ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.41 by root, Fri Nov 2 16:54:34 2007 UTC vs.
Revision 1.70 by root, Tue Nov 6 00:52:32 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
51/**/ 75/**/
52 76
62# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
63#endif 87#endif
64 88
65#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
66# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
67#endif 103#endif
68 104
69#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
70# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
71#endif 107#endif
100#endif 136#endif
101 137
102#define expect_false(expr) expect ((expr) != 0, 0) 138#define expect_false(expr) expect ((expr) != 0, 0)
103#define expect_true(expr) expect ((expr) != 0, 1) 139#define expect_true(expr) expect ((expr) != 0, 1)
104 140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
105typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
106typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
107typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
108 147
109static ev_tstamp now_floor, now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
110ev_tstamp ev_now;
111int ev_method;
112 149
113static int have_monotonic; /* runtime */ 150#if WIN32
114 151/* note: the comment below could not be substantiated, but what would I care */
115static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
116static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
117static void (*method_poll)(ev_tstamp timeout); 154#endif
118 155
119/*****************************************************************************/ 156/*****************************************************************************/
120 157
121ev_tstamp 158static void (*syserr_cb)(const char *msg);
159
160void ev_set_syserr_cb (void (*cb)(const char *msg))
161{
162 syserr_cb = cb;
163}
164
165static void
166syserr (const char *msg)
167{
168 if (!msg)
169 msg = "(libev) system error";
170
171 if (syserr_cb)
172 syserr_cb (msg);
173 else
174 {
175 perror (msg);
176 abort ();
177 }
178}
179
180static void *(*alloc)(void *ptr, long size);
181
182void ev_set_allocator (void *(*cb)(void *ptr, long size))
183{
184 alloc = cb;
185}
186
187static void *
188ev_realloc (void *ptr, long size)
189{
190 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
191
192 if (!ptr && size)
193 {
194 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
195 abort ();
196 }
197
198 return ptr;
199}
200
201#define ev_malloc(size) ev_realloc (0, (size))
202#define ev_free(ptr) ev_realloc ((ptr), 0)
203
204/*****************************************************************************/
205
206typedef struct
207{
208 WL head;
209 unsigned char events;
210 unsigned char reify;
211} ANFD;
212
213typedef struct
214{
215 W w;
216 int events;
217} ANPENDING;
218
219#if EV_MULTIPLICITY
220
221struct ev_loop
222{
223# define VAR(name,decl) decl;
224# include "ev_vars.h"
225};
226# undef VAR
227# include "ev_wrap.h"
228
229#else
230
231# define VAR(name,decl) static decl;
232# include "ev_vars.h"
233# undef VAR
234
235#endif
236
237/*****************************************************************************/
238
239inline ev_tstamp
122ev_time (void) 240ev_time (void)
123{ 241{
124#if EV_USE_REALTIME 242#if EV_USE_REALTIME
125 struct timespec ts; 243 struct timespec ts;
126 clock_gettime (CLOCK_REALTIME, &ts); 244 clock_gettime (CLOCK_REALTIME, &ts);
130 gettimeofday (&tv, 0); 248 gettimeofday (&tv, 0);
131 return tv.tv_sec + tv.tv_usec * 1e-6; 249 return tv.tv_sec + tv.tv_usec * 1e-6;
132#endif 250#endif
133} 251}
134 252
135static ev_tstamp 253inline ev_tstamp
136get_clock (void) 254get_clock (void)
137{ 255{
138#if EV_USE_MONOTONIC 256#if EV_USE_MONOTONIC
139 if (expect_true (have_monotonic)) 257 if (expect_true (have_monotonic))
140 { 258 {
145#endif 263#endif
146 264
147 return ev_time (); 265 return ev_time ();
148} 266}
149 267
268ev_tstamp
269ev_now (EV_P)
270{
271 return rt_now;
272}
273
150#define array_roundsize(base,n) ((n) | 4 & ~3) 274#define array_roundsize(base,n) ((n) | 4 & ~3)
151 275
152#define array_needsize(base,cur,cnt,init) \ 276#define array_needsize(base,cur,cnt,init) \
153 if (expect_false ((cnt) > cur)) \ 277 if (expect_false ((cnt) > cur)) \
154 { \ 278 { \
155 int newcnt = cur; \ 279 int newcnt = cur; \
156 do \ 280 do \
157 { \ 281 { \
158 newcnt = array_roundsize (base, newcnt << 1); \ 282 newcnt = array_roundsize (base, newcnt << 1); \
159 } \ 283 } \
160 while ((cnt) > newcnt); \ 284 while ((cnt) > newcnt); \
161 \ 285 \
162 base = realloc (base, sizeof (*base) * (newcnt)); \ 286 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
163 init (base + cur, newcnt - cur); \ 287 init (base + cur, newcnt - cur); \
164 cur = newcnt; \ 288 cur = newcnt; \
165 } 289 }
290
291#define array_slim(stem) \
292 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
293 { \
294 stem ## max = array_roundsize (stem ## cnt >> 1); \
295 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
296 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
297 }
298
299#define array_free(stem, idx) \
300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
166 301
167/*****************************************************************************/ 302/*****************************************************************************/
168
169typedef struct
170{
171 struct ev_io *head;
172 unsigned char events;
173 unsigned char reify;
174} ANFD;
175
176static ANFD *anfds;
177static int anfdmax;
178 303
179static void 304static void
180anfds_init (ANFD *base, int count) 305anfds_init (ANFD *base, int count)
181{ 306{
182 while (count--) 307 while (count--)
187 312
188 ++base; 313 ++base;
189 } 314 }
190} 315}
191 316
192typedef struct
193{
194 W w;
195 int events;
196} ANPENDING;
197
198static ANPENDING *pendings;
199static int pendingmax, pendingcnt;
200
201static void 317static void
202event (W w, int events) 318event (EV_P_ W w, int events)
203{ 319{
204 if (w->pending) 320 if (w->pending)
205 { 321 {
206 pendings [w->pending - 1].events |= events; 322 pendings [ABSPRI (w)][w->pending - 1].events |= events;
207 return; 323 return;
208 } 324 }
209 325
210 w->pending = ++pendingcnt; 326 w->pending = ++pendingcnt [ABSPRI (w)];
211 array_needsize (pendings, pendingmax, pendingcnt, ); 327 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
212 pendings [pendingcnt - 1].w = w; 328 pendings [ABSPRI (w)][w->pending - 1].w = w;
213 pendings [pendingcnt - 1].events = events; 329 pendings [ABSPRI (w)][w->pending - 1].events = events;
214} 330}
215 331
216static void 332static void
217queue_events (W *events, int eventcnt, int type) 333queue_events (EV_P_ W *events, int eventcnt, int type)
218{ 334{
219 int i; 335 int i;
220 336
221 for (i = 0; i < eventcnt; ++i) 337 for (i = 0; i < eventcnt; ++i)
222 event (events [i], type); 338 event (EV_A_ events [i], type);
223} 339}
224 340
225static void 341static void
226fd_event (int fd, int events) 342fd_event (EV_P_ int fd, int events)
227{ 343{
228 ANFD *anfd = anfds + fd; 344 ANFD *anfd = anfds + fd;
229 struct ev_io *w; 345 struct ev_io *w;
230 346
231 for (w = anfd->head; w; w = w->next) 347 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
232 { 348 {
233 int ev = w->events & events; 349 int ev = w->events & events;
234 350
235 if (ev) 351 if (ev)
236 event ((W)w, ev); 352 event (EV_A_ (W)w, ev);
237 } 353 }
238} 354}
239 355
240/*****************************************************************************/ 356/*****************************************************************************/
241 357
242static int *fdchanges;
243static int fdchangemax, fdchangecnt;
244
245static void 358static void
246fd_reify (void) 359fd_reify (EV_P)
247{ 360{
248 int i; 361 int i;
249 362
250 for (i = 0; i < fdchangecnt; ++i) 363 for (i = 0; i < fdchangecnt; ++i)
251 { 364 {
253 ANFD *anfd = anfds + fd; 366 ANFD *anfd = anfds + fd;
254 struct ev_io *w; 367 struct ev_io *w;
255 368
256 int events = 0; 369 int events = 0;
257 370
258 for (w = anfd->head; w; w = w->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
259 events |= w->events; 372 events |= w->events;
260 373
261 anfd->reify = 0; 374 anfd->reify = 0;
262 375
263 if (anfd->events != events)
264 {
265 method_modify (fd, anfd->events, events); 376 method_modify (EV_A_ fd, anfd->events, events);
266 anfd->events = events; 377 anfd->events = events;
267 }
268 } 378 }
269 379
270 fdchangecnt = 0; 380 fdchangecnt = 0;
271} 381}
272 382
273static void 383static void
274fd_change (int fd) 384fd_change (EV_P_ int fd)
275{ 385{
276 if (anfds [fd].reify || fdchangecnt < 0) 386 if (anfds [fd].reify)
277 return; 387 return;
278 388
279 anfds [fd].reify = 1; 389 anfds [fd].reify = 1;
280 390
281 ++fdchangecnt; 391 ++fdchangecnt;
282 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 392 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
283 fdchanges [fdchangecnt - 1] = fd; 393 fdchanges [fdchangecnt - 1] = fd;
284} 394}
285 395
286static void 396static void
287fd_kill (int fd) 397fd_kill (EV_P_ int fd)
288{ 398{
289 struct ev_io *w; 399 struct ev_io *w;
290 400
291 printf ("killing fd %d\n", fd);//D
292 while ((w = anfds [fd].head)) 401 while ((w = (struct ev_io *)anfds [fd].head))
293 { 402 {
294 ev_io_stop (w); 403 ev_io_stop (EV_A_ w);
295 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 404 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
296 } 405 }
297} 406}
298 407
299/* called on EBADF to verify fds */ 408/* called on EBADF to verify fds */
300static void 409static void
301fd_ebadf (void) 410fd_ebadf (EV_P)
302{ 411{
303 int fd; 412 int fd;
304 413
305 for (fd = 0; fd < anfdmax; ++fd) 414 for (fd = 0; fd < anfdmax; ++fd)
306 if (anfds [fd].events) 415 if (anfds [fd].events)
307 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 416 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
308 fd_kill (fd); 417 fd_kill (EV_A_ fd);
309} 418}
310 419
311/* called on ENOMEM in select/poll to kill some fds and retry */ 420/* called on ENOMEM in select/poll to kill some fds and retry */
312static void 421static void
313fd_enomem (void) 422fd_enomem (EV_P)
314{ 423{
315 int fd = anfdmax; 424 int fd;
316 425
317 while (fd--) 426 for (fd = anfdmax; fd--; )
318 if (anfds [fd].events) 427 if (anfds [fd].events)
319 { 428 {
320 close (fd);
321 fd_kill (fd); 429 fd_kill (EV_A_ fd);
322 return; 430 return;
323 } 431 }
324} 432}
325 433
434/* usually called after fork if method needs to re-arm all fds from scratch */
435static void
436fd_rearm_all (EV_P)
437{
438 int fd;
439
440 /* this should be highly optimised to not do anything but set a flag */
441 for (fd = 0; fd < anfdmax; ++fd)
442 if (anfds [fd].events)
443 {
444 anfds [fd].events = 0;
445 fd_change (EV_A_ fd);
446 }
447}
448
326/*****************************************************************************/ 449/*****************************************************************************/
327 450
328static struct ev_timer **timers;
329static int timermax, timercnt;
330
331static struct ev_periodic **periodics;
332static int periodicmax, periodiccnt;
333
334static void 451static void
335upheap (WT *timers, int k) 452upheap (WT *heap, int k)
336{ 453{
337 WT w = timers [k]; 454 WT w = heap [k];
338 455
339 while (k && timers [k >> 1]->at > w->at) 456 while (k && heap [k >> 1]->at > w->at)
340 { 457 {
341 timers [k] = timers [k >> 1]; 458 heap [k] = heap [k >> 1];
342 timers [k]->active = k + 1; 459 ((W)heap [k])->active = k + 1;
343 k >>= 1; 460 k >>= 1;
344 } 461 }
345 462
346 timers [k] = w; 463 heap [k] = w;
347 timers [k]->active = k + 1; 464 ((W)heap [k])->active = k + 1;
348 465
349} 466}
350 467
351static void 468static void
352downheap (WT *timers, int N, int k) 469downheap (WT *heap, int N, int k)
353{ 470{
354 WT w = timers [k]; 471 WT w = heap [k];
355 472
356 while (k < (N >> 1)) 473 while (k < (N >> 1))
357 { 474 {
358 int j = k << 1; 475 int j = k << 1;
359 476
360 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 477 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
361 ++j; 478 ++j;
362 479
363 if (w->at <= timers [j]->at) 480 if (w->at <= heap [j]->at)
364 break; 481 break;
365 482
366 timers [k] = timers [j]; 483 heap [k] = heap [j];
367 timers [k]->active = k + 1; 484 ((W)heap [k])->active = k + 1;
368 k = j; 485 k = j;
369 } 486 }
370 487
371 timers [k] = w; 488 heap [k] = w;
372 timers [k]->active = k + 1; 489 ((W)heap [k])->active = k + 1;
373} 490}
374 491
375/*****************************************************************************/ 492/*****************************************************************************/
376 493
377typedef struct 494typedef struct
378{ 495{
379 struct ev_signal *head; 496 WL head;
380 sig_atomic_t volatile gotsig; 497 sig_atomic_t volatile gotsig;
381} ANSIG; 498} ANSIG;
382 499
383static ANSIG *signals; 500static ANSIG *signals;
384static int signalmax; 501static int signalmax;
400} 517}
401 518
402static void 519static void
403sighandler (int signum) 520sighandler (int signum)
404{ 521{
522#if WIN32
523 signal (signum, sighandler);
524#endif
525
405 signals [signum - 1].gotsig = 1; 526 signals [signum - 1].gotsig = 1;
406 527
407 if (!gotsig) 528 if (!gotsig)
408 { 529 {
530 int old_errno = errno;
409 gotsig = 1; 531 gotsig = 1;
410 write (sigpipe [1], &signum, 1); 532 write (sigpipe [1], &signum, 1);
533 errno = old_errno;
411 } 534 }
412} 535}
413 536
414static void 537static void
415sigcb (struct ev_io *iow, int revents) 538sigcb (EV_P_ struct ev_io *iow, int revents)
416{ 539{
417 struct ev_signal *w; 540 WL w;
418 int signum; 541 int signum;
419 542
420 read (sigpipe [0], &revents, 1); 543 read (sigpipe [0], &revents, 1);
421 gotsig = 0; 544 gotsig = 0;
422 545
424 if (signals [signum].gotsig) 547 if (signals [signum].gotsig)
425 { 548 {
426 signals [signum].gotsig = 0; 549 signals [signum].gotsig = 0;
427 550
428 for (w = signals [signum].head; w; w = w->next) 551 for (w = signals [signum].head; w; w = w->next)
429 event ((W)w, EV_SIGNAL); 552 event (EV_A_ (W)w, EV_SIGNAL);
430 } 553 }
431} 554}
432 555
433static void 556static void
434siginit (void) 557siginit (EV_P)
435{ 558{
559#ifndef WIN32
436 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 560 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
437 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 561 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
438 562
439 /* rather than sort out wether we really need nb, set it */ 563 /* rather than sort out wether we really need nb, set it */
440 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 564 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
441 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 565 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
566#endif
442 567
443 ev_io_set (&sigev, sigpipe [0], EV_READ); 568 ev_io_set (&sigev, sigpipe [0], EV_READ);
444 ev_io_start (&sigev); 569 ev_io_start (EV_A_ &sigev);
570 ev_unref (EV_A); /* child watcher should not keep loop alive */
445} 571}
446 572
447/*****************************************************************************/ 573/*****************************************************************************/
448 574
449static struct ev_idle **idles; 575#ifndef WIN32
450static int idlemax, idlecnt;
451
452static struct ev_prepare **prepares;
453static int preparemax, preparecnt;
454
455static struct ev_check **checks;
456static int checkmax, checkcnt;
457
458/*****************************************************************************/
459 576
460static struct ev_child *childs [PID_HASHSIZE]; 577static struct ev_child *childs [PID_HASHSIZE];
461static struct ev_signal childev; 578static struct ev_signal childev;
462 579
463#ifndef WCONTINUED 580#ifndef WCONTINUED
464# define WCONTINUED 0 581# define WCONTINUED 0
465#endif 582#endif
466 583
467static void 584static void
468childcb (struct ev_signal *sw, int revents) 585child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
469{ 586{
470 struct ev_child *w; 587 struct ev_child *w;
588
589 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
590 if (w->pid == pid || !w->pid)
591 {
592 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
593 w->rpid = pid;
594 w->rstatus = status;
595 event (EV_A_ (W)w, EV_CHILD);
596 }
597}
598
599static void
600childcb (EV_P_ struct ev_signal *sw, int revents)
601{
471 int pid, status; 602 int pid, status;
472 603
473 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 604 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
474 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 605 {
475 if (w->pid == pid || !w->pid) 606 /* make sure we are called again until all childs have been reaped */
476 { 607 event (EV_A_ (W)sw, EV_SIGNAL);
477 w->status = status; 608
478 event ((W)w, EV_CHILD); 609 child_reap (EV_A_ sw, pid, pid, status);
479 } 610 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
611 }
480} 612}
613
614#endif
481 615
482/*****************************************************************************/ 616/*****************************************************************************/
483 617
618#if EV_USE_KQUEUE
619# include "ev_kqueue.c"
620#endif
484#if EV_USE_EPOLL 621#if EV_USE_EPOLL
485# include "ev_epoll.c" 622# include "ev_epoll.c"
486#endif 623#endif
487#if EV_USE_POLL 624#if EV_USE_POLL
488# include "ev_poll.c" 625# include "ev_poll.c"
501ev_version_minor (void) 638ev_version_minor (void)
502{ 639{
503 return EV_VERSION_MINOR; 640 return EV_VERSION_MINOR;
504} 641}
505 642
506/* return true if we are running with elevated privileges and ignore env variables */ 643/* return true if we are running with elevated privileges and should ignore env variables */
507static int 644static int
508enable_secure () 645enable_secure (void)
509{ 646{
647#ifdef WIN32
648 return 0;
649#else
510 return getuid () != geteuid () 650 return getuid () != geteuid ()
511 || getgid () != getegid (); 651 || getgid () != getegid ();
652#endif
512} 653}
513 654
514int ev_init (int methods) 655int
656ev_method (EV_P)
515{ 657{
658 return method;
659}
660
661static void
662loop_init (EV_P_ int methods)
663{
516 if (!ev_method) 664 if (!method)
517 { 665 {
518#if EV_USE_MONOTONIC 666#if EV_USE_MONOTONIC
519 { 667 {
520 struct timespec ts; 668 struct timespec ts;
521 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 669 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
522 have_monotonic = 1; 670 have_monotonic = 1;
523 } 671 }
524#endif 672#endif
525 673
526 ev_now = ev_time (); 674 rt_now = ev_time ();
527 now = get_clock (); 675 mn_now = get_clock ();
528 now_floor = now; 676 now_floor = mn_now;
529 diff = ev_now - now; 677 rtmn_diff = rt_now - mn_now;
530
531 if (pipe (sigpipe))
532 return 0;
533 678
534 if (methods == EVMETHOD_AUTO) 679 if (methods == EVMETHOD_AUTO)
535 if (!enable_secure () && getenv ("LIBEV_METHODS")) 680 if (!enable_secure () && getenv ("LIBEV_METHODS"))
536 methods = atoi (getenv ("LIBEV_METHODS")); 681 methods = atoi (getenv ("LIBEV_METHODS"));
537 else 682 else
538 methods = EVMETHOD_ANY; 683 methods = EVMETHOD_ANY;
539 684
540 ev_method = 0; 685 method = 0;
686#if EV_USE_WIN32
687 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
688#endif
689#if EV_USE_KQUEUE
690 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
691#endif
541#if EV_USE_EPOLL 692#if EV_USE_EPOLL
542 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 693 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
543#endif 694#endif
544#if EV_USE_POLL 695#if EV_USE_POLL
545 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 696 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
546#endif 697#endif
547#if EV_USE_SELECT 698#if EV_USE_SELECT
548 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 699 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
549#endif 700#endif
550 701
702 ev_watcher_init (&sigev, sigcb);
703 ev_set_priority (&sigev, EV_MAXPRI);
704 }
705}
706
707void
708loop_destroy (EV_P)
709{
710 int i;
711
712#if EV_USE_WIN32
713 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
714#endif
715#if EV_USE_KQUEUE
716 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
717#endif
718#if EV_USE_EPOLL
719 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
720#endif
721#if EV_USE_POLL
722 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
723#endif
724#if EV_USE_SELECT
725 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
726#endif
727
728 for (i = NUMPRI; i--; )
729 array_free (pending, [i]);
730
731 array_free (fdchange, );
732 array_free (timer, );
733 array_free (periodic, );
734 array_free (idle, );
735 array_free (prepare, );
736 array_free (check, );
737
738 method = 0;
739}
740
741static void
742loop_fork (EV_P)
743{
744#if EV_USE_EPOLL
745 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
746#endif
747#if EV_USE_KQUEUE
748 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
749#endif
750
751 if (ev_is_active (&sigev))
752 {
753 /* default loop */
754
755 ev_ref (EV_A);
756 ev_io_stop (EV_A_ &sigev);
757 close (sigpipe [0]);
758 close (sigpipe [1]);
759
760 while (pipe (sigpipe))
761 syserr ("(libev) error creating pipe");
762
763 siginit (EV_A);
764 }
765
766 postfork = 0;
767}
768
769#if EV_MULTIPLICITY
770struct ev_loop *
771ev_loop_new (int methods)
772{
773 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
774
775 memset (loop, 0, sizeof (struct ev_loop));
776
777 loop_init (EV_A_ methods);
778
779 if (ev_method (EV_A))
780 return loop;
781
782 return 0;
783}
784
785void
786ev_loop_destroy (EV_P)
787{
788 loop_destroy (EV_A);
789 ev_free (loop);
790}
791
792void
793ev_loop_fork (EV_P)
794{
795 postfork = 1;
796}
797
798#endif
799
800#if EV_MULTIPLICITY
801struct ev_loop default_loop_struct;
802static struct ev_loop *default_loop;
803
804struct ev_loop *
805#else
806static int default_loop;
807
808int
809#endif
810ev_default_loop (int methods)
811{
812 if (sigpipe [0] == sigpipe [1])
813 if (pipe (sigpipe))
814 return 0;
815
816 if (!default_loop)
817 {
818#if EV_MULTIPLICITY
819 struct ev_loop *loop = default_loop = &default_loop_struct;
820#else
821 default_loop = 1;
822#endif
823
824 loop_init (EV_A_ methods);
825
551 if (ev_method) 826 if (ev_method (EV_A))
552 { 827 {
553 ev_watcher_init (&sigev, sigcb);
554 siginit (); 828 siginit (EV_A);
555 829
830#ifndef WIN32
556 ev_signal_init (&childev, childcb, SIGCHLD); 831 ev_signal_init (&childev, childcb, SIGCHLD);
832 ev_set_priority (&childev, EV_MAXPRI);
557 ev_signal_start (&childev); 833 ev_signal_start (EV_A_ &childev);
834 ev_unref (EV_A); /* child watcher should not keep loop alive */
835#endif
558 } 836 }
837 else
838 default_loop = 0;
559 } 839 }
560 840
561 return ev_method; 841 return default_loop;
842}
843
844void
845ev_default_destroy (void)
846{
847#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop;
849#endif
850
851 ev_ref (EV_A); /* child watcher */
852 ev_signal_stop (EV_A_ &childev);
853
854 ev_ref (EV_A); /* signal watcher */
855 ev_io_stop (EV_A_ &sigev);
856
857 close (sigpipe [0]); sigpipe [0] = 0;
858 close (sigpipe [1]); sigpipe [1] = 0;
859
860 loop_destroy (EV_A);
861}
862
863void
864ev_default_fork (void)
865{
866#if EV_MULTIPLICITY
867 struct ev_loop *loop = default_loop;
868#endif
869
870 if (method)
871 postfork = 1;
562} 872}
563 873
564/*****************************************************************************/ 874/*****************************************************************************/
565 875
566void
567ev_fork_prepare (void)
568{
569 /* nop */
570}
571
572void
573ev_fork_parent (void)
574{
575 /* nop */
576}
577
578void
579ev_fork_child (void)
580{
581#if EV_USE_EPOLL
582 if (ev_method == EVMETHOD_EPOLL)
583 epoll_postfork_child ();
584#endif
585
586 ev_io_stop (&sigev);
587 close (sigpipe [0]);
588 close (sigpipe [1]);
589 pipe (sigpipe);
590 siginit ();
591}
592
593/*****************************************************************************/
594
595static void 876static void
596call_pending (void) 877call_pending (EV_P)
597{ 878{
879 int pri;
880
881 for (pri = NUMPRI; pri--; )
598 while (pendingcnt) 882 while (pendingcnt [pri])
599 { 883 {
600 ANPENDING *p = pendings + --pendingcnt; 884 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
601 885
602 if (p->w) 886 if (p->w)
603 { 887 {
604 p->w->pending = 0; 888 p->w->pending = 0;
605 p->w->cb (p->w, p->events); 889 p->w->cb (EV_A_ p->w, p->events);
606 } 890 }
607 } 891 }
608} 892}
609 893
610static void 894static void
611timers_reify (void) 895timers_reify (EV_P)
612{ 896{
613 while (timercnt && timers [0]->at <= now) 897 while (timercnt && ((WT)timers [0])->at <= mn_now)
614 { 898 {
615 struct ev_timer *w = timers [0]; 899 struct ev_timer *w = timers [0];
900
901 assert (("inactive timer on timer heap detected", ev_is_active (w)));
616 902
617 /* first reschedule or stop timer */ 903 /* first reschedule or stop timer */
618 if (w->repeat) 904 if (w->repeat)
619 { 905 {
620 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 906 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
621 w->at = now + w->repeat; 907 ((WT)w)->at = mn_now + w->repeat;
622 downheap ((WT *)timers, timercnt, 0); 908 downheap ((WT *)timers, timercnt, 0);
623 } 909 }
624 else 910 else
625 ev_timer_stop (w); /* nonrepeating: stop timer */ 911 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
626 912
627 event ((W)w, EV_TIMEOUT); 913 event (EV_A_ (W)w, EV_TIMEOUT);
628 } 914 }
629} 915}
630 916
631static void 917static void
632periodics_reify (void) 918periodics_reify (EV_P)
633{ 919{
634 while (periodiccnt && periodics [0]->at <= ev_now) 920 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
635 { 921 {
636 struct ev_periodic *w = periodics [0]; 922 struct ev_periodic *w = periodics [0];
923
924 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
637 925
638 /* first reschedule or stop timer */ 926 /* first reschedule or stop timer */
639 if (w->interval) 927 if (w->interval)
640 { 928 {
641 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 929 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
642 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 930 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
643 downheap ((WT *)periodics, periodiccnt, 0); 931 downheap ((WT *)periodics, periodiccnt, 0);
644 } 932 }
645 else 933 else
646 ev_periodic_stop (w); /* nonrepeating: stop timer */ 934 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
647 935
648 event ((W)w, EV_PERIODIC); 936 event (EV_A_ (W)w, EV_PERIODIC);
649 } 937 }
650} 938}
651 939
652static void 940static void
653periodics_reschedule (ev_tstamp diff) 941periodics_reschedule (EV_P)
654{ 942{
655 int i; 943 int i;
656 944
657 /* adjust periodics after time jump */ 945 /* adjust periodics after time jump */
658 for (i = 0; i < periodiccnt; ++i) 946 for (i = 0; i < periodiccnt; ++i)
659 { 947 {
660 struct ev_periodic *w = periodics [i]; 948 struct ev_periodic *w = periodics [i];
661 949
662 if (w->interval) 950 if (w->interval)
663 { 951 {
664 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 952 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
665 953
666 if (fabs (diff) >= 1e-4) 954 if (fabs (diff) >= 1e-4)
667 { 955 {
668 ev_periodic_stop (w); 956 ev_periodic_stop (EV_A_ w);
669 ev_periodic_start (w); 957 ev_periodic_start (EV_A_ w);
670 958
671 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 959 i = 0; /* restart loop, inefficient, but time jumps should be rare */
672 } 960 }
673 } 961 }
674 } 962 }
675} 963}
676 964
677static int 965inline int
678time_update_monotonic (void) 966time_update_monotonic (EV_P)
679{ 967{
680 now = get_clock (); 968 mn_now = get_clock ();
681 969
682 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 970 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
683 { 971 {
684 ev_now = now + diff; 972 rt_now = rtmn_diff + mn_now;
685 return 0; 973 return 0;
686 } 974 }
687 else 975 else
688 { 976 {
689 now_floor = now; 977 now_floor = mn_now;
690 ev_now = ev_time (); 978 rt_now = ev_time ();
691 return 1; 979 return 1;
692 } 980 }
693} 981}
694 982
695static void 983static void
696time_update (void) 984time_update (EV_P)
697{ 985{
698 int i; 986 int i;
699 987
700#if EV_USE_MONOTONIC 988#if EV_USE_MONOTONIC
701 if (expect_true (have_monotonic)) 989 if (expect_true (have_monotonic))
702 { 990 {
703 if (time_update_monotonic ()) 991 if (time_update_monotonic (EV_A))
704 { 992 {
705 ev_tstamp odiff = diff; 993 ev_tstamp odiff = rtmn_diff;
706 994
707 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 995 for (i = 4; --i; ) /* loop a few times, before making important decisions */
708 { 996 {
709 diff = ev_now - now; 997 rtmn_diff = rt_now - mn_now;
710 998
711 if (fabs (odiff - diff) < MIN_TIMEJUMP) 999 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
712 return; /* all is well */ 1000 return; /* all is well */
713 1001
714 ev_now = ev_time (); 1002 rt_now = ev_time ();
715 now = get_clock (); 1003 mn_now = get_clock ();
716 now_floor = now; 1004 now_floor = mn_now;
717 } 1005 }
718 1006
719 periodics_reschedule (diff - odiff); 1007 periodics_reschedule (EV_A);
720 /* no timer adjustment, as the monotonic clock doesn't jump */ 1008 /* no timer adjustment, as the monotonic clock doesn't jump */
1009 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
721 } 1010 }
722 } 1011 }
723 else 1012 else
724#endif 1013#endif
725 { 1014 {
726 ev_now = ev_time (); 1015 rt_now = ev_time ();
727 1016
728 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1017 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
729 { 1018 {
730 periodics_reschedule (ev_now - now); 1019 periodics_reschedule (EV_A);
731 1020
732 /* adjust timers. this is easy, as the offset is the same for all */ 1021 /* adjust timers. this is easy, as the offset is the same for all */
733 for (i = 0; i < timercnt; ++i) 1022 for (i = 0; i < timercnt; ++i)
734 timers [i]->at += diff; 1023 ((WT)timers [i])->at += rt_now - mn_now;
735 } 1024 }
736 1025
737 now = ev_now; 1026 mn_now = rt_now;
738 } 1027 }
739} 1028}
740 1029
741int ev_loop_done; 1030void
1031ev_ref (EV_P)
1032{
1033 ++activecnt;
1034}
742 1035
1036void
1037ev_unref (EV_P)
1038{
1039 --activecnt;
1040}
1041
1042static int loop_done;
1043
1044void
743void ev_loop (int flags) 1045ev_loop (EV_P_ int flags)
744{ 1046{
745 double block; 1047 double block;
746 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1048 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
747 1049
748 do 1050 do
749 { 1051 {
750 /* queue check watchers (and execute them) */ 1052 /* queue check watchers (and execute them) */
751 if (expect_false (preparecnt)) 1053 if (expect_false (preparecnt))
752 { 1054 {
753 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1055 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
754 call_pending (); 1056 call_pending (EV_A);
755 } 1057 }
756 1058
1059 /* we might have forked, so reify kernel state if necessary */
1060 if (expect_false (postfork))
1061 loop_fork (EV_A);
1062
757 /* update fd-related kernel structures */ 1063 /* update fd-related kernel structures */
758 fd_reify (); 1064 fd_reify (EV_A);
759 1065
760 /* calculate blocking time */ 1066 /* calculate blocking time */
761 1067
762 /* we only need this for !monotonic clockor timers, but as we basically 1068 /* we only need this for !monotonic clockor timers, but as we basically
763 always have timers, we just calculate it always */ 1069 always have timers, we just calculate it always */
764#if EV_USE_MONOTONIC 1070#if EV_USE_MONOTONIC
765 if (expect_true (have_monotonic)) 1071 if (expect_true (have_monotonic))
766 time_update_monotonic (); 1072 time_update_monotonic (EV_A);
767 else 1073 else
768#endif 1074#endif
769 { 1075 {
770 ev_now = ev_time (); 1076 rt_now = ev_time ();
771 now = ev_now; 1077 mn_now = rt_now;
772 } 1078 }
773 1079
774 if (flags & EVLOOP_NONBLOCK || idlecnt) 1080 if (flags & EVLOOP_NONBLOCK || idlecnt)
775 block = 0.; 1081 block = 0.;
776 else 1082 else
777 { 1083 {
778 block = MAX_BLOCKTIME; 1084 block = MAX_BLOCKTIME;
779 1085
780 if (timercnt) 1086 if (timercnt)
781 { 1087 {
782 ev_tstamp to = timers [0]->at - now + method_fudge; 1088 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
783 if (block > to) block = to; 1089 if (block > to) block = to;
784 } 1090 }
785 1091
786 if (periodiccnt) 1092 if (periodiccnt)
787 { 1093 {
788 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1094 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
789 if (block > to) block = to; 1095 if (block > to) block = to;
790 } 1096 }
791 1097
792 if (block < 0.) block = 0.; 1098 if (block < 0.) block = 0.;
793 } 1099 }
794 1100
795 method_poll (block); 1101 method_poll (EV_A_ block);
796 1102
797 /* update ev_now, do magic */ 1103 /* update rt_now, do magic */
798 time_update (); 1104 time_update (EV_A);
799 1105
800 /* queue pending timers and reschedule them */ 1106 /* queue pending timers and reschedule them */
801 timers_reify (); /* relative timers called last */ 1107 timers_reify (EV_A); /* relative timers called last */
802 periodics_reify (); /* absolute timers called first */ 1108 periodics_reify (EV_A); /* absolute timers called first */
803 1109
804 /* queue idle watchers unless io or timers are pending */ 1110 /* queue idle watchers unless io or timers are pending */
805 if (!pendingcnt) 1111 if (!pendingcnt)
806 queue_events ((W *)idles, idlecnt, EV_IDLE); 1112 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
807 1113
808 /* queue check watchers, to be executed first */ 1114 /* queue check watchers, to be executed first */
809 if (checkcnt) 1115 if (checkcnt)
810 queue_events ((W *)checks, checkcnt, EV_CHECK); 1116 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
811 1117
812 call_pending (); 1118 call_pending (EV_A);
813 } 1119 }
814 while (!ev_loop_done); 1120 while (activecnt && !loop_done);
815 1121
816 if (ev_loop_done != 2) 1122 if (loop_done != 2)
817 ev_loop_done = 0; 1123 loop_done = 0;
1124}
1125
1126void
1127ev_unloop (EV_P_ int how)
1128{
1129 loop_done = how;
818} 1130}
819 1131
820/*****************************************************************************/ 1132/*****************************************************************************/
821 1133
822static void 1134inline void
823wlist_add (WL *head, WL elem) 1135wlist_add (WL *head, WL elem)
824{ 1136{
825 elem->next = *head; 1137 elem->next = *head;
826 *head = elem; 1138 *head = elem;
827} 1139}
828 1140
829static void 1141inline void
830wlist_del (WL *head, WL elem) 1142wlist_del (WL *head, WL elem)
831{ 1143{
832 while (*head) 1144 while (*head)
833 { 1145 {
834 if (*head == elem) 1146 if (*head == elem)
839 1151
840 head = &(*head)->next; 1152 head = &(*head)->next;
841 } 1153 }
842} 1154}
843 1155
844static void 1156inline void
845ev_clear_pending (W w) 1157ev_clear_pending (EV_P_ W w)
846{ 1158{
847 if (w->pending) 1159 if (w->pending)
848 { 1160 {
849 pendings [w->pending - 1].w = 0; 1161 pendings [ABSPRI (w)][w->pending - 1].w = 0;
850 w->pending = 0; 1162 w->pending = 0;
851 } 1163 }
852} 1164}
853 1165
854static void 1166inline void
855ev_start (W w, int active) 1167ev_start (EV_P_ W w, int active)
856{ 1168{
1169 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1170 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1171
857 w->active = active; 1172 w->active = active;
1173 ev_ref (EV_A);
858} 1174}
859 1175
860static void 1176inline void
861ev_stop (W w) 1177ev_stop (EV_P_ W w)
862{ 1178{
1179 ev_unref (EV_A);
863 w->active = 0; 1180 w->active = 0;
864} 1181}
865 1182
866/*****************************************************************************/ 1183/*****************************************************************************/
867 1184
868void 1185void
869ev_io_start (struct ev_io *w) 1186ev_io_start (EV_P_ struct ev_io *w)
870{ 1187{
871 int fd = w->fd; 1188 int fd = w->fd;
872 1189
873 if (ev_is_active (w)) 1190 if (ev_is_active (w))
874 return; 1191 return;
875 1192
876 assert (("ev_io_start called with negative fd", fd >= 0)); 1193 assert (("ev_io_start called with negative fd", fd >= 0));
877 1194
878 ev_start ((W)w, 1); 1195 ev_start (EV_A_ (W)w, 1);
879 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1196 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
880 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1197 wlist_add ((WL *)&anfds[fd].head, (WL)w);
881 1198
882 fd_change (fd); 1199 fd_change (EV_A_ fd);
883} 1200}
884 1201
885void 1202void
886ev_io_stop (struct ev_io *w) 1203ev_io_stop (EV_P_ struct ev_io *w)
887{ 1204{
888 ev_clear_pending ((W)w); 1205 ev_clear_pending (EV_A_ (W)w);
889 if (!ev_is_active (w)) 1206 if (!ev_is_active (w))
890 return; 1207 return;
891 1208
892 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1209 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
893 ev_stop ((W)w); 1210 ev_stop (EV_A_ (W)w);
894 1211
895 fd_change (w->fd); 1212 fd_change (EV_A_ w->fd);
896} 1213}
897 1214
898void 1215void
899ev_timer_start (struct ev_timer *w) 1216ev_timer_start (EV_P_ struct ev_timer *w)
900{ 1217{
901 if (ev_is_active (w)) 1218 if (ev_is_active (w))
902 return; 1219 return;
903 1220
904 w->at += now; 1221 ((WT)w)->at += mn_now;
905 1222
906 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1223 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
907 1224
908 ev_start ((W)w, ++timercnt); 1225 ev_start (EV_A_ (W)w, ++timercnt);
909 array_needsize (timers, timermax, timercnt, ); 1226 array_needsize (timers, timermax, timercnt, );
910 timers [timercnt - 1] = w; 1227 timers [timercnt - 1] = w;
911 upheap ((WT *)timers, timercnt - 1); 1228 upheap ((WT *)timers, timercnt - 1);
912}
913 1229
1230 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1231}
1232
914void 1233void
915ev_timer_stop (struct ev_timer *w) 1234ev_timer_stop (EV_P_ struct ev_timer *w)
916{ 1235{
917 ev_clear_pending ((W)w); 1236 ev_clear_pending (EV_A_ (W)w);
918 if (!ev_is_active (w)) 1237 if (!ev_is_active (w))
919 return; 1238 return;
920 1239
1240 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1241
921 if (w->active < timercnt--) 1242 if (((W)w)->active < timercnt--)
922 { 1243 {
923 timers [w->active - 1] = timers [timercnt]; 1244 timers [((W)w)->active - 1] = timers [timercnt];
924 downheap ((WT *)timers, timercnt, w->active - 1); 1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
925 } 1246 }
926 1247
927 w->at = w->repeat; 1248 ((WT)w)->at = w->repeat;
928 1249
929 ev_stop ((W)w); 1250 ev_stop (EV_A_ (W)w);
930} 1251}
931 1252
932void 1253void
933ev_timer_again (struct ev_timer *w) 1254ev_timer_again (EV_P_ struct ev_timer *w)
934{ 1255{
935 if (ev_is_active (w)) 1256 if (ev_is_active (w))
936 { 1257 {
937 if (w->repeat) 1258 if (w->repeat)
938 { 1259 {
939 w->at = now + w->repeat; 1260 ((WT)w)->at = mn_now + w->repeat;
940 downheap ((WT *)timers, timercnt, w->active - 1); 1261 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
941 } 1262 }
942 else 1263 else
943 ev_timer_stop (w); 1264 ev_timer_stop (EV_A_ w);
944 } 1265 }
945 else if (w->repeat) 1266 else if (w->repeat)
946 ev_timer_start (w); 1267 ev_timer_start (EV_A_ w);
947} 1268}
948 1269
949void 1270void
950ev_periodic_start (struct ev_periodic *w) 1271ev_periodic_start (EV_P_ struct ev_periodic *w)
951{ 1272{
952 if (ev_is_active (w)) 1273 if (ev_is_active (w))
953 return; 1274 return;
954 1275
955 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1276 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
956 1277
957 /* this formula differs from the one in periodic_reify because we do not always round up */ 1278 /* this formula differs from the one in periodic_reify because we do not always round up */
958 if (w->interval) 1279 if (w->interval)
959 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1280 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
960 1281
961 ev_start ((W)w, ++periodiccnt); 1282 ev_start (EV_A_ (W)w, ++periodiccnt);
962 array_needsize (periodics, periodicmax, periodiccnt, ); 1283 array_needsize (periodics, periodicmax, periodiccnt, );
963 periodics [periodiccnt - 1] = w; 1284 periodics [periodiccnt - 1] = w;
964 upheap ((WT *)periodics, periodiccnt - 1); 1285 upheap ((WT *)periodics, periodiccnt - 1);
965}
966 1286
1287 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1288}
1289
967void 1290void
968ev_periodic_stop (struct ev_periodic *w) 1291ev_periodic_stop (EV_P_ struct ev_periodic *w)
969{ 1292{
970 ev_clear_pending ((W)w); 1293 ev_clear_pending (EV_A_ (W)w);
971 if (!ev_is_active (w)) 1294 if (!ev_is_active (w))
972 return; 1295 return;
973 1296
1297 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1298
974 if (w->active < periodiccnt--) 1299 if (((W)w)->active < periodiccnt--)
975 { 1300 {
976 periodics [w->active - 1] = periodics [periodiccnt]; 1301 periodics [((W)w)->active - 1] = periodics [periodiccnt];
977 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1302 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
978 } 1303 }
979 1304
980 ev_stop ((W)w); 1305 ev_stop (EV_A_ (W)w);
981} 1306}
982 1307
983void 1308void
984ev_signal_start (struct ev_signal *w) 1309ev_idle_start (EV_P_ struct ev_idle *w)
985{ 1310{
986 if (ev_is_active (w)) 1311 if (ev_is_active (w))
987 return; 1312 return;
988 1313
1314 ev_start (EV_A_ (W)w, ++idlecnt);
1315 array_needsize (idles, idlemax, idlecnt, );
1316 idles [idlecnt - 1] = w;
1317}
1318
1319void
1320ev_idle_stop (EV_P_ struct ev_idle *w)
1321{
1322 ev_clear_pending (EV_A_ (W)w);
1323 if (ev_is_active (w))
1324 return;
1325
1326 idles [((W)w)->active - 1] = idles [--idlecnt];
1327 ev_stop (EV_A_ (W)w);
1328}
1329
1330void
1331ev_prepare_start (EV_P_ struct ev_prepare *w)
1332{
1333 if (ev_is_active (w))
1334 return;
1335
1336 ev_start (EV_A_ (W)w, ++preparecnt);
1337 array_needsize (prepares, preparemax, preparecnt, );
1338 prepares [preparecnt - 1] = w;
1339}
1340
1341void
1342ev_prepare_stop (EV_P_ struct ev_prepare *w)
1343{
1344 ev_clear_pending (EV_A_ (W)w);
1345 if (ev_is_active (w))
1346 return;
1347
1348 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1349 ev_stop (EV_A_ (W)w);
1350}
1351
1352void
1353ev_check_start (EV_P_ struct ev_check *w)
1354{
1355 if (ev_is_active (w))
1356 return;
1357
1358 ev_start (EV_A_ (W)w, ++checkcnt);
1359 array_needsize (checks, checkmax, checkcnt, );
1360 checks [checkcnt - 1] = w;
1361}
1362
1363void
1364ev_check_stop (EV_P_ struct ev_check *w)
1365{
1366 ev_clear_pending (EV_A_ (W)w);
1367 if (ev_is_active (w))
1368 return;
1369
1370 checks [((W)w)->active - 1] = checks [--checkcnt];
1371 ev_stop (EV_A_ (W)w);
1372}
1373
1374#ifndef SA_RESTART
1375# define SA_RESTART 0
1376#endif
1377
1378void
1379ev_signal_start (EV_P_ struct ev_signal *w)
1380{
1381#if EV_MULTIPLICITY
1382 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1383#endif
1384 if (ev_is_active (w))
1385 return;
1386
989 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1387 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
990 1388
991 ev_start ((W)w, 1); 1389 ev_start (EV_A_ (W)w, 1);
992 array_needsize (signals, signalmax, w->signum, signals_init); 1390 array_needsize (signals, signalmax, w->signum, signals_init);
993 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1391 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
994 1392
995 if (!w->next) 1393 if (!((WL)w)->next)
996 { 1394 {
1395#if WIN32
1396 signal (w->signum, sighandler);
1397#else
997 struct sigaction sa; 1398 struct sigaction sa;
998 sa.sa_handler = sighandler; 1399 sa.sa_handler = sighandler;
999 sigfillset (&sa.sa_mask); 1400 sigfillset (&sa.sa_mask);
1000 sa.sa_flags = 0; 1401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1001 sigaction (w->signum, &sa, 0); 1402 sigaction (w->signum, &sa, 0);
1403#endif
1002 } 1404 }
1003} 1405}
1004 1406
1005void 1407void
1006ev_signal_stop (struct ev_signal *w) 1408ev_signal_stop (EV_P_ struct ev_signal *w)
1007{ 1409{
1008 ev_clear_pending ((W)w); 1410 ev_clear_pending (EV_A_ (W)w);
1009 if (!ev_is_active (w)) 1411 if (!ev_is_active (w))
1010 return; 1412 return;
1011 1413
1012 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1414 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1013 ev_stop ((W)w); 1415 ev_stop (EV_A_ (W)w);
1014 1416
1015 if (!signals [w->signum - 1].head) 1417 if (!signals [w->signum - 1].head)
1016 signal (w->signum, SIG_DFL); 1418 signal (w->signum, SIG_DFL);
1017} 1419}
1018 1420
1019void 1421void
1020ev_idle_start (struct ev_idle *w) 1422ev_child_start (EV_P_ struct ev_child *w)
1021{ 1423{
1424#if EV_MULTIPLICITY
1425 assert (("child watchers are only supported in the default loop", loop == default_loop));
1426#endif
1022 if (ev_is_active (w)) 1427 if (ev_is_active (w))
1023 return; 1428 return;
1024 1429
1025 ev_start ((W)w, ++idlecnt); 1430 ev_start (EV_A_ (W)w, 1);
1026 array_needsize (idles, idlemax, idlecnt, ); 1431 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1027 idles [idlecnt - 1] = w;
1028} 1432}
1029 1433
1030void 1434void
1031ev_idle_stop (struct ev_idle *w) 1435ev_child_stop (EV_P_ struct ev_child *w)
1032{ 1436{
1033 ev_clear_pending ((W)w); 1437 ev_clear_pending (EV_A_ (W)w);
1034 if (ev_is_active (w)) 1438 if (ev_is_active (w))
1035 return; 1439 return;
1036 1440
1037 idles [w->active - 1] = idles [--idlecnt];
1038 ev_stop ((W)w);
1039}
1040
1041void
1042ev_prepare_start (struct ev_prepare *w)
1043{
1044 if (ev_is_active (w))
1045 return;
1046
1047 ev_start ((W)w, ++preparecnt);
1048 array_needsize (prepares, preparemax, preparecnt, );
1049 prepares [preparecnt - 1] = w;
1050}
1051
1052void
1053ev_prepare_stop (struct ev_prepare *w)
1054{
1055 ev_clear_pending ((W)w);
1056 if (ev_is_active (w))
1057 return;
1058
1059 prepares [w->active - 1] = prepares [--preparecnt];
1060 ev_stop ((W)w);
1061}
1062
1063void
1064ev_check_start (struct ev_check *w)
1065{
1066 if (ev_is_active (w))
1067 return;
1068
1069 ev_start ((W)w, ++checkcnt);
1070 array_needsize (checks, checkmax, checkcnt, );
1071 checks [checkcnt - 1] = w;
1072}
1073
1074void
1075ev_check_stop (struct ev_check *w)
1076{
1077 ev_clear_pending ((W)w);
1078 if (ev_is_active (w))
1079 return;
1080
1081 checks [w->active - 1] = checks [--checkcnt];
1082 ev_stop ((W)w);
1083}
1084
1085void
1086ev_child_start (struct ev_child *w)
1087{
1088 if (ev_is_active (w))
1089 return;
1090
1091 ev_start ((W)w, 1);
1092 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1093}
1094
1095void
1096ev_child_stop (struct ev_child *w)
1097{
1098 ev_clear_pending ((W)w);
1099 if (ev_is_active (w))
1100 return;
1101
1102 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1441 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1103 ev_stop ((W)w); 1442 ev_stop (EV_A_ (W)w);
1104} 1443}
1105 1444
1106/*****************************************************************************/ 1445/*****************************************************************************/
1107 1446
1108struct ev_once 1447struct ev_once
1112 void (*cb)(int revents, void *arg); 1451 void (*cb)(int revents, void *arg);
1113 void *arg; 1452 void *arg;
1114}; 1453};
1115 1454
1116static void 1455static void
1117once_cb (struct ev_once *once, int revents) 1456once_cb (EV_P_ struct ev_once *once, int revents)
1118{ 1457{
1119 void (*cb)(int revents, void *arg) = once->cb; 1458 void (*cb)(int revents, void *arg) = once->cb;
1120 void *arg = once->arg; 1459 void *arg = once->arg;
1121 1460
1122 ev_io_stop (&once->io); 1461 ev_io_stop (EV_A_ &once->io);
1123 ev_timer_stop (&once->to); 1462 ev_timer_stop (EV_A_ &once->to);
1124 free (once); 1463 ev_free (once);
1125 1464
1126 cb (revents, arg); 1465 cb (revents, arg);
1127} 1466}
1128 1467
1129static void 1468static void
1130once_cb_io (struct ev_io *w, int revents) 1469once_cb_io (EV_P_ struct ev_io *w, int revents)
1131{ 1470{
1132 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1471 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1133} 1472}
1134 1473
1135static void 1474static void
1136once_cb_to (struct ev_timer *w, int revents) 1475once_cb_to (EV_P_ struct ev_timer *w, int revents)
1137{ 1476{
1138 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1477 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1139} 1478}
1140 1479
1141void 1480void
1142ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1143{ 1482{
1144 struct ev_once *once = malloc (sizeof (struct ev_once)); 1483 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1145 1484
1146 if (!once) 1485 if (!once)
1147 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1486 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1148 else 1487 else
1149 { 1488 {
1152 1491
1153 ev_watcher_init (&once->io, once_cb_io); 1492 ev_watcher_init (&once->io, once_cb_io);
1154 if (fd >= 0) 1493 if (fd >= 0)
1155 { 1494 {
1156 ev_io_set (&once->io, fd, events); 1495 ev_io_set (&once->io, fd, events);
1157 ev_io_start (&once->io); 1496 ev_io_start (EV_A_ &once->io);
1158 } 1497 }
1159 1498
1160 ev_watcher_init (&once->to, once_cb_to); 1499 ev_watcher_init (&once->to, once_cb_to);
1161 if (timeout >= 0.) 1500 if (timeout >= 0.)
1162 { 1501 {
1163 ev_timer_set (&once->to, timeout, 0.); 1502 ev_timer_set (&once->to, timeout, 0.);
1164 ev_timer_start (&once->to); 1503 ev_timer_start (EV_A_ &once->to);
1165 } 1504 }
1166 } 1505 }
1167} 1506}
1168 1507
1169/*****************************************************************************/
1170
1171#if 0
1172
1173struct ev_io wio;
1174
1175static void
1176sin_cb (struct ev_io *w, int revents)
1177{
1178 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1179}
1180
1181static void
1182ocb (struct ev_timer *w, int revents)
1183{
1184 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1185 ev_timer_stop (w);
1186 ev_timer_start (w);
1187}
1188
1189static void
1190scb (struct ev_signal *w, int revents)
1191{
1192 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1193 ev_io_stop (&wio);
1194 ev_io_start (&wio);
1195}
1196
1197static void
1198gcb (struct ev_signal *w, int revents)
1199{
1200 fprintf (stderr, "generic %x\n", revents);
1201
1202}
1203
1204int main (void)
1205{
1206 ev_init (0);
1207
1208 ev_io_init (&wio, sin_cb, 0, EV_READ);
1209 ev_io_start (&wio);
1210
1211 struct ev_timer t[10000];
1212
1213#if 0
1214 int i;
1215 for (i = 0; i < 10000; ++i)
1216 {
1217 struct ev_timer *w = t + i;
1218 ev_watcher_init (w, ocb, i);
1219 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1220 ev_timer_start (w);
1221 if (drand48 () < 0.5)
1222 ev_timer_stop (w);
1223 }
1224#endif
1225
1226 struct ev_timer t1;
1227 ev_timer_init (&t1, ocb, 5, 10);
1228 ev_timer_start (&t1);
1229
1230 struct ev_signal sig;
1231 ev_signal_init (&sig, scb, SIGQUIT);
1232 ev_signal_start (&sig);
1233
1234 struct ev_check cw;
1235 ev_check_init (&cw, gcb);
1236 ev_check_start (&cw);
1237
1238 struct ev_idle iw;
1239 ev_idle_init (&iw, gcb);
1240 ev_idle_start (&iw);
1241
1242 ev_loop (0);
1243
1244 return 0;
1245}
1246
1247#endif
1248
1249
1250
1251

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines