn_now = rt_now;
1078 }
1079
1080 if (flags & EVLOOP_NONBLOCK || idlecnt)
1081 block = 0.;
1082 else
1083 {
1084 block = MAX_BLOCKTIME; 2440 waittime = MAX_BLOCKTIME;
1085 2441
1086 if (timercnt) 2442 if (timercnt)
1087 { 2443 {
1088 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2444 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1089 if (block > to) block = to; 2445 if (waittime > to) waittime = to;
1090 } 2446 }
1091 2447
2448#if EV_PERIODIC_ENABLE
1092 if (periodiccnt) 2449 if (periodiccnt)
1093 { 2450 {
1094 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2451 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1095 if (block > to) block = to; 2452 if (waittime > to) waittime = to;
1096 } 2453 }
2454#endif
1097 2455
1098 if (block < 0.) block = 0.; 2456 /* don't let timeouts decrease the waittime below timeout_blocktime */
2457 if (expect_false (waittime < timeout_blocktime))
2458 waittime = timeout_blocktime;
2459
2460 /* extra check because io_blocktime is commonly 0 */
2461 if (expect_false (io_blocktime))
2462 {
2463 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2464
2465 if (sleeptime > waittime - backend_fudge)
2466 sleeptime = waittime - backend_fudge;
2467
2468 if (expect_true (sleeptime > 0.))
2469 {
2470 ev_sleep (sleeptime);
2471 waittime -= sleeptime;
2472 }
2473 }
1099 } 2474 }
1100 2475
1101 method_poll (EV_A_ block); 2476#if EV_FEATURE_API
2477 ++loop_count;
2478#endif
2479 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2480 backend_poll (EV_A_ waittime);
2481 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1102 2482
1103 /* update rt_now, do magic */ 2483 /* update ev_rt_now, do magic */
1104 time_update (EV_A); 2484 time_update (EV_A_ waittime + sleeptime);
2485 }
1105 2486
1106 /* queue pending timers and reschedule them */ 2487 /* queue pending timers and reschedule them */
1107 timers_reify (EV_A); /* relative timers called last */ 2488 timers_reify (EV_A); /* relative timers called last */
2489#if EV_PERIODIC_ENABLE
1108 periodics_reify (EV_A); /* absolute timers called first */ 2490 periodics_reify (EV_A); /* absolute timers called first */
2491#endif
1109 2492
2493#if EV_IDLE_ENABLE
1110 /* queue idle watchers unless io or timers are pending */ 2494 /* queue idle watchers unless other events are pending */
1111 if (!pendingcnt) 2495 idle_reify (EV_A);
1112 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2496#endif
1113 2497
2498#if EV_CHECK_ENABLE
1114 /* queue check watchers, to be executed first */ 2499 /* queue check watchers, to be executed first */
1115 if (checkcnt) 2500 if (expect_false (checkcnt))
1116 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2501 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2502#endif
1117 2503
1118 call_pending (EV_A); 2504 EV_INVOKE_PENDING;
1119 } 2505 }
1120 while (activecnt && !loop_done); 2506 while (expect_true (
2507 activecnt
2508 && !loop_done
2509 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2510 ));
1121 2511
1122 if (loop_done != 2) 2512 if (loop_done == EVBREAK_ONE)
1123 loop_done = 0; 2513 loop_done = EVBREAK_CANCEL;
1124}
1125 2514
2515#if EV_FEATURE_API
2516 --loop_depth;
2517#endif
2518}
2519
1126void 2520void
1127ev_unloop (EV_P_ int how) 2521ev_break (EV_P_ int how)
1128{ 2522{
1129 loop_done = how; 2523 loop_done = how;
1130} 2524}
1131 2525
2526void
2527ev_ref (EV_P)
2528{
2529 ++activecnt;
2530}
2531
2532void
2533ev_unref (EV_P)
2534{
2535 --activecnt;
2536}
2537
2538void
2539ev_now_update (EV_P)
2540{
2541 time_update (EV_A_ 1e100);
2542}
2543
2544void
2545ev_suspend (EV_P)
2546{
2547 ev_now_update (EV_A);
2548}
2549
2550void
2551ev_resume (EV_P)
2552{
2553 ev_tstamp mn_prev = mn_now;
2554
2555 ev_now_update (EV_A);
2556 timers_reschedule (EV_A_ mn_now - mn_prev);
2557#if EV_PERIODIC_ENABLE
2558 /* TODO: really do this? */
2559 periodics_reschedule (EV_A);
2560#endif
2561}
2562
1132/*****************************************************************************/ 2563/*****************************************************************************/
2564/* singly-linked list management, used when the expected list length is short */
1133 2565
1134inline void 2566inline_size void
1135wlist_add (WL *head, WL elem) 2567wlist_add (WL *head, WL elem)
1136{ 2568{
1137 elem->next = *head; 2569 elem->next = *head;
1138 *head = elem; 2570 *head = elem;
1139} 2571}
1140 2572
1141inline void 2573inline_size void
1142wlist_del (WL *head, WL elem) 2574wlist_del (WL *head, WL elem)
1143{ 2575{
1144 while (*head) 2576 while (*head)
1145 { 2577 {
1146 if (*head == elem) 2578 if (expect_true (*head == elem))
1147 { 2579 {
1148 *head = elem->next; 2580 *head = elem->next;
1149 return; 2581 break;
1150 } 2582 }
1151 2583
1152 head = &(*head)->next; 2584 head = &(*head)->next;
1153 } 2585 }
1154} 2586}
1155 2587
2588/* internal, faster, version of ev_clear_pending */
1156inline void 2589inline_speed void
1157ev_clear_pending (EV_P_ W w) 2590clear_pending (EV_P_ W w)
1158{ 2591{
1159 if (w->pending) 2592 if (w->pending)
1160 { 2593 {
1161 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2594 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1162 w->pending = 0; 2595 w->pending = 0;
1163 } 2596 }
1164} 2597}
1165 2598
2599int
2600ev_clear_pending (EV_P_ void *w)
2601{
2602 W w_ = (W)w;
2603 int pending = w_->pending;
2604
2605 if (expect_true (pending))
2606 {
2607 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2608 p->w = (W)&pending_w;
2609 w_->pending = 0;
2610 return p->events;
2611 }
2612 else
2613 return 0;
2614}
2615
1166inline void 2616inline_size void
2617pri_adjust (EV_P_ W w)
2618{
2619 int pri = ev_priority (w);
2620 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2621 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2622 ev_set_priority (w, pri);
2623}
2624
2625inline_speed void
1167ev_start (EV_P_ W w, int active) 2626ev_start (EV_P_ W w, int active)
1168{ 2627{
1169 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2628 pri_adjust (EV_A_ w);
1170 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1171
1172 w->active = active; 2629 w->active = active;
1173 ev_ref (EV_A); 2630 ev_ref (EV_A);
1174} 2631}
1175 2632
1176inline void 2633inline_size void
1177ev_stop (EV_P_ W w) 2634ev_stop (EV_P_ W w)
1178{ 2635{
1179 ev_unref (EV_A); 2636 ev_unref (EV_A);
1180 w->active = 0; 2637 w->active = 0;
1181} 2638}
1182 2639
1183/*****************************************************************************/ 2640/*****************************************************************************/
1184 2641
1185void 2642void noinline
1186ev_io_start (EV_P_ struct ev_io *w) 2643ev_io_start (EV_P_ ev_io *w)
1187{ 2644{
1188 int fd = w->fd; 2645 int fd = w->fd;
1189 2646
1190 if (ev_is_active (w)) 2647 if (expect_false (ev_is_active (w)))
1191 return; 2648 return;
1192 2649
1193 assert (("ev_io_start called with negative fd", fd >= 0)); 2650 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2651 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2652
2653 EV_FREQUENT_CHECK;
1194 2654
1195 ev_start (EV_A_ (W)w, 1); 2655 ev_start (EV_A_ (W)w, 1);
1196 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2656 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1197 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2657 wlist_add (&anfds[fd].head, (WL)w);
1198 2658
1199 fd_change (EV_A_ fd); 2659 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1200} 2660 w->events &= ~EV__IOFDSET;
1201 2661
1202void 2662 EV_FREQUENT_CHECK;
2663}
2664
2665void noinline
1203ev_io_stop (EV_P_ struct ev_io *w) 2666ev_io_stop (EV_P_ ev_io *w)
1204{ 2667{
1205 ev_clear_pending (EV_A_ (W)w); 2668 clear_pending (EV_A_ (W)w);
1206 if (!ev_is_active (w)) 2669 if (expect_false (!ev_is_active (w)))
1207 return; 2670 return;
1208 2671
2672 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2673
2674 EV_FREQUENT_CHECK;
2675
1209 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2676 wlist_del (&anfds[w->fd].head, (WL)w);
1210 ev_stop (EV_A_ (W)w); 2677 ev_stop (EV_A_ (W)w);
1211 2678
1212 fd_change (EV_A_ w->fd); 2679 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1213}
1214 2680
1215void 2681 EV_FREQUENT_CHECK;
2682}
2683
2684void noinline
1216ev_timer_start (EV_P_ struct ev_timer *w) 2685ev_timer_start (EV_P_ ev_timer *w)
1217{ 2686{
1218 if (ev_is_active (w)) 2687 if (expect_false (ev_is_active (w)))
1219 return; 2688 return;
1220 2689
1221 ((WT)w)->at += mn_now; 2690 ev_at (w) += mn_now;
1222 2691
1223 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2692 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1224 2693
2694 EV_FREQUENT_CHECK;
2695
2696 ++timercnt;
1225 ev_start (EV_A_ (W)w, ++timercnt); 2697 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1226 array_needsize (timers, timermax, timercnt, ); 2698 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1227 timers [timercnt - 1] = w; 2699 ANHE_w (timers [ev_active (w)]) = (WT)w;
1228 upheap ((WT *)timers, timercnt - 1); 2700 ANHE_at_cache (timers [ev_active (w)]);
2701 upheap (timers, ev_active (w));
1229 2702
2703 EV_FREQUENT_CHECK;
2704
1230 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2705 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1231} 2706}
1232 2707
1233void 2708void noinline
1234ev_timer_stop (EV_P_ struct ev_timer *w) 2709ev_timer_stop (EV_P_ ev_timer *w)
1235{ 2710{
1236 ev_clear_pending (EV_A_ (W)w); 2711 clear_pending (EV_A_ (W)w);
1237 if (!ev_is_active (w)) 2712 if (expect_false (!ev_is_active (w)))
1238 return; 2713 return;
1239 2714
2715 EV_FREQUENT_CHECK;
2716
2717 {
2718 int active = ev_active (w);
2719
1240 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2720 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1241 2721
1242 if (((W)w)->active < timercnt--) 2722 --timercnt;
2723
2724 if (expect_true (active < timercnt + HEAP0))
1243 { 2725 {
1244 timers [((W)w)->active - 1] = timers [timercnt]; 2726 timers [active] = timers [timercnt + HEAP0];
1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2727 adjustheap (timers, timercnt, active);
1246 } 2728 }
2729 }
1247 2730
1248 ((WT)w)->at = w->repeat; 2731 ev_at (w) -= mn_now;
1249 2732
1250 ev_stop (EV_A_ (W)w); 2733 ev_stop (EV_A_ (W)w);
1251}
1252 2734
1253void 2735 EV_FREQUENT_CHECK;
2736}
2737
2738void noinline
1254ev_timer_again (EV_P_ struct ev_timer *w) 2739ev_timer_again (EV_P_ ev_timer *w)
1255{ 2740{
2741 EV_FREQUENT_CHECK;
2742
1256 if (ev_is_active (w)) 2743 if (ev_is_active (w))
1257 { 2744 {
1258 if (w->repeat) 2745 if (w->repeat)
1259 { 2746 {
1260 ((WT)w)->at = mn_now + w->repeat; 2747 ev_at (w) = mn_now + w->repeat;
1261 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2748 ANHE_at_cache (timers [ev_active (w)]);
2749 adjustheap (timers, timercnt, ev_active (w));
1262 } 2750 }
1263 else 2751 else
1264 ev_timer_stop (EV_A_ w); 2752 ev_timer_stop (EV_A_ w);
1265 } 2753 }
1266 else if (w->repeat) 2754 else if (w->repeat)
2755 {
2756 ev_at (w) = w->repeat;
1267 ev_timer_start (EV_A_ w); 2757 ev_timer_start (EV_A_ w);
1268} 2758 }
1269 2759
1270void 2760 EV_FREQUENT_CHECK;
2761}
2762
2763ev_tstamp
2764ev_timer_remaining (EV_P_ ev_timer *w)
2765{
2766 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2767}
2768
2769#if EV_PERIODIC_ENABLE
2770void noinline
1271ev_periodic_start (EV_P_ struct ev_periodic *w) 2771ev_periodic_start (EV_P_ ev_periodic *w)
1272{ 2772{
1273 if (ev_is_active (w)) 2773 if (expect_false (ev_is_active (w)))
1274 return; 2774 return;
1275 2775
2776 if (w->reschedule_cb)
2777 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2778 else if (w->interval)
2779 {
1276 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2780 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2781 periodic_recalc (EV_A_ w);
2782 }
2783 else
2784 ev_at (w) = w->offset;
1277 2785
1278 /* this formula differs from the one in periodic_reify because we do not always round up */ 2786 EV_FREQUENT_CHECK;
1279 if (w->interval)
1280 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1281 2787
2788 ++periodiccnt;
1282 ev_start (EV_A_ (W)w, ++periodiccnt); 2789 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1283 array_needsize (periodics, periodicmax, periodiccnt, ); 2790 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1284 periodics [periodiccnt - 1] = w; 2791 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1285 upheap ((WT *)periodics, periodiccnt - 1); 2792 ANHE_at_cache (periodics [ev_active (w)]);
2793 upheap (periodics, ev_active (w));
1286 2794
2795 EV_FREQUENT_CHECK;
2796
1287 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2797 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1288} 2798}
1289 2799
1290void 2800void noinline
1291ev_periodic_stop (EV_P_ struct ev_periodic *w) 2801ev_periodic_stop (EV_P_ ev_periodic *w)
1292{ 2802{
1293 ev_clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
1294 if (!ev_is_active (w)) 2804 if (expect_false (!ev_is_active (w)))
1295 return; 2805 return;
1296 2806
2807 EV_FREQUENT_CHECK;
2808
2809 {
2810 int active = ev_active (w);
2811
1297 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2812 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1298 2813
1299 if (((W)w)->active < periodiccnt--) 2814 --periodiccnt;
2815
2816 if (expect_true (active < periodiccnt + HEAP0))
1300 { 2817 {
1301 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2818 periodics [active] = periodics [periodiccnt + HEAP0];
1302 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2819 adjustheap (periodics, periodiccnt, active);
1303 } 2820 }
2821 }
1304 2822
1305 ev_stop (EV_A_ (W)w); 2823 ev_stop (EV_A_ (W)w);
1306}
1307 2824
1308void 2825 EV_FREQUENT_CHECK;
1309ev_idle_start (EV_P_ struct ev_idle *w)
1310{
1311 if (ev_is_active (w))
1312 return;
1313
1314 ev_start (EV_A_ (W)w, ++idlecnt);
1315 array_needsize (idles, idlemax, idlecnt, );
1316 idles [idlecnt - 1] = w;
1317} 2826}
1318 2827
1319void 2828void noinline
1320ev_idle_stop (EV_P_ struct ev_idle *w) 2829ev_periodic_again (EV_P_ ev_periodic *w)
1321{ 2830{
1322 ev_clear_pending (EV_A_ (W)w); 2831 /* TODO: use adjustheap and recalculation */
1323 if (ev_is_active (w))
1324 return;
1325
1326 idles [((W)w)->active - 1] = idles [--idlecnt];
1327 ev_stop (EV_A_ (W)w); 2832 ev_periodic_stop (EV_A_ w);
2833 ev_periodic_start (EV_A_ w);
1328} 2834}
1329 2835#endif
1330void
1331ev_prepare_start (EV_P_ struct ev_prepare *w)
1332{
1333 if (ev_is_active (w))
1334 return;
1335
1336 ev_start (EV_A_ (W)w, ++preparecnt);
1337 array_needsize (prepares, preparemax, preparecnt, );
1338 prepares [preparecnt - 1] = w;
1339}
1340
1341void
1342ev_prepare_stop (EV_P_ struct ev_prepare *w)
1343{
1344 ev_clear_pending (EV_A_ (W)w);
1345 if (ev_is_active (w))
1346 return;
1347
1348 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1349 ev_stop (EV_A_ (W)w);
1350}
1351
1352void
1353ev_check_start (EV_P_ struct ev_check *w)
1354{
1355 if (ev_is_active (w))
1356 return;
1357
1358 ev_start (EV_A_ (W)w, ++checkcnt);
1359 array_needsize (checks, checkmax, checkcnt, );
1360 checks [checkcnt - 1] = w;
1361}
1362
1363void
1364ev_check_stop (EV_P_ struct ev_check *w)
1365{
1366 ev_clear_pending (EV_A_ (W)w);
1367 if (ev_is_active (w))
1368 return;
1369
1370 checks [((W)w)->active - 1] = checks [--checkcnt];
1371 ev_stop (EV_A_ (W)w);
1372}
1373 2836
1374#ifndef SA_RESTART 2837#ifndef SA_RESTART
1375# define SA_RESTART 0 2838# define SA_RESTART 0
1376#endif 2839#endif
1377 2840
1378void 2841#if EV_SIGNAL_ENABLE
2842
2843void noinline
1379ev_signal_start (EV_P_ struct ev_signal *w) 2844ev_signal_start (EV_P_ ev_signal *w)
1380{ 2845{
2846 if (expect_false (ev_is_active (w)))
2847 return;
2848
2849 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2850
1381#if EV_MULTIPLICITY 2851#if EV_MULTIPLICITY
1382 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2852 assert (("libev: a signal must not be attached to two different loops",
2853 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2854
2855 signals [w->signum - 1].loop = EV_A;
2856#endif
2857
2858 EV_FREQUENT_CHECK;
2859
2860#if EV_USE_SIGNALFD
2861 if (sigfd == -2)
2862 {
2863 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2864 if (sigfd < 0 && errno == EINVAL)
2865 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2866
2867 if (sigfd >= 0)
2868 {
2869 fd_intern (sigfd); /* doing it twice will not hurt */
2870
2871 sigemptyset (&sigfd_set);
2872
2873 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2874 ev_set_priority (&sigfd_w, EV_MAXPRI);
2875 ev_io_start (EV_A_ &sigfd_w);
2876 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2877 }
2878 }
2879
2880 if (sigfd >= 0)
2881 {
2882 /* TODO: check .head */
2883 sigaddset (&sigfd_set, w->signum);
2884 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2885
2886 signalfd (sigfd, &sigfd_set, 0);
2887 }
2888#endif
2889
2890 ev_start (EV_A_ (W)w, 1);
2891 wlist_add (&signals [w->signum - 1].head, (WL)w);
2892
2893 if (!((WL)w)->next)
2894# if EV_USE_SIGNALFD
2895 if (sigfd < 0) /*TODO*/
1383#endif 2896# endif
1384 if (ev_is_active (w)) 2897 {
2898# ifdef _WIN32
2899 evpipe_init (EV_A);
2900
2901 signal (w->signum, ev_sighandler);
2902# else
2903 struct sigaction sa;
2904
2905 evpipe_init (EV_A);
2906
2907 sa.sa_handler = ev_sighandler;
2908 sigfillset (&sa.sa_mask);
2909 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2910 sigaction (w->signum, &sa, 0);
2911
2912 if (origflags & EVFLAG_NOSIGMASK)
2913 {
2914 sigemptyset (&sa.sa_mask);
2915 sigaddset (&sa.sa_mask, w->signum);
2916 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2917 }
2918#endif
2919 }
2920
2921 EV_FREQUENT_CHECK;
2922}
2923
2924void noinline
2925ev_signal_stop (EV_P_ ev_signal *w)
2926{
2927 clear_pending (EV_A_ (W)w);
2928 if (expect_false (!ev_is_active (w)))
1385 return; 2929 return;
1386 2930
1387 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2931 EV_FREQUENT_CHECK;
2932
2933 wlist_del (&signals [w->signum - 1].head, (WL)w);
2934 ev_stop (EV_A_ (W)w);
2935
2936 if (!signals [w->signum - 1].head)
2937 {
2938#if EV_MULTIPLICITY
2939 signals [w->signum - 1].loop = 0; /* unattach from signal */
2940#endif
2941#if EV_USE_SIGNALFD
2942 if (sigfd >= 0)
2943 {
2944 sigset_t ss;
2945
2946 sigemptyset (&ss);
2947 sigaddset (&ss, w->signum);
2948 sigdelset (&sigfd_set, w->signum);
2949
2950 signalfd (sigfd, &sigfd_set, 0);
2951 sigprocmask (SIG_UNBLOCK, &ss, 0);
2952 }
2953 else
2954#endif
2955 signal (w->signum, SIG_DFL);
2956 }
2957
2958 EV_FREQUENT_CHECK;
2959}
2960
2961#endif
2962
2963#if EV_CHILD_ENABLE
2964
2965void
2966ev_child_start (EV_P_ ev_child *w)
2967{
2968#if EV_MULTIPLICITY
2969 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2970#endif
2971 if (expect_false (ev_is_active (w)))
2972 return;
2973
2974 EV_FREQUENT_CHECK;
1388 2975
1389 ev_start (EV_A_ (W)w, 1); 2976 ev_start (EV_A_ (W)w, 1);
1390 array_needsize (signals, signalmax, w->signum, signals_init); 2977 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1391 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1392 2978
1393 if (!((WL)w)->next) 2979 EV_FREQUENT_CHECK;
2980}
2981
2982void
2983ev_child_stop (EV_P_ ev_child *w)
2984{
2985 clear_pending (EV_A_ (W)w);
2986 if (expect_false (!ev_is_active (w)))
2987 return;
2988
2989 EV_FREQUENT_CHECK;
2990
2991 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2992 ev_stop (EV_A_ (W)w);
2993
2994 EV_FREQUENT_CHECK;
2995}
2996
2997#endif
2998
2999#if EV_STAT_ENABLE
3000
3001# ifdef _WIN32
3002# undef lstat
3003# define lstat(a,b) _stati64 (a,b)
3004# endif
3005
3006#define DEF_STAT_INTERVAL 5.0074891
3007#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3008#define MIN_STAT_INTERVAL 0.1074891
3009
3010static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3011
3012#if EV_USE_INOTIFY
3013
3014/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3015# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3016
3017static void noinline
3018infy_add (EV_P_ ev_stat *w)
3019{
3020 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3021
3022 if (w->wd >= 0)
3023 {
3024 struct statfs sfs;
3025
3026 /* now local changes will be tracked by inotify, but remote changes won't */
3027 /* unless the filesystem is known to be local, we therefore still poll */
3028 /* also do poll on <2.6.25, but with normal frequency */
3029
3030 if (!fs_2625)
3031 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3032 else if (!statfs (w->path, &sfs)
3033 && (sfs.f_type == 0x1373 /* devfs */
3034 || sfs.f_type == 0xEF53 /* ext2/3 */
3035 || sfs.f_type == 0x3153464a /* jfs */
3036 || sfs.f_type == 0x52654973 /* reiser3 */
3037 || sfs.f_type == 0x01021994 /* tempfs */
3038 || sfs.f_type == 0x58465342 /* xfs */))
3039 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3040 else
3041 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1394 { 3042 }
1395#if WIN32 3043 else
1396 signal (w->signum, sighandler); 3044 {
3045 /* can't use inotify, continue to stat */
3046 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3047
3048 /* if path is not there, monitor some parent directory for speedup hints */
3049 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3050 /* but an efficiency issue only */
3051 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3052 {
3053 char path [4096];
3054 strcpy (path, w->path);
3055
3056 do
3057 {
3058 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3059 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3060
3061 char *pend = strrchr (path, '/');
3062
3063 if (!pend || pend == path)
3064 break;
3065
3066 *pend = 0;
3067 w->wd = inotify_add_watch (fs_fd, path, mask);
3068 }
3069 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3070 }
3071 }
3072
3073 if (w->wd >= 0)
3074 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3075
3076 /* now re-arm timer, if required */
3077 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3078 ev_timer_again (EV_A_ &w->timer);
3079 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3080}
3081
3082static void noinline
3083infy_del (EV_P_ ev_stat *w)
3084{
3085 int slot;
3086 int wd = w->wd;
3087
3088 if (wd < 0)
3089 return;
3090
3091 w->wd = -2;
3092 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3093 wlist_del (&fs_hash [slot].head, (WL)w);
3094
3095 /* remove this watcher, if others are watching it, they will rearm */
3096 inotify_rm_watch (fs_fd, wd);
3097}
3098
3099static void noinline
3100infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3101{
3102 if (slot < 0)
3103 /* overflow, need to check for all hash slots */
3104 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3105 infy_wd (EV_A_ slot, wd, ev);
3106 else
3107 {
3108 WL w_;
3109
3110 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3111 {
3112 ev_stat *w = (ev_stat *)w_;
3113 w_ = w_->next; /* lets us remove this watcher and all before it */
3114
3115 if (w->wd == wd || wd == -1)
3116 {
3117 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3118 {
3119 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3120 w->wd = -1;
3121 infy_add (EV_A_ w); /* re-add, no matter what */
3122 }
3123
3124 stat_timer_cb (EV_A_ &w->timer, 0);
3125 }
3126 }
3127 }
3128}
3129
3130static void
3131infy_cb (EV_P_ ev_io *w, int revents)
3132{
3133 char buf [EV_INOTIFY_BUFSIZE];
3134 int ofs;
3135 int len = read (fs_fd, buf, sizeof (buf));
3136
3137 for (ofs = 0; ofs < len; )
3138 {
3139 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3140 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3141 ofs += sizeof (struct inotify_event) + ev->len;
3142 }
3143}
3144
3145inline_size void
3146ev_check_2625 (EV_P)
3147{
3148 /* kernels < 2.6.25 are borked
3149 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3150 */
3151 if (ev_linux_version () < 0x020619)
3152 return;
3153
3154 fs_2625 = 1;
3155}
3156
3157inline_size int
3158infy_newfd (void)
3159{
3160#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3161 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3162 if (fd >= 0)
3163 return fd;
3164#endif
3165 return inotify_init ();
3166}
3167
3168inline_size void
3169infy_init (EV_P)
3170{
3171 if (fs_fd != -2)
3172 return;
3173
3174 fs_fd = -1;
3175
3176 ev_check_2625 (EV_A);
3177
3178 fs_fd = infy_newfd ();
3179
3180 if (fs_fd >= 0)
3181 {
3182 fd_intern (fs_fd);
3183 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3184 ev_set_priority (&fs_w, EV_MAXPRI);
3185 ev_io_start (EV_A_ &fs_w);
3186 ev_unref (EV_A);
3187 }
3188}
3189
3190inline_size void
3191infy_fork (EV_P)
3192{
3193 int slot;
3194
3195 if (fs_fd < 0)
3196 return;
3197
3198 ev_ref (EV_A);
3199 ev_io_stop (EV_A_ &fs_w);
3200 close (fs_fd);
3201 fs_fd = infy_newfd ();
3202
3203 if (fs_fd >= 0)
3204 {
3205 fd_intern (fs_fd);
3206 ev_io_set (&fs_w, fs_fd, EV_READ);
3207 ev_io_start (EV_A_ &fs_w);
3208 ev_unref (EV_A);
3209 }
3210
3211 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3212 {
3213 WL w_ = fs_hash [slot].head;
3214 fs_hash [slot].head = 0;
3215
3216 while (w_)
3217 {
3218 ev_stat *w = (ev_stat *)w_;
3219 w_ = w_->next; /* lets us add this watcher */
3220
3221 w->wd = -1;
3222
3223 if (fs_fd >= 0)
3224 infy_add (EV_A_ w); /* re-add, no matter what */
3225 else
3226 {
3227 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3228 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3229 ev_timer_again (EV_A_ &w->timer);
3230 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3231 }
3232 }
3233 }
3234}
3235
3236#endif
3237
3238#ifdef _WIN32
3239# define EV_LSTAT(p,b) _stati64 (p, b)
1397#else 3240#else
1398 struct sigaction sa; 3241# define EV_LSTAT(p,b) lstat (p, b)
1399 sa.sa_handler = sighandler;
1400 sigfillset (&sa.sa_mask);
1401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1402 sigaction (w->signum, &sa, 0);
1403#endif 3242#endif
1404 }
1405}
1406 3243
1407void 3244void
1408ev_signal_stop (EV_P_ struct ev_signal *w) 3245ev_stat_stat (EV_P_ ev_stat *w)
1409{ 3246{
1410 ev_clear_pending (EV_A_ (W)w); 3247 if (lstat (w->path, &w->attr) < 0)
1411 if (!ev_is_active (w)) 3248 w->attr.st_nlink = 0;
3249 else if (!w->attr.st_nlink)
3250 w->attr.st_nlink = 1;
3251}
3252
3253static void noinline
3254stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3255{
3256 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3257
3258 ev_statdata prev = w->attr;
3259 ev_stat_stat (EV_A_ w);
3260
3261 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3262 if (
3263 prev.st_dev != w->attr.st_dev
3264 || prev.st_ino != w->attr.st_ino
3265 || prev.st_mode != w->attr.st_mode
3266 || prev.st_nlink != w->attr.st_nlink
3267 || prev.st_uid != w->attr.st_uid
3268 || prev.st_gid != w->attr.st_gid
3269 || prev.st_rdev != w->attr.st_rdev
3270 || prev.st_size != w->attr.st_size
3271 || prev.st_atime != w->attr.st_atime
3272 || prev.st_mtime != w->attr.st_mtime
3273 || prev.st_ctime != w->attr.st_ctime
3274 ) {
3275 /* we only update w->prev on actual differences */
3276 /* in case we test more often than invoke the callback, */
3277 /* to ensure that prev is always different to attr */
3278 w->prev = prev;
3279
3280 #if EV_USE_INOTIFY
3281 if (fs_fd >= 0)
3282 {
3283 infy_del (EV_A_ w);
3284 infy_add (EV_A_ w);
3285 ev_stat_stat (EV_A_ w); /* avoid race... */
3286 }
3287 #endif
3288
3289 ev_feed_event (EV_A_ w, EV_STAT);
3290 }
3291}
3292
3293void
3294ev_stat_start (EV_P_ ev_stat *w)
3295{
3296 if (expect_false (ev_is_active (w)))
1412 return; 3297 return;
1413 3298
1414 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3299 ev_stat_stat (EV_A_ w);
3300
3301 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3302 w->interval = MIN_STAT_INTERVAL;
3303
3304 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3305 ev_set_priority (&w->timer, ev_priority (w));
3306
3307#if EV_USE_INOTIFY
3308 infy_init (EV_A);
3309
3310 if (fs_fd >= 0)
3311 infy_add (EV_A_ w);
3312 else
3313#endif
3314 {
3315 ev_timer_again (EV_A_ &w->timer);
3316 ev_unref (EV_A);
3317 }
3318
3319 ev_start (EV_A_ (W)w, 1);
3320
3321 EV_FREQUENT_CHECK;
3322}
3323
3324void
3325ev_stat_stop (EV_P_ ev_stat *w)
3326{
3327 clear_pending (EV_A_ (W)w);
3328 if (expect_false (!ev_is_active (w)))
3329 return;
3330
3331 EV_FREQUENT_CHECK;
3332
3333#if EV_USE_INOTIFY
3334 infy_del (EV_A_ w);
3335#endif
3336
3337 if (ev_is_active (&w->timer))
3338 {
3339 ev_ref (EV_A);
3340 ev_timer_stop (EV_A_ &w->timer);
3341 }
3342
1415 ev_stop (EV_A_ (W)w); 3343 ev_stop (EV_A_ (W)w);
1416 3344
1417 if (!signals [w->signum - 1].head) 3345 EV_FREQUENT_CHECK;
1418 signal (w->signum, SIG_DFL);
1419} 3346}
3347#endif
1420 3348
3349#if EV_IDLE_ENABLE
1421void 3350void
1422ev_child_start (EV_P_ struct ev_child *w) 3351ev_idle_start (EV_P_ ev_idle *w)
1423{ 3352{
1424#if EV_MULTIPLICITY
1425 assert (("child watchers are only supported in the default loop", loop == default_loop));
1426#endif
1427 if (ev_is_active (w)) 3353 if (expect_false (ev_is_active (w)))
1428 return; 3354 return;
1429 3355
3356 pri_adjust (EV_A_ (W)w);
3357
3358 EV_FREQUENT_CHECK;
3359
3360 {
3361 int active = ++idlecnt [ABSPRI (w)];
3362
3363 ++idleall;
3364 ev_start (EV_A_ (W)w, active);
3365
3366 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3367 idles [ABSPRI (w)][active - 1] = w;
3368 }
3369
3370 EV_FREQUENT_CHECK;
3371}
3372
3373void
3374ev_idle_stop (EV_P_ ev_idle *w)
3375{
3376 clear_pending (EV_A_ (W)w);
3377 if (expect_false (!ev_is_active (w)))
3378 return;
3379
3380 EV_FREQUENT_CHECK;
3381
3382 {
3383 int active = ev_active (w);
3384
3385 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3386 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3387
3388 ev_stop (EV_A_ (W)w);
3389 --idleall;
3390 }
3391
3392 EV_FREQUENT_CHECK;
3393}
3394#endif
3395
3396#if EV_PREPARE_ENABLE
3397void
3398ev_prepare_start (EV_P_ ev_prepare *w)
3399{
3400 if (expect_false (ev_is_active (w)))
3401 return;
3402
3403 EV_FREQUENT_CHECK;
3404
3405 ev_start (EV_A_ (W)w, ++preparecnt);
3406 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3407 prepares [preparecnt - 1] = w;
3408
3409 EV_FREQUENT_CHECK;
3410}
3411
3412void
3413ev_prepare_stop (EV_P_ ev_prepare *w)
3414{
3415 clear_pending (EV_A_ (W)w);
3416 if (expect_false (!ev_is_active (w)))
3417 return;
3418
3419 EV_FREQUENT_CHECK;
3420
3421 {
3422 int active = ev_active (w);
3423
3424 prepares [active - 1] = prepares [--preparecnt];
3425 ev_active (prepares [active - 1]) = active;
3426 }
3427
3428 ev_stop (EV_A_ (W)w);
3429
3430 EV_FREQUENT_CHECK;
3431}
3432#endif
3433
3434#if EV_CHECK_ENABLE
3435void
3436ev_check_start (EV_P_ ev_check *w)
3437{
3438 if (expect_false (ev_is_active (w)))
3439 return;
3440
3441 EV_FREQUENT_CHECK;
3442
3443 ev_start (EV_A_ (W)w, ++checkcnt);
3444 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3445 checks [checkcnt - 1] = w;
3446
3447 EV_FREQUENT_CHECK;
3448}
3449
3450void
3451ev_check_stop (EV_P_ ev_check *w)
3452{
3453 clear_pending (EV_A_ (W)w);
3454 if (expect_false (!ev_is_active (w)))
3455 return;
3456
3457 EV_FREQUENT_CHECK;
3458
3459 {
3460 int active = ev_active (w);
3461
3462 checks [active - 1] = checks [--checkcnt];
3463 ev_active (checks [active - 1]) = active;
3464 }
3465
3466 ev_stop (EV_A_ (W)w);
3467
3468 EV_FREQUENT_CHECK;
3469}
3470#endif
3471
3472#if EV_EMBED_ENABLE
3473void noinline
3474ev_embed_sweep (EV_P_ ev_embed *w)
3475{
3476 ev_run (w->other, EVRUN_NOWAIT);
3477}
3478
3479static void
3480embed_io_cb (EV_P_ ev_io *io, int revents)
3481{
3482 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3483
3484 if (ev_cb (w))
3485 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3486 else
3487 ev_run (w->other, EVRUN_NOWAIT);
3488}
3489
3490static void
3491embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3492{
3493 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3494
3495 {
3496 EV_P = w->other;
3497
3498 while (fdchangecnt)
3499 {
3500 fd_reify (EV_A);
3501 ev_run (EV_A_ EVRUN_NOWAIT);
3502 }
3503 }
3504}
3505
3506static void
3507embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3508{
3509 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3510
3511 ev_embed_stop (EV_A_ w);
3512
3513 {
3514 EV_P = w->other;
3515
3516 ev_loop_fork (EV_A);
3517 ev_run (EV_A_ EVRUN_NOWAIT);
3518 }
3519
3520 ev_embed_start (EV_A_ w);
3521}
3522
3523#if 0
3524static void
3525embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3526{
3527 ev_idle_stop (EV_A_ idle);
3528}
3529#endif
3530
3531void
3532ev_embed_start (EV_P_ ev_embed *w)
3533{
3534 if (expect_false (ev_is_active (w)))
3535 return;
3536
3537 {
3538 EV_P = w->other;
3539 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3540 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3541 }
3542
3543 EV_FREQUENT_CHECK;
3544
3545 ev_set_priority (&w->io, ev_priority (w));
3546 ev_io_start (EV_A_ &w->io);
3547
3548 ev_prepare_init (&w->prepare, embed_prepare_cb);
3549 ev_set_priority (&w->prepare, EV_MINPRI);
3550 ev_prepare_start (EV_A_ &w->prepare);
3551
3552 ev_fork_init (&w->fork, embed_fork_cb);
3553 ev_fork_start (EV_A_ &w->fork);
3554
3555 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3556
1430 ev_start (EV_A_ (W)w, 1); 3557 ev_start (EV_A_ (W)w, 1);
1431 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1432}
1433 3558
3559 EV_FREQUENT_CHECK;
3560}
3561
1434void 3562void
1435ev_child_stop (EV_P_ struct ev_child *w) 3563ev_embed_stop (EV_P_ ev_embed *w)
1436{ 3564{
1437 ev_clear_pending (EV_A_ (W)w); 3565 clear_pending (EV_A_ (W)w);
1438 if (ev_is_active (w)) 3566 if (expect_false (!ev_is_active (w)))
1439 return; 3567 return;
1440 3568
1441 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3569 EV_FREQUENT_CHECK;
3570
3571 ev_io_stop (EV_A_ &w->io);
3572 ev_prepare_stop (EV_A_ &w->prepare);
3573 ev_fork_stop (EV_A_ &w->fork);
3574
1442 ev_stop (EV_A_ (W)w); 3575 ev_stop (EV_A_ (W)w);
3576
3577 EV_FREQUENT_CHECK;
1443} 3578}
3579#endif
3580
3581#if EV_FORK_ENABLE
3582void
3583ev_fork_start (EV_P_ ev_fork *w)
3584{
3585 if (expect_false (ev_is_active (w)))
3586 return;
3587
3588 EV_FREQUENT_CHECK;
3589
3590 ev_start (EV_A_ (W)w, ++forkcnt);
3591 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3592 forks [forkcnt - 1] = w;
3593
3594 EV_FREQUENT_CHECK;
3595}
3596
3597void
3598ev_fork_stop (EV_P_ ev_fork *w)
3599{
3600 clear_pending (EV_A_ (W)w);
3601 if (expect_false (!ev_is_active (w)))
3602 return;
3603
3604 EV_FREQUENT_CHECK;
3605
3606 {
3607 int active = ev_active (w);
3608
3609 forks [active - 1] = forks [--forkcnt];
3610 ev_active (forks [active - 1]) = active;
3611 }
3612
3613 ev_stop (EV_A_ (W)w);
3614
3615 EV_FREQUENT_CHECK;
3616}
3617#endif
3618
3619#if EV_CLEANUP_ENABLE
3620void
3621ev_cleanup_start (EV_P_ ev_cleanup *w)
3622{
3623 if (expect_false (ev_is_active (w)))
3624 return;
3625
3626 EV_FREQUENT_CHECK;
3627
3628 ev_start (EV_A_ (W)w, ++cleanupcnt);
3629 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3630 cleanups [cleanupcnt - 1] = w;
3631
3632 /* cleanup watchers should never keep a refcount on the loop */
3633 ev_unref (EV_A);
3634 EV_FREQUENT_CHECK;
3635}
3636
3637void
3638ev_cleanup_stop (EV_P_ ev_cleanup *w)
3639{
3640 clear_pending (EV_A_ (W)w);
3641 if (expect_false (!ev_is_active (w)))
3642 return;
3643
3644 EV_FREQUENT_CHECK;
3645 ev_ref (EV_A);
3646
3647 {
3648 int active = ev_active (w);
3649
3650 cleanups [active - 1] = cleanups [--cleanupcnt];
3651 ev_active (cleanups [active - 1]) = active;
3652 }
3653
3654 ev_stop (EV_A_ (W)w);
3655
3656 EV_FREQUENT_CHECK;
3657}
3658#endif
3659
3660#if EV_ASYNC_ENABLE
3661void
3662ev_async_start (EV_P_ ev_async *w)
3663{
3664 if (expect_false (ev_is_active (w)))
3665 return;
3666
3667 w->sent = 0;
3668
3669 evpipe_init (EV_A);
3670
3671 EV_FREQUENT_CHECK;
3672
3673 ev_start (EV_A_ (W)w, ++asynccnt);
3674 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3675 asyncs [asynccnt - 1] = w;
3676
3677 EV_FREQUENT_CHECK;
3678}
3679
3680void
3681ev_async_stop (EV_P_ ev_async *w)
3682{
3683 clear_pending (EV_A_ (W)w);
3684 if (expect_false (!ev_is_active (w)))
3685 return;
3686
3687 EV_FREQUENT_CHECK;
3688
3689 {
3690 int active = ev_active (w);
3691
3692 asyncs [active - 1] = asyncs [--asynccnt];
3693 ev_active (asyncs [active - 1]) = active;
3694 }
3695
3696 ev_stop (EV_A_ (W)w);
3697
3698 EV_FREQUENT_CHECK;
3699}
3700
3701void
3702ev_async_send (EV_P_ ev_async *w)
3703{
3704 w->sent = 1;
3705 evpipe_write (EV_A_ &async_pending);
3706}
3707#endif
1444 3708
1445/*****************************************************************************/ 3709/*****************************************************************************/
1446 3710
1447struct ev_once 3711struct ev_once
1448{ 3712{
1449 struct ev_io io; 3713 ev_io io;
1450 struct ev_timer to; 3714 ev_timer to;
1451 void (*cb)(int revents, void *arg); 3715 void (*cb)(int revents, void *arg);
1452 void *arg; 3716 void *arg;
1453}; 3717};
1454 3718
1455static void 3719static void
1456once_cb (EV_P_ struct ev_once *once, int revents) 3720once_cb (EV_P_ struct ev_once *once, int revents)
1457{ 3721{
1458 void (*cb)(int revents, void *arg) = once->cb; 3722 void (*cb)(int revents, void *arg) = once->cb;
1459 void *arg = once->arg; 3723 void *arg = once->arg;
1460 3724
1461 ev_io_stop (EV_A_ &once->io); 3725 ev_io_stop (EV_A_ &once->io);
1462 ev_timer_stop (EV_A_ &once->to); 3726 ev_timer_stop (EV_A_ &once->to);
1463 ev_free (once); 3727 ev_free (once);
1464 3728
1465 cb (revents, arg); 3729 cb (revents, arg);
1466} 3730}
1467 3731
1468static void 3732static void
1469once_cb_io (EV_P_ struct ev_io *w, int revents) 3733once_cb_io (EV_P_ ev_io *w, int revents)
1470{ 3734{
1471 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3735 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3736
3737 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1472} 3738}
1473 3739
1474static void 3740static void
1475once_cb_to (EV_P_ struct ev_timer *w, int revents) 3741once_cb_to (EV_P_ ev_timer *w, int revents)
1476{ 3742{
1477 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3743 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3744
3745 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1478} 3746}
1479 3747
1480void 3748void
1481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3749ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1482{ 3750{
1483 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 3751 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1484 3752
1485 if (!once) 3753 if (expect_false (!once))
3754 {
1486 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3755 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1487 else 3756 return;
1488 { 3757 }
3758
1489 once->cb = cb; 3759 once->cb = cb;
1490 once->arg = arg; 3760 once->arg = arg;
1491 3761
1492 ev_watcher_init (&once->io, once_cb_io); 3762 ev_init (&once->io, once_cb_io);
1493 if (fd >= 0) 3763 if (fd >= 0)
3764 {
3765 ev_io_set (&once->io, fd, events);
3766 ev_io_start (EV_A_ &once->io);
3767 }
3768
3769 ev_init (&once->to, once_cb_to);
3770 if (timeout >= 0.)
3771 {
3772 ev_timer_set (&once->to, timeout, 0.);
3773 ev_timer_start (EV_A_ &once->to);
3774 }
3775}
3776
3777/*****************************************************************************/
3778
3779#if EV_WALK_ENABLE
3780void
3781ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3782{
3783 int i, j;
3784 ev_watcher_list *wl, *wn;
3785
3786 if (types & (EV_IO | EV_EMBED))
3787 for (i = 0; i < anfdmax; ++i)
3788 for (wl = anfds [i].head; wl; )
1494 { 3789 {
1495 ev_io_set (&once->io, fd, events); 3790 wn = wl->next;
1496 ev_io_start (EV_A_ &once->io); 3791
3792#if EV_EMBED_ENABLE
3793 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3794 {
3795 if (types & EV_EMBED)
3796 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3797 }
3798 else
3799#endif
3800#if EV_USE_INOTIFY
3801 if (ev_cb ((ev_io *)wl) == infy_cb)
3802 ;
3803 else
3804#endif
3805 if ((ev_io *)wl != &pipe_w)
3806 if (types & EV_IO)
3807 cb (EV_A_ EV_IO, wl);
3808
3809 wl = wn;
1497 } 3810 }
1498 3811
1499 ev_watcher_init (&once->to, once_cb_to); 3812 if (types & (EV_TIMER | EV_STAT))
1500 if (timeout >= 0.) 3813 for (i = timercnt + HEAP0; i-- > HEAP0; )
3814#if EV_STAT_ENABLE
3815 /*TODO: timer is not always active*/
3816 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1501 { 3817 {
1502 ev_timer_set (&once->to, timeout, 0.); 3818 if (types & EV_STAT)
1503 ev_timer_start (EV_A_ &once->to); 3819 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1504 } 3820 }
1505 } 3821 else
1506} 3822#endif
3823 if (types & EV_TIMER)
3824 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1507 3825
3826#if EV_PERIODIC_ENABLE
3827 if (types & EV_PERIODIC)
3828 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3829 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3830#endif
3831
3832#if EV_IDLE_ENABLE
3833 if (types & EV_IDLE)
3834 for (j = NUMPRI; i--; )
3835 for (i = idlecnt [j]; i--; )
3836 cb (EV_A_ EV_IDLE, idles [j][i]);
3837#endif
3838
3839#if EV_FORK_ENABLE
3840 if (types & EV_FORK)
3841 for (i = forkcnt; i--; )
3842 if (ev_cb (forks [i]) != embed_fork_cb)
3843 cb (EV_A_ EV_FORK, forks [i]);
3844#endif
3845
3846#if EV_ASYNC_ENABLE
3847 if (types & EV_ASYNC)
3848 for (i = asynccnt; i--; )
3849 cb (EV_A_ EV_ASYNC, asyncs [i]);
3850#endif
3851
3852#if EV_PREPARE_ENABLE
3853 if (types & EV_PREPARE)
3854 for (i = preparecnt; i--; )
3855# if EV_EMBED_ENABLE
3856 if (ev_cb (prepares [i]) != embed_prepare_cb)
3857# endif
3858 cb (EV_A_ EV_PREPARE, prepares [i]);
3859#endif
3860
3861#if EV_CHECK_ENABLE
3862 if (types & EV_CHECK)
3863 for (i = checkcnt; i--; )
3864 cb (EV_A_ EV_CHECK, checks [i]);
3865#endif
3866
3867#if EV_SIGNAL_ENABLE
3868 if (types & EV_SIGNAL)
3869 for (i = 0; i < EV_NSIG - 1; ++i)
3870 for (wl = signals [i].head; wl; )
3871 {
3872 wn = wl->next;
3873 cb (EV_A_ EV_SIGNAL, wl);
3874 wl = wn;
3875 }
3876#endif
3877
3878#if EV_CHILD_ENABLE
3879 if (types & EV_CHILD)
3880 for (i = (EV_PID_HASHSIZE); i--; )
3881 for (wl = childs [i]; wl; )
3882 {
3883 wn = wl->next;
3884 cb (EV_A_ EV_CHILD, wl);
3885 wl = wn;
3886 }
3887#endif
3888/* EV_STAT 0x00001000 /* stat data changed */
3889/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3890}
3891#endif
3892
3893#if EV_MULTIPLICITY
3894 #include "ev_wrap.h"
3895#endif
3896
3897EV_CPP(})
3898

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines