ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.71 by root, Tue Nov 6 13:17:55 2007 UTC vs.
Revision 1.138 by root, Sat Nov 24 09:48:38 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
53# endif 97# endif
54 98
55#endif 99#endif
56 100
57#include <math.h> 101#include <math.h>
64#include <assert.h> 108#include <assert.h>
65#include <errno.h> 109#include <errno.h>
66#include <sys/types.h> 110#include <sys/types.h>
67#include <time.h> 111#include <time.h>
68 112
69#ifndef PERL
70# include <signal.h> 113#include <signal.h>
71#endif
72 114
73#ifndef WIN32 115#ifndef _WIN32
74# include <unistd.h> 116# include <unistd.h>
75# include <sys/time.h> 117# include <sys/time.h>
76# include <sys/wait.h> 118# include <sys/wait.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
77#endif 124# endif
125#endif
126
78/**/ 127/**/
79 128
80#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
81# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
82#endif 135#endif
83 136
84#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
85# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
86#endif 139#endif
87 140
88#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
89# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
90#endif 147#endif
91 148
92#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
93# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
94#endif 151#endif
95 152
96#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
97# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
98#endif 155#endif
99 156
100#ifndef EV_USE_WIN32
101# ifdef WIN32
102# define EV_USE_WIN32 0 /* it does not exist, use select */
103# undef EV_USE_SELECT
104# define EV_USE_SELECT 1
105# else
106# define EV_USE_WIN32 0
107# endif
108#endif
109
110#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
111# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
112#endif 159#endif
113 160
114/**/ 161/**/
115 162
116#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
121#ifndef CLOCK_REALTIME 168#ifndef CLOCK_REALTIME
122# undef EV_USE_REALTIME 169# undef EV_USE_REALTIME
123# define EV_USE_REALTIME 0 170# define EV_USE_REALTIME 0
124#endif 171#endif
125 172
173#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h>
175#endif
176
126/**/ 177/**/
127 178
128#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
129#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
130#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
131/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
132 183
184#ifdef EV_H
185# include EV_H
186#else
133#include "ev.h" 187# include "ev.h"
188#endif
134 189
135#if __GNUC__ >= 3 190#if __GNUC__ >= 3
136# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
137# define inline inline 192# define inline static inline
138#else 193#else
139# define expect(expr,value) (expr) 194# define expect(expr,value) (expr)
140# define inline static 195# define inline static
141#endif 196#endif
142 197
144#define expect_true(expr) expect ((expr) != 0, 1) 199#define expect_true(expr) expect ((expr) != 0, 1)
145 200
146#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
147#define ABSPRI(w) ((w)->priority - EV_MINPRI) 202#define ABSPRI(w) ((w)->priority - EV_MINPRI)
148 203
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */
206
149typedef struct ev_watcher *W; 207typedef ev_watcher *W;
150typedef struct ev_watcher_list *WL; 208typedef ev_watcher_list *WL;
151typedef struct ev_watcher_time *WT; 209typedef ev_watcher_time *WT;
152 210
153static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
154 212
155#if WIN32 213#ifdef _WIN32
156/* note: the comment below could not be substantiated, but what would I care */ 214# include "ev_win32.c"
157/* MSDN says this is required to handle SIGFPE */
158volatile double SIGFPE_REQ = 0.0f;
159#endif 215#endif
160 216
161/*****************************************************************************/ 217/*****************************************************************************/
162 218
163static void (*syserr_cb)(const char *msg); 219static void (*syserr_cb)(const char *msg);
211typedef struct 267typedef struct
212{ 268{
213 WL head; 269 WL head;
214 unsigned char events; 270 unsigned char events;
215 unsigned char reify; 271 unsigned char reify;
272#if EV_SELECT_IS_WINSOCKET
273 SOCKET handle;
274#endif
216} ANFD; 275} ANFD;
217 276
218typedef struct 277typedef struct
219{ 278{
220 W w; 279 W w;
221 int events; 280 int events;
222} ANPENDING; 281} ANPENDING;
223 282
224#if EV_MULTIPLICITY 283#if EV_MULTIPLICITY
225 284
226struct ev_loop 285 struct ev_loop
227{ 286 {
287 ev_tstamp ev_rt_now;
288 #define ev_rt_now ((loop)->ev_rt_now)
228# define VAR(name,decl) decl; 289 #define VAR(name,decl) decl;
229# include "ev_vars.h" 290 #include "ev_vars.h"
230};
231# undef VAR 291 #undef VAR
292 };
232# include "ev_wrap.h" 293 #include "ev_wrap.h"
294
295 static struct ev_loop default_loop_struct;
296 struct ev_loop *ev_default_loop_ptr;
233 297
234#else 298#else
235 299
300 ev_tstamp ev_rt_now;
236# define VAR(name,decl) static decl; 301 #define VAR(name,decl) static decl;
237# include "ev_vars.h" 302 #include "ev_vars.h"
238# undef VAR 303 #undef VAR
304
305 static int ev_default_loop_ptr;
239 306
240#endif 307#endif
241 308
242/*****************************************************************************/ 309/*****************************************************************************/
243 310
244inline ev_tstamp 311ev_tstamp
245ev_time (void) 312ev_time (void)
246{ 313{
247#if EV_USE_REALTIME 314#if EV_USE_REALTIME
248 struct timespec ts; 315 struct timespec ts;
249 clock_gettime (CLOCK_REALTIME, &ts); 316 clock_gettime (CLOCK_REALTIME, &ts);
268#endif 335#endif
269 336
270 return ev_time (); 337 return ev_time ();
271} 338}
272 339
340#if EV_MULTIPLICITY
273ev_tstamp 341ev_tstamp
274ev_now (EV_P) 342ev_now (EV_P)
275{ 343{
276 return rt_now; 344 return ev_rt_now;
277} 345}
346#endif
278 347
279#define array_roundsize(base,n) ((n) | 4 & ~3) 348#define array_roundsize(type,n) (((n) | 4) & ~3)
280 349
281#define array_needsize(base,cur,cnt,init) \ 350#define array_needsize(type,base,cur,cnt,init) \
282 if (expect_false ((cnt) > cur)) \ 351 if (expect_false ((cnt) > cur)) \
283 { \ 352 { \
284 int newcnt = cur; \ 353 int newcnt = cur; \
285 do \ 354 do \
286 { \ 355 { \
287 newcnt = array_roundsize (base, newcnt << 1); \ 356 newcnt = array_roundsize (type, newcnt << 1); \
288 } \ 357 } \
289 while ((cnt) > newcnt); \ 358 while ((cnt) > newcnt); \
290 \ 359 \
291 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
292 init (base + cur, newcnt - cur); \ 361 init (base + cur, newcnt - cur); \
293 cur = newcnt; \ 362 cur = newcnt; \
294 } 363 }
295 364
296#define array_slim(stem) \ 365#define array_slim(type,stem) \
297 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
298 { \ 367 { \
299 stem ## max = array_roundsize (stem ## cnt >> 1); \ 368 stem ## max = array_roundsize (stem ## cnt >> 1); \
300 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
301 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
302 } 371 }
303
304/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
305/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
306#define array_free_microshit(stem) \
307 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
308 372
309#define array_free(stem, idx) \ 373#define array_free(stem, idx) \
310 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
311 375
312/*****************************************************************************/ 376/*****************************************************************************/
322 386
323 ++base; 387 ++base;
324 } 388 }
325} 389}
326 390
327static void 391void
328event (EV_P_ W w, int events) 392ev_feed_event (EV_P_ void *w, int revents)
329{ 393{
330 if (w->pending) 394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
331 { 397 {
332 pendings [ABSPRI (w)][w->pending - 1].events |= events; 398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
333 return; 399 return;
334 } 400 }
335 401
336 w->pending = ++pendingcnt [ABSPRI (w)]; 402 w_->pending = ++pendingcnt [ABSPRI (w_)];
337 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
338 pendings [ABSPRI (w)][w->pending - 1].w = w; 404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
339 pendings [ABSPRI (w)][w->pending - 1].events = events; 405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
340} 406}
341 407
342static void 408static void
343queue_events (EV_P_ W *events, int eventcnt, int type) 409queue_events (EV_P_ W *events, int eventcnt, int type)
344{ 410{
345 int i; 411 int i;
346 412
347 for (i = 0; i < eventcnt; ++i) 413 for (i = 0; i < eventcnt; ++i)
348 event (EV_A_ events [i], type); 414 ev_feed_event (EV_A_ events [i], type);
349} 415}
350 416
351static void 417inline void
352fd_event (EV_P_ int fd, int events) 418fd_event (EV_P_ int fd, int revents)
353{ 419{
354 ANFD *anfd = anfds + fd; 420 ANFD *anfd = anfds + fd;
355 struct ev_io *w; 421 ev_io *w;
356 422
357 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 423 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
358 { 424 {
359 int ev = w->events & events; 425 int ev = w->events & revents;
360 426
361 if (ev) 427 if (ev)
362 event (EV_A_ (W)w, ev); 428 ev_feed_event (EV_A_ (W)w, ev);
363 } 429 }
430}
431
432void
433ev_feed_fd_event (EV_P_ int fd, int revents)
434{
435 fd_event (EV_A_ fd, revents);
364} 436}
365 437
366/*****************************************************************************/ 438/*****************************************************************************/
367 439
368static void 440inline void
369fd_reify (EV_P) 441fd_reify (EV_P)
370{ 442{
371 int i; 443 int i;
372 444
373 for (i = 0; i < fdchangecnt; ++i) 445 for (i = 0; i < fdchangecnt; ++i)
374 { 446 {
375 int fd = fdchanges [i]; 447 int fd = fdchanges [i];
376 ANFD *anfd = anfds + fd; 448 ANFD *anfd = anfds + fd;
377 struct ev_io *w; 449 ev_io *w;
378 450
379 int events = 0; 451 int events = 0;
380 452
381 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 453 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
382 events |= w->events; 454 events |= w->events;
383 455
456#if EV_SELECT_IS_WINSOCKET
457 if (events)
458 {
459 unsigned long argp;
460 anfd->handle = _get_osfhandle (fd);
461 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
462 }
463#endif
464
384 anfd->reify = 0; 465 anfd->reify = 0;
385 466
386 method_modify (EV_A_ fd, anfd->events, events); 467 backend_modify (EV_A_ fd, anfd->events, events);
387 anfd->events = events; 468 anfd->events = events;
388 } 469 }
389 470
390 fdchangecnt = 0; 471 fdchangecnt = 0;
391} 472}
392 473
393static void 474static void
394fd_change (EV_P_ int fd) 475fd_change (EV_P_ int fd)
395{ 476{
396 if (anfds [fd].reify) 477 if (expect_false (anfds [fd].reify))
397 return; 478 return;
398 479
399 anfds [fd].reify = 1; 480 anfds [fd].reify = 1;
400 481
401 ++fdchangecnt; 482 ++fdchangecnt;
402 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
403 fdchanges [fdchangecnt - 1] = fd; 484 fdchanges [fdchangecnt - 1] = fd;
404} 485}
405 486
406static void 487static void
407fd_kill (EV_P_ int fd) 488fd_kill (EV_P_ int fd)
408{ 489{
409 struct ev_io *w; 490 ev_io *w;
410 491
411 while ((w = (struct ev_io *)anfds [fd].head)) 492 while ((w = (ev_io *)anfds [fd].head))
412 { 493 {
413 ev_io_stop (EV_A_ w); 494 ev_io_stop (EV_A_ w);
414 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
415 } 496 }
416} 497}
417 498
418static int 499inline int
419fd_valid (int fd) 500fd_valid (int fd)
420{ 501{
421#ifdef WIN32 502#ifdef _WIN32
422 return !!win32_get_osfhandle (fd); 503 return _get_osfhandle (fd) != -1;
423#else 504#else
424 return fcntl (fd, F_GETFD) != -1; 505 return fcntl (fd, F_GETFD) != -1;
425#endif 506#endif
426} 507}
427 508
449 fd_kill (EV_A_ fd); 530 fd_kill (EV_A_ fd);
450 return; 531 return;
451 } 532 }
452} 533}
453 534
454/* usually called after fork if method needs to re-arm all fds from scratch */ 535/* usually called after fork if backend needs to re-arm all fds from scratch */
455static void 536static void
456fd_rearm_all (EV_P) 537fd_rearm_all (EV_P)
457{ 538{
458 int fd; 539 int fd;
459 540
507 588
508 heap [k] = w; 589 heap [k] = w;
509 ((W)heap [k])->active = k + 1; 590 ((W)heap [k])->active = k + 1;
510} 591}
511 592
593inline void
594adjustheap (WT *heap, int N, int k)
595{
596 upheap (heap, k);
597 downheap (heap, N, k);
598}
599
512/*****************************************************************************/ 600/*****************************************************************************/
513 601
514typedef struct 602typedef struct
515{ 603{
516 WL head; 604 WL head;
520static ANSIG *signals; 608static ANSIG *signals;
521static int signalmax; 609static int signalmax;
522 610
523static int sigpipe [2]; 611static int sigpipe [2];
524static sig_atomic_t volatile gotsig; 612static sig_atomic_t volatile gotsig;
525static struct ev_io sigev; 613static ev_io sigev;
526 614
527static void 615static void
528signals_init (ANSIG *base, int count) 616signals_init (ANSIG *base, int count)
529{ 617{
530 while (count--) 618 while (count--)
537} 625}
538 626
539static void 627static void
540sighandler (int signum) 628sighandler (int signum)
541{ 629{
542#if WIN32 630#if _WIN32
543 signal (signum, sighandler); 631 signal (signum, sighandler);
544#endif 632#endif
545 633
546 signals [signum - 1].gotsig = 1; 634 signals [signum - 1].gotsig = 1;
547 635
552 write (sigpipe [1], &signum, 1); 640 write (sigpipe [1], &signum, 1);
553 errno = old_errno; 641 errno = old_errno;
554 } 642 }
555} 643}
556 644
557static void 645void
558sigcb (EV_P_ struct ev_io *iow, int revents) 646ev_feed_signal_event (EV_P_ int signum)
559{ 647{
560 WL w; 648 WL w;
649
650#if EV_MULTIPLICITY
651 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
652#endif
653
654 --signum;
655
656 if (signum < 0 || signum >= signalmax)
657 return;
658
659 signals [signum].gotsig = 0;
660
661 for (w = signals [signum].head; w; w = w->next)
662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
663}
664
665static void
666sigcb (EV_P_ ev_io *iow, int revents)
667{
561 int signum; 668 int signum;
562 669
563 read (sigpipe [0], &revents, 1); 670 read (sigpipe [0], &revents, 1);
564 gotsig = 0; 671 gotsig = 0;
565 672
566 for (signum = signalmax; signum--; ) 673 for (signum = signalmax; signum--; )
567 if (signals [signum].gotsig) 674 if (signals [signum].gotsig)
568 { 675 ev_feed_signal_event (EV_A_ signum + 1);
569 signals [signum].gotsig = 0; 676}
570 677
571 for (w = signals [signum].head; w; w = w->next) 678static void
572 event (EV_A_ (W)w, EV_SIGNAL); 679fd_intern (int fd)
573 } 680{
681#ifdef _WIN32
682 int arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
684#else
685 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif
574} 688}
575 689
576static void 690static void
577siginit (EV_P) 691siginit (EV_P)
578{ 692{
579#ifndef WIN32 693 fd_intern (sigpipe [0]);
580 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 694 fd_intern (sigpipe [1]);
581 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
582
583 /* rather than sort out wether we really need nb, set it */
584 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
585 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
586#endif
587 695
588 ev_io_set (&sigev, sigpipe [0], EV_READ); 696 ev_io_set (&sigev, sigpipe [0], EV_READ);
589 ev_io_start (EV_A_ &sigev); 697 ev_io_start (EV_A_ &sigev);
590 ev_unref (EV_A); /* child watcher should not keep loop alive */ 698 ev_unref (EV_A); /* child watcher should not keep loop alive */
591} 699}
592 700
593/*****************************************************************************/ 701/*****************************************************************************/
594 702
595static struct ev_child *childs [PID_HASHSIZE]; 703static ev_child *childs [PID_HASHSIZE];
596 704
597#ifndef WIN32 705#ifndef _WIN32
598 706
599static struct ev_signal childev; 707static ev_signal childev;
600 708
601#ifndef WCONTINUED 709#ifndef WCONTINUED
602# define WCONTINUED 0 710# define WCONTINUED 0
603#endif 711#endif
604 712
605static void 713static void
606child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 714child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
607{ 715{
608 struct ev_child *w; 716 ev_child *w;
609 717
610 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 718 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
611 if (w->pid == pid || !w->pid) 719 if (w->pid == pid || !w->pid)
612 { 720 {
613 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
614 w->rpid = pid; 722 w->rpid = pid;
615 w->rstatus = status; 723 w->rstatus = status;
616 event (EV_A_ (W)w, EV_CHILD); 724 ev_feed_event (EV_A_ (W)w, EV_CHILD);
617 } 725 }
618} 726}
619 727
620static void 728static void
621childcb (EV_P_ struct ev_signal *sw, int revents) 729childcb (EV_P_ ev_signal *sw, int revents)
622{ 730{
623 int pid, status; 731 int pid, status;
624 732
625 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
626 { 734 {
627 /* make sure we are called again until all childs have been reaped */ 735 /* make sure we are called again until all childs have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */
628 event (EV_A_ (W)sw, EV_SIGNAL); 737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
629 738
630 child_reap (EV_A_ sw, pid, pid, status); 739 child_reap (EV_A_ sw, pid, pid, status);
631 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
632 } 741 }
633} 742}
634 743
635#endif 744#endif
636 745
637/*****************************************************************************/ 746/*****************************************************************************/
638 747
748#if EV_USE_PORT
749# include "ev_port.c"
750#endif
639#if EV_USE_KQUEUE 751#if EV_USE_KQUEUE
640# include "ev_kqueue.c" 752# include "ev_kqueue.c"
641#endif 753#endif
642#if EV_USE_EPOLL 754#if EV_USE_EPOLL
643# include "ev_epoll.c" 755# include "ev_epoll.c"
663 775
664/* return true if we are running with elevated privileges and should ignore env variables */ 776/* return true if we are running with elevated privileges and should ignore env variables */
665static int 777static int
666enable_secure (void) 778enable_secure (void)
667{ 779{
668#ifdef WIN32 780#ifdef _WIN32
669 return 0; 781 return 0;
670#else 782#else
671 return getuid () != geteuid () 783 return getuid () != geteuid ()
672 || getgid () != getegid (); 784 || getgid () != getegid ();
673#endif 785#endif
674} 786}
675 787
676int 788unsigned int
677ev_method (EV_P) 789ev_supported_backends (void)
678{ 790{
679 return method; 791 unsigned int flags = 0;
680}
681 792
682static void 793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
683loop_init (EV_P_ int methods) 794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
795 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
796 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
797 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
798
799 return flags;
800}
801
802unsigned int
803ev_recommended_backends (void)
684{ 804{
685 if (!method) 805 unsigned int flags = ev_supported_backends ();
806
807#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE;
811#endif
812#ifdef __APPLE__
813 // flags &= ~EVBACKEND_KQUEUE; for documentation
814 flags &= ~EVBACKEND_POLL;
815#endif
816
817 return flags;
818}
819
820unsigned int
821ev_embeddable_backends (void)
822{
823 return EVBACKEND_EPOLL
824 | EVBACKEND_KQUEUE
825 | EVBACKEND_PORT;
826}
827
828unsigned int
829ev_backend (EV_P)
830{
831 return backend;
832}
833
834static void
835loop_init (EV_P_ unsigned int flags)
836{
837 if (!backend)
686 { 838 {
687#if EV_USE_MONOTONIC 839#if EV_USE_MONOTONIC
688 { 840 {
689 struct timespec ts; 841 struct timespec ts;
690 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 842 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
691 have_monotonic = 1; 843 have_monotonic = 1;
692 } 844 }
693#endif 845#endif
694 846
695 rt_now = ev_time (); 847 ev_rt_now = ev_time ();
696 mn_now = get_clock (); 848 mn_now = get_clock ();
697 now_floor = mn_now; 849 now_floor = mn_now;
698 rtmn_diff = rt_now - mn_now; 850 rtmn_diff = ev_rt_now - mn_now;
699 851
700 if (methods == EVMETHOD_AUTO) 852 if (!(flags & EVFLAG_NOENV)
701 if (!enable_secure () && getenv ("LIBEV_METHODS")) 853 && !enable_secure ()
854 && getenv ("LIBEV_FLAGS"))
702 methods = atoi (getenv ("LIBEV_METHODS")); 855 flags = atoi (getenv ("LIBEV_FLAGS"));
703 else
704 methods = EVMETHOD_ANY;
705 856
706 method = 0; 857 if (!(flags & 0x0000ffffUL))
707#if EV_USE_WIN32 858 flags |= ev_recommended_backends ();
708 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 859
860 backend = 0;
861#if EV_USE_PORT
862 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
709#endif 863#endif
710#if EV_USE_KQUEUE 864#if EV_USE_KQUEUE
711 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 865 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
712#endif 866#endif
713#if EV_USE_EPOLL 867#if EV_USE_EPOLL
714 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 868 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
715#endif 869#endif
716#if EV_USE_POLL 870#if EV_USE_POLL
717 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 871 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
718#endif 872#endif
719#if EV_USE_SELECT 873#if EV_USE_SELECT
720 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 874 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
721#endif 875#endif
722 876
723 ev_watcher_init (&sigev, sigcb); 877 ev_init (&sigev, sigcb);
724 ev_set_priority (&sigev, EV_MAXPRI); 878 ev_set_priority (&sigev, EV_MAXPRI);
725 } 879 }
726} 880}
727 881
728void 882static void
729loop_destroy (EV_P) 883loop_destroy (EV_P)
730{ 884{
731 int i; 885 int i;
732 886
733#if EV_USE_WIN32 887#if EV_USE_PORT
734 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 888 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
735#endif 889#endif
736#if EV_USE_KQUEUE 890#if EV_USE_KQUEUE
737 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 891 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
738#endif 892#endif
739#if EV_USE_EPOLL 893#if EV_USE_EPOLL
740 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 894 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
741#endif 895#endif
742#if EV_USE_POLL 896#if EV_USE_POLL
743 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 897 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
744#endif 898#endif
745#if EV_USE_SELECT 899#if EV_USE_SELECT
746 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 900 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
747#endif 901#endif
748 902
749 for (i = NUMPRI; i--; ) 903 for (i = NUMPRI; i--; )
750 array_free (pending, [i]); 904 array_free (pending, [i]);
751 905
752 /* have to use the microsoft-never-gets-it-right macro */ 906 /* have to use the microsoft-never-gets-it-right macro */
753 array_free_microshit (fdchange); 907 array_free (fdchange, EMPTY0);
754 array_free_microshit (timer); 908 array_free (timer, EMPTY0);
755 array_free_microshit (periodic); 909#if EV_PERIODICS
756 array_free_microshit (idle); 910 array_free (periodic, EMPTY0);
757 array_free_microshit (prepare); 911#endif
758 array_free_microshit (check); 912 array_free (idle, EMPTY0);
913 array_free (prepare, EMPTY0);
914 array_free (check, EMPTY0);
759 915
760 method = 0; 916 backend = 0;
761} 917}
762 918
763static void 919static void
764loop_fork (EV_P) 920loop_fork (EV_P)
765{ 921{
922#if EV_USE_PORT
923 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
924#endif
925#if EV_USE_KQUEUE
926 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
927#endif
766#if EV_USE_EPOLL 928#if EV_USE_EPOLL
767 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 929 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
768#endif
769#if EV_USE_KQUEUE
770 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
771#endif 930#endif
772 931
773 if (ev_is_active (&sigev)) 932 if (ev_is_active (&sigev))
774 { 933 {
775 /* default loop */ 934 /* default loop */
788 postfork = 0; 947 postfork = 0;
789} 948}
790 949
791#if EV_MULTIPLICITY 950#if EV_MULTIPLICITY
792struct ev_loop * 951struct ev_loop *
793ev_loop_new (int methods) 952ev_loop_new (unsigned int flags)
794{ 953{
795 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 954 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
796 955
797 memset (loop, 0, sizeof (struct ev_loop)); 956 memset (loop, 0, sizeof (struct ev_loop));
798 957
799 loop_init (EV_A_ methods); 958 loop_init (EV_A_ flags);
800 959
801 if (ev_method (EV_A)) 960 if (ev_backend (EV_A))
802 return loop; 961 return loop;
803 962
804 return 0; 963 return 0;
805} 964}
806 965
818} 977}
819 978
820#endif 979#endif
821 980
822#if EV_MULTIPLICITY 981#if EV_MULTIPLICITY
823struct ev_loop default_loop_struct;
824static struct ev_loop *default_loop;
825
826struct ev_loop * 982struct ev_loop *
983ev_default_loop_init (unsigned int flags)
827#else 984#else
828static int default_loop;
829
830int 985int
986ev_default_loop (unsigned int flags)
831#endif 987#endif
832ev_default_loop (int methods)
833{ 988{
834 if (sigpipe [0] == sigpipe [1]) 989 if (sigpipe [0] == sigpipe [1])
835 if (pipe (sigpipe)) 990 if (pipe (sigpipe))
836 return 0; 991 return 0;
837 992
838 if (!default_loop) 993 if (!ev_default_loop_ptr)
839 { 994 {
840#if EV_MULTIPLICITY 995#if EV_MULTIPLICITY
841 struct ev_loop *loop = default_loop = &default_loop_struct; 996 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
842#else 997#else
843 default_loop = 1; 998 ev_default_loop_ptr = 1;
844#endif 999#endif
845 1000
846 loop_init (EV_A_ methods); 1001 loop_init (EV_A_ flags);
847 1002
848 if (ev_method (EV_A)) 1003 if (ev_backend (EV_A))
849 { 1004 {
850 siginit (EV_A); 1005 siginit (EV_A);
851 1006
852#ifndef WIN32 1007#ifndef _WIN32
853 ev_signal_init (&childev, childcb, SIGCHLD); 1008 ev_signal_init (&childev, childcb, SIGCHLD);
854 ev_set_priority (&childev, EV_MAXPRI); 1009 ev_set_priority (&childev, EV_MAXPRI);
855 ev_signal_start (EV_A_ &childev); 1010 ev_signal_start (EV_A_ &childev);
856 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1011 ev_unref (EV_A); /* child watcher should not keep loop alive */
857#endif 1012#endif
858 } 1013 }
859 else 1014 else
860 default_loop = 0; 1015 ev_default_loop_ptr = 0;
861 } 1016 }
862 1017
863 return default_loop; 1018 return ev_default_loop_ptr;
864} 1019}
865 1020
866void 1021void
867ev_default_destroy (void) 1022ev_default_destroy (void)
868{ 1023{
869#if EV_MULTIPLICITY 1024#if EV_MULTIPLICITY
870 struct ev_loop *loop = default_loop; 1025 struct ev_loop *loop = ev_default_loop_ptr;
871#endif 1026#endif
872 1027
873#ifndef WIN32 1028#ifndef _WIN32
874 ev_ref (EV_A); /* child watcher */ 1029 ev_ref (EV_A); /* child watcher */
875 ev_signal_stop (EV_A_ &childev); 1030 ev_signal_stop (EV_A_ &childev);
876#endif 1031#endif
877 1032
878 ev_ref (EV_A); /* signal watcher */ 1033 ev_ref (EV_A); /* signal watcher */
886 1041
887void 1042void
888ev_default_fork (void) 1043ev_default_fork (void)
889{ 1044{
890#if EV_MULTIPLICITY 1045#if EV_MULTIPLICITY
891 struct ev_loop *loop = default_loop; 1046 struct ev_loop *loop = ev_default_loop_ptr;
892#endif 1047#endif
893 1048
894 if (method) 1049 if (backend)
895 postfork = 1; 1050 postfork = 1;
896} 1051}
897 1052
898/*****************************************************************************/ 1053/*****************************************************************************/
899 1054
900static void 1055static int
1056any_pending (EV_P)
1057{
1058 int pri;
1059
1060 for (pri = NUMPRI; pri--; )
1061 if (pendingcnt [pri])
1062 return 1;
1063
1064 return 0;
1065}
1066
1067inline void
901call_pending (EV_P) 1068call_pending (EV_P)
902{ 1069{
903 int pri; 1070 int pri;
904 1071
905 for (pri = NUMPRI; pri--; ) 1072 for (pri = NUMPRI; pri--; )
906 while (pendingcnt [pri]) 1073 while (pendingcnt [pri])
907 { 1074 {
908 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1075 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
909 1076
910 if (p->w) 1077 if (expect_true (p->w))
911 { 1078 {
912 p->w->pending = 0; 1079 p->w->pending = 0;
913 p->w->cb (EV_A_ p->w, p->events); 1080 EV_CB_INVOKE (p->w, p->events);
914 } 1081 }
915 } 1082 }
916} 1083}
917 1084
918static void 1085inline void
919timers_reify (EV_P) 1086timers_reify (EV_P)
920{ 1087{
921 while (timercnt && ((WT)timers [0])->at <= mn_now) 1088 while (timercnt && ((WT)timers [0])->at <= mn_now)
922 { 1089 {
923 struct ev_timer *w = timers [0]; 1090 ev_timer *w = timers [0];
924 1091
925 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1092 assert (("inactive timer on timer heap detected", ev_is_active (w)));
926 1093
927 /* first reschedule or stop timer */ 1094 /* first reschedule or stop timer */
928 if (w->repeat) 1095 if (w->repeat)
929 { 1096 {
930 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1097 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1098
931 ((WT)w)->at = mn_now + w->repeat; 1099 ((WT)w)->at += w->repeat;
1100 if (((WT)w)->at < mn_now)
1101 ((WT)w)->at = mn_now;
1102
932 downheap ((WT *)timers, timercnt, 0); 1103 downheap ((WT *)timers, timercnt, 0);
933 } 1104 }
934 else 1105 else
935 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1106 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
936 1107
937 event (EV_A_ (W)w, EV_TIMEOUT); 1108 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
938 } 1109 }
939} 1110}
940 1111
941static void 1112#if EV_PERIODICS
1113inline void
942periodics_reify (EV_P) 1114periodics_reify (EV_P)
943{ 1115{
944 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1116 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
945 { 1117 {
946 struct ev_periodic *w = periodics [0]; 1118 ev_periodic *w = periodics [0];
947 1119
948 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1120 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
949 1121
950 /* first reschedule or stop timer */ 1122 /* first reschedule or stop timer */
951 if (w->interval) 1123 if (w->reschedule_cb)
952 { 1124 {
1125 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1126 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1127 downheap ((WT *)periodics, periodiccnt, 0);
1128 }
1129 else if (w->interval)
1130 {
953 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1131 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
954 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1132 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
955 downheap ((WT *)periodics, periodiccnt, 0); 1133 downheap ((WT *)periodics, periodiccnt, 0);
956 } 1134 }
957 else 1135 else
958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1136 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
959 1137
960 event (EV_A_ (W)w, EV_PERIODIC); 1138 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
961 } 1139 }
962} 1140}
963 1141
964static void 1142static void
965periodics_reschedule (EV_P) 1143periodics_reschedule (EV_P)
967 int i; 1145 int i;
968 1146
969 /* adjust periodics after time jump */ 1147 /* adjust periodics after time jump */
970 for (i = 0; i < periodiccnt; ++i) 1148 for (i = 0; i < periodiccnt; ++i)
971 { 1149 {
972 struct ev_periodic *w = periodics [i]; 1150 ev_periodic *w = periodics [i];
973 1151
1152 if (w->reschedule_cb)
1153 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
974 if (w->interval) 1154 else if (w->interval)
975 {
976 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1155 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
977
978 if (fabs (diff) >= 1e-4)
979 {
980 ev_periodic_stop (EV_A_ w);
981 ev_periodic_start (EV_A_ w);
982
983 i = 0; /* restart loop, inefficient, but time jumps should be rare */
984 }
985 }
986 } 1156 }
1157
1158 /* now rebuild the heap */
1159 for (i = periodiccnt >> 1; i--; )
1160 downheap ((WT *)periodics, periodiccnt, i);
987} 1161}
1162#endif
988 1163
989inline int 1164inline int
990time_update_monotonic (EV_P) 1165time_update_monotonic (EV_P)
991{ 1166{
992 mn_now = get_clock (); 1167 mn_now = get_clock ();
993 1168
994 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1169 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
995 { 1170 {
996 rt_now = rtmn_diff + mn_now; 1171 ev_rt_now = rtmn_diff + mn_now;
997 return 0; 1172 return 0;
998 } 1173 }
999 else 1174 else
1000 { 1175 {
1001 now_floor = mn_now; 1176 now_floor = mn_now;
1002 rt_now = ev_time (); 1177 ev_rt_now = ev_time ();
1003 return 1; 1178 return 1;
1004 } 1179 }
1005} 1180}
1006 1181
1007static void 1182inline void
1008time_update (EV_P) 1183time_update (EV_P)
1009{ 1184{
1010 int i; 1185 int i;
1011 1186
1012#if EV_USE_MONOTONIC 1187#if EV_USE_MONOTONIC
1016 { 1191 {
1017 ev_tstamp odiff = rtmn_diff; 1192 ev_tstamp odiff = rtmn_diff;
1018 1193
1019 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1194 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1020 { 1195 {
1021 rtmn_diff = rt_now - mn_now; 1196 rtmn_diff = ev_rt_now - mn_now;
1022 1197
1023 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1198 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1024 return; /* all is well */ 1199 return; /* all is well */
1025 1200
1026 rt_now = ev_time (); 1201 ev_rt_now = ev_time ();
1027 mn_now = get_clock (); 1202 mn_now = get_clock ();
1028 now_floor = mn_now; 1203 now_floor = mn_now;
1029 } 1204 }
1030 1205
1206# if EV_PERIODICS
1031 periodics_reschedule (EV_A); 1207 periodics_reschedule (EV_A);
1208# endif
1032 /* no timer adjustment, as the monotonic clock doesn't jump */ 1209 /* no timer adjustment, as the monotonic clock doesn't jump */
1033 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1210 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1034 } 1211 }
1035 } 1212 }
1036 else 1213 else
1037#endif 1214#endif
1038 { 1215 {
1039 rt_now = ev_time (); 1216 ev_rt_now = ev_time ();
1040 1217
1041 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1218 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1042 { 1219 {
1220#if EV_PERIODICS
1043 periodics_reschedule (EV_A); 1221 periodics_reschedule (EV_A);
1222#endif
1044 1223
1045 /* adjust timers. this is easy, as the offset is the same for all */ 1224 /* adjust timers. this is easy, as the offset is the same for all */
1046 for (i = 0; i < timercnt; ++i) 1225 for (i = 0; i < timercnt; ++i)
1047 ((WT)timers [i])->at += rt_now - mn_now; 1226 ((WT)timers [i])->at += ev_rt_now - mn_now;
1048 } 1227 }
1049 1228
1050 mn_now = rt_now; 1229 mn_now = ev_rt_now;
1051 } 1230 }
1052} 1231}
1053 1232
1054void 1233void
1055ev_ref (EV_P) 1234ev_ref (EV_P)
1066static int loop_done; 1245static int loop_done;
1067 1246
1068void 1247void
1069ev_loop (EV_P_ int flags) 1248ev_loop (EV_P_ int flags)
1070{ 1249{
1071 double block;
1072 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1250 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1251 ? EVUNLOOP_ONE
1252 : EVUNLOOP_CANCEL;
1073 1253
1074 do 1254 while (activecnt)
1075 { 1255 {
1076 /* queue check watchers (and execute them) */ 1256 /* queue check watchers (and execute them) */
1077 if (expect_false (preparecnt)) 1257 if (expect_false (preparecnt))
1078 { 1258 {
1079 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1259 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1086 1266
1087 /* update fd-related kernel structures */ 1267 /* update fd-related kernel structures */
1088 fd_reify (EV_A); 1268 fd_reify (EV_A);
1089 1269
1090 /* calculate blocking time */ 1270 /* calculate blocking time */
1271 {
1272 double block;
1091 1273
1092 /* we only need this for !monotonic clockor timers, but as we basically 1274 if (flags & EVLOOP_NONBLOCK || idlecnt)
1093 always have timers, we just calculate it always */ 1275 block = 0.; /* do not block at all */
1276 else
1277 {
1278 /* update time to cancel out callback processing overhead */
1094#if EV_USE_MONOTONIC 1279#if EV_USE_MONOTONIC
1095 if (expect_true (have_monotonic)) 1280 if (expect_true (have_monotonic))
1096 time_update_monotonic (EV_A); 1281 time_update_monotonic (EV_A);
1097 else 1282 else
1098#endif 1283#endif
1099 { 1284 {
1100 rt_now = ev_time (); 1285 ev_rt_now = ev_time ();
1101 mn_now = rt_now; 1286 mn_now = ev_rt_now;
1102 } 1287 }
1103 1288
1104 if (flags & EVLOOP_NONBLOCK || idlecnt)
1105 block = 0.;
1106 else
1107 {
1108 block = MAX_BLOCKTIME; 1289 block = MAX_BLOCKTIME;
1109 1290
1110 if (timercnt) 1291 if (timercnt)
1111 { 1292 {
1112 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1293 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1113 if (block > to) block = to; 1294 if (block > to) block = to;
1114 } 1295 }
1115 1296
1297#if EV_PERIODICS
1116 if (periodiccnt) 1298 if (periodiccnt)
1117 { 1299 {
1118 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1300 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1119 if (block > to) block = to; 1301 if (block > to) block = to;
1120 } 1302 }
1303#endif
1121 1304
1122 if (block < 0.) block = 0.; 1305 if (expect_false (block < 0.)) block = 0.;
1123 } 1306 }
1124 1307
1125 method_poll (EV_A_ block); 1308 backend_poll (EV_A_ block);
1309 }
1126 1310
1127 /* update rt_now, do magic */ 1311 /* update ev_rt_now, do magic */
1128 time_update (EV_A); 1312 time_update (EV_A);
1129 1313
1130 /* queue pending timers and reschedule them */ 1314 /* queue pending timers and reschedule them */
1131 timers_reify (EV_A); /* relative timers called last */ 1315 timers_reify (EV_A); /* relative timers called last */
1316#if EV_PERIODICS
1132 periodics_reify (EV_A); /* absolute timers called first */ 1317 periodics_reify (EV_A); /* absolute timers called first */
1318#endif
1133 1319
1134 /* queue idle watchers unless io or timers are pending */ 1320 /* queue idle watchers unless other events are pending */
1135 if (!pendingcnt) 1321 if (idlecnt && !any_pending (EV_A))
1136 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1322 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1137 1323
1138 /* queue check watchers, to be executed first */ 1324 /* queue check watchers, to be executed first */
1139 if (checkcnt) 1325 if (expect_false (checkcnt))
1140 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1326 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1141 1327
1142 call_pending (EV_A); 1328 call_pending (EV_A);
1143 }
1144 while (activecnt && !loop_done);
1145 1329
1146 if (loop_done != 2) 1330 if (expect_false (loop_done))
1147 loop_done = 0; 1331 break;
1332 }
1333
1334 if (loop_done == EVUNLOOP_ONE)
1335 loop_done = EVUNLOOP_CANCEL;
1148} 1336}
1149 1337
1150void 1338void
1151ev_unloop (EV_P_ int how) 1339ev_unloop (EV_P_ int how)
1152{ 1340{
1205} 1393}
1206 1394
1207/*****************************************************************************/ 1395/*****************************************************************************/
1208 1396
1209void 1397void
1210ev_io_start (EV_P_ struct ev_io *w) 1398ev_io_start (EV_P_ ev_io *w)
1211{ 1399{
1212 int fd = w->fd; 1400 int fd = w->fd;
1213 1401
1214 if (ev_is_active (w)) 1402 if (expect_false (ev_is_active (w)))
1215 return; 1403 return;
1216 1404
1217 assert (("ev_io_start called with negative fd", fd >= 0)); 1405 assert (("ev_io_start called with negative fd", fd >= 0));
1218 1406
1219 ev_start (EV_A_ (W)w, 1); 1407 ev_start (EV_A_ (W)w, 1);
1220 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1408 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1221 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1409 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1222 1410
1223 fd_change (EV_A_ fd); 1411 fd_change (EV_A_ fd);
1224} 1412}
1225 1413
1226void 1414void
1227ev_io_stop (EV_P_ struct ev_io *w) 1415ev_io_stop (EV_P_ ev_io *w)
1228{ 1416{
1229 ev_clear_pending (EV_A_ (W)w); 1417 ev_clear_pending (EV_A_ (W)w);
1230 if (!ev_is_active (w)) 1418 if (expect_false (!ev_is_active (w)))
1231 return; 1419 return;
1420
1421 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1232 1422
1233 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1423 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1234 ev_stop (EV_A_ (W)w); 1424 ev_stop (EV_A_ (W)w);
1235 1425
1236 fd_change (EV_A_ w->fd); 1426 fd_change (EV_A_ w->fd);
1237} 1427}
1238 1428
1239void 1429void
1240ev_timer_start (EV_P_ struct ev_timer *w) 1430ev_timer_start (EV_P_ ev_timer *w)
1241{ 1431{
1242 if (ev_is_active (w)) 1432 if (expect_false (ev_is_active (w)))
1243 return; 1433 return;
1244 1434
1245 ((WT)w)->at += mn_now; 1435 ((WT)w)->at += mn_now;
1246 1436
1247 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1437 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1248 1438
1249 ev_start (EV_A_ (W)w, ++timercnt); 1439 ev_start (EV_A_ (W)w, ++timercnt);
1250 array_needsize (timers, timermax, timercnt, (void)); 1440 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1251 timers [timercnt - 1] = w; 1441 timers [timercnt - 1] = w;
1252 upheap ((WT *)timers, timercnt - 1); 1442 upheap ((WT *)timers, timercnt - 1);
1253 1443
1254 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1444 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1255} 1445}
1256 1446
1257void 1447void
1258ev_timer_stop (EV_P_ struct ev_timer *w) 1448ev_timer_stop (EV_P_ ev_timer *w)
1259{ 1449{
1260 ev_clear_pending (EV_A_ (W)w); 1450 ev_clear_pending (EV_A_ (W)w);
1261 if (!ev_is_active (w)) 1451 if (expect_false (!ev_is_active (w)))
1262 return; 1452 return;
1263 1453
1264 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1454 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1265 1455
1266 if (((W)w)->active < timercnt--) 1456 if (expect_true (((W)w)->active < timercnt--))
1267 { 1457 {
1268 timers [((W)w)->active - 1] = timers [timercnt]; 1458 timers [((W)w)->active - 1] = timers [timercnt];
1269 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1270 } 1460 }
1271 1461
1272 ((WT)w)->at = w->repeat; 1462 ((WT)w)->at -= mn_now;
1273 1463
1274 ev_stop (EV_A_ (W)w); 1464 ev_stop (EV_A_ (W)w);
1275} 1465}
1276 1466
1277void 1467void
1278ev_timer_again (EV_P_ struct ev_timer *w) 1468ev_timer_again (EV_P_ ev_timer *w)
1279{ 1469{
1280 if (ev_is_active (w)) 1470 if (ev_is_active (w))
1281 { 1471 {
1282 if (w->repeat) 1472 if (w->repeat)
1283 { 1473 {
1284 ((WT)w)->at = mn_now + w->repeat; 1474 ((WT)w)->at = mn_now + w->repeat;
1285 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1475 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1286 } 1476 }
1287 else 1477 else
1288 ev_timer_stop (EV_A_ w); 1478 ev_timer_stop (EV_A_ w);
1289 } 1479 }
1290 else if (w->repeat) 1480 else if (w->repeat)
1481 {
1482 w->at = w->repeat;
1291 ev_timer_start (EV_A_ w); 1483 ev_timer_start (EV_A_ w);
1484 }
1292} 1485}
1293 1486
1487#if EV_PERIODICS
1294void 1488void
1295ev_periodic_start (EV_P_ struct ev_periodic *w) 1489ev_periodic_start (EV_P_ ev_periodic *w)
1296{ 1490{
1297 if (ev_is_active (w)) 1491 if (expect_false (ev_is_active (w)))
1298 return; 1492 return;
1299 1493
1494 if (w->reschedule_cb)
1495 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1496 else if (w->interval)
1497 {
1300 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1498 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1301
1302 /* this formula differs from the one in periodic_reify because we do not always round up */ 1499 /* this formula differs from the one in periodic_reify because we do not always round up */
1303 if (w->interval)
1304 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1500 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1501 }
1305 1502
1306 ev_start (EV_A_ (W)w, ++periodiccnt); 1503 ev_start (EV_A_ (W)w, ++periodiccnt);
1307 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1504 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1308 periodics [periodiccnt - 1] = w; 1505 periodics [periodiccnt - 1] = w;
1309 upheap ((WT *)periodics, periodiccnt - 1); 1506 upheap ((WT *)periodics, periodiccnt - 1);
1310 1507
1311 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1508 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1312} 1509}
1313 1510
1314void 1511void
1315ev_periodic_stop (EV_P_ struct ev_periodic *w) 1512ev_periodic_stop (EV_P_ ev_periodic *w)
1316{ 1513{
1317 ev_clear_pending (EV_A_ (W)w); 1514 ev_clear_pending (EV_A_ (W)w);
1318 if (!ev_is_active (w)) 1515 if (expect_false (!ev_is_active (w)))
1319 return; 1516 return;
1320 1517
1321 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1518 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1322 1519
1323 if (((W)w)->active < periodiccnt--) 1520 if (expect_true (((W)w)->active < periodiccnt--))
1324 { 1521 {
1325 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1522 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1326 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1523 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1327 } 1524 }
1328 1525
1329 ev_stop (EV_A_ (W)w); 1526 ev_stop (EV_A_ (W)w);
1330} 1527}
1331 1528
1332void 1529void
1530ev_periodic_again (EV_P_ ev_periodic *w)
1531{
1532 /* TODO: use adjustheap and recalculation */
1533 ev_periodic_stop (EV_A_ w);
1534 ev_periodic_start (EV_A_ w);
1535}
1536#endif
1537
1538void
1333ev_idle_start (EV_P_ struct ev_idle *w) 1539ev_idle_start (EV_P_ ev_idle *w)
1334{ 1540{
1335 if (ev_is_active (w)) 1541 if (expect_false (ev_is_active (w)))
1336 return; 1542 return;
1337 1543
1338 ev_start (EV_A_ (W)w, ++idlecnt); 1544 ev_start (EV_A_ (W)w, ++idlecnt);
1339 array_needsize (idles, idlemax, idlecnt, (void)); 1545 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1340 idles [idlecnt - 1] = w; 1546 idles [idlecnt - 1] = w;
1341} 1547}
1342 1548
1343void 1549void
1344ev_idle_stop (EV_P_ struct ev_idle *w) 1550ev_idle_stop (EV_P_ ev_idle *w)
1345{ 1551{
1346 ev_clear_pending (EV_A_ (W)w); 1552 ev_clear_pending (EV_A_ (W)w);
1347 if (ev_is_active (w)) 1553 if (expect_false (!ev_is_active (w)))
1348 return; 1554 return;
1349 1555
1350 idles [((W)w)->active - 1] = idles [--idlecnt]; 1556 idles [((W)w)->active - 1] = idles [--idlecnt];
1351 ev_stop (EV_A_ (W)w); 1557 ev_stop (EV_A_ (W)w);
1352} 1558}
1353 1559
1354void 1560void
1355ev_prepare_start (EV_P_ struct ev_prepare *w) 1561ev_prepare_start (EV_P_ ev_prepare *w)
1356{ 1562{
1357 if (ev_is_active (w)) 1563 if (expect_false (ev_is_active (w)))
1358 return; 1564 return;
1359 1565
1360 ev_start (EV_A_ (W)w, ++preparecnt); 1566 ev_start (EV_A_ (W)w, ++preparecnt);
1361 array_needsize (prepares, preparemax, preparecnt, (void)); 1567 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1362 prepares [preparecnt - 1] = w; 1568 prepares [preparecnt - 1] = w;
1363} 1569}
1364 1570
1365void 1571void
1366ev_prepare_stop (EV_P_ struct ev_prepare *w) 1572ev_prepare_stop (EV_P_ ev_prepare *w)
1367{ 1573{
1368 ev_clear_pending (EV_A_ (W)w); 1574 ev_clear_pending (EV_A_ (W)w);
1369 if (ev_is_active (w)) 1575 if (expect_false (!ev_is_active (w)))
1370 return; 1576 return;
1371 1577
1372 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1578 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1373 ev_stop (EV_A_ (W)w); 1579 ev_stop (EV_A_ (W)w);
1374} 1580}
1375 1581
1376void 1582void
1377ev_check_start (EV_P_ struct ev_check *w) 1583ev_check_start (EV_P_ ev_check *w)
1378{ 1584{
1379 if (ev_is_active (w)) 1585 if (expect_false (ev_is_active (w)))
1380 return; 1586 return;
1381 1587
1382 ev_start (EV_A_ (W)w, ++checkcnt); 1588 ev_start (EV_A_ (W)w, ++checkcnt);
1383 array_needsize (checks, checkmax, checkcnt, (void)); 1589 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1384 checks [checkcnt - 1] = w; 1590 checks [checkcnt - 1] = w;
1385} 1591}
1386 1592
1387void 1593void
1388ev_check_stop (EV_P_ struct ev_check *w) 1594ev_check_stop (EV_P_ ev_check *w)
1389{ 1595{
1390 ev_clear_pending (EV_A_ (W)w); 1596 ev_clear_pending (EV_A_ (W)w);
1391 if (ev_is_active (w)) 1597 if (expect_false (!ev_is_active (w)))
1392 return; 1598 return;
1393 1599
1394 checks [((W)w)->active - 1] = checks [--checkcnt]; 1600 checks [((W)w)->active - 1] = checks [--checkcnt];
1395 ev_stop (EV_A_ (W)w); 1601 ev_stop (EV_A_ (W)w);
1396} 1602}
1398#ifndef SA_RESTART 1604#ifndef SA_RESTART
1399# define SA_RESTART 0 1605# define SA_RESTART 0
1400#endif 1606#endif
1401 1607
1402void 1608void
1403ev_signal_start (EV_P_ struct ev_signal *w) 1609ev_signal_start (EV_P_ ev_signal *w)
1404{ 1610{
1405#if EV_MULTIPLICITY 1611#if EV_MULTIPLICITY
1406 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1612 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1407#endif 1613#endif
1408 if (ev_is_active (w)) 1614 if (expect_false (ev_is_active (w)))
1409 return; 1615 return;
1410 1616
1411 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1617 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1412 1618
1413 ev_start (EV_A_ (W)w, 1); 1619 ev_start (EV_A_ (W)w, 1);
1414 array_needsize (signals, signalmax, w->signum, signals_init); 1620 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1415 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1621 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1416 1622
1417 if (!((WL)w)->next) 1623 if (!((WL)w)->next)
1418 { 1624 {
1419#if WIN32 1625#if _WIN32
1420 signal (w->signum, sighandler); 1626 signal (w->signum, sighandler);
1421#else 1627#else
1422 struct sigaction sa; 1628 struct sigaction sa;
1423 sa.sa_handler = sighandler; 1629 sa.sa_handler = sighandler;
1424 sigfillset (&sa.sa_mask); 1630 sigfillset (&sa.sa_mask);
1427#endif 1633#endif
1428 } 1634 }
1429} 1635}
1430 1636
1431void 1637void
1432ev_signal_stop (EV_P_ struct ev_signal *w) 1638ev_signal_stop (EV_P_ ev_signal *w)
1433{ 1639{
1434 ev_clear_pending (EV_A_ (W)w); 1640 ev_clear_pending (EV_A_ (W)w);
1435 if (!ev_is_active (w)) 1641 if (expect_false (!ev_is_active (w)))
1436 return; 1642 return;
1437 1643
1438 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1644 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1439 ev_stop (EV_A_ (W)w); 1645 ev_stop (EV_A_ (W)w);
1440 1646
1441 if (!signals [w->signum - 1].head) 1647 if (!signals [w->signum - 1].head)
1442 signal (w->signum, SIG_DFL); 1648 signal (w->signum, SIG_DFL);
1443} 1649}
1444 1650
1445void 1651void
1446ev_child_start (EV_P_ struct ev_child *w) 1652ev_child_start (EV_P_ ev_child *w)
1447{ 1653{
1448#if EV_MULTIPLICITY 1654#if EV_MULTIPLICITY
1449 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1655 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1450#endif 1656#endif
1451 if (ev_is_active (w)) 1657 if (expect_false (ev_is_active (w)))
1452 return; 1658 return;
1453 1659
1454 ev_start (EV_A_ (W)w, 1); 1660 ev_start (EV_A_ (W)w, 1);
1455 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1661 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1456} 1662}
1457 1663
1458void 1664void
1459ev_child_stop (EV_P_ struct ev_child *w) 1665ev_child_stop (EV_P_ ev_child *w)
1460{ 1666{
1461 ev_clear_pending (EV_A_ (W)w); 1667 ev_clear_pending (EV_A_ (W)w);
1462 if (ev_is_active (w)) 1668 if (expect_false (!ev_is_active (w)))
1463 return; 1669 return;
1464 1670
1465 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1671 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1466 ev_stop (EV_A_ (W)w); 1672 ev_stop (EV_A_ (W)w);
1467} 1673}
1468 1674
1675#if EV_MULTIPLICITY
1676void
1677ev_embed_sweep (EV_P_ ev_embed *w)
1678{
1679 ev_loop (w->loop, EVLOOP_NONBLOCK);
1680}
1681
1682static void
1683embed_cb (EV_P_ ev_io *io, int revents)
1684{
1685 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1686
1687 if (ev_cb (w))
1688 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1689 else
1690 ev_embed_sweep (loop, w);
1691}
1692
1693void
1694ev_embed_start (EV_P_ ev_embed *w)
1695{
1696 if (expect_false (ev_is_active (w)))
1697 return;
1698
1699 {
1700 struct ev_loop *loop = w->loop;
1701 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1702 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1703 }
1704
1705 ev_set_priority (&w->io, ev_priority (w));
1706 ev_io_start (EV_A_ &w->io);
1707 ev_start (EV_A_ (W)w, 1);
1708}
1709
1710void
1711ev_embed_stop (EV_P_ ev_embed *w)
1712{
1713 ev_clear_pending (EV_A_ (W)w);
1714 if (expect_false (!ev_is_active (w)))
1715 return;
1716
1717 ev_io_stop (EV_A_ &w->io);
1718 ev_stop (EV_A_ (W)w);
1719}
1720#endif
1721
1469/*****************************************************************************/ 1722/*****************************************************************************/
1470 1723
1471struct ev_once 1724struct ev_once
1472{ 1725{
1473 struct ev_io io; 1726 ev_io io;
1474 struct ev_timer to; 1727 ev_timer to;
1475 void (*cb)(int revents, void *arg); 1728 void (*cb)(int revents, void *arg);
1476 void *arg; 1729 void *arg;
1477}; 1730};
1478 1731
1479static void 1732static void
1488 1741
1489 cb (revents, arg); 1742 cb (revents, arg);
1490} 1743}
1491 1744
1492static void 1745static void
1493once_cb_io (EV_P_ struct ev_io *w, int revents) 1746once_cb_io (EV_P_ ev_io *w, int revents)
1494{ 1747{
1495 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1496} 1749}
1497 1750
1498static void 1751static void
1499once_cb_to (EV_P_ struct ev_timer *w, int revents) 1752once_cb_to (EV_P_ ev_timer *w, int revents)
1500{ 1753{
1501 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1754 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1502} 1755}
1503 1756
1504void 1757void
1505ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1758ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1506{ 1759{
1507 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1760 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1508 1761
1509 if (!once) 1762 if (expect_false (!once))
1763 {
1510 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1764 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1511 else 1765 return;
1512 { 1766 }
1767
1513 once->cb = cb; 1768 once->cb = cb;
1514 once->arg = arg; 1769 once->arg = arg;
1515 1770
1516 ev_watcher_init (&once->io, once_cb_io); 1771 ev_init (&once->io, once_cb_io);
1517 if (fd >= 0) 1772 if (fd >= 0)
1518 { 1773 {
1519 ev_io_set (&once->io, fd, events); 1774 ev_io_set (&once->io, fd, events);
1520 ev_io_start (EV_A_ &once->io); 1775 ev_io_start (EV_A_ &once->io);
1521 } 1776 }
1522 1777
1523 ev_watcher_init (&once->to, once_cb_to); 1778 ev_init (&once->to, once_cb_to);
1524 if (timeout >= 0.) 1779 if (timeout >= 0.)
1525 { 1780 {
1526 ev_timer_set (&once->to, timeout, 0.); 1781 ev_timer_set (&once->to, timeout, 0.);
1527 ev_timer_start (EV_A_ &once->to); 1782 ev_timer_start (EV_A_ &once->to);
1528 }
1529 } 1783 }
1530} 1784}
1531 1785
1786#ifdef __cplusplus
1787}
1788#endif
1789

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines