ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.40 by root, Fri Nov 2 11:02:23 2007 UTC vs.
Revision 1.70 by root, Tue Nov 6 00:52:32 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
51/**/ 75/**/
52 76
56 80
57#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
59#endif 83#endif
60 84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
61#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
62# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
63#endif 103#endif
64 104
65#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
66# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
67#endif 107#endif
96#endif 136#endif
97 137
98#define expect_false(expr) expect ((expr) != 0, 0) 138#define expect_false(expr) expect ((expr) != 0, 0)
99#define expect_true(expr) expect ((expr) != 0, 1) 139#define expect_true(expr) expect ((expr) != 0, 1)
100 140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
101typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
102typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
103typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
104 147
105static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
106ev_tstamp ev_now;
107int ev_method;
108 149
109static int have_monotonic; /* runtime */ 150#if WIN32
110 151/* note: the comment below could not be substantiated, but what would I care */
111static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
112static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
113static void (*method_poll)(ev_tstamp timeout); 154#endif
114 155
115/*****************************************************************************/ 156/*****************************************************************************/
116 157
117ev_tstamp 158static void (*syserr_cb)(const char *msg);
159
160void ev_set_syserr_cb (void (*cb)(const char *msg))
161{
162 syserr_cb = cb;
163}
164
165static void
166syserr (const char *msg)
167{
168 if (!msg)
169 msg = "(libev) system error";
170
171 if (syserr_cb)
172 syserr_cb (msg);
173 else
174 {
175 perror (msg);
176 abort ();
177 }
178}
179
180static void *(*alloc)(void *ptr, long size);
181
182void ev_set_allocator (void *(*cb)(void *ptr, long size))
183{
184 alloc = cb;
185}
186
187static void *
188ev_realloc (void *ptr, long size)
189{
190 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
191
192 if (!ptr && size)
193 {
194 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
195 abort ();
196 }
197
198 return ptr;
199}
200
201#define ev_malloc(size) ev_realloc (0, (size))
202#define ev_free(ptr) ev_realloc ((ptr), 0)
203
204/*****************************************************************************/
205
206typedef struct
207{
208 WL head;
209 unsigned char events;
210 unsigned char reify;
211} ANFD;
212
213typedef struct
214{
215 W w;
216 int events;
217} ANPENDING;
218
219#if EV_MULTIPLICITY
220
221struct ev_loop
222{
223# define VAR(name,decl) decl;
224# include "ev_vars.h"
225};
226# undef VAR
227# include "ev_wrap.h"
228
229#else
230
231# define VAR(name,decl) static decl;
232# include "ev_vars.h"
233# undef VAR
234
235#endif
236
237/*****************************************************************************/
238
239inline ev_tstamp
118ev_time (void) 240ev_time (void)
119{ 241{
120#if EV_USE_REALTIME 242#if EV_USE_REALTIME
121 struct timespec ts; 243 struct timespec ts;
122 clock_gettime (CLOCK_REALTIME, &ts); 244 clock_gettime (CLOCK_REALTIME, &ts);
126 gettimeofday (&tv, 0); 248 gettimeofday (&tv, 0);
127 return tv.tv_sec + tv.tv_usec * 1e-6; 249 return tv.tv_sec + tv.tv_usec * 1e-6;
128#endif 250#endif
129} 251}
130 252
131static ev_tstamp 253inline ev_tstamp
132get_clock (void) 254get_clock (void)
133{ 255{
134#if EV_USE_MONOTONIC 256#if EV_USE_MONOTONIC
135 if (expect_true (have_monotonic)) 257 if (expect_true (have_monotonic))
136 { 258 {
141#endif 263#endif
142 264
143 return ev_time (); 265 return ev_time ();
144} 266}
145 267
268ev_tstamp
269ev_now (EV_P)
270{
271 return rt_now;
272}
273
146#define array_roundsize(base,n) ((n) | 4 & ~3) 274#define array_roundsize(base,n) ((n) | 4 & ~3)
147 275
148#define array_needsize(base,cur,cnt,init) \ 276#define array_needsize(base,cur,cnt,init) \
149 if (expect_false ((cnt) > cur)) \ 277 if (expect_false ((cnt) > cur)) \
150 { \ 278 { \
151 int newcnt = cur; \ 279 int newcnt = cur; \
152 do \ 280 do \
153 { \ 281 { \
154 newcnt = array_roundsize (base, newcnt << 1); \ 282 newcnt = array_roundsize (base, newcnt << 1); \
155 } \ 283 } \
156 while ((cnt) > newcnt); \ 284 while ((cnt) > newcnt); \
157 \ 285 \
158 base = realloc (base, sizeof (*base) * (newcnt)); \ 286 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
159 init (base + cur, newcnt - cur); \ 287 init (base + cur, newcnt - cur); \
160 cur = newcnt; \ 288 cur = newcnt; \
161 } 289 }
290
291#define array_slim(stem) \
292 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
293 { \
294 stem ## max = array_roundsize (stem ## cnt >> 1); \
295 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
296 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
297 }
298
299#define array_free(stem, idx) \
300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
162 301
163/*****************************************************************************/ 302/*****************************************************************************/
164
165typedef struct
166{
167 struct ev_io *head;
168 unsigned char events;
169 unsigned char reify;
170} ANFD;
171
172static ANFD *anfds;
173static int anfdmax;
174 303
175static void 304static void
176anfds_init (ANFD *base, int count) 305anfds_init (ANFD *base, int count)
177{ 306{
178 while (count--) 307 while (count--)
183 312
184 ++base; 313 ++base;
185 } 314 }
186} 315}
187 316
188typedef struct
189{
190 W w;
191 int events;
192} ANPENDING;
193
194static ANPENDING *pendings;
195static int pendingmax, pendingcnt;
196
197static void 317static void
198event (W w, int events) 318event (EV_P_ W w, int events)
199{ 319{
200 if (w->pending) 320 if (w->pending)
201 { 321 {
202 pendings [w->pending - 1].events |= events; 322 pendings [ABSPRI (w)][w->pending - 1].events |= events;
203 return; 323 return;
204 } 324 }
205 325
206 w->pending = ++pendingcnt; 326 w->pending = ++pendingcnt [ABSPRI (w)];
207 array_needsize (pendings, pendingmax, pendingcnt, ); 327 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
208 pendings [pendingcnt - 1].w = w; 328 pendings [ABSPRI (w)][w->pending - 1].w = w;
209 pendings [pendingcnt - 1].events = events; 329 pendings [ABSPRI (w)][w->pending - 1].events = events;
210} 330}
211 331
212static void 332static void
213queue_events (W *events, int eventcnt, int type) 333queue_events (EV_P_ W *events, int eventcnt, int type)
214{ 334{
215 int i; 335 int i;
216 336
217 for (i = 0; i < eventcnt; ++i) 337 for (i = 0; i < eventcnt; ++i)
218 event (events [i], type); 338 event (EV_A_ events [i], type);
219} 339}
220 340
221static void 341static void
222fd_event (int fd, int events) 342fd_event (EV_P_ int fd, int events)
223{ 343{
224 ANFD *anfd = anfds + fd; 344 ANFD *anfd = anfds + fd;
225 struct ev_io *w; 345 struct ev_io *w;
226 346
227 for (w = anfd->head; w; w = w->next) 347 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
228 { 348 {
229 int ev = w->events & events; 349 int ev = w->events & events;
230 350
231 if (ev) 351 if (ev)
232 event ((W)w, ev); 352 event (EV_A_ (W)w, ev);
233 } 353 }
234} 354}
235 355
236/*****************************************************************************/ 356/*****************************************************************************/
237 357
238static int *fdchanges;
239static int fdchangemax, fdchangecnt;
240
241static void 358static void
242fd_reify (void) 359fd_reify (EV_P)
243{ 360{
244 int i; 361 int i;
245 362
246 for (i = 0; i < fdchangecnt; ++i) 363 for (i = 0; i < fdchangecnt; ++i)
247 { 364 {
249 ANFD *anfd = anfds + fd; 366 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 367 struct ev_io *w;
251 368
252 int events = 0; 369 int events = 0;
253 370
254 for (w = anfd->head; w; w = w->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
255 events |= w->events; 372 events |= w->events;
256 373
257 anfd->reify = 0; 374 anfd->reify = 0;
258 375
259 if (anfd->events != events)
260 {
261 method_modify (fd, anfd->events, events); 376 method_modify (EV_A_ fd, anfd->events, events);
262 anfd->events = events; 377 anfd->events = events;
263 }
264 } 378 }
265 379
266 fdchangecnt = 0; 380 fdchangecnt = 0;
267} 381}
268 382
269static void 383static void
270fd_change (int fd) 384fd_change (EV_P_ int fd)
271{ 385{
272 if (anfds [fd].reify || fdchangecnt < 0) 386 if (anfds [fd].reify)
273 return; 387 return;
274 388
275 anfds [fd].reify = 1; 389 anfds [fd].reify = 1;
276 390
277 ++fdchangecnt; 391 ++fdchangecnt;
278 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 392 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
279 fdchanges [fdchangecnt - 1] = fd; 393 fdchanges [fdchangecnt - 1] = fd;
280} 394}
281 395
396static void
397fd_kill (EV_P_ int fd)
398{
399 struct ev_io *w;
400
401 while ((w = (struct ev_io *)anfds [fd].head))
402 {
403 ev_io_stop (EV_A_ w);
404 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
405 }
406}
407
282/* called on EBADF to verify fds */ 408/* called on EBADF to verify fds */
283static void 409static void
284fd_recheck (void) 410fd_ebadf (EV_P)
285{ 411{
286 int fd; 412 int fd;
287 413
288 for (fd = 0; fd < anfdmax; ++fd) 414 for (fd = 0; fd < anfdmax; ++fd)
289 if (anfds [fd].events) 415 if (anfds [fd].events)
290 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 416 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
291 while (anfds [fd].head) 417 fd_kill (EV_A_ fd);
418}
419
420/* called on ENOMEM in select/poll to kill some fds and retry */
421static void
422fd_enomem (EV_P)
423{
424 int fd;
425
426 for (fd = anfdmax; fd--; )
427 if (anfds [fd].events)
292 { 428 {
293 ev_io_stop (anfds [fd].head); 429 fd_kill (EV_A_ fd);
294 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 430 return;
295 } 431 }
432}
433
434/* usually called after fork if method needs to re-arm all fds from scratch */
435static void
436fd_rearm_all (EV_P)
437{
438 int fd;
439
440 /* this should be highly optimised to not do anything but set a flag */
441 for (fd = 0; fd < anfdmax; ++fd)
442 if (anfds [fd].events)
443 {
444 anfds [fd].events = 0;
445 fd_change (EV_A_ fd);
446 }
296} 447}
297 448
298/*****************************************************************************/ 449/*****************************************************************************/
299 450
300static struct ev_timer **timers;
301static int timermax, timercnt;
302
303static struct ev_periodic **periodics;
304static int periodicmax, periodiccnt;
305
306static void 451static void
307upheap (WT *timers, int k) 452upheap (WT *heap, int k)
308{ 453{
309 WT w = timers [k]; 454 WT w = heap [k];
310 455
311 while (k && timers [k >> 1]->at > w->at) 456 while (k && heap [k >> 1]->at > w->at)
312 { 457 {
313 timers [k] = timers [k >> 1]; 458 heap [k] = heap [k >> 1];
314 timers [k]->active = k + 1; 459 ((W)heap [k])->active = k + 1;
315 k >>= 1; 460 k >>= 1;
316 } 461 }
317 462
318 timers [k] = w; 463 heap [k] = w;
319 timers [k]->active = k + 1; 464 ((W)heap [k])->active = k + 1;
320 465
321} 466}
322 467
323static void 468static void
324downheap (WT *timers, int N, int k) 469downheap (WT *heap, int N, int k)
325{ 470{
326 WT w = timers [k]; 471 WT w = heap [k];
327 472
328 while (k < (N >> 1)) 473 while (k < (N >> 1))
329 { 474 {
330 int j = k << 1; 475 int j = k << 1;
331 476
332 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 477 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
333 ++j; 478 ++j;
334 479
335 if (w->at <= timers [j]->at) 480 if (w->at <= heap [j]->at)
336 break; 481 break;
337 482
338 timers [k] = timers [j]; 483 heap [k] = heap [j];
339 timers [k]->active = k + 1; 484 ((W)heap [k])->active = k + 1;
340 k = j; 485 k = j;
341 } 486 }
342 487
343 timers [k] = w; 488 heap [k] = w;
344 timers [k]->active = k + 1; 489 ((W)heap [k])->active = k + 1;
345} 490}
346 491
347/*****************************************************************************/ 492/*****************************************************************************/
348 493
349typedef struct 494typedef struct
350{ 495{
351 struct ev_signal *head; 496 WL head;
352 sig_atomic_t volatile gotsig; 497 sig_atomic_t volatile gotsig;
353} ANSIG; 498} ANSIG;
354 499
355static ANSIG *signals; 500static ANSIG *signals;
356static int signalmax; 501static int signalmax;
372} 517}
373 518
374static void 519static void
375sighandler (int signum) 520sighandler (int signum)
376{ 521{
522#if WIN32
523 signal (signum, sighandler);
524#endif
525
377 signals [signum - 1].gotsig = 1; 526 signals [signum - 1].gotsig = 1;
378 527
379 if (!gotsig) 528 if (!gotsig)
380 { 529 {
530 int old_errno = errno;
381 gotsig = 1; 531 gotsig = 1;
382 write (sigpipe [1], &signum, 1); 532 write (sigpipe [1], &signum, 1);
533 errno = old_errno;
383 } 534 }
384} 535}
385 536
386static void 537static void
387sigcb (struct ev_io *iow, int revents) 538sigcb (EV_P_ struct ev_io *iow, int revents)
388{ 539{
389 struct ev_signal *w; 540 WL w;
390 int signum; 541 int signum;
391 542
392 read (sigpipe [0], &revents, 1); 543 read (sigpipe [0], &revents, 1);
393 gotsig = 0; 544 gotsig = 0;
394 545
396 if (signals [signum].gotsig) 547 if (signals [signum].gotsig)
397 { 548 {
398 signals [signum].gotsig = 0; 549 signals [signum].gotsig = 0;
399 550
400 for (w = signals [signum].head; w; w = w->next) 551 for (w = signals [signum].head; w; w = w->next)
401 event ((W)w, EV_SIGNAL); 552 event (EV_A_ (W)w, EV_SIGNAL);
402 } 553 }
403} 554}
404 555
405static void 556static void
406siginit (void) 557siginit (EV_P)
407{ 558{
559#ifndef WIN32
408 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 560 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
409 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 561 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
410 562
411 /* rather than sort out wether we really need nb, set it */ 563 /* rather than sort out wether we really need nb, set it */
412 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 564 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
413 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 565 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
566#endif
414 567
415 ev_io_set (&sigev, sigpipe [0], EV_READ); 568 ev_io_set (&sigev, sigpipe [0], EV_READ);
416 ev_io_start (&sigev); 569 ev_io_start (EV_A_ &sigev);
570 ev_unref (EV_A); /* child watcher should not keep loop alive */
417} 571}
418 572
419/*****************************************************************************/ 573/*****************************************************************************/
420 574
421static struct ev_idle **idles; 575#ifndef WIN32
422static int idlemax, idlecnt;
423
424static struct ev_prepare **prepares;
425static int preparemax, preparecnt;
426
427static struct ev_check **checks;
428static int checkmax, checkcnt;
429
430/*****************************************************************************/
431 576
432static struct ev_child *childs [PID_HASHSIZE]; 577static struct ev_child *childs [PID_HASHSIZE];
433static struct ev_signal childev; 578static struct ev_signal childev;
434 579
435#ifndef WCONTINUED 580#ifndef WCONTINUED
436# define WCONTINUED 0 581# define WCONTINUED 0
437#endif 582#endif
438 583
439static void 584static void
440childcb (struct ev_signal *sw, int revents) 585child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
441{ 586{
442 struct ev_child *w; 587 struct ev_child *w;
588
589 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
590 if (w->pid == pid || !w->pid)
591 {
592 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
593 w->rpid = pid;
594 w->rstatus = status;
595 event (EV_A_ (W)w, EV_CHILD);
596 }
597}
598
599static void
600childcb (EV_P_ struct ev_signal *sw, int revents)
601{
443 int pid, status; 602 int pid, status;
444 603
445 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 604 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
446 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 605 {
447 if (w->pid == pid || !w->pid) 606 /* make sure we are called again until all childs have been reaped */
448 { 607 event (EV_A_ (W)sw, EV_SIGNAL);
449 w->status = status; 608
450 event ((W)w, EV_CHILD); 609 child_reap (EV_A_ sw, pid, pid, status);
451 } 610 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
611 }
452} 612}
613
614#endif
453 615
454/*****************************************************************************/ 616/*****************************************************************************/
455 617
618#if EV_USE_KQUEUE
619# include "ev_kqueue.c"
620#endif
456#if EV_USE_EPOLL 621#if EV_USE_EPOLL
457# include "ev_epoll.c" 622# include "ev_epoll.c"
458#endif 623#endif
624#if EV_USE_POLL
625# include "ev_poll.c"
626#endif
459#if EV_USE_SELECT 627#if EV_USE_SELECT
460# include "ev_select.c" 628# include "ev_select.c"
461#endif 629#endif
462 630
463int 631int
470ev_version_minor (void) 638ev_version_minor (void)
471{ 639{
472 return EV_VERSION_MINOR; 640 return EV_VERSION_MINOR;
473} 641}
474 642
475int ev_init (int flags) 643/* return true if we are running with elevated privileges and should ignore env variables */
644static int
645enable_secure (void)
476{ 646{
647#ifdef WIN32
648 return 0;
649#else
650 return getuid () != geteuid ()
651 || getgid () != getegid ();
652#endif
653}
654
655int
656ev_method (EV_P)
657{
658 return method;
659}
660
661static void
662loop_init (EV_P_ int methods)
663{
477 if (!ev_method) 664 if (!method)
478 { 665 {
479#if EV_USE_MONOTONIC 666#if EV_USE_MONOTONIC
480 { 667 {
481 struct timespec ts; 668 struct timespec ts;
482 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 669 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
483 have_monotonic = 1; 670 have_monotonic = 1;
484 } 671 }
485#endif 672#endif
486 673
487 ev_now = ev_time (); 674 rt_now = ev_time ();
488 now = get_clock (); 675 mn_now = get_clock ();
489 now_floor = now; 676 now_floor = mn_now;
490 diff = ev_now - now; 677 rtmn_diff = rt_now - mn_now;
491 678
492 if (pipe (sigpipe)) 679 if (methods == EVMETHOD_AUTO)
493 return 0; 680 if (!enable_secure () && getenv ("LIBEV_METHODS"))
494 681 methods = atoi (getenv ("LIBEV_METHODS"));
682 else
495 ev_method = EVMETHOD_NONE; 683 methods = EVMETHOD_ANY;
684
685 method = 0;
686#if EV_USE_WIN32
687 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
688#endif
689#if EV_USE_KQUEUE
690 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
691#endif
496#if EV_USE_EPOLL 692#if EV_USE_EPOLL
497 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 693 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
694#endif
695#if EV_USE_POLL
696 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
498#endif 697#endif
499#if EV_USE_SELECT 698#if EV_USE_SELECT
500 if (ev_method == EVMETHOD_NONE) select_init (flags); 699 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
501#endif 700#endif
502 701
702 ev_watcher_init (&sigev, sigcb);
703 ev_set_priority (&sigev, EV_MAXPRI);
704 }
705}
706
707void
708loop_destroy (EV_P)
709{
710 int i;
711
712#if EV_USE_WIN32
713 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
714#endif
715#if EV_USE_KQUEUE
716 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
717#endif
718#if EV_USE_EPOLL
719 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
720#endif
721#if EV_USE_POLL
722 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
723#endif
724#if EV_USE_SELECT
725 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
726#endif
727
728 for (i = NUMPRI; i--; )
729 array_free (pending, [i]);
730
731 array_free (fdchange, );
732 array_free (timer, );
733 array_free (periodic, );
734 array_free (idle, );
735 array_free (prepare, );
736 array_free (check, );
737
738 method = 0;
739}
740
741static void
742loop_fork (EV_P)
743{
744#if EV_USE_EPOLL
745 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
746#endif
747#if EV_USE_KQUEUE
748 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
749#endif
750
751 if (ev_is_active (&sigev))
752 {
753 /* default loop */
754
755 ev_ref (EV_A);
756 ev_io_stop (EV_A_ &sigev);
757 close (sigpipe [0]);
758 close (sigpipe [1]);
759
760 while (pipe (sigpipe))
761 syserr ("(libev) error creating pipe");
762
763 siginit (EV_A);
764 }
765
766 postfork = 0;
767}
768
769#if EV_MULTIPLICITY
770struct ev_loop *
771ev_loop_new (int methods)
772{
773 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
774
775 memset (loop, 0, sizeof (struct ev_loop));
776
777 loop_init (EV_A_ methods);
778
779 if (ev_method (EV_A))
780 return loop;
781
782 return 0;
783}
784
785void
786ev_loop_destroy (EV_P)
787{
788 loop_destroy (EV_A);
789 ev_free (loop);
790}
791
792void
793ev_loop_fork (EV_P)
794{
795 postfork = 1;
796}
797
798#endif
799
800#if EV_MULTIPLICITY
801struct ev_loop default_loop_struct;
802static struct ev_loop *default_loop;
803
804struct ev_loop *
805#else
806static int default_loop;
807
808int
809#endif
810ev_default_loop (int methods)
811{
812 if (sigpipe [0] == sigpipe [1])
813 if (pipe (sigpipe))
814 return 0;
815
816 if (!default_loop)
817 {
818#if EV_MULTIPLICITY
819 struct ev_loop *loop = default_loop = &default_loop_struct;
820#else
821 default_loop = 1;
822#endif
823
824 loop_init (EV_A_ methods);
825
503 if (ev_method) 826 if (ev_method (EV_A))
504 { 827 {
505 ev_watcher_init (&sigev, sigcb);
506 siginit (); 828 siginit (EV_A);
507 829
830#ifndef WIN32
508 ev_signal_init (&childev, childcb, SIGCHLD); 831 ev_signal_init (&childev, childcb, SIGCHLD);
832 ev_set_priority (&childev, EV_MAXPRI);
509 ev_signal_start (&childev); 833 ev_signal_start (EV_A_ &childev);
834 ev_unref (EV_A); /* child watcher should not keep loop alive */
835#endif
510 } 836 }
837 else
838 default_loop = 0;
511 } 839 }
512 840
513 return ev_method; 841 return default_loop;
842}
843
844void
845ev_default_destroy (void)
846{
847#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop;
849#endif
850
851 ev_ref (EV_A); /* child watcher */
852 ev_signal_stop (EV_A_ &childev);
853
854 ev_ref (EV_A); /* signal watcher */
855 ev_io_stop (EV_A_ &sigev);
856
857 close (sigpipe [0]); sigpipe [0] = 0;
858 close (sigpipe [1]); sigpipe [1] = 0;
859
860 loop_destroy (EV_A);
861}
862
863void
864ev_default_fork (void)
865{
866#if EV_MULTIPLICITY
867 struct ev_loop *loop = default_loop;
868#endif
869
870 if (method)
871 postfork = 1;
514} 872}
515 873
516/*****************************************************************************/ 874/*****************************************************************************/
517 875
518void
519ev_fork_prepare (void)
520{
521 /* nop */
522}
523
524void
525ev_fork_parent (void)
526{
527 /* nop */
528}
529
530void
531ev_fork_child (void)
532{
533#if EV_USE_EPOLL
534 if (ev_method == EVMETHOD_EPOLL)
535 epoll_postfork_child ();
536#endif
537
538 ev_io_stop (&sigev);
539 close (sigpipe [0]);
540 close (sigpipe [1]);
541 pipe (sigpipe);
542 siginit ();
543}
544
545/*****************************************************************************/
546
547static void 876static void
548call_pending (void) 877call_pending (EV_P)
549{ 878{
879 int pri;
880
881 for (pri = NUMPRI; pri--; )
550 while (pendingcnt) 882 while (pendingcnt [pri])
551 { 883 {
552 ANPENDING *p = pendings + --pendingcnt; 884 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
553 885
554 if (p->w) 886 if (p->w)
555 { 887 {
556 p->w->pending = 0; 888 p->w->pending = 0;
557 p->w->cb (p->w, p->events); 889 p->w->cb (EV_A_ p->w, p->events);
558 } 890 }
559 } 891 }
560} 892}
561 893
562static void 894static void
563timers_reify (void) 895timers_reify (EV_P)
564{ 896{
565 while (timercnt && timers [0]->at <= now) 897 while (timercnt && ((WT)timers [0])->at <= mn_now)
566 { 898 {
567 struct ev_timer *w = timers [0]; 899 struct ev_timer *w = timers [0];
900
901 assert (("inactive timer on timer heap detected", ev_is_active (w)));
568 902
569 /* first reschedule or stop timer */ 903 /* first reschedule or stop timer */
570 if (w->repeat) 904 if (w->repeat)
571 { 905 {
572 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 906 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
573 w->at = now + w->repeat; 907 ((WT)w)->at = mn_now + w->repeat;
574 downheap ((WT *)timers, timercnt, 0); 908 downheap ((WT *)timers, timercnt, 0);
575 } 909 }
576 else 910 else
577 ev_timer_stop (w); /* nonrepeating: stop timer */ 911 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
578 912
579 event ((W)w, EV_TIMEOUT); 913 event (EV_A_ (W)w, EV_TIMEOUT);
580 } 914 }
581} 915}
582 916
583static void 917static void
584periodics_reify (void) 918periodics_reify (EV_P)
585{ 919{
586 while (periodiccnt && periodics [0]->at <= ev_now) 920 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
587 { 921 {
588 struct ev_periodic *w = periodics [0]; 922 struct ev_periodic *w = periodics [0];
923
924 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
589 925
590 /* first reschedule or stop timer */ 926 /* first reschedule or stop timer */
591 if (w->interval) 927 if (w->interval)
592 { 928 {
593 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 929 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
594 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 930 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
595 downheap ((WT *)periodics, periodiccnt, 0); 931 downheap ((WT *)periodics, periodiccnt, 0);
596 } 932 }
597 else 933 else
598 ev_periodic_stop (w); /* nonrepeating: stop timer */ 934 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
599 935
600 event ((W)w, EV_PERIODIC); 936 event (EV_A_ (W)w, EV_PERIODIC);
601 } 937 }
602} 938}
603 939
604static void 940static void
605periodics_reschedule (ev_tstamp diff) 941periodics_reschedule (EV_P)
606{ 942{
607 int i; 943 int i;
608 944
609 /* adjust periodics after time jump */ 945 /* adjust periodics after time jump */
610 for (i = 0; i < periodiccnt; ++i) 946 for (i = 0; i < periodiccnt; ++i)
611 { 947 {
612 struct ev_periodic *w = periodics [i]; 948 struct ev_periodic *w = periodics [i];
613 949
614 if (w->interval) 950 if (w->interval)
615 { 951 {
616 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 952 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
617 953
618 if (fabs (diff) >= 1e-4) 954 if (fabs (diff) >= 1e-4)
619 { 955 {
620 ev_periodic_stop (w); 956 ev_periodic_stop (EV_A_ w);
621 ev_periodic_start (w); 957 ev_periodic_start (EV_A_ w);
622 958
623 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 959 i = 0; /* restart loop, inefficient, but time jumps should be rare */
624 } 960 }
625 } 961 }
626 } 962 }
627} 963}
628 964
629static int 965inline int
630time_update_monotonic (void) 966time_update_monotonic (EV_P)
631{ 967{
632 now = get_clock (); 968 mn_now = get_clock ();
633 969
634 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 970 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
635 { 971 {
636 ev_now = now + diff; 972 rt_now = rtmn_diff + mn_now;
637 return 0; 973 return 0;
638 } 974 }
639 else 975 else
640 { 976 {
641 now_floor = now; 977 now_floor = mn_now;
642 ev_now = ev_time (); 978 rt_now = ev_time ();
643 return 1; 979 return 1;
644 } 980 }
645} 981}
646 982
647static void 983static void
648time_update (void) 984time_update (EV_P)
649{ 985{
650 int i; 986 int i;
651 987
652#if EV_USE_MONOTONIC 988#if EV_USE_MONOTONIC
653 if (expect_true (have_monotonic)) 989 if (expect_true (have_monotonic))
654 { 990 {
655 if (time_update_monotonic ()) 991 if (time_update_monotonic (EV_A))
656 { 992 {
657 ev_tstamp odiff = diff; 993 ev_tstamp odiff = rtmn_diff;
658 994
659 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 995 for (i = 4; --i; ) /* loop a few times, before making important decisions */
660 { 996 {
661 diff = ev_now - now; 997 rtmn_diff = rt_now - mn_now;
662 998
663 if (fabs (odiff - diff) < MIN_TIMEJUMP) 999 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
664 return; /* all is well */ 1000 return; /* all is well */
665 1001
666 ev_now = ev_time (); 1002 rt_now = ev_time ();
667 now = get_clock (); 1003 mn_now = get_clock ();
668 now_floor = now; 1004 now_floor = mn_now;
669 } 1005 }
670 1006
671 periodics_reschedule (diff - odiff); 1007 periodics_reschedule (EV_A);
672 /* no timer adjustment, as the monotonic clock doesn't jump */ 1008 /* no timer adjustment, as the monotonic clock doesn't jump */
1009 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
673 } 1010 }
674 } 1011 }
675 else 1012 else
676#endif 1013#endif
677 { 1014 {
678 ev_now = ev_time (); 1015 rt_now = ev_time ();
679 1016
680 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1017 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
681 { 1018 {
682 periodics_reschedule (ev_now - now); 1019 periodics_reschedule (EV_A);
683 1020
684 /* adjust timers. this is easy, as the offset is the same for all */ 1021 /* adjust timers. this is easy, as the offset is the same for all */
685 for (i = 0; i < timercnt; ++i) 1022 for (i = 0; i < timercnt; ++i)
686 timers [i]->at += diff; 1023 ((WT)timers [i])->at += rt_now - mn_now;
687 } 1024 }
688 1025
689 now = ev_now; 1026 mn_now = rt_now;
690 } 1027 }
691} 1028}
692 1029
693int ev_loop_done; 1030void
1031ev_ref (EV_P)
1032{
1033 ++activecnt;
1034}
694 1035
1036void
1037ev_unref (EV_P)
1038{
1039 --activecnt;
1040}
1041
1042static int loop_done;
1043
1044void
695void ev_loop (int flags) 1045ev_loop (EV_P_ int flags)
696{ 1046{
697 double block; 1047 double block;
698 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1048 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
699 1049
700 do 1050 do
701 { 1051 {
702 /* queue check watchers (and execute them) */ 1052 /* queue check watchers (and execute them) */
703 if (expect_false (preparecnt)) 1053 if (expect_false (preparecnt))
704 { 1054 {
705 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1055 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
706 call_pending (); 1056 call_pending (EV_A);
707 } 1057 }
708 1058
1059 /* we might have forked, so reify kernel state if necessary */
1060 if (expect_false (postfork))
1061 loop_fork (EV_A);
1062
709 /* update fd-related kernel structures */ 1063 /* update fd-related kernel structures */
710 fd_reify (); 1064 fd_reify (EV_A);
711 1065
712 /* calculate blocking time */ 1066 /* calculate blocking time */
713 1067
714 /* we only need this for !monotonic clockor timers, but as we basically 1068 /* we only need this for !monotonic clockor timers, but as we basically
715 always have timers, we just calculate it always */ 1069 always have timers, we just calculate it always */
716#if EV_USE_MONOTONIC 1070#if EV_USE_MONOTONIC
717 if (expect_true (have_monotonic)) 1071 if (expect_true (have_monotonic))
718 time_update_monotonic (); 1072 time_update_monotonic (EV_A);
719 else 1073 else
720#endif 1074#endif
721 { 1075 {
722 ev_now = ev_time (); 1076 rt_now = ev_time ();
723 now = ev_now; 1077 mn_now = rt_now;
724 } 1078 }
725 1079
726 if (flags & EVLOOP_NONBLOCK || idlecnt) 1080 if (flags & EVLOOP_NONBLOCK || idlecnt)
727 block = 0.; 1081 block = 0.;
728 else 1082 else
729 { 1083 {
730 block = MAX_BLOCKTIME; 1084 block = MAX_BLOCKTIME;
731 1085
732 if (timercnt) 1086 if (timercnt)
733 { 1087 {
734 ev_tstamp to = timers [0]->at - now + method_fudge; 1088 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
735 if (block > to) block = to; 1089 if (block > to) block = to;
736 } 1090 }
737 1091
738 if (periodiccnt) 1092 if (periodiccnt)
739 { 1093 {
740 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1094 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
741 if (block > to) block = to; 1095 if (block > to) block = to;
742 } 1096 }
743 1097
744 if (block < 0.) block = 0.; 1098 if (block < 0.) block = 0.;
745 } 1099 }
746 1100
747 method_poll (block); 1101 method_poll (EV_A_ block);
748 1102
749 /* update ev_now, do magic */ 1103 /* update rt_now, do magic */
750 time_update (); 1104 time_update (EV_A);
751 1105
752 /* queue pending timers and reschedule them */ 1106 /* queue pending timers and reschedule them */
753 timers_reify (); /* relative timers called last */ 1107 timers_reify (EV_A); /* relative timers called last */
754 periodics_reify (); /* absolute timers called first */ 1108 periodics_reify (EV_A); /* absolute timers called first */
755 1109
756 /* queue idle watchers unless io or timers are pending */ 1110 /* queue idle watchers unless io or timers are pending */
757 if (!pendingcnt) 1111 if (!pendingcnt)
758 queue_events ((W *)idles, idlecnt, EV_IDLE); 1112 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
759 1113
760 /* queue check watchers, to be executed first */ 1114 /* queue check watchers, to be executed first */
761 if (checkcnt) 1115 if (checkcnt)
762 queue_events ((W *)checks, checkcnt, EV_CHECK); 1116 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
763 1117
764 call_pending (); 1118 call_pending (EV_A);
765 } 1119 }
766 while (!ev_loop_done); 1120 while (activecnt && !loop_done);
767 1121
768 if (ev_loop_done != 2) 1122 if (loop_done != 2)
769 ev_loop_done = 0; 1123 loop_done = 0;
1124}
1125
1126void
1127ev_unloop (EV_P_ int how)
1128{
1129 loop_done = how;
770} 1130}
771 1131
772/*****************************************************************************/ 1132/*****************************************************************************/
773 1133
774static void 1134inline void
775wlist_add (WL *head, WL elem) 1135wlist_add (WL *head, WL elem)
776{ 1136{
777 elem->next = *head; 1137 elem->next = *head;
778 *head = elem; 1138 *head = elem;
779} 1139}
780 1140
781static void 1141inline void
782wlist_del (WL *head, WL elem) 1142wlist_del (WL *head, WL elem)
783{ 1143{
784 while (*head) 1144 while (*head)
785 { 1145 {
786 if (*head == elem) 1146 if (*head == elem)
791 1151
792 head = &(*head)->next; 1152 head = &(*head)->next;
793 } 1153 }
794} 1154}
795 1155
796static void 1156inline void
797ev_clear_pending (W w) 1157ev_clear_pending (EV_P_ W w)
798{ 1158{
799 if (w->pending) 1159 if (w->pending)
800 { 1160 {
801 pendings [w->pending - 1].w = 0; 1161 pendings [ABSPRI (w)][w->pending - 1].w = 0;
802 w->pending = 0; 1162 w->pending = 0;
803 } 1163 }
804} 1164}
805 1165
806static void 1166inline void
807ev_start (W w, int active) 1167ev_start (EV_P_ W w, int active)
808{ 1168{
1169 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1170 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1171
809 w->active = active; 1172 w->active = active;
1173 ev_ref (EV_A);
810} 1174}
811 1175
812static void 1176inline void
813ev_stop (W w) 1177ev_stop (EV_P_ W w)
814{ 1178{
1179 ev_unref (EV_A);
815 w->active = 0; 1180 w->active = 0;
816} 1181}
817 1182
818/*****************************************************************************/ 1183/*****************************************************************************/
819 1184
820void 1185void
821ev_io_start (struct ev_io *w) 1186ev_io_start (EV_P_ struct ev_io *w)
822{ 1187{
823 int fd = w->fd; 1188 int fd = w->fd;
824 1189
825 if (ev_is_active (w)) 1190 if (ev_is_active (w))
826 return; 1191 return;
827 1192
828 assert (("ev_io_start called with negative fd", fd >= 0)); 1193 assert (("ev_io_start called with negative fd", fd >= 0));
829 1194
830 ev_start ((W)w, 1); 1195 ev_start (EV_A_ (W)w, 1);
831 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1196 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
832 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1197 wlist_add ((WL *)&anfds[fd].head, (WL)w);
833 1198
834 fd_change (fd); 1199 fd_change (EV_A_ fd);
835} 1200}
836 1201
837void 1202void
838ev_io_stop (struct ev_io *w) 1203ev_io_stop (EV_P_ struct ev_io *w)
839{ 1204{
840 ev_clear_pending ((W)w); 1205 ev_clear_pending (EV_A_ (W)w);
841 if (!ev_is_active (w)) 1206 if (!ev_is_active (w))
842 return; 1207 return;
843 1208
844 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1209 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
845 ev_stop ((W)w); 1210 ev_stop (EV_A_ (W)w);
846 1211
847 fd_change (w->fd); 1212 fd_change (EV_A_ w->fd);
848} 1213}
849 1214
850void 1215void
851ev_timer_start (struct ev_timer *w) 1216ev_timer_start (EV_P_ struct ev_timer *w)
852{ 1217{
853 if (ev_is_active (w)) 1218 if (ev_is_active (w))
854 return; 1219 return;
855 1220
856 w->at += now; 1221 ((WT)w)->at += mn_now;
857 1222
858 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1223 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
859 1224
860 ev_start ((W)w, ++timercnt); 1225 ev_start (EV_A_ (W)w, ++timercnt);
861 array_needsize (timers, timermax, timercnt, ); 1226 array_needsize (timers, timermax, timercnt, );
862 timers [timercnt - 1] = w; 1227 timers [timercnt - 1] = w;
863 upheap ((WT *)timers, timercnt - 1); 1228 upheap ((WT *)timers, timercnt - 1);
864}
865 1229
1230 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1231}
1232
866void 1233void
867ev_timer_stop (struct ev_timer *w) 1234ev_timer_stop (EV_P_ struct ev_timer *w)
868{ 1235{
869 ev_clear_pending ((W)w); 1236 ev_clear_pending (EV_A_ (W)w);
870 if (!ev_is_active (w)) 1237 if (!ev_is_active (w))
871 return; 1238 return;
872 1239
1240 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1241
873 if (w->active < timercnt--) 1242 if (((W)w)->active < timercnt--)
874 { 1243 {
875 timers [w->active - 1] = timers [timercnt]; 1244 timers [((W)w)->active - 1] = timers [timercnt];
876 downheap ((WT *)timers, timercnt, w->active - 1); 1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
877 } 1246 }
878 1247
879 w->at = w->repeat; 1248 ((WT)w)->at = w->repeat;
880 1249
881 ev_stop ((W)w); 1250 ev_stop (EV_A_ (W)w);
882} 1251}
883 1252
884void 1253void
885ev_timer_again (struct ev_timer *w) 1254ev_timer_again (EV_P_ struct ev_timer *w)
886{ 1255{
887 if (ev_is_active (w)) 1256 if (ev_is_active (w))
888 { 1257 {
889 if (w->repeat) 1258 if (w->repeat)
890 { 1259 {
891 w->at = now + w->repeat; 1260 ((WT)w)->at = mn_now + w->repeat;
892 downheap ((WT *)timers, timercnt, w->active - 1); 1261 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
893 } 1262 }
894 else 1263 else
895 ev_timer_stop (w); 1264 ev_timer_stop (EV_A_ w);
896 } 1265 }
897 else if (w->repeat) 1266 else if (w->repeat)
898 ev_timer_start (w); 1267 ev_timer_start (EV_A_ w);
899} 1268}
900 1269
901void 1270void
902ev_periodic_start (struct ev_periodic *w) 1271ev_periodic_start (EV_P_ struct ev_periodic *w)
903{ 1272{
904 if (ev_is_active (w)) 1273 if (ev_is_active (w))
905 return; 1274 return;
906 1275
907 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1276 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
908 1277
909 /* this formula differs from the one in periodic_reify because we do not always round up */ 1278 /* this formula differs from the one in periodic_reify because we do not always round up */
910 if (w->interval) 1279 if (w->interval)
911 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1280 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
912 1281
913 ev_start ((W)w, ++periodiccnt); 1282 ev_start (EV_A_ (W)w, ++periodiccnt);
914 array_needsize (periodics, periodicmax, periodiccnt, ); 1283 array_needsize (periodics, periodicmax, periodiccnt, );
915 periodics [periodiccnt - 1] = w; 1284 periodics [periodiccnt - 1] = w;
916 upheap ((WT *)periodics, periodiccnt - 1); 1285 upheap ((WT *)periodics, periodiccnt - 1);
917}
918 1286
1287 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1288}
1289
919void 1290void
920ev_periodic_stop (struct ev_periodic *w) 1291ev_periodic_stop (EV_P_ struct ev_periodic *w)
921{ 1292{
922 ev_clear_pending ((W)w); 1293 ev_clear_pending (EV_A_ (W)w);
923 if (!ev_is_active (w)) 1294 if (!ev_is_active (w))
924 return; 1295 return;
925 1296
1297 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1298
926 if (w->active < periodiccnt--) 1299 if (((W)w)->active < periodiccnt--)
927 { 1300 {
928 periodics [w->active - 1] = periodics [periodiccnt]; 1301 periodics [((W)w)->active - 1] = periodics [periodiccnt];
929 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1302 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
930 } 1303 }
931 1304
932 ev_stop ((W)w); 1305 ev_stop (EV_A_ (W)w);
933} 1306}
934 1307
935void 1308void
936ev_signal_start (struct ev_signal *w) 1309ev_idle_start (EV_P_ struct ev_idle *w)
937{ 1310{
938 if (ev_is_active (w)) 1311 if (ev_is_active (w))
939 return; 1312 return;
940 1313
1314 ev_start (EV_A_ (W)w, ++idlecnt);
1315 array_needsize (idles, idlemax, idlecnt, );
1316 idles [idlecnt - 1] = w;
1317}
1318
1319void
1320ev_idle_stop (EV_P_ struct ev_idle *w)
1321{
1322 ev_clear_pending (EV_A_ (W)w);
1323 if (ev_is_active (w))
1324 return;
1325
1326 idles [((W)w)->active - 1] = idles [--idlecnt];
1327 ev_stop (EV_A_ (W)w);
1328}
1329
1330void
1331ev_prepare_start (EV_P_ struct ev_prepare *w)
1332{
1333 if (ev_is_active (w))
1334 return;
1335
1336 ev_start (EV_A_ (W)w, ++preparecnt);
1337 array_needsize (prepares, preparemax, preparecnt, );
1338 prepares [preparecnt - 1] = w;
1339}
1340
1341void
1342ev_prepare_stop (EV_P_ struct ev_prepare *w)
1343{
1344 ev_clear_pending (EV_A_ (W)w);
1345 if (ev_is_active (w))
1346 return;
1347
1348 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1349 ev_stop (EV_A_ (W)w);
1350}
1351
1352void
1353ev_check_start (EV_P_ struct ev_check *w)
1354{
1355 if (ev_is_active (w))
1356 return;
1357
1358 ev_start (EV_A_ (W)w, ++checkcnt);
1359 array_needsize (checks, checkmax, checkcnt, );
1360 checks [checkcnt - 1] = w;
1361}
1362
1363void
1364ev_check_stop (EV_P_ struct ev_check *w)
1365{
1366 ev_clear_pending (EV_A_ (W)w);
1367 if (ev_is_active (w))
1368 return;
1369
1370 checks [((W)w)->active - 1] = checks [--checkcnt];
1371 ev_stop (EV_A_ (W)w);
1372}
1373
1374#ifndef SA_RESTART
1375# define SA_RESTART 0
1376#endif
1377
1378void
1379ev_signal_start (EV_P_ struct ev_signal *w)
1380{
1381#if EV_MULTIPLICITY
1382 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1383#endif
1384 if (ev_is_active (w))
1385 return;
1386
941 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1387 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
942 1388
943 ev_start ((W)w, 1); 1389 ev_start (EV_A_ (W)w, 1);
944 array_needsize (signals, signalmax, w->signum, signals_init); 1390 array_needsize (signals, signalmax, w->signum, signals_init);
945 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1391 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
946 1392
947 if (!w->next) 1393 if (!((WL)w)->next)
948 { 1394 {
1395#if WIN32
1396 signal (w->signum, sighandler);
1397#else
949 struct sigaction sa; 1398 struct sigaction sa;
950 sa.sa_handler = sighandler; 1399 sa.sa_handler = sighandler;
951 sigfillset (&sa.sa_mask); 1400 sigfillset (&sa.sa_mask);
952 sa.sa_flags = 0; 1401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
953 sigaction (w->signum, &sa, 0); 1402 sigaction (w->signum, &sa, 0);
1403#endif
954 } 1404 }
955} 1405}
956 1406
957void 1407void
958ev_signal_stop (struct ev_signal *w) 1408ev_signal_stop (EV_P_ struct ev_signal *w)
959{ 1409{
960 ev_clear_pending ((W)w); 1410 ev_clear_pending (EV_A_ (W)w);
961 if (!ev_is_active (w)) 1411 if (!ev_is_active (w))
962 return; 1412 return;
963 1413
964 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1414 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
965 ev_stop ((W)w); 1415 ev_stop (EV_A_ (W)w);
966 1416
967 if (!signals [w->signum - 1].head) 1417 if (!signals [w->signum - 1].head)
968 signal (w->signum, SIG_DFL); 1418 signal (w->signum, SIG_DFL);
969} 1419}
970 1420
971void 1421void
972ev_idle_start (struct ev_idle *w) 1422ev_child_start (EV_P_ struct ev_child *w)
973{ 1423{
1424#if EV_MULTIPLICITY
1425 assert (("child watchers are only supported in the default loop", loop == default_loop));
1426#endif
974 if (ev_is_active (w)) 1427 if (ev_is_active (w))
975 return; 1428 return;
976 1429
977 ev_start ((W)w, ++idlecnt); 1430 ev_start (EV_A_ (W)w, 1);
978 array_needsize (idles, idlemax, idlecnt, ); 1431 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
979 idles [idlecnt - 1] = w;
980} 1432}
981 1433
982void 1434void
983ev_idle_stop (struct ev_idle *w) 1435ev_child_stop (EV_P_ struct ev_child *w)
984{ 1436{
985 ev_clear_pending ((W)w); 1437 ev_clear_pending (EV_A_ (W)w);
986 if (ev_is_active (w)) 1438 if (ev_is_active (w))
987 return; 1439 return;
988 1440
989 idles [w->active - 1] = idles [--idlecnt];
990 ev_stop ((W)w);
991}
992
993void
994ev_prepare_start (struct ev_prepare *w)
995{
996 if (ev_is_active (w))
997 return;
998
999 ev_start ((W)w, ++preparecnt);
1000 array_needsize (prepares, preparemax, preparecnt, );
1001 prepares [preparecnt - 1] = w;
1002}
1003
1004void
1005ev_prepare_stop (struct ev_prepare *w)
1006{
1007 ev_clear_pending ((W)w);
1008 if (ev_is_active (w))
1009 return;
1010
1011 prepares [w->active - 1] = prepares [--preparecnt];
1012 ev_stop ((W)w);
1013}
1014
1015void
1016ev_check_start (struct ev_check *w)
1017{
1018 if (ev_is_active (w))
1019 return;
1020
1021 ev_start ((W)w, ++checkcnt);
1022 array_needsize (checks, checkmax, checkcnt, );
1023 checks [checkcnt - 1] = w;
1024}
1025
1026void
1027ev_check_stop (struct ev_check *w)
1028{
1029 ev_clear_pending ((W)w);
1030 if (ev_is_active (w))
1031 return;
1032
1033 checks [w->active - 1] = checks [--checkcnt];
1034 ev_stop ((W)w);
1035}
1036
1037void
1038ev_child_start (struct ev_child *w)
1039{
1040 if (ev_is_active (w))
1041 return;
1042
1043 ev_start ((W)w, 1);
1044 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1045}
1046
1047void
1048ev_child_stop (struct ev_child *w)
1049{
1050 ev_clear_pending ((W)w);
1051 if (ev_is_active (w))
1052 return;
1053
1054 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1441 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1055 ev_stop ((W)w); 1442 ev_stop (EV_A_ (W)w);
1056} 1443}
1057 1444
1058/*****************************************************************************/ 1445/*****************************************************************************/
1059 1446
1060struct ev_once 1447struct ev_once
1064 void (*cb)(int revents, void *arg); 1451 void (*cb)(int revents, void *arg);
1065 void *arg; 1452 void *arg;
1066}; 1453};
1067 1454
1068static void 1455static void
1069once_cb (struct ev_once *once, int revents) 1456once_cb (EV_P_ struct ev_once *once, int revents)
1070{ 1457{
1071 void (*cb)(int revents, void *arg) = once->cb; 1458 void (*cb)(int revents, void *arg) = once->cb;
1072 void *arg = once->arg; 1459 void *arg = once->arg;
1073 1460
1074 ev_io_stop (&once->io); 1461 ev_io_stop (EV_A_ &once->io);
1075 ev_timer_stop (&once->to); 1462 ev_timer_stop (EV_A_ &once->to);
1076 free (once); 1463 ev_free (once);
1077 1464
1078 cb (revents, arg); 1465 cb (revents, arg);
1079} 1466}
1080 1467
1081static void 1468static void
1082once_cb_io (struct ev_io *w, int revents) 1469once_cb_io (EV_P_ struct ev_io *w, int revents)
1083{ 1470{
1084 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1471 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1085} 1472}
1086 1473
1087static void 1474static void
1088once_cb_to (struct ev_timer *w, int revents) 1475once_cb_to (EV_P_ struct ev_timer *w, int revents)
1089{ 1476{
1090 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1477 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1091} 1478}
1092 1479
1093void 1480void
1094ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1095{ 1482{
1096 struct ev_once *once = malloc (sizeof (struct ev_once)); 1483 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1097 1484
1098 if (!once) 1485 if (!once)
1099 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1486 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1100 else 1487 else
1101 { 1488 {
1104 1491
1105 ev_watcher_init (&once->io, once_cb_io); 1492 ev_watcher_init (&once->io, once_cb_io);
1106 if (fd >= 0) 1493 if (fd >= 0)
1107 { 1494 {
1108 ev_io_set (&once->io, fd, events); 1495 ev_io_set (&once->io, fd, events);
1109 ev_io_start (&once->io); 1496 ev_io_start (EV_A_ &once->io);
1110 } 1497 }
1111 1498
1112 ev_watcher_init (&once->to, once_cb_to); 1499 ev_watcher_init (&once->to, once_cb_to);
1113 if (timeout >= 0.) 1500 if (timeout >= 0.)
1114 { 1501 {
1115 ev_timer_set (&once->to, timeout, 0.); 1502 ev_timer_set (&once->to, timeout, 0.);
1116 ev_timer_start (&once->to); 1503 ev_timer_start (EV_A_ &once->to);
1117 } 1504 }
1118 } 1505 }
1119} 1506}
1120 1507
1121/*****************************************************************************/
1122
1123#if 0
1124
1125struct ev_io wio;
1126
1127static void
1128sin_cb (struct ev_io *w, int revents)
1129{
1130 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1131}
1132
1133static void
1134ocb (struct ev_timer *w, int revents)
1135{
1136 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1137 ev_timer_stop (w);
1138 ev_timer_start (w);
1139}
1140
1141static void
1142scb (struct ev_signal *w, int revents)
1143{
1144 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1145 ev_io_stop (&wio);
1146 ev_io_start (&wio);
1147}
1148
1149static void
1150gcb (struct ev_signal *w, int revents)
1151{
1152 fprintf (stderr, "generic %x\n", revents);
1153
1154}
1155
1156int main (void)
1157{
1158 ev_init (0);
1159
1160 ev_io_init (&wio, sin_cb, 0, EV_READ);
1161 ev_io_start (&wio);
1162
1163 struct ev_timer t[10000];
1164
1165#if 0
1166 int i;
1167 for (i = 0; i < 10000; ++i)
1168 {
1169 struct ev_timer *w = t + i;
1170 ev_watcher_init (w, ocb, i);
1171 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1172 ev_timer_start (w);
1173 if (drand48 () < 0.5)
1174 ev_timer_stop (w);
1175 }
1176#endif
1177
1178 struct ev_timer t1;
1179 ev_timer_init (&t1, ocb, 5, 10);
1180 ev_timer_start (&t1);
1181
1182 struct ev_signal sig;
1183 ev_signal_init (&sig, scb, SIGQUIT);
1184 ev_signal_start (&sig);
1185
1186 struct ev_check cw;
1187 ev_check_init (&cw, gcb);
1188 ev_check_start (&cw);
1189
1190 struct ev_idle iw;
1191 ev_idle_init (&iw, gcb);
1192 ev_idle_start (&iw);
1193
1194 ev_loop (0);
1195
1196 return 0;
1197}
1198
1199#endif
1200
1201
1202
1203

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines