ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.71 by root, Tue Nov 6 13:17:55 2007 UTC vs.
Revision 1.194 by root, Sat Dec 22 07:03:31 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 59# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 61# define EV_USE_NANOSLEEP 1
62# else
63# define EV_USE_NANOSLEEP 0
64# endif
41# endif 65# endif
42 66
43# if HAVE_POLL && HAVE_POLL_H 67# ifndef EV_USE_SELECT
68# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif
45# endif 73# endif
46 74
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_POLL 1
78# else
79# define EV_USE_POLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1
86# else
87# define EV_USE_EPOLL 0
88# endif
89# endif
90
91# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif
97# endif
98
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1
102# else
103# define EV_USE_PORT 0
104# endif
105# endif
106
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1
110# else
111# define EV_USE_INOTIFY 0
112# endif
53# endif 113# endif
54 114
55#endif 115#endif
56 116
57#include <math.h> 117#include <math.h>
64#include <assert.h> 124#include <assert.h>
65#include <errno.h> 125#include <errno.h>
66#include <sys/types.h> 126#include <sys/types.h>
67#include <time.h> 127#include <time.h>
68 128
69#ifndef PERL
70# include <signal.h> 129#include <signal.h>
71#endif
72 130
131#ifdef EV_H
132# include EV_H
133#else
134# include "ev.h"
135#endif
136
73#ifndef WIN32 137#ifndef _WIN32
74# include <unistd.h>
75# include <sys/time.h> 138# include <sys/time.h>
76# include <sys/wait.h> 139# include <sys/wait.h>
140# include <unistd.h>
141#else
142# define WIN32_LEAN_AND_MEAN
143# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1
77#endif 146# endif
147#endif
148
78/**/ 149/**/
79 150
80#ifndef EV_USE_MONOTONIC 151#ifndef EV_USE_MONOTONIC
81# define EV_USE_MONOTONIC 1 152# define EV_USE_MONOTONIC 0
153#endif
154
155#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0
157#endif
158
159#ifndef EV_USE_NANOSLEEP
160# define EV_USE_NANOSLEEP 0
82#endif 161#endif
83 162
84#ifndef EV_USE_SELECT 163#ifndef EV_USE_SELECT
85# define EV_USE_SELECT 1 164# define EV_USE_SELECT 1
86#endif 165#endif
87 166
88#ifndef EV_USE_POLL 167#ifndef EV_USE_POLL
89# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 168# ifdef _WIN32
169# define EV_USE_POLL 0
170# else
171# define EV_USE_POLL 1
172# endif
90#endif 173#endif
91 174
92#ifndef EV_USE_EPOLL 175#ifndef EV_USE_EPOLL
93# define EV_USE_EPOLL 0 176# define EV_USE_EPOLL 0
94#endif 177#endif
95 178
96#ifndef EV_USE_KQUEUE 179#ifndef EV_USE_KQUEUE
97# define EV_USE_KQUEUE 0 180# define EV_USE_KQUEUE 0
98#endif 181#endif
99 182
183#ifndef EV_USE_PORT
184# define EV_USE_PORT 0
185#endif
186
100#ifndef EV_USE_WIN32 187#ifndef EV_USE_INOTIFY
101# ifdef WIN32 188# define EV_USE_INOTIFY 0
102# define EV_USE_WIN32 0 /* it does not exist, use select */ 189#endif
103# undef EV_USE_SELECT 190
104# define EV_USE_SELECT 1 191#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1
105# else 194# else
106# define EV_USE_WIN32 0 195# define EV_PID_HASHSIZE 16
107# endif 196# endif
108#endif 197#endif
109 198
110#ifndef EV_USE_REALTIME 199#ifndef EV_INOTIFY_HASHSIZE
111# define EV_USE_REALTIME 1 200# if EV_MINIMAL
201# define EV_INOTIFY_HASHSIZE 1
202# else
203# define EV_INOTIFY_HASHSIZE 16
204# endif
112#endif 205#endif
113 206
114/**/ 207/**/
115 208
116#ifndef CLOCK_MONOTONIC 209#ifndef CLOCK_MONOTONIC
121#ifndef CLOCK_REALTIME 214#ifndef CLOCK_REALTIME
122# undef EV_USE_REALTIME 215# undef EV_USE_REALTIME
123# define EV_USE_REALTIME 0 216# define EV_USE_REALTIME 0
124#endif 217#endif
125 218
219#if !EV_STAT_ENABLE
220# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0
222#endif
223
224#if !EV_USE_NANOSLEEP
225# ifndef _WIN32
226# include <sys/select.h>
227# endif
228#endif
229
230#if EV_USE_INOTIFY
231# include <sys/inotify.h>
232#endif
233
234#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h>
236#endif
237
126/**/ 238/**/
127 239
240/*
241 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249
128#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
129#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
130#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
131/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
132 253
133#include "ev.h"
134
135#if __GNUC__ >= 3 254#if __GNUC__ >= 4
136# define expect(expr,value) __builtin_expect ((expr),(value)) 255# define expect(expr,value) __builtin_expect ((expr),(value))
137# define inline inline 256# define noinline __attribute__ ((noinline))
138#else 257#else
139# define expect(expr,value) (expr) 258# define expect(expr,value) (expr)
140# define inline static 259# define noinline
260# if __STDC_VERSION__ < 199901L
261# define inline
262# endif
141#endif 263#endif
142 264
143#define expect_false(expr) expect ((expr) != 0, 0) 265#define expect_false(expr) expect ((expr) != 0, 0)
144#define expect_true(expr) expect ((expr) != 0, 1) 266#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline
268
269#if EV_MINIMAL
270# define inline_speed static noinline
271#else
272# define inline_speed static inline
273#endif
145 274
146#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
147#define ABSPRI(w) ((w)->priority - EV_MINPRI) 276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
148 277
278#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */
280
149typedef struct ev_watcher *W; 281typedef ev_watcher *W;
150typedef struct ev_watcher_list *WL; 282typedef ev_watcher_list *WL;
151typedef struct ev_watcher_time *WT; 283typedef ev_watcher_time *WT;
152 284
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */
153static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
154 288
155#if WIN32 289#ifdef _WIN32
156/* note: the comment below could not be substantiated, but what would I care */ 290# include "ev_win32.c"
157/* MSDN says this is required to handle SIGFPE */
158volatile double SIGFPE_REQ = 0.0f;
159#endif 291#endif
160 292
161/*****************************************************************************/ 293/*****************************************************************************/
162 294
163static void (*syserr_cb)(const char *msg); 295static void (*syserr_cb)(const char *msg);
164 296
297void
165void ev_set_syserr_cb (void (*cb)(const char *msg)) 298ev_set_syserr_cb (void (*cb)(const char *msg))
166{ 299{
167 syserr_cb = cb; 300 syserr_cb = cb;
168} 301}
169 302
170static void 303static void noinline
171syserr (const char *msg) 304syserr (const char *msg)
172{ 305{
173 if (!msg) 306 if (!msg)
174 msg = "(libev) system error"; 307 msg = "(libev) system error";
175 308
182 } 315 }
183} 316}
184 317
185static void *(*alloc)(void *ptr, long size); 318static void *(*alloc)(void *ptr, long size);
186 319
320void
187void ev_set_allocator (void *(*cb)(void *ptr, long size)) 321ev_set_allocator (void *(*cb)(void *ptr, long size))
188{ 322{
189 alloc = cb; 323 alloc = cb;
190} 324}
191 325
192static void * 326inline_speed void *
193ev_realloc (void *ptr, long size) 327ev_realloc (void *ptr, long size)
194{ 328{
195 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
196 330
197 if (!ptr && size) 331 if (!ptr && size)
211typedef struct 345typedef struct
212{ 346{
213 WL head; 347 WL head;
214 unsigned char events; 348 unsigned char events;
215 unsigned char reify; 349 unsigned char reify;
350#if EV_SELECT_IS_WINSOCKET
351 SOCKET handle;
352#endif
216} ANFD; 353} ANFD;
217 354
218typedef struct 355typedef struct
219{ 356{
220 W w; 357 W w;
221 int events; 358 int events;
222} ANPENDING; 359} ANPENDING;
223 360
361#if EV_USE_INOTIFY
362typedef struct
363{
364 WL head;
365} ANFS;
366#endif
367
224#if EV_MULTIPLICITY 368#if EV_MULTIPLICITY
225 369
226struct ev_loop 370 struct ev_loop
227{ 371 {
372 ev_tstamp ev_rt_now;
373 #define ev_rt_now ((loop)->ev_rt_now)
228# define VAR(name,decl) decl; 374 #define VAR(name,decl) decl;
229# include "ev_vars.h" 375 #include "ev_vars.h"
230};
231# undef VAR 376 #undef VAR
377 };
232# include "ev_wrap.h" 378 #include "ev_wrap.h"
379
380 static struct ev_loop default_loop_struct;
381 struct ev_loop *ev_default_loop_ptr;
233 382
234#else 383#else
235 384
385 ev_tstamp ev_rt_now;
236# define VAR(name,decl) static decl; 386 #define VAR(name,decl) static decl;
237# include "ev_vars.h" 387 #include "ev_vars.h"
238# undef VAR 388 #undef VAR
389
390 static int ev_default_loop_ptr;
239 391
240#endif 392#endif
241 393
242/*****************************************************************************/ 394/*****************************************************************************/
243 395
244inline ev_tstamp 396ev_tstamp
245ev_time (void) 397ev_time (void)
246{ 398{
247#if EV_USE_REALTIME 399#if EV_USE_REALTIME
248 struct timespec ts; 400 struct timespec ts;
249 clock_gettime (CLOCK_REALTIME, &ts); 401 clock_gettime (CLOCK_REALTIME, &ts);
253 gettimeofday (&tv, 0); 405 gettimeofday (&tv, 0);
254 return tv.tv_sec + tv.tv_usec * 1e-6; 406 return tv.tv_sec + tv.tv_usec * 1e-6;
255#endif 407#endif
256} 408}
257 409
258inline ev_tstamp 410ev_tstamp inline_size
259get_clock (void) 411get_clock (void)
260{ 412{
261#if EV_USE_MONOTONIC 413#if EV_USE_MONOTONIC
262 if (expect_true (have_monotonic)) 414 if (expect_true (have_monotonic))
263 { 415 {
268#endif 420#endif
269 421
270 return ev_time (); 422 return ev_time ();
271} 423}
272 424
425#if EV_MULTIPLICITY
273ev_tstamp 426ev_tstamp
274ev_now (EV_P) 427ev_now (EV_P)
275{ 428{
276 return rt_now; 429 return ev_rt_now;
277} 430}
431#endif
278 432
279#define array_roundsize(base,n) ((n) | 4 & ~3) 433void
434ev_sleep (ev_tstamp delay)
435{
436 if (delay > 0.)
437 {
438#if EV_USE_NANOSLEEP
439 struct timespec ts;
280 440
441 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443
444 nanosleep (&ts, 0);
445#elif defined(_WIN32)
446 Sleep (delay * 1e3);
447#else
448 struct timeval tv;
449
450 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452
453 select (0, 0, 0, 0, &tv);
454#endif
455 }
456}
457
458/*****************************************************************************/
459
460int inline_size
461array_nextsize (int elem, int cur, int cnt)
462{
463 int ncur = cur + 1;
464
465 do
466 ncur <<= 1;
467 while (cnt > ncur);
468
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096)
471 {
472 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
474 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem;
476 }
477
478 return ncur;
479}
480
481static noinline void *
482array_realloc (int elem, void *base, int *cur, int cnt)
483{
484 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur);
486}
487
281#define array_needsize(base,cur,cnt,init) \ 488#define array_needsize(type,base,cur,cnt,init) \
282 if (expect_false ((cnt) > cur)) \ 489 if (expect_false ((cnt) > (cur))) \
283 { \ 490 { \
284 int newcnt = cur; \ 491 int ocur_ = (cur); \
285 do \ 492 (base) = (type *)array_realloc \
286 { \ 493 (sizeof (type), (base), &(cur), (cnt)); \
287 newcnt = array_roundsize (base, newcnt << 1); \ 494 init ((base) + (ocur_), (cur) - ocur_); \
288 } \
289 while ((cnt) > newcnt); \
290 \
291 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
292 init (base + cur, newcnt - cur); \
293 cur = newcnt; \
294 } 495 }
295 496
497#if 0
296#define array_slim(stem) \ 498#define array_slim(type,stem) \
297 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 499 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
298 { \ 500 { \
299 stem ## max = array_roundsize (stem ## cnt >> 1); \ 501 stem ## max = array_roundsize (stem ## cnt >> 1); \
300 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 502 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
301 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
302 } 504 }
303 505#endif
304/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
305/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
306#define array_free_microshit(stem) \
307 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
308 506
309#define array_free(stem, idx) \ 507#define array_free(stem, idx) \
310 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
311 509
312/*****************************************************************************/ 510/*****************************************************************************/
313 511
314static void 512void noinline
513ev_feed_event (EV_P_ void *w, int revents)
514{
515 W w_ = (W)w;
516 int pri = ABSPRI (w_);
517
518 if (expect_false (w_->pending))
519 pendings [pri][w_->pending - 1].events |= revents;
520 else
521 {
522 w_->pending = ++pendingcnt [pri];
523 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
524 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents;
526 }
527}
528
529void inline_speed
530queue_events (EV_P_ W *events, int eventcnt, int type)
531{
532 int i;
533
534 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type);
536}
537
538/*****************************************************************************/
539
540void inline_size
315anfds_init (ANFD *base, int count) 541anfds_init (ANFD *base, int count)
316{ 542{
317 while (count--) 543 while (count--)
318 { 544 {
319 base->head = 0; 545 base->head = 0;
322 548
323 ++base; 549 ++base;
324 } 550 }
325} 551}
326 552
327static void 553void inline_speed
328event (EV_P_ W w, int events)
329{
330 if (w->pending)
331 {
332 pendings [ABSPRI (w)][w->pending - 1].events |= events;
333 return;
334 }
335
336 w->pending = ++pendingcnt [ABSPRI (w)];
337 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
338 pendings [ABSPRI (w)][w->pending - 1].w = w;
339 pendings [ABSPRI (w)][w->pending - 1].events = events;
340}
341
342static void
343queue_events (EV_P_ W *events, int eventcnt, int type)
344{
345 int i;
346
347 for (i = 0; i < eventcnt; ++i)
348 event (EV_A_ events [i], type);
349}
350
351static void
352fd_event (EV_P_ int fd, int events) 554fd_event (EV_P_ int fd, int revents)
353{ 555{
354 ANFD *anfd = anfds + fd; 556 ANFD *anfd = anfds + fd;
355 struct ev_io *w; 557 ev_io *w;
356 558
357 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 559 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
358 { 560 {
359 int ev = w->events & events; 561 int ev = w->events & revents;
360 562
361 if (ev) 563 if (ev)
362 event (EV_A_ (W)w, ev); 564 ev_feed_event (EV_A_ (W)w, ev);
363 } 565 }
364} 566}
365 567
366/*****************************************************************************/ 568void
569ev_feed_fd_event (EV_P_ int fd, int revents)
570{
571 if (fd >= 0 && fd < anfdmax)
572 fd_event (EV_A_ fd, revents);
573}
367 574
368static void 575void inline_size
369fd_reify (EV_P) 576fd_reify (EV_P)
370{ 577{
371 int i; 578 int i;
372 579
373 for (i = 0; i < fdchangecnt; ++i) 580 for (i = 0; i < fdchangecnt; ++i)
374 { 581 {
375 int fd = fdchanges [i]; 582 int fd = fdchanges [i];
376 ANFD *anfd = anfds + fd; 583 ANFD *anfd = anfds + fd;
377 struct ev_io *w; 584 ev_io *w;
378 585
379 int events = 0; 586 unsigned char events = 0;
380 587
381 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 588 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
382 events |= w->events; 589 events |= (unsigned char)w->events;
383 590
591#if EV_SELECT_IS_WINSOCKET
592 if (events)
593 {
594 unsigned long argp;
595 anfd->handle = _get_osfhandle (fd);
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
597 }
598#endif
599
600 {
601 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify;
603
384 anfd->reify = 0; 604 anfd->reify = 0;
385
386 method_modify (EV_A_ fd, anfd->events, events);
387 anfd->events = events; 605 anfd->events = events;
606
607 if (o_events != events || o_reify & EV_IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events);
609 }
388 } 610 }
389 611
390 fdchangecnt = 0; 612 fdchangecnt = 0;
391} 613}
392 614
393static void 615void inline_size
394fd_change (EV_P_ int fd) 616fd_change (EV_P_ int fd, int flags)
395{ 617{
396 if (anfds [fd].reify) 618 unsigned char reify = anfds [fd].reify;
397 return;
398
399 anfds [fd].reify = 1; 619 anfds [fd].reify |= flags;
400 620
621 if (expect_true (!reify))
622 {
401 ++fdchangecnt; 623 ++fdchangecnt;
402 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
403 fdchanges [fdchangecnt - 1] = fd; 625 fdchanges [fdchangecnt - 1] = fd;
626 }
404} 627}
405 628
406static void 629void inline_speed
407fd_kill (EV_P_ int fd) 630fd_kill (EV_P_ int fd)
408{ 631{
409 struct ev_io *w; 632 ev_io *w;
410 633
411 while ((w = (struct ev_io *)anfds [fd].head)) 634 while ((w = (ev_io *)anfds [fd].head))
412 { 635 {
413 ev_io_stop (EV_A_ w); 636 ev_io_stop (EV_A_ w);
414 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
415 } 638 }
416} 639}
417 640
418static int 641int inline_size
419fd_valid (int fd) 642fd_valid (int fd)
420{ 643{
421#ifdef WIN32 644#ifdef _WIN32
422 return !!win32_get_osfhandle (fd); 645 return _get_osfhandle (fd) != -1;
423#else 646#else
424 return fcntl (fd, F_GETFD) != -1; 647 return fcntl (fd, F_GETFD) != -1;
425#endif 648#endif
426} 649}
427 650
428/* called on EBADF to verify fds */ 651/* called on EBADF to verify fds */
429static void 652static void noinline
430fd_ebadf (EV_P) 653fd_ebadf (EV_P)
431{ 654{
432 int fd; 655 int fd;
433 656
434 for (fd = 0; fd < anfdmax; ++fd) 657 for (fd = 0; fd < anfdmax; ++fd)
436 if (!fd_valid (fd) == -1 && errno == EBADF) 659 if (!fd_valid (fd) == -1 && errno == EBADF)
437 fd_kill (EV_A_ fd); 660 fd_kill (EV_A_ fd);
438} 661}
439 662
440/* called on ENOMEM in select/poll to kill some fds and retry */ 663/* called on ENOMEM in select/poll to kill some fds and retry */
441static void 664static void noinline
442fd_enomem (EV_P) 665fd_enomem (EV_P)
443{ 666{
444 int fd; 667 int fd;
445 668
446 for (fd = anfdmax; fd--; ) 669 for (fd = anfdmax; fd--; )
449 fd_kill (EV_A_ fd); 672 fd_kill (EV_A_ fd);
450 return; 673 return;
451 } 674 }
452} 675}
453 676
454/* usually called after fork if method needs to re-arm all fds from scratch */ 677/* usually called after fork if backend needs to re-arm all fds from scratch */
455static void 678static void noinline
456fd_rearm_all (EV_P) 679fd_rearm_all (EV_P)
457{ 680{
458 int fd; 681 int fd;
459 682
460 /* this should be highly optimised to not do anything but set a flag */
461 for (fd = 0; fd < anfdmax; ++fd) 683 for (fd = 0; fd < anfdmax; ++fd)
462 if (anfds [fd].events) 684 if (anfds [fd].events)
463 { 685 {
464 anfds [fd].events = 0; 686 anfds [fd].events = 0;
465 fd_change (EV_A_ fd); 687 fd_change (EV_A_ fd, EV_IOFDSET | 1);
466 } 688 }
467} 689}
468 690
469/*****************************************************************************/ 691/*****************************************************************************/
470 692
471static void 693void inline_speed
472upheap (WT *heap, int k) 694upheap (WT *heap, int k)
473{ 695{
474 WT w = heap [k]; 696 WT w = heap [k];
475 697
476 while (k && heap [k >> 1]->at > w->at) 698 while (k)
477 { 699 {
700 int p = (k - 1) >> 1;
701
702 if (heap [p]->at <= w->at)
703 break;
704
478 heap [k] = heap [k >> 1]; 705 heap [k] = heap [p];
479 ((W)heap [k])->active = k + 1; 706 ((W)heap [k])->active = k + 1;
480 k >>= 1; 707 k = p;
481 } 708 }
482 709
483 heap [k] = w; 710 heap [k] = w;
484 ((W)heap [k])->active = k + 1; 711 ((W)heap [k])->active = k + 1;
485
486} 712}
487 713
488static void 714void inline_speed
489downheap (WT *heap, int N, int k) 715downheap (WT *heap, int N, int k)
490{ 716{
491 WT w = heap [k]; 717 WT w = heap [k];
492 718
493 while (k < (N >> 1)) 719 for (;;)
494 { 720 {
495 int j = k << 1; 721 int c = (k << 1) + 1;
496 722
497 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 723 if (c >= N)
498 ++j;
499
500 if (w->at <= heap [j]->at)
501 break; 724 break;
502 725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
503 heap [k] = heap [j]; 732 heap [k] = heap [c];
504 ((W)heap [k])->active = k + 1; 733 ((W)heap [k])->active = k + 1;
734
505 k = j; 735 k = c;
506 } 736 }
507 737
508 heap [k] = w; 738 heap [k] = w;
509 ((W)heap [k])->active = k + 1; 739 ((W)heap [k])->active = k + 1;
740}
741
742void inline_size
743adjustheap (WT *heap, int N, int k)
744{
745 upheap (heap, k);
746 downheap (heap, N, k);
510} 747}
511 748
512/*****************************************************************************/ 749/*****************************************************************************/
513 750
514typedef struct 751typedef struct
520static ANSIG *signals; 757static ANSIG *signals;
521static int signalmax; 758static int signalmax;
522 759
523static int sigpipe [2]; 760static int sigpipe [2];
524static sig_atomic_t volatile gotsig; 761static sig_atomic_t volatile gotsig;
525static struct ev_io sigev; 762static ev_io sigev;
526 763
527static void 764void inline_size
528signals_init (ANSIG *base, int count) 765signals_init (ANSIG *base, int count)
529{ 766{
530 while (count--) 767 while (count--)
531 { 768 {
532 base->head = 0; 769 base->head = 0;
537} 774}
538 775
539static void 776static void
540sighandler (int signum) 777sighandler (int signum)
541{ 778{
542#if WIN32 779#if _WIN32
543 signal (signum, sighandler); 780 signal (signum, sighandler);
544#endif 781#endif
545 782
546 signals [signum - 1].gotsig = 1; 783 signals [signum - 1].gotsig = 1;
547 784
552 write (sigpipe [1], &signum, 1); 789 write (sigpipe [1], &signum, 1);
553 errno = old_errno; 790 errno = old_errno;
554 } 791 }
555} 792}
556 793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
557static void 814static void
558sigcb (EV_P_ struct ev_io *iow, int revents) 815sigcb (EV_P_ ev_io *iow, int revents)
559{ 816{
560 WL w;
561 int signum; 817 int signum;
562 818
563 read (sigpipe [0], &revents, 1); 819 read (sigpipe [0], &revents, 1);
564 gotsig = 0; 820 gotsig = 0;
565 821
566 for (signum = signalmax; signum--; ) 822 for (signum = signalmax; signum--; )
567 if (signals [signum].gotsig) 823 if (signals [signum].gotsig)
568 { 824 ev_feed_signal_event (EV_A_ signum + 1);
569 signals [signum].gotsig = 0;
570
571 for (w = signals [signum].head; w; w = w->next)
572 event (EV_A_ (W)w, EV_SIGNAL);
573 }
574} 825}
575 826
576static void 827void inline_speed
828fd_intern (int fd)
829{
830#ifdef _WIN32
831 int arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
833#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif
837}
838
839static void noinline
577siginit (EV_P) 840siginit (EV_P)
578{ 841{
579#ifndef WIN32 842 fd_intern (sigpipe [0]);
580 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 843 fd_intern (sigpipe [1]);
581 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
582
583 /* rather than sort out wether we really need nb, set it */
584 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
585 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
586#endif
587 844
588 ev_io_set (&sigev, sigpipe [0], EV_READ); 845 ev_io_set (&sigev, sigpipe [0], EV_READ);
589 ev_io_start (EV_A_ &sigev); 846 ev_io_start (EV_A_ &sigev);
590 ev_unref (EV_A); /* child watcher should not keep loop alive */ 847 ev_unref (EV_A); /* child watcher should not keep loop alive */
591} 848}
592 849
593/*****************************************************************************/ 850/*****************************************************************************/
594 851
595static struct ev_child *childs [PID_HASHSIZE]; 852static WL childs [EV_PID_HASHSIZE];
596 853
597#ifndef WIN32 854#ifndef _WIN32
598 855
599static struct ev_signal childev; 856static ev_signal childev;
857
858void inline_speed
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
860{
861 ev_child *w;
862
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
864 if (w->pid == pid || !w->pid)
865 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
867 w->rpid = pid;
868 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 }
871}
600 872
601#ifndef WCONTINUED 873#ifndef WCONTINUED
602# define WCONTINUED 0 874# define WCONTINUED 0
603#endif 875#endif
604 876
605static void 877static void
606child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
607{
608 struct ev_child *w;
609
610 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
611 if (w->pid == pid || !w->pid)
612 {
613 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
614 w->rpid = pid;
615 w->rstatus = status;
616 event (EV_A_ (W)w, EV_CHILD);
617 }
618}
619
620static void
621childcb (EV_P_ struct ev_signal *sw, int revents) 878childcb (EV_P_ ev_signal *sw, int revents)
622{ 879{
623 int pid, status; 880 int pid, status;
624 881
882 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
625 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 883 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
626 { 884 if (!WCONTINUED
885 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return;
888
627 /* make sure we are called again until all childs have been reaped */ 889 /* make sure we are called again until all childs have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */
628 event (EV_A_ (W)sw, EV_SIGNAL); 891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
629 892
630 child_reap (EV_A_ sw, pid, pid, status); 893 child_reap (EV_A_ sw, pid, pid, status);
894 if (EV_PID_HASHSIZE > 1)
631 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
632 }
633} 896}
634 897
635#endif 898#endif
636 899
637/*****************************************************************************/ 900/*****************************************************************************/
638 901
902#if EV_USE_PORT
903# include "ev_port.c"
904#endif
639#if EV_USE_KQUEUE 905#if EV_USE_KQUEUE
640# include "ev_kqueue.c" 906# include "ev_kqueue.c"
641#endif 907#endif
642#if EV_USE_EPOLL 908#if EV_USE_EPOLL
643# include "ev_epoll.c" 909# include "ev_epoll.c"
660{ 926{
661 return EV_VERSION_MINOR; 927 return EV_VERSION_MINOR;
662} 928}
663 929
664/* return true if we are running with elevated privileges and should ignore env variables */ 930/* return true if we are running with elevated privileges and should ignore env variables */
665static int 931int inline_size
666enable_secure (void) 932enable_secure (void)
667{ 933{
668#ifdef WIN32 934#ifdef _WIN32
669 return 0; 935 return 0;
670#else 936#else
671 return getuid () != geteuid () 937 return getuid () != geteuid ()
672 || getgid () != getegid (); 938 || getgid () != getegid ();
673#endif 939#endif
674} 940}
675 941
676int 942unsigned int
677ev_method (EV_P) 943ev_supported_backends (void)
678{ 944{
679 return method; 945 unsigned int flags = 0;
680}
681 946
682static void 947 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
683loop_init (EV_P_ int methods) 948 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
949 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
950 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
951 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
952
953 return flags;
954}
955
956unsigned int
957ev_recommended_backends (void)
684{ 958{
685 if (!method) 959 unsigned int flags = ev_supported_backends ();
960
961#ifndef __NetBSD__
962 /* kqueue is borked on everything but netbsd apparently */
963 /* it usually doesn't work correctly on anything but sockets and pipes */
964 flags &= ~EVBACKEND_KQUEUE;
965#endif
966#ifdef __APPLE__
967 // flags &= ~EVBACKEND_KQUEUE; for documentation
968 flags &= ~EVBACKEND_POLL;
969#endif
970
971 return flags;
972}
973
974unsigned int
975ev_embeddable_backends (void)
976{
977 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
978 return EVBACKEND_KQUEUE
979 | EVBACKEND_PORT;
980}
981
982unsigned int
983ev_backend (EV_P)
984{
985 return backend;
986}
987
988unsigned int
989ev_loop_count (EV_P)
990{
991 return loop_count;
992}
993
994void
995ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
996{
997 io_blocktime = interval;
998}
999
1000void
1001ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1002{
1003 timeout_blocktime = interval;
1004}
1005
1006static void noinline
1007loop_init (EV_P_ unsigned int flags)
1008{
1009 if (!backend)
686 { 1010 {
687#if EV_USE_MONOTONIC 1011#if EV_USE_MONOTONIC
688 { 1012 {
689 struct timespec ts; 1013 struct timespec ts;
690 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1014 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
691 have_monotonic = 1; 1015 have_monotonic = 1;
692 } 1016 }
693#endif 1017#endif
694 1018
695 rt_now = ev_time (); 1019 ev_rt_now = ev_time ();
696 mn_now = get_clock (); 1020 mn_now = get_clock ();
697 now_floor = mn_now; 1021 now_floor = mn_now;
698 rtmn_diff = rt_now - mn_now; 1022 rtmn_diff = ev_rt_now - mn_now;
699 1023
700 if (methods == EVMETHOD_AUTO) 1024 io_blocktime = 0.;
701 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1025 timeout_blocktime = 0.;
1026
1027 /* pid check not overridable via env */
1028#ifndef _WIN32
1029 if (flags & EVFLAG_FORKCHECK)
1030 curpid = getpid ();
1031#endif
1032
1033 if (!(flags & EVFLAG_NOENV)
1034 && !enable_secure ()
1035 && getenv ("LIBEV_FLAGS"))
702 methods = atoi (getenv ("LIBEV_METHODS")); 1036 flags = atoi (getenv ("LIBEV_FLAGS"));
703 else
704 methods = EVMETHOD_ANY;
705 1037
706 method = 0; 1038 if (!(flags & 0x0000ffffUL))
1039 flags |= ev_recommended_backends ();
1040
1041 backend = 0;
1042 backend_fd = -1;
707#if EV_USE_WIN32 1043#if EV_USE_INOTIFY
708 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1044 fs_fd = -2;
1045#endif
1046
1047#if EV_USE_PORT
1048 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
709#endif 1049#endif
710#if EV_USE_KQUEUE 1050#if EV_USE_KQUEUE
711 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1051 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
712#endif 1052#endif
713#if EV_USE_EPOLL 1053#if EV_USE_EPOLL
714 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1054 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
715#endif 1055#endif
716#if EV_USE_POLL 1056#if EV_USE_POLL
717 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1057 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
718#endif 1058#endif
719#if EV_USE_SELECT 1059#if EV_USE_SELECT
720 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1060 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
721#endif 1061#endif
722 1062
723 ev_watcher_init (&sigev, sigcb); 1063 ev_init (&sigev, sigcb);
724 ev_set_priority (&sigev, EV_MAXPRI); 1064 ev_set_priority (&sigev, EV_MAXPRI);
725 } 1065 }
726} 1066}
727 1067
728void 1068static void noinline
729loop_destroy (EV_P) 1069loop_destroy (EV_P)
730{ 1070{
731 int i; 1071 int i;
732 1072
733#if EV_USE_WIN32 1073#if EV_USE_INOTIFY
734 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1074 if (fs_fd >= 0)
1075 close (fs_fd);
1076#endif
1077
1078 if (backend_fd >= 0)
1079 close (backend_fd);
1080
1081#if EV_USE_PORT
1082 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
735#endif 1083#endif
736#if EV_USE_KQUEUE 1084#if EV_USE_KQUEUE
737 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1085 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
738#endif 1086#endif
739#if EV_USE_EPOLL 1087#if EV_USE_EPOLL
740 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1088 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
741#endif 1089#endif
742#if EV_USE_POLL 1090#if EV_USE_POLL
743 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1091 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
744#endif 1092#endif
745#if EV_USE_SELECT 1093#if EV_USE_SELECT
746 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1094 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
747#endif 1095#endif
748 1096
749 for (i = NUMPRI; i--; ) 1097 for (i = NUMPRI; i--; )
1098 {
750 array_free (pending, [i]); 1099 array_free (pending, [i]);
1100#if EV_IDLE_ENABLE
1101 array_free (idle, [i]);
1102#endif
1103 }
1104
1105 ev_free (anfds); anfdmax = 0;
751 1106
752 /* have to use the microsoft-never-gets-it-right macro */ 1107 /* have to use the microsoft-never-gets-it-right macro */
753 array_free_microshit (fdchange); 1108 array_free (fdchange, EMPTY);
754 array_free_microshit (timer); 1109 array_free (timer, EMPTY);
755 array_free_microshit (periodic); 1110#if EV_PERIODIC_ENABLE
756 array_free_microshit (idle); 1111 array_free (periodic, EMPTY);
757 array_free_microshit (prepare); 1112#endif
758 array_free_microshit (check); 1113#if EV_FORK_ENABLE
1114 array_free (fork, EMPTY);
1115#endif
1116 array_free (prepare, EMPTY);
1117 array_free (check, EMPTY);
759 1118
760 method = 0; 1119 backend = 0;
761} 1120}
762 1121
763static void 1122void inline_size infy_fork (EV_P);
1123
1124void inline_size
764loop_fork (EV_P) 1125loop_fork (EV_P)
765{ 1126{
1127#if EV_USE_PORT
1128 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1129#endif
1130#if EV_USE_KQUEUE
1131 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1132#endif
766#if EV_USE_EPOLL 1133#if EV_USE_EPOLL
767 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1134 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
768#endif 1135#endif
769#if EV_USE_KQUEUE 1136#if EV_USE_INOTIFY
770 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1137 infy_fork (EV_A);
771#endif 1138#endif
772 1139
773 if (ev_is_active (&sigev)) 1140 if (ev_is_active (&sigev))
774 { 1141 {
775 /* default loop */ 1142 /* default loop */
788 postfork = 0; 1155 postfork = 0;
789} 1156}
790 1157
791#if EV_MULTIPLICITY 1158#if EV_MULTIPLICITY
792struct ev_loop * 1159struct ev_loop *
793ev_loop_new (int methods) 1160ev_loop_new (unsigned int flags)
794{ 1161{
795 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1162 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
796 1163
797 memset (loop, 0, sizeof (struct ev_loop)); 1164 memset (loop, 0, sizeof (struct ev_loop));
798 1165
799 loop_init (EV_A_ methods); 1166 loop_init (EV_A_ flags);
800 1167
801 if (ev_method (EV_A)) 1168 if (ev_backend (EV_A))
802 return loop; 1169 return loop;
803 1170
804 return 0; 1171 return 0;
805} 1172}
806 1173
818} 1185}
819 1186
820#endif 1187#endif
821 1188
822#if EV_MULTIPLICITY 1189#if EV_MULTIPLICITY
823struct ev_loop default_loop_struct;
824static struct ev_loop *default_loop;
825
826struct ev_loop * 1190struct ev_loop *
1191ev_default_loop_init (unsigned int flags)
827#else 1192#else
828static int default_loop;
829
830int 1193int
1194ev_default_loop (unsigned int flags)
831#endif 1195#endif
832ev_default_loop (int methods)
833{ 1196{
834 if (sigpipe [0] == sigpipe [1]) 1197 if (sigpipe [0] == sigpipe [1])
835 if (pipe (sigpipe)) 1198 if (pipe (sigpipe))
836 return 0; 1199 return 0;
837 1200
838 if (!default_loop) 1201 if (!ev_default_loop_ptr)
839 { 1202 {
840#if EV_MULTIPLICITY 1203#if EV_MULTIPLICITY
841 struct ev_loop *loop = default_loop = &default_loop_struct; 1204 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
842#else 1205#else
843 default_loop = 1; 1206 ev_default_loop_ptr = 1;
844#endif 1207#endif
845 1208
846 loop_init (EV_A_ methods); 1209 loop_init (EV_A_ flags);
847 1210
848 if (ev_method (EV_A)) 1211 if (ev_backend (EV_A))
849 { 1212 {
850 siginit (EV_A); 1213 siginit (EV_A);
851 1214
852#ifndef WIN32 1215#ifndef _WIN32
853 ev_signal_init (&childev, childcb, SIGCHLD); 1216 ev_signal_init (&childev, childcb, SIGCHLD);
854 ev_set_priority (&childev, EV_MAXPRI); 1217 ev_set_priority (&childev, EV_MAXPRI);
855 ev_signal_start (EV_A_ &childev); 1218 ev_signal_start (EV_A_ &childev);
856 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1219 ev_unref (EV_A); /* child watcher should not keep loop alive */
857#endif 1220#endif
858 } 1221 }
859 else 1222 else
860 default_loop = 0; 1223 ev_default_loop_ptr = 0;
861 } 1224 }
862 1225
863 return default_loop; 1226 return ev_default_loop_ptr;
864} 1227}
865 1228
866void 1229void
867ev_default_destroy (void) 1230ev_default_destroy (void)
868{ 1231{
869#if EV_MULTIPLICITY 1232#if EV_MULTIPLICITY
870 struct ev_loop *loop = default_loop; 1233 struct ev_loop *loop = ev_default_loop_ptr;
871#endif 1234#endif
872 1235
873#ifndef WIN32 1236#ifndef _WIN32
874 ev_ref (EV_A); /* child watcher */ 1237 ev_ref (EV_A); /* child watcher */
875 ev_signal_stop (EV_A_ &childev); 1238 ev_signal_stop (EV_A_ &childev);
876#endif 1239#endif
877 1240
878 ev_ref (EV_A); /* signal watcher */ 1241 ev_ref (EV_A); /* signal watcher */
886 1249
887void 1250void
888ev_default_fork (void) 1251ev_default_fork (void)
889{ 1252{
890#if EV_MULTIPLICITY 1253#if EV_MULTIPLICITY
891 struct ev_loop *loop = default_loop; 1254 struct ev_loop *loop = ev_default_loop_ptr;
892#endif 1255#endif
893 1256
894 if (method) 1257 if (backend)
895 postfork = 1; 1258 postfork = 1;
896} 1259}
897 1260
898/*****************************************************************************/ 1261/*****************************************************************************/
899 1262
900static void 1263void
1264ev_invoke (EV_P_ void *w, int revents)
1265{
1266 EV_CB_INVOKE ((W)w, revents);
1267}
1268
1269void inline_speed
901call_pending (EV_P) 1270call_pending (EV_P)
902{ 1271{
903 int pri; 1272 int pri;
904 1273
905 for (pri = NUMPRI; pri--; ) 1274 for (pri = NUMPRI; pri--; )
906 while (pendingcnt [pri]) 1275 while (pendingcnt [pri])
907 { 1276 {
908 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1277 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
909 1278
910 if (p->w) 1279 if (expect_true (p->w))
911 { 1280 {
1281 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1282
912 p->w->pending = 0; 1283 p->w->pending = 0;
913 p->w->cb (EV_A_ p->w, p->events); 1284 EV_CB_INVOKE (p->w, p->events);
914 } 1285 }
915 } 1286 }
916} 1287}
917 1288
918static void 1289void inline_size
919timers_reify (EV_P) 1290timers_reify (EV_P)
920{ 1291{
921 while (timercnt && ((WT)timers [0])->at <= mn_now) 1292 while (timercnt && ((WT)timers [0])->at <= mn_now)
922 { 1293 {
923 struct ev_timer *w = timers [0]; 1294 ev_timer *w = (ev_timer *)timers [0];
924 1295
925 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1296 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
926 1297
927 /* first reschedule or stop timer */ 1298 /* first reschedule or stop timer */
928 if (w->repeat) 1299 if (w->repeat)
929 { 1300 {
930 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1301 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1302
931 ((WT)w)->at = mn_now + w->repeat; 1303 ((WT)w)->at += w->repeat;
1304 if (((WT)w)->at < mn_now)
1305 ((WT)w)->at = mn_now;
1306
932 downheap ((WT *)timers, timercnt, 0); 1307 downheap (timers, timercnt, 0);
933 } 1308 }
934 else 1309 else
935 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1310 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
936 1311
937 event (EV_A_ (W)w, EV_TIMEOUT); 1312 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
938 } 1313 }
939} 1314}
940 1315
941static void 1316#if EV_PERIODIC_ENABLE
1317void inline_size
942periodics_reify (EV_P) 1318periodics_reify (EV_P)
943{ 1319{
944 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1320 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
945 { 1321 {
946 struct ev_periodic *w = periodics [0]; 1322 ev_periodic *w = (ev_periodic *)periodics [0];
947 1323
948 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1324 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
949 1325
950 /* first reschedule or stop timer */ 1326 /* first reschedule or stop timer */
951 if (w->interval) 1327 if (w->reschedule_cb)
952 { 1328 {
1329 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1330 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1331 downheap (periodics, periodiccnt, 0);
1332 }
1333 else if (w->interval)
1334 {
953 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1335 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1336 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
954 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1337 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
955 downheap ((WT *)periodics, periodiccnt, 0); 1338 downheap (periodics, periodiccnt, 0);
956 } 1339 }
957 else 1340 else
958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1341 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
959 1342
960 event (EV_A_ (W)w, EV_PERIODIC); 1343 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
961 } 1344 }
962} 1345}
963 1346
964static void 1347static void noinline
965periodics_reschedule (EV_P) 1348periodics_reschedule (EV_P)
966{ 1349{
967 int i; 1350 int i;
968 1351
969 /* adjust periodics after time jump */ 1352 /* adjust periodics after time jump */
970 for (i = 0; i < periodiccnt; ++i) 1353 for (i = 0; i < periodiccnt; ++i)
971 { 1354 {
972 struct ev_periodic *w = periodics [i]; 1355 ev_periodic *w = (ev_periodic *)periodics [i];
973 1356
1357 if (w->reschedule_cb)
1358 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
974 if (w->interval) 1359 else if (w->interval)
1360 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1361 }
1362
1363 /* now rebuild the heap */
1364 for (i = periodiccnt >> 1; i--; )
1365 downheap (periodics, periodiccnt, i);
1366}
1367#endif
1368
1369#if EV_IDLE_ENABLE
1370void inline_size
1371idle_reify (EV_P)
1372{
1373 if (expect_false (idleall))
1374 {
1375 int pri;
1376
1377 for (pri = NUMPRI; pri--; )
975 { 1378 {
976 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1379 if (pendingcnt [pri])
1380 break;
977 1381
978 if (fabs (diff) >= 1e-4) 1382 if (idlecnt [pri])
979 { 1383 {
980 ev_periodic_stop (EV_A_ w); 1384 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
981 ev_periodic_start (EV_A_ w); 1385 break;
982
983 i = 0; /* restart loop, inefficient, but time jumps should be rare */
984 } 1386 }
985 } 1387 }
986 } 1388 }
987} 1389}
1390#endif
988 1391
989inline int 1392void inline_speed
990time_update_monotonic (EV_P) 1393time_update (EV_P_ ev_tstamp max_block)
991{
992 mn_now = get_clock ();
993
994 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
995 {
996 rt_now = rtmn_diff + mn_now;
997 return 0;
998 }
999 else
1000 {
1001 now_floor = mn_now;
1002 rt_now = ev_time ();
1003 return 1;
1004 }
1005}
1006
1007static void
1008time_update (EV_P)
1009{ 1394{
1010 int i; 1395 int i;
1011 1396
1012#if EV_USE_MONOTONIC 1397#if EV_USE_MONOTONIC
1013 if (expect_true (have_monotonic)) 1398 if (expect_true (have_monotonic))
1014 { 1399 {
1015 if (time_update_monotonic (EV_A)) 1400 ev_tstamp odiff = rtmn_diff;
1401
1402 mn_now = get_clock ();
1403
1404 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1405 /* interpolate in the meantime */
1406 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1016 { 1407 {
1017 ev_tstamp odiff = rtmn_diff; 1408 ev_rt_now = rtmn_diff + mn_now;
1409 return;
1410 }
1018 1411
1412 now_floor = mn_now;
1413 ev_rt_now = ev_time ();
1414
1019 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1415 /* loop a few times, before making important decisions.
1416 * on the choice of "4": one iteration isn't enough,
1417 * in case we get preempted during the calls to
1418 * ev_time and get_clock. a second call is almost guaranteed
1419 * to succeed in that case, though. and looping a few more times
1420 * doesn't hurt either as we only do this on time-jumps or
1421 * in the unlikely event of having been preempted here.
1422 */
1423 for (i = 4; --i; )
1020 { 1424 {
1021 rtmn_diff = rt_now - mn_now; 1425 rtmn_diff = ev_rt_now - mn_now;
1022 1426
1023 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1427 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1024 return; /* all is well */ 1428 return; /* all is well */
1025 1429
1026 rt_now = ev_time (); 1430 ev_rt_now = ev_time ();
1027 mn_now = get_clock (); 1431 mn_now = get_clock ();
1028 now_floor = mn_now; 1432 now_floor = mn_now;
1029 } 1433 }
1030 1434
1435# if EV_PERIODIC_ENABLE
1436 periodics_reschedule (EV_A);
1437# endif
1438 /* no timer adjustment, as the monotonic clock doesn't jump */
1439 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1440 }
1441 else
1442#endif
1443 {
1444 ev_rt_now = ev_time ();
1445
1446 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1447 {
1448#if EV_PERIODIC_ENABLE
1031 periodics_reschedule (EV_A); 1449 periodics_reschedule (EV_A);
1032 /* no timer adjustment, as the monotonic clock doesn't jump */ 1450#endif
1033 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1451 /* adjust timers. this is easy, as the offset is the same for all of them */
1452 for (i = 0; i < timercnt; ++i)
1453 ((WT)timers [i])->at += ev_rt_now - mn_now;
1034 } 1454 }
1035 }
1036 else
1037#endif
1038 {
1039 rt_now = ev_time ();
1040 1455
1041 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1042 {
1043 periodics_reschedule (EV_A);
1044
1045 /* adjust timers. this is easy, as the offset is the same for all */
1046 for (i = 0; i < timercnt; ++i)
1047 ((WT)timers [i])->at += rt_now - mn_now;
1048 }
1049
1050 mn_now = rt_now; 1456 mn_now = ev_rt_now;
1051 } 1457 }
1052} 1458}
1053 1459
1054void 1460void
1055ev_ref (EV_P) 1461ev_ref (EV_P)
1066static int loop_done; 1472static int loop_done;
1067 1473
1068void 1474void
1069ev_loop (EV_P_ int flags) 1475ev_loop (EV_P_ int flags)
1070{ 1476{
1071 double block;
1072 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1477 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1478 ? EVUNLOOP_ONE
1479 : EVUNLOOP_CANCEL;
1480
1481 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1073 1482
1074 do 1483 do
1075 { 1484 {
1485#ifndef _WIN32
1486 if (expect_false (curpid)) /* penalise the forking check even more */
1487 if (expect_false (getpid () != curpid))
1488 {
1489 curpid = getpid ();
1490 postfork = 1;
1491 }
1492#endif
1493
1494#if EV_FORK_ENABLE
1495 /* we might have forked, so queue fork handlers */
1496 if (expect_false (postfork))
1497 if (forkcnt)
1498 {
1499 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1500 call_pending (EV_A);
1501 }
1502#endif
1503
1076 /* queue check watchers (and execute them) */ 1504 /* queue prepare watchers (and execute them) */
1077 if (expect_false (preparecnt)) 1505 if (expect_false (preparecnt))
1078 { 1506 {
1079 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1507 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1080 call_pending (EV_A); 1508 call_pending (EV_A);
1081 } 1509 }
1082 1510
1511 if (expect_false (!activecnt))
1512 break;
1513
1083 /* we might have forked, so reify kernel state if necessary */ 1514 /* we might have forked, so reify kernel state if necessary */
1084 if (expect_false (postfork)) 1515 if (expect_false (postfork))
1085 loop_fork (EV_A); 1516 loop_fork (EV_A);
1086 1517
1087 /* update fd-related kernel structures */ 1518 /* update fd-related kernel structures */
1088 fd_reify (EV_A); 1519 fd_reify (EV_A);
1089 1520
1090 /* calculate blocking time */ 1521 /* calculate blocking time */
1522 {
1523 ev_tstamp waittime = 0.;
1524 ev_tstamp sleeptime = 0.;
1091 1525
1092 /* we only need this for !monotonic clockor timers, but as we basically 1526 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1093 always have timers, we just calculate it always */
1094#if EV_USE_MONOTONIC
1095 if (expect_true (have_monotonic))
1096 time_update_monotonic (EV_A);
1097 else
1098#endif
1099 { 1527 {
1100 rt_now = ev_time (); 1528 /* update time to cancel out callback processing overhead */
1101 mn_now = rt_now; 1529 time_update (EV_A_ 1e100);
1102 }
1103 1530
1104 if (flags & EVLOOP_NONBLOCK || idlecnt)
1105 block = 0.;
1106 else
1107 {
1108 block = MAX_BLOCKTIME; 1531 waittime = MAX_BLOCKTIME;
1109 1532
1110 if (timercnt) 1533 if (timercnt)
1111 { 1534 {
1112 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1535 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1113 if (block > to) block = to; 1536 if (waittime > to) waittime = to;
1114 } 1537 }
1115 1538
1539#if EV_PERIODIC_ENABLE
1116 if (periodiccnt) 1540 if (periodiccnt)
1117 { 1541 {
1118 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1542 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1119 if (block > to) block = to; 1543 if (waittime > to) waittime = to;
1120 } 1544 }
1545#endif
1121 1546
1122 if (block < 0.) block = 0.; 1547 if (expect_false (waittime < timeout_blocktime))
1548 waittime = timeout_blocktime;
1549
1550 sleeptime = waittime - backend_fudge;
1551
1552 if (expect_true (sleeptime > io_blocktime))
1553 sleeptime = io_blocktime;
1554
1555 if (sleeptime)
1556 {
1557 ev_sleep (sleeptime);
1558 waittime -= sleeptime;
1559 }
1123 } 1560 }
1124 1561
1125 method_poll (EV_A_ block); 1562 ++loop_count;
1563 backend_poll (EV_A_ waittime);
1126 1564
1127 /* update rt_now, do magic */ 1565 /* update ev_rt_now, do magic */
1128 time_update (EV_A); 1566 time_update (EV_A_ waittime + sleeptime);
1567 }
1129 1568
1130 /* queue pending timers and reschedule them */ 1569 /* queue pending timers and reschedule them */
1131 timers_reify (EV_A); /* relative timers called last */ 1570 timers_reify (EV_A); /* relative timers called last */
1571#if EV_PERIODIC_ENABLE
1132 periodics_reify (EV_A); /* absolute timers called first */ 1572 periodics_reify (EV_A); /* absolute timers called first */
1573#endif
1133 1574
1575#if EV_IDLE_ENABLE
1134 /* queue idle watchers unless io or timers are pending */ 1576 /* queue idle watchers unless other events are pending */
1135 if (!pendingcnt) 1577 idle_reify (EV_A);
1136 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1578#endif
1137 1579
1138 /* queue check watchers, to be executed first */ 1580 /* queue check watchers, to be executed first */
1139 if (checkcnt) 1581 if (expect_false (checkcnt))
1140 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1582 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1141 1583
1142 call_pending (EV_A); 1584 call_pending (EV_A);
1585
1143 } 1586 }
1144 while (activecnt && !loop_done); 1587 while (expect_true (activecnt && !loop_done));
1145 1588
1146 if (loop_done != 2) 1589 if (loop_done == EVUNLOOP_ONE)
1147 loop_done = 0; 1590 loop_done = EVUNLOOP_CANCEL;
1148} 1591}
1149 1592
1150void 1593void
1151ev_unloop (EV_P_ int how) 1594ev_unloop (EV_P_ int how)
1152{ 1595{
1153 loop_done = how; 1596 loop_done = how;
1154} 1597}
1155 1598
1156/*****************************************************************************/ 1599/*****************************************************************************/
1157 1600
1158inline void 1601void inline_size
1159wlist_add (WL *head, WL elem) 1602wlist_add (WL *head, WL elem)
1160{ 1603{
1161 elem->next = *head; 1604 elem->next = *head;
1162 *head = elem; 1605 *head = elem;
1163} 1606}
1164 1607
1165inline void 1608void inline_size
1166wlist_del (WL *head, WL elem) 1609wlist_del (WL *head, WL elem)
1167{ 1610{
1168 while (*head) 1611 while (*head)
1169 { 1612 {
1170 if (*head == elem) 1613 if (*head == elem)
1175 1618
1176 head = &(*head)->next; 1619 head = &(*head)->next;
1177 } 1620 }
1178} 1621}
1179 1622
1180inline void 1623void inline_speed
1181ev_clear_pending (EV_P_ W w) 1624clear_pending (EV_P_ W w)
1182{ 1625{
1183 if (w->pending) 1626 if (w->pending)
1184 { 1627 {
1185 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1628 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1186 w->pending = 0; 1629 w->pending = 0;
1187 } 1630 }
1188} 1631}
1189 1632
1190inline void 1633int
1634ev_clear_pending (EV_P_ void *w)
1635{
1636 W w_ = (W)w;
1637 int pending = w_->pending;
1638
1639 if (expect_true (pending))
1640 {
1641 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1642 w_->pending = 0;
1643 p->w = 0;
1644 return p->events;
1645 }
1646 else
1647 return 0;
1648}
1649
1650void inline_size
1651pri_adjust (EV_P_ W w)
1652{
1653 int pri = w->priority;
1654 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1655 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1656 w->priority = pri;
1657}
1658
1659void inline_speed
1191ev_start (EV_P_ W w, int active) 1660ev_start (EV_P_ W w, int active)
1192{ 1661{
1193 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1662 pri_adjust (EV_A_ w);
1194 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1195
1196 w->active = active; 1663 w->active = active;
1197 ev_ref (EV_A); 1664 ev_ref (EV_A);
1198} 1665}
1199 1666
1200inline void 1667void inline_size
1201ev_stop (EV_P_ W w) 1668ev_stop (EV_P_ W w)
1202{ 1669{
1203 ev_unref (EV_A); 1670 ev_unref (EV_A);
1204 w->active = 0; 1671 w->active = 0;
1205} 1672}
1206 1673
1207/*****************************************************************************/ 1674/*****************************************************************************/
1208 1675
1209void 1676void noinline
1210ev_io_start (EV_P_ struct ev_io *w) 1677ev_io_start (EV_P_ ev_io *w)
1211{ 1678{
1212 int fd = w->fd; 1679 int fd = w->fd;
1213 1680
1214 if (ev_is_active (w)) 1681 if (expect_false (ev_is_active (w)))
1215 return; 1682 return;
1216 1683
1217 assert (("ev_io_start called with negative fd", fd >= 0)); 1684 assert (("ev_io_start called with negative fd", fd >= 0));
1218 1685
1219 ev_start (EV_A_ (W)w, 1); 1686 ev_start (EV_A_ (W)w, 1);
1220 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1687 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1221 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1688 wlist_add (&anfds[fd].head, (WL)w);
1222 1689
1223 fd_change (EV_A_ fd); 1690 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1691 w->events &= ~EV_IOFDSET;
1224} 1692}
1225 1693
1226void 1694void noinline
1227ev_io_stop (EV_P_ struct ev_io *w) 1695ev_io_stop (EV_P_ ev_io *w)
1228{ 1696{
1229 ev_clear_pending (EV_A_ (W)w); 1697 clear_pending (EV_A_ (W)w);
1230 if (!ev_is_active (w)) 1698 if (expect_false (!ev_is_active (w)))
1231 return; 1699 return;
1232 1700
1701 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1702
1233 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1703 wlist_del (&anfds[w->fd].head, (WL)w);
1234 ev_stop (EV_A_ (W)w); 1704 ev_stop (EV_A_ (W)w);
1235 1705
1236 fd_change (EV_A_ w->fd); 1706 fd_change (EV_A_ w->fd, 1);
1237} 1707}
1238 1708
1239void 1709void noinline
1240ev_timer_start (EV_P_ struct ev_timer *w) 1710ev_timer_start (EV_P_ ev_timer *w)
1241{ 1711{
1242 if (ev_is_active (w)) 1712 if (expect_false (ev_is_active (w)))
1243 return; 1713 return;
1244 1714
1245 ((WT)w)->at += mn_now; 1715 ((WT)w)->at += mn_now;
1246 1716
1247 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1717 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1248 1718
1249 ev_start (EV_A_ (W)w, ++timercnt); 1719 ev_start (EV_A_ (W)w, ++timercnt);
1250 array_needsize (timers, timermax, timercnt, (void)); 1720 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1251 timers [timercnt - 1] = w; 1721 timers [timercnt - 1] = (WT)w;
1252 upheap ((WT *)timers, timercnt - 1); 1722 upheap (timers, timercnt - 1);
1253 1723
1254 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1724 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1255} 1725}
1256 1726
1257void 1727void noinline
1258ev_timer_stop (EV_P_ struct ev_timer *w) 1728ev_timer_stop (EV_P_ ev_timer *w)
1259{ 1729{
1260 ev_clear_pending (EV_A_ (W)w); 1730 clear_pending (EV_A_ (W)w);
1261 if (!ev_is_active (w)) 1731 if (expect_false (!ev_is_active (w)))
1262 return; 1732 return;
1263 1733
1264 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1734 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1265 1735
1266 if (((W)w)->active < timercnt--) 1736 {
1737 int active = ((W)w)->active;
1738
1739 if (expect_true (--active < --timercnt))
1267 { 1740 {
1268 timers [((W)w)->active - 1] = timers [timercnt]; 1741 timers [active] = timers [timercnt];
1269 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1742 adjustheap (timers, timercnt, active);
1270 } 1743 }
1744 }
1271 1745
1272 ((WT)w)->at = w->repeat; 1746 ((WT)w)->at -= mn_now;
1273 1747
1274 ev_stop (EV_A_ (W)w); 1748 ev_stop (EV_A_ (W)w);
1275} 1749}
1276 1750
1277void 1751void noinline
1278ev_timer_again (EV_P_ struct ev_timer *w) 1752ev_timer_again (EV_P_ ev_timer *w)
1279{ 1753{
1280 if (ev_is_active (w)) 1754 if (ev_is_active (w))
1281 { 1755 {
1282 if (w->repeat) 1756 if (w->repeat)
1283 { 1757 {
1284 ((WT)w)->at = mn_now + w->repeat; 1758 ((WT)w)->at = mn_now + w->repeat;
1285 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1759 adjustheap (timers, timercnt, ((W)w)->active - 1);
1286 } 1760 }
1287 else 1761 else
1288 ev_timer_stop (EV_A_ w); 1762 ev_timer_stop (EV_A_ w);
1289 } 1763 }
1290 else if (w->repeat) 1764 else if (w->repeat)
1765 {
1766 w->at = w->repeat;
1291 ev_timer_start (EV_A_ w); 1767 ev_timer_start (EV_A_ w);
1768 }
1292} 1769}
1293 1770
1294void 1771#if EV_PERIODIC_ENABLE
1772void noinline
1295ev_periodic_start (EV_P_ struct ev_periodic *w) 1773ev_periodic_start (EV_P_ ev_periodic *w)
1296{ 1774{
1297 if (ev_is_active (w)) 1775 if (expect_false (ev_is_active (w)))
1298 return; 1776 return;
1299 1777
1778 if (w->reschedule_cb)
1779 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1780 else if (w->interval)
1781 {
1300 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1782 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1301
1302 /* this formula differs from the one in periodic_reify because we do not always round up */ 1783 /* this formula differs from the one in periodic_reify because we do not always round up */
1303 if (w->interval)
1304 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1784 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1785 }
1786 else
1787 ((WT)w)->at = w->offset;
1305 1788
1306 ev_start (EV_A_ (W)w, ++periodiccnt); 1789 ev_start (EV_A_ (W)w, ++periodiccnt);
1307 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1790 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1308 periodics [periodiccnt - 1] = w; 1791 periodics [periodiccnt - 1] = (WT)w;
1309 upheap ((WT *)periodics, periodiccnt - 1); 1792 upheap (periodics, periodiccnt - 1);
1310 1793
1311 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1794 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1312} 1795}
1313 1796
1314void 1797void noinline
1315ev_periodic_stop (EV_P_ struct ev_periodic *w) 1798ev_periodic_stop (EV_P_ ev_periodic *w)
1316{ 1799{
1317 ev_clear_pending (EV_A_ (W)w); 1800 clear_pending (EV_A_ (W)w);
1318 if (!ev_is_active (w)) 1801 if (expect_false (!ev_is_active (w)))
1319 return; 1802 return;
1320 1803
1321 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1804 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1322 1805
1323 if (((W)w)->active < periodiccnt--) 1806 {
1807 int active = ((W)w)->active;
1808
1809 if (expect_true (--active < --periodiccnt))
1324 { 1810 {
1325 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1811 periodics [active] = periodics [periodiccnt];
1326 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1812 adjustheap (periodics, periodiccnt, active);
1327 } 1813 }
1814 }
1328 1815
1329 ev_stop (EV_A_ (W)w); 1816 ev_stop (EV_A_ (W)w);
1330} 1817}
1331 1818
1332void 1819void noinline
1333ev_idle_start (EV_P_ struct ev_idle *w) 1820ev_periodic_again (EV_P_ ev_periodic *w)
1334{ 1821{
1335 if (ev_is_active (w)) 1822 /* TODO: use adjustheap and recalculation */
1336 return;
1337
1338 ev_start (EV_A_ (W)w, ++idlecnt);
1339 array_needsize (idles, idlemax, idlecnt, (void));
1340 idles [idlecnt - 1] = w;
1341}
1342
1343void
1344ev_idle_stop (EV_P_ struct ev_idle *w)
1345{
1346 ev_clear_pending (EV_A_ (W)w);
1347 if (ev_is_active (w))
1348 return;
1349
1350 idles [((W)w)->active - 1] = idles [--idlecnt];
1351 ev_stop (EV_A_ (W)w); 1823 ev_periodic_stop (EV_A_ w);
1824 ev_periodic_start (EV_A_ w);
1352} 1825}
1353 1826#endif
1354void
1355ev_prepare_start (EV_P_ struct ev_prepare *w)
1356{
1357 if (ev_is_active (w))
1358 return;
1359
1360 ev_start (EV_A_ (W)w, ++preparecnt);
1361 array_needsize (prepares, preparemax, preparecnt, (void));
1362 prepares [preparecnt - 1] = w;
1363}
1364
1365void
1366ev_prepare_stop (EV_P_ struct ev_prepare *w)
1367{
1368 ev_clear_pending (EV_A_ (W)w);
1369 if (ev_is_active (w))
1370 return;
1371
1372 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1373 ev_stop (EV_A_ (W)w);
1374}
1375
1376void
1377ev_check_start (EV_P_ struct ev_check *w)
1378{
1379 if (ev_is_active (w))
1380 return;
1381
1382 ev_start (EV_A_ (W)w, ++checkcnt);
1383 array_needsize (checks, checkmax, checkcnt, (void));
1384 checks [checkcnt - 1] = w;
1385}
1386
1387void
1388ev_check_stop (EV_P_ struct ev_check *w)
1389{
1390 ev_clear_pending (EV_A_ (W)w);
1391 if (ev_is_active (w))
1392 return;
1393
1394 checks [((W)w)->active - 1] = checks [--checkcnt];
1395 ev_stop (EV_A_ (W)w);
1396}
1397 1827
1398#ifndef SA_RESTART 1828#ifndef SA_RESTART
1399# define SA_RESTART 0 1829# define SA_RESTART 0
1400#endif 1830#endif
1401 1831
1402void 1832void noinline
1403ev_signal_start (EV_P_ struct ev_signal *w) 1833ev_signal_start (EV_P_ ev_signal *w)
1404{ 1834{
1405#if EV_MULTIPLICITY 1835#if EV_MULTIPLICITY
1406 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1836 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1407#endif 1837#endif
1408 if (ev_is_active (w)) 1838 if (expect_false (ev_is_active (w)))
1409 return; 1839 return;
1410 1840
1411 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1841 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1412 1842
1843 {
1844#ifndef _WIN32
1845 sigset_t full, prev;
1846 sigfillset (&full);
1847 sigprocmask (SIG_SETMASK, &full, &prev);
1848#endif
1849
1850 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1851
1852#ifndef _WIN32
1853 sigprocmask (SIG_SETMASK, &prev, 0);
1854#endif
1855 }
1856
1413 ev_start (EV_A_ (W)w, 1); 1857 ev_start (EV_A_ (W)w, 1);
1414 array_needsize (signals, signalmax, w->signum, signals_init);
1415 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1858 wlist_add (&signals [w->signum - 1].head, (WL)w);
1416 1859
1417 if (!((WL)w)->next) 1860 if (!((WL)w)->next)
1418 { 1861 {
1419#if WIN32 1862#if _WIN32
1420 signal (w->signum, sighandler); 1863 signal (w->signum, sighandler);
1421#else 1864#else
1422 struct sigaction sa; 1865 struct sigaction sa;
1423 sa.sa_handler = sighandler; 1866 sa.sa_handler = sighandler;
1424 sigfillset (&sa.sa_mask); 1867 sigfillset (&sa.sa_mask);
1426 sigaction (w->signum, &sa, 0); 1869 sigaction (w->signum, &sa, 0);
1427#endif 1870#endif
1428 } 1871 }
1429} 1872}
1430 1873
1431void 1874void noinline
1432ev_signal_stop (EV_P_ struct ev_signal *w) 1875ev_signal_stop (EV_P_ ev_signal *w)
1433{ 1876{
1434 ev_clear_pending (EV_A_ (W)w); 1877 clear_pending (EV_A_ (W)w);
1435 if (!ev_is_active (w)) 1878 if (expect_false (!ev_is_active (w)))
1436 return; 1879 return;
1437 1880
1438 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1881 wlist_del (&signals [w->signum - 1].head, (WL)w);
1439 ev_stop (EV_A_ (W)w); 1882 ev_stop (EV_A_ (W)w);
1440 1883
1441 if (!signals [w->signum - 1].head) 1884 if (!signals [w->signum - 1].head)
1442 signal (w->signum, SIG_DFL); 1885 signal (w->signum, SIG_DFL);
1443} 1886}
1444 1887
1445void 1888void
1446ev_child_start (EV_P_ struct ev_child *w) 1889ev_child_start (EV_P_ ev_child *w)
1447{ 1890{
1448#if EV_MULTIPLICITY 1891#if EV_MULTIPLICITY
1449 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1892 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1450#endif 1893#endif
1451 if (ev_is_active (w)) 1894 if (expect_false (ev_is_active (w)))
1452 return; 1895 return;
1453 1896
1454 ev_start (EV_A_ (W)w, 1); 1897 ev_start (EV_A_ (W)w, 1);
1455 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1898 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1456} 1899}
1457 1900
1458void 1901void
1459ev_child_stop (EV_P_ struct ev_child *w) 1902ev_child_stop (EV_P_ ev_child *w)
1460{ 1903{
1461 ev_clear_pending (EV_A_ (W)w); 1904 clear_pending (EV_A_ (W)w);
1462 if (ev_is_active (w)) 1905 if (expect_false (!ev_is_active (w)))
1463 return; 1906 return;
1464 1907
1465 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1908 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1466 ev_stop (EV_A_ (W)w); 1909 ev_stop (EV_A_ (W)w);
1467} 1910}
1468 1911
1912#if EV_STAT_ENABLE
1913
1914# ifdef _WIN32
1915# undef lstat
1916# define lstat(a,b) _stati64 (a,b)
1917# endif
1918
1919#define DEF_STAT_INTERVAL 5.0074891
1920#define MIN_STAT_INTERVAL 0.1074891
1921
1922static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1923
1924#if EV_USE_INOTIFY
1925# define EV_INOTIFY_BUFSIZE 8192
1926
1927static void noinline
1928infy_add (EV_P_ ev_stat *w)
1929{
1930 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1931
1932 if (w->wd < 0)
1933 {
1934 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1935
1936 /* monitor some parent directory for speedup hints */
1937 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1938 {
1939 char path [4096];
1940 strcpy (path, w->path);
1941
1942 do
1943 {
1944 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1945 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1946
1947 char *pend = strrchr (path, '/');
1948
1949 if (!pend)
1950 break; /* whoops, no '/', complain to your admin */
1951
1952 *pend = 0;
1953 w->wd = inotify_add_watch (fs_fd, path, mask);
1954 }
1955 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1956 }
1957 }
1958 else
1959 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1960
1961 if (w->wd >= 0)
1962 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1963}
1964
1965static void noinline
1966infy_del (EV_P_ ev_stat *w)
1967{
1968 int slot;
1969 int wd = w->wd;
1970
1971 if (wd < 0)
1972 return;
1973
1974 w->wd = -2;
1975 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1976 wlist_del (&fs_hash [slot].head, (WL)w);
1977
1978 /* remove this watcher, if others are watching it, they will rearm */
1979 inotify_rm_watch (fs_fd, wd);
1980}
1981
1982static void noinline
1983infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1984{
1985 if (slot < 0)
1986 /* overflow, need to check for all hahs slots */
1987 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1988 infy_wd (EV_A_ slot, wd, ev);
1989 else
1990 {
1991 WL w_;
1992
1993 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1994 {
1995 ev_stat *w = (ev_stat *)w_;
1996 w_ = w_->next; /* lets us remove this watcher and all before it */
1997
1998 if (w->wd == wd || wd == -1)
1999 {
2000 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2001 {
2002 w->wd = -1;
2003 infy_add (EV_A_ w); /* re-add, no matter what */
2004 }
2005
2006 stat_timer_cb (EV_A_ &w->timer, 0);
2007 }
2008 }
2009 }
2010}
2011
2012static void
2013infy_cb (EV_P_ ev_io *w, int revents)
2014{
2015 char buf [EV_INOTIFY_BUFSIZE];
2016 struct inotify_event *ev = (struct inotify_event *)buf;
2017 int ofs;
2018 int len = read (fs_fd, buf, sizeof (buf));
2019
2020 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2021 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2022}
2023
2024void inline_size
2025infy_init (EV_P)
2026{
2027 if (fs_fd != -2)
2028 return;
2029
2030 fs_fd = inotify_init ();
2031
2032 if (fs_fd >= 0)
2033 {
2034 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2035 ev_set_priority (&fs_w, EV_MAXPRI);
2036 ev_io_start (EV_A_ &fs_w);
2037 }
2038}
2039
2040void inline_size
2041infy_fork (EV_P)
2042{
2043 int slot;
2044
2045 if (fs_fd < 0)
2046 return;
2047
2048 close (fs_fd);
2049 fs_fd = inotify_init ();
2050
2051 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2052 {
2053 WL w_ = fs_hash [slot].head;
2054 fs_hash [slot].head = 0;
2055
2056 while (w_)
2057 {
2058 ev_stat *w = (ev_stat *)w_;
2059 w_ = w_->next; /* lets us add this watcher */
2060
2061 w->wd = -1;
2062
2063 if (fs_fd >= 0)
2064 infy_add (EV_A_ w); /* re-add, no matter what */
2065 else
2066 ev_timer_start (EV_A_ &w->timer);
2067 }
2068
2069 }
2070}
2071
2072#endif
2073
2074void
2075ev_stat_stat (EV_P_ ev_stat *w)
2076{
2077 if (lstat (w->path, &w->attr) < 0)
2078 w->attr.st_nlink = 0;
2079 else if (!w->attr.st_nlink)
2080 w->attr.st_nlink = 1;
2081}
2082
2083static void noinline
2084stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2085{
2086 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2087
2088 /* we copy this here each the time so that */
2089 /* prev has the old value when the callback gets invoked */
2090 w->prev = w->attr;
2091 ev_stat_stat (EV_A_ w);
2092
2093 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2094 if (
2095 w->prev.st_dev != w->attr.st_dev
2096 || w->prev.st_ino != w->attr.st_ino
2097 || w->prev.st_mode != w->attr.st_mode
2098 || w->prev.st_nlink != w->attr.st_nlink
2099 || w->prev.st_uid != w->attr.st_uid
2100 || w->prev.st_gid != w->attr.st_gid
2101 || w->prev.st_rdev != w->attr.st_rdev
2102 || w->prev.st_size != w->attr.st_size
2103 || w->prev.st_atime != w->attr.st_atime
2104 || w->prev.st_mtime != w->attr.st_mtime
2105 || w->prev.st_ctime != w->attr.st_ctime
2106 ) {
2107 #if EV_USE_INOTIFY
2108 infy_del (EV_A_ w);
2109 infy_add (EV_A_ w);
2110 ev_stat_stat (EV_A_ w); /* avoid race... */
2111 #endif
2112
2113 ev_feed_event (EV_A_ w, EV_STAT);
2114 }
2115}
2116
2117void
2118ev_stat_start (EV_P_ ev_stat *w)
2119{
2120 if (expect_false (ev_is_active (w)))
2121 return;
2122
2123 /* since we use memcmp, we need to clear any padding data etc. */
2124 memset (&w->prev, 0, sizeof (ev_statdata));
2125 memset (&w->attr, 0, sizeof (ev_statdata));
2126
2127 ev_stat_stat (EV_A_ w);
2128
2129 if (w->interval < MIN_STAT_INTERVAL)
2130 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2131
2132 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2133 ev_set_priority (&w->timer, ev_priority (w));
2134
2135#if EV_USE_INOTIFY
2136 infy_init (EV_A);
2137
2138 if (fs_fd >= 0)
2139 infy_add (EV_A_ w);
2140 else
2141#endif
2142 ev_timer_start (EV_A_ &w->timer);
2143
2144 ev_start (EV_A_ (W)w, 1);
2145}
2146
2147void
2148ev_stat_stop (EV_P_ ev_stat *w)
2149{
2150 clear_pending (EV_A_ (W)w);
2151 if (expect_false (!ev_is_active (w)))
2152 return;
2153
2154#if EV_USE_INOTIFY
2155 infy_del (EV_A_ w);
2156#endif
2157 ev_timer_stop (EV_A_ &w->timer);
2158
2159 ev_stop (EV_A_ (W)w);
2160}
2161#endif
2162
2163#if EV_IDLE_ENABLE
2164void
2165ev_idle_start (EV_P_ ev_idle *w)
2166{
2167 if (expect_false (ev_is_active (w)))
2168 return;
2169
2170 pri_adjust (EV_A_ (W)w);
2171
2172 {
2173 int active = ++idlecnt [ABSPRI (w)];
2174
2175 ++idleall;
2176 ev_start (EV_A_ (W)w, active);
2177
2178 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2179 idles [ABSPRI (w)][active - 1] = w;
2180 }
2181}
2182
2183void
2184ev_idle_stop (EV_P_ ev_idle *w)
2185{
2186 clear_pending (EV_A_ (W)w);
2187 if (expect_false (!ev_is_active (w)))
2188 return;
2189
2190 {
2191 int active = ((W)w)->active;
2192
2193 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2194 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2195
2196 ev_stop (EV_A_ (W)w);
2197 --idleall;
2198 }
2199}
2200#endif
2201
2202void
2203ev_prepare_start (EV_P_ ev_prepare *w)
2204{
2205 if (expect_false (ev_is_active (w)))
2206 return;
2207
2208 ev_start (EV_A_ (W)w, ++preparecnt);
2209 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2210 prepares [preparecnt - 1] = w;
2211}
2212
2213void
2214ev_prepare_stop (EV_P_ ev_prepare *w)
2215{
2216 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w)))
2218 return;
2219
2220 {
2221 int active = ((W)w)->active;
2222 prepares [active - 1] = prepares [--preparecnt];
2223 ((W)prepares [active - 1])->active = active;
2224 }
2225
2226 ev_stop (EV_A_ (W)w);
2227}
2228
2229void
2230ev_check_start (EV_P_ ev_check *w)
2231{
2232 if (expect_false (ev_is_active (w)))
2233 return;
2234
2235 ev_start (EV_A_ (W)w, ++checkcnt);
2236 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2237 checks [checkcnt - 1] = w;
2238}
2239
2240void
2241ev_check_stop (EV_P_ ev_check *w)
2242{
2243 clear_pending (EV_A_ (W)w);
2244 if (expect_false (!ev_is_active (w)))
2245 return;
2246
2247 {
2248 int active = ((W)w)->active;
2249 checks [active - 1] = checks [--checkcnt];
2250 ((W)checks [active - 1])->active = active;
2251 }
2252
2253 ev_stop (EV_A_ (W)w);
2254}
2255
2256#if EV_EMBED_ENABLE
2257void noinline
2258ev_embed_sweep (EV_P_ ev_embed *w)
2259{
2260 ev_loop (w->other, EVLOOP_NONBLOCK);
2261}
2262
2263static void
2264embed_io_cb (EV_P_ ev_io *io, int revents)
2265{
2266 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2267
2268 if (ev_cb (w))
2269 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2270 else
2271 ev_embed_sweep (loop, w);
2272}
2273
2274static void
2275embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2276{
2277 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2278
2279 fd_reify (w->other);
2280}
2281
2282void
2283ev_embed_start (EV_P_ ev_embed *w)
2284{
2285 if (expect_false (ev_is_active (w)))
2286 return;
2287
2288 {
2289 struct ev_loop *loop = w->other;
2290 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2291 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2292 }
2293
2294 ev_set_priority (&w->io, ev_priority (w));
2295 ev_io_start (EV_A_ &w->io);
2296
2297 ev_prepare_init (&w->prepare, embed_prepare_cb);
2298 ev_set_priority (&w->prepare, EV_MINPRI);
2299 ev_prepare_start (EV_A_ &w->prepare);
2300
2301 ev_start (EV_A_ (W)w, 1);
2302}
2303
2304void
2305ev_embed_stop (EV_P_ ev_embed *w)
2306{
2307 clear_pending (EV_A_ (W)w);
2308 if (expect_false (!ev_is_active (w)))
2309 return;
2310
2311 ev_io_stop (EV_A_ &w->io);
2312 ev_prepare_stop (EV_A_ &w->prepare);
2313
2314 ev_stop (EV_A_ (W)w);
2315}
2316#endif
2317
2318#if EV_FORK_ENABLE
2319void
2320ev_fork_start (EV_P_ ev_fork *w)
2321{
2322 if (expect_false (ev_is_active (w)))
2323 return;
2324
2325 ev_start (EV_A_ (W)w, ++forkcnt);
2326 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2327 forks [forkcnt - 1] = w;
2328}
2329
2330void
2331ev_fork_stop (EV_P_ ev_fork *w)
2332{
2333 clear_pending (EV_A_ (W)w);
2334 if (expect_false (!ev_is_active (w)))
2335 return;
2336
2337 {
2338 int active = ((W)w)->active;
2339 forks [active - 1] = forks [--forkcnt];
2340 ((W)forks [active - 1])->active = active;
2341 }
2342
2343 ev_stop (EV_A_ (W)w);
2344}
2345#endif
2346
1469/*****************************************************************************/ 2347/*****************************************************************************/
1470 2348
1471struct ev_once 2349struct ev_once
1472{ 2350{
1473 struct ev_io io; 2351 ev_io io;
1474 struct ev_timer to; 2352 ev_timer to;
1475 void (*cb)(int revents, void *arg); 2353 void (*cb)(int revents, void *arg);
1476 void *arg; 2354 void *arg;
1477}; 2355};
1478 2356
1479static void 2357static void
1488 2366
1489 cb (revents, arg); 2367 cb (revents, arg);
1490} 2368}
1491 2369
1492static void 2370static void
1493once_cb_io (EV_P_ struct ev_io *w, int revents) 2371once_cb_io (EV_P_ ev_io *w, int revents)
1494{ 2372{
1495 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2373 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1496} 2374}
1497 2375
1498static void 2376static void
1499once_cb_to (EV_P_ struct ev_timer *w, int revents) 2377once_cb_to (EV_P_ ev_timer *w, int revents)
1500{ 2378{
1501 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2379 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1502} 2380}
1503 2381
1504void 2382void
1505ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2383ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1506{ 2384{
1507 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 2385 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1508 2386
1509 if (!once) 2387 if (expect_false (!once))
2388 {
1510 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2389 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1511 else 2390 return;
1512 { 2391 }
2392
1513 once->cb = cb; 2393 once->cb = cb;
1514 once->arg = arg; 2394 once->arg = arg;
1515 2395
1516 ev_watcher_init (&once->io, once_cb_io); 2396 ev_init (&once->io, once_cb_io);
1517 if (fd >= 0) 2397 if (fd >= 0)
1518 { 2398 {
1519 ev_io_set (&once->io, fd, events); 2399 ev_io_set (&once->io, fd, events);
1520 ev_io_start (EV_A_ &once->io); 2400 ev_io_start (EV_A_ &once->io);
1521 } 2401 }
1522 2402
1523 ev_watcher_init (&once->to, once_cb_to); 2403 ev_init (&once->to, once_cb_to);
1524 if (timeout >= 0.) 2404 if (timeout >= 0.)
1525 { 2405 {
1526 ev_timer_set (&once->to, timeout, 0.); 2406 ev_timer_set (&once->to, timeout, 0.);
1527 ev_timer_start (EV_A_ &once->to); 2407 ev_timer_start (EV_A_ &once->to);
1528 }
1529 } 2408 }
1530} 2409}
1531 2410
2411#if EV_MULTIPLICITY
2412 #include "ev_wrap.h"
2413#endif
2414
2415#ifdef __cplusplus
2416}
2417#endif
2418

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines