ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.20 by root, Wed Oct 31 18:28:00 2007 UTC vs.
Revision 1.71 by root, Tue Nov 6 13:17:55 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
29 56
30#include <math.h> 57#include <math.h>
31#include <stdlib.h> 58#include <stdlib.h>
32#include <unistd.h>
33#include <fcntl.h> 59#include <fcntl.h>
34#include <signal.h>
35#include <stddef.h> 60#include <stddef.h>
36 61
37#include <stdio.h> 62#include <stdio.h>
38 63
39#include <assert.h> 64#include <assert.h>
40#include <errno.h> 65#include <errno.h>
41#include <sys/time.h> 66#include <sys/types.h>
42#include <time.h> 67#include <time.h>
43 68
69#ifndef PERL
70# include <signal.h>
71#endif
72
73#ifndef WIN32
74# include <unistd.h>
75# include <sys/time.h>
76# include <sys/wait.h>
77#endif
78/**/
79
44#ifndef HAVE_MONOTONIC 80#ifndef EV_USE_MONOTONIC
45# ifdef CLOCK_MONOTONIC
46# define HAVE_MONOTONIC 1 81# define EV_USE_MONOTONIC 1
82#endif
83
84#ifndef EV_USE_SELECT
85# define EV_USE_SELECT 1
86#endif
87
88#ifndef EV_USE_POLL
89# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
90#endif
91
92#ifndef EV_USE_EPOLL
93# define EV_USE_EPOLL 0
94#endif
95
96#ifndef EV_USE_KQUEUE
97# define EV_USE_KQUEUE 0
98#endif
99
100#ifndef EV_USE_WIN32
101# ifdef WIN32
102# define EV_USE_WIN32 0 /* it does not exist, use select */
103# undef EV_USE_SELECT
104# define EV_USE_SELECT 1
105# else
106# define EV_USE_WIN32 0
47# endif 107# endif
48#endif 108#endif
49 109
50#ifndef HAVE_SELECT
51# define HAVE_SELECT 1
52#endif
53
54#ifndef HAVE_EPOLL
55# define HAVE_EPOLL 0
56#endif
57
58#ifndef HAVE_REALTIME 110#ifndef EV_USE_REALTIME
59# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 111# define EV_USE_REALTIME 1
60#endif 112#endif
113
114/**/
115
116#ifndef CLOCK_MONOTONIC
117# undef EV_USE_MONOTONIC
118# define EV_USE_MONOTONIC 0
119#endif
120
121#ifndef CLOCK_REALTIME
122# undef EV_USE_REALTIME
123# define EV_USE_REALTIME 0
124#endif
125
126/**/
61 127
62#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 128#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
63#define MAX_BLOCKTIME 60. 129#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
130#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
131/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
64 132
65#include "ev.h" 133#include "ev.h"
134
135#if __GNUC__ >= 3
136# define expect(expr,value) __builtin_expect ((expr),(value))
137# define inline inline
138#else
139# define expect(expr,value) (expr)
140# define inline static
141#endif
142
143#define expect_false(expr) expect ((expr) != 0, 0)
144#define expect_true(expr) expect ((expr) != 0, 1)
145
146#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
147#define ABSPRI(w) ((w)->priority - EV_MINPRI)
66 148
67typedef struct ev_watcher *W; 149typedef struct ev_watcher *W;
68typedef struct ev_watcher_list *WL; 150typedef struct ev_watcher_list *WL;
69typedef struct ev_watcher_time *WT; 151typedef struct ev_watcher_time *WT;
70 152
71static ev_tstamp now, diff; /* monotonic clock */ 153static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
72ev_tstamp ev_now;
73int ev_method;
74 154
75static int have_monotonic; /* runtime */ 155#if WIN32
76 156/* note: the comment below could not be substantiated, but what would I care */
77static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 157/* MSDN says this is required to handle SIGFPE */
78static void (*method_modify)(int fd, int oev, int nev); 158volatile double SIGFPE_REQ = 0.0f;
79static void (*method_poll)(ev_tstamp timeout); 159#endif
80 160
81/*****************************************************************************/ 161/*****************************************************************************/
82 162
83ev_tstamp 163static void (*syserr_cb)(const char *msg);
164
165void ev_set_syserr_cb (void (*cb)(const char *msg))
166{
167 syserr_cb = cb;
168}
169
170static void
171syserr (const char *msg)
172{
173 if (!msg)
174 msg = "(libev) system error";
175
176 if (syserr_cb)
177 syserr_cb (msg);
178 else
179 {
180 perror (msg);
181 abort ();
182 }
183}
184
185static void *(*alloc)(void *ptr, long size);
186
187void ev_set_allocator (void *(*cb)(void *ptr, long size))
188{
189 alloc = cb;
190}
191
192static void *
193ev_realloc (void *ptr, long size)
194{
195 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
196
197 if (!ptr && size)
198 {
199 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
200 abort ();
201 }
202
203 return ptr;
204}
205
206#define ev_malloc(size) ev_realloc (0, (size))
207#define ev_free(ptr) ev_realloc ((ptr), 0)
208
209/*****************************************************************************/
210
211typedef struct
212{
213 WL head;
214 unsigned char events;
215 unsigned char reify;
216} ANFD;
217
218typedef struct
219{
220 W w;
221 int events;
222} ANPENDING;
223
224#if EV_MULTIPLICITY
225
226struct ev_loop
227{
228# define VAR(name,decl) decl;
229# include "ev_vars.h"
230};
231# undef VAR
232# include "ev_wrap.h"
233
234#else
235
236# define VAR(name,decl) static decl;
237# include "ev_vars.h"
238# undef VAR
239
240#endif
241
242/*****************************************************************************/
243
244inline ev_tstamp
84ev_time (void) 245ev_time (void)
85{ 246{
86#if HAVE_REALTIME 247#if EV_USE_REALTIME
87 struct timespec ts; 248 struct timespec ts;
88 clock_gettime (CLOCK_REALTIME, &ts); 249 clock_gettime (CLOCK_REALTIME, &ts);
89 return ts.tv_sec + ts.tv_nsec * 1e-9; 250 return ts.tv_sec + ts.tv_nsec * 1e-9;
90#else 251#else
91 struct timeval tv; 252 struct timeval tv;
92 gettimeofday (&tv, 0); 253 gettimeofday (&tv, 0);
93 return tv.tv_sec + tv.tv_usec * 1e-6; 254 return tv.tv_sec + tv.tv_usec * 1e-6;
94#endif 255#endif
95} 256}
96 257
97static ev_tstamp 258inline ev_tstamp
98get_clock (void) 259get_clock (void)
99{ 260{
100#if HAVE_MONOTONIC 261#if EV_USE_MONOTONIC
101 if (have_monotonic) 262 if (expect_true (have_monotonic))
102 { 263 {
103 struct timespec ts; 264 struct timespec ts;
104 clock_gettime (CLOCK_MONOTONIC, &ts); 265 clock_gettime (CLOCK_MONOTONIC, &ts);
105 return ts.tv_sec + ts.tv_nsec * 1e-9; 266 return ts.tv_sec + ts.tv_nsec * 1e-9;
106 } 267 }
107#endif 268#endif
108 269
109 return ev_time (); 270 return ev_time ();
110} 271}
111 272
273ev_tstamp
274ev_now (EV_P)
275{
276 return rt_now;
277}
278
279#define array_roundsize(base,n) ((n) | 4 & ~3)
280
112#define array_needsize(base,cur,cnt,init) \ 281#define array_needsize(base,cur,cnt,init) \
113 if ((cnt) > cur) \ 282 if (expect_false ((cnt) > cur)) \
114 { \ 283 { \
115 int newcnt = cur ? cur << 1 : 16; \ 284 int newcnt = cur; \
285 do \
286 { \
287 newcnt = array_roundsize (base, newcnt << 1); \
288 } \
289 while ((cnt) > newcnt); \
290 \
116 base = realloc (base, sizeof (*base) * (newcnt)); \ 291 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
117 init (base + cur, newcnt - cur); \ 292 init (base + cur, newcnt - cur); \
118 cur = newcnt; \ 293 cur = newcnt; \
119 } 294 }
295
296#define array_slim(stem) \
297 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
298 { \
299 stem ## max = array_roundsize (stem ## cnt >> 1); \
300 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
301 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
302 }
303
304/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
305/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
306#define array_free_microshit(stem) \
307 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
308
309#define array_free(stem, idx) \
310 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
120 311
121/*****************************************************************************/ 312/*****************************************************************************/
122 313
123typedef struct
124{
125 struct ev_io *head;
126 unsigned char wev, rev; /* want, received event set */
127} ANFD;
128
129static ANFD *anfds;
130static int anfdmax;
131
132static int *fdchanges;
133static int fdchangemax, fdchangecnt;
134
135static void 314static void
136anfds_init (ANFD *base, int count) 315anfds_init (ANFD *base, int count)
137{ 316{
138 while (count--) 317 while (count--)
139 { 318 {
140 base->head = 0; 319 base->head = 0;
141 base->wev = base->rev = EV_NONE; 320 base->events = EV_NONE;
321 base->reify = 0;
322
142 ++base; 323 ++base;
143 } 324 }
144} 325}
145 326
146typedef struct
147{
148 W w;
149 int events;
150} ANPENDING;
151
152static ANPENDING *pendings;
153static int pendingmax, pendingcnt;
154
155static void 327static void
156event (W w, int events) 328event (EV_P_ W w, int events)
157{ 329{
158 if (w->active) 330 if (w->pending)
159 { 331 {
160 w->pending = ++pendingcnt;
161 array_needsize (pendings, pendingmax, pendingcnt, );
162 pendings [pendingcnt - 1].w = w;
163 pendings [pendingcnt - 1].events = events; 332 pendings [ABSPRI (w)][w->pending - 1].events |= events;
333 return;
164 } 334 }
165}
166 335
336 w->pending = ++pendingcnt [ABSPRI (w)];
337 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
338 pendings [ABSPRI (w)][w->pending - 1].w = w;
339 pendings [ABSPRI (w)][w->pending - 1].events = events;
340}
341
167static void 342static void
343queue_events (EV_P_ W *events, int eventcnt, int type)
344{
345 int i;
346
347 for (i = 0; i < eventcnt; ++i)
348 event (EV_A_ events [i], type);
349}
350
351static void
168fd_event (int fd, int events) 352fd_event (EV_P_ int fd, int events)
169{ 353{
170 ANFD *anfd = anfds + fd; 354 ANFD *anfd = anfds + fd;
171 struct ev_io *w; 355 struct ev_io *w;
172 356
173 for (w = anfd->head; w; w = w->next) 357 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
174 { 358 {
175 int ev = w->events & events; 359 int ev = w->events & events;
176 360
177 if (ev) 361 if (ev)
178 event ((W)w, ev); 362 event (EV_A_ (W)w, ev);
179 } 363 }
180} 364}
181 365
366/*****************************************************************************/
367
182static void 368static void
183queue_events (W *events, int eventcnt, int type) 369fd_reify (EV_P)
184{ 370{
185 int i; 371 int i;
186 372
187 for (i = 0; i < eventcnt; ++i) 373 for (i = 0; i < fdchangecnt; ++i)
188 event (events [i], type); 374 {
375 int fd = fdchanges [i];
376 ANFD *anfd = anfds + fd;
377 struct ev_io *w;
378
379 int events = 0;
380
381 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
382 events |= w->events;
383
384 anfd->reify = 0;
385
386 method_modify (EV_A_ fd, anfd->events, events);
387 anfd->events = events;
388 }
389
390 fdchangecnt = 0;
391}
392
393static void
394fd_change (EV_P_ int fd)
395{
396 if (anfds [fd].reify)
397 return;
398
399 anfds [fd].reify = 1;
400
401 ++fdchangecnt;
402 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void));
403 fdchanges [fdchangecnt - 1] = fd;
404}
405
406static void
407fd_kill (EV_P_ int fd)
408{
409 struct ev_io *w;
410
411 while ((w = (struct ev_io *)anfds [fd].head))
412 {
413 ev_io_stop (EV_A_ w);
414 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
415 }
416}
417
418static int
419fd_valid (int fd)
420{
421#ifdef WIN32
422 return !!win32_get_osfhandle (fd);
423#else
424 return fcntl (fd, F_GETFD) != -1;
425#endif
189} 426}
190 427
191/* called on EBADF to verify fds */ 428/* called on EBADF to verify fds */
192static void 429static void
193fd_recheck () 430fd_ebadf (EV_P)
194{ 431{
195 int fd; 432 int fd;
196 433
197 for (fd = 0; fd < anfdmax; ++fd) 434 for (fd = 0; fd < anfdmax; ++fd)
198 if (anfds [fd].wev) 435 if (anfds [fd].events)
199 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 436 if (!fd_valid (fd) == -1 && errno == EBADF)
200 while (anfds [fd].head) 437 fd_kill (EV_A_ fd);
201 evio_stop (anfds [fd].head); 438}
439
440/* called on ENOMEM in select/poll to kill some fds and retry */
441static void
442fd_enomem (EV_P)
443{
444 int fd;
445
446 for (fd = anfdmax; fd--; )
447 if (anfds [fd].events)
448 {
449 fd_kill (EV_A_ fd);
450 return;
451 }
452}
453
454/* usually called after fork if method needs to re-arm all fds from scratch */
455static void
456fd_rearm_all (EV_P)
457{
458 int fd;
459
460 /* this should be highly optimised to not do anything but set a flag */
461 for (fd = 0; fd < anfdmax; ++fd)
462 if (anfds [fd].events)
463 {
464 anfds [fd].events = 0;
465 fd_change (EV_A_ fd);
466 }
202} 467}
203 468
204/*****************************************************************************/ 469/*****************************************************************************/
205 470
206static struct ev_timer **timers;
207static int timermax, timercnt;
208
209static struct ev_periodic **periodics;
210static int periodicmax, periodiccnt;
211
212static void 471static void
213upheap (WT *timers, int k) 472upheap (WT *heap, int k)
214{ 473{
215 WT w = timers [k]; 474 WT w = heap [k];
216 475
217 while (k && timers [k >> 1]->at > w->at) 476 while (k && heap [k >> 1]->at > w->at)
218 { 477 {
219 timers [k] = timers [k >> 1]; 478 heap [k] = heap [k >> 1];
220 timers [k]->active = k + 1; 479 ((W)heap [k])->active = k + 1;
221 k >>= 1; 480 k >>= 1;
222 } 481 }
223 482
224 timers [k] = w; 483 heap [k] = w;
225 timers [k]->active = k + 1; 484 ((W)heap [k])->active = k + 1;
226 485
227} 486}
228 487
229static void 488static void
230downheap (WT *timers, int N, int k) 489downheap (WT *heap, int N, int k)
231{ 490{
232 WT w = timers [k]; 491 WT w = heap [k];
233 492
234 while (k < (N >> 1)) 493 while (k < (N >> 1))
235 { 494 {
236 int j = k << 1; 495 int j = k << 1;
237 496
238 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 497 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
239 ++j; 498 ++j;
240 499
241 if (w->at <= timers [j]->at) 500 if (w->at <= heap [j]->at)
242 break; 501 break;
243 502
244 timers [k] = timers [j]; 503 heap [k] = heap [j];
245 timers [k]->active = k + 1; 504 ((W)heap [k])->active = k + 1;
246 k = j; 505 k = j;
247 } 506 }
248 507
249 timers [k] = w; 508 heap [k] = w;
250 timers [k]->active = k + 1; 509 ((W)heap [k])->active = k + 1;
251} 510}
252 511
253/*****************************************************************************/ 512/*****************************************************************************/
254 513
255typedef struct 514typedef struct
256{ 515{
257 struct ev_signal *head; 516 WL head;
258 sig_atomic_t gotsig; 517 sig_atomic_t volatile gotsig;
259} ANSIG; 518} ANSIG;
260 519
261static ANSIG *signals; 520static ANSIG *signals;
262static int signalmax; 521static int signalmax;
263 522
264static int sigpipe [2]; 523static int sigpipe [2];
265static sig_atomic_t gotsig; 524static sig_atomic_t volatile gotsig;
266static struct ev_io sigev; 525static struct ev_io sigev;
267 526
268static void 527static void
269signals_init (ANSIG *base, int count) 528signals_init (ANSIG *base, int count)
270{ 529{
271 while (count--) 530 while (count--)
272 { 531 {
273 base->head = 0; 532 base->head = 0;
274 base->gotsig = 0; 533 base->gotsig = 0;
534
275 ++base; 535 ++base;
276 } 536 }
277} 537}
278 538
279static void 539static void
280sighandler (int signum) 540sighandler (int signum)
281{ 541{
542#if WIN32
543 signal (signum, sighandler);
544#endif
545
282 signals [signum - 1].gotsig = 1; 546 signals [signum - 1].gotsig = 1;
283 547
284 if (!gotsig) 548 if (!gotsig)
285 { 549 {
550 int old_errno = errno;
286 gotsig = 1; 551 gotsig = 1;
287 write (sigpipe [1], &gotsig, 1); 552 write (sigpipe [1], &signum, 1);
553 errno = old_errno;
288 } 554 }
289} 555}
290 556
291static void 557static void
292sigcb (struct ev_io *iow, int revents) 558sigcb (EV_P_ struct ev_io *iow, int revents)
293{ 559{
294 struct ev_signal *w; 560 WL w;
295 int sig; 561 int signum;
296 562
563 read (sigpipe [0], &revents, 1);
297 gotsig = 0; 564 gotsig = 0;
298 read (sigpipe [0], &revents, 1);
299 565
300 for (sig = signalmax; sig--; ) 566 for (signum = signalmax; signum--; )
301 if (signals [sig].gotsig) 567 if (signals [signum].gotsig)
302 { 568 {
303 signals [sig].gotsig = 0; 569 signals [signum].gotsig = 0;
304 570
305 for (w = signals [sig].head; w; w = w->next) 571 for (w = signals [signum].head; w; w = w->next)
306 event ((W)w, EV_SIGNAL); 572 event (EV_A_ (W)w, EV_SIGNAL);
307 } 573 }
308} 574}
309 575
310static void 576static void
311siginit (void) 577siginit (EV_P)
312{ 578{
579#ifndef WIN32
313 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 580 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
314 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 581 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
315 582
316 /* rather than sort out wether we really need nb, set it */ 583 /* rather than sort out wether we really need nb, set it */
317 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 584 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
318 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 585 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
586#endif
319 587
320 evio_set (&sigev, sigpipe [0], EV_READ); 588 ev_io_set (&sigev, sigpipe [0], EV_READ);
321 evio_start (&sigev); 589 ev_io_start (EV_A_ &sigev);
590 ev_unref (EV_A); /* child watcher should not keep loop alive */
322} 591}
323 592
324/*****************************************************************************/ 593/*****************************************************************************/
325 594
326static struct ev_idle **idles; 595static struct ev_child *childs [PID_HASHSIZE];
327static int idlemax, idlecnt;
328 596
329static struct ev_prepare **prepares; 597#ifndef WIN32
330static int preparemax, preparecnt;
331 598
332static struct ev_check **checks; 599static struct ev_signal childev;
333static int checkmax, checkcnt; 600
601#ifndef WCONTINUED
602# define WCONTINUED 0
603#endif
604
605static void
606child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
607{
608 struct ev_child *w;
609
610 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
611 if (w->pid == pid || !w->pid)
612 {
613 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
614 w->rpid = pid;
615 w->rstatus = status;
616 event (EV_A_ (W)w, EV_CHILD);
617 }
618}
619
620static void
621childcb (EV_P_ struct ev_signal *sw, int revents)
622{
623 int pid, status;
624
625 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
626 {
627 /* make sure we are called again until all childs have been reaped */
628 event (EV_A_ (W)sw, EV_SIGNAL);
629
630 child_reap (EV_A_ sw, pid, pid, status);
631 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
632 }
633}
634
635#endif
334 636
335/*****************************************************************************/ 637/*****************************************************************************/
336 638
639#if EV_USE_KQUEUE
640# include "ev_kqueue.c"
641#endif
337#if HAVE_EPOLL 642#if EV_USE_EPOLL
338# include "ev_epoll.c" 643# include "ev_epoll.c"
339#endif 644#endif
645#if EV_USE_POLL
646# include "ev_poll.c"
647#endif
340#if HAVE_SELECT 648#if EV_USE_SELECT
341# include "ev_select.c" 649# include "ev_select.c"
342#endif 650#endif
343 651
344int ev_init (int flags) 652int
653ev_version_major (void)
345{ 654{
655 return EV_VERSION_MAJOR;
656}
657
658int
659ev_version_minor (void)
660{
661 return EV_VERSION_MINOR;
662}
663
664/* return true if we are running with elevated privileges and should ignore env variables */
665static int
666enable_secure (void)
667{
668#ifdef WIN32
669 return 0;
670#else
671 return getuid () != geteuid ()
672 || getgid () != getegid ();
673#endif
674}
675
676int
677ev_method (EV_P)
678{
679 return method;
680}
681
682static void
683loop_init (EV_P_ int methods)
684{
685 if (!method)
686 {
346#if HAVE_MONOTONIC 687#if EV_USE_MONOTONIC
347 { 688 {
348 struct timespec ts; 689 struct timespec ts;
349 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 690 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
350 have_monotonic = 1; 691 have_monotonic = 1;
351 } 692 }
352#endif 693#endif
353 694
354 ev_now = ev_time (); 695 rt_now = ev_time ();
355 now = get_clock (); 696 mn_now = get_clock ();
356 diff = ev_now - now; 697 now_floor = mn_now;
698 rtmn_diff = rt_now - mn_now;
357 699
700 if (methods == EVMETHOD_AUTO)
701 if (!enable_secure () && getenv ("LIBEV_METHODS"))
702 methods = atoi (getenv ("LIBEV_METHODS"));
703 else
704 methods = EVMETHOD_ANY;
705
706 method = 0;
707#if EV_USE_WIN32
708 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
709#endif
710#if EV_USE_KQUEUE
711 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
712#endif
713#if EV_USE_EPOLL
714 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
715#endif
716#if EV_USE_POLL
717 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
718#endif
719#if EV_USE_SELECT
720 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
721#endif
722
723 ev_watcher_init (&sigev, sigcb);
724 ev_set_priority (&sigev, EV_MAXPRI);
725 }
726}
727
728void
729loop_destroy (EV_P)
730{
731 int i;
732
733#if EV_USE_WIN32
734 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
735#endif
736#if EV_USE_KQUEUE
737 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
738#endif
739#if EV_USE_EPOLL
740 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
741#endif
742#if EV_USE_POLL
743 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
744#endif
745#if EV_USE_SELECT
746 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
747#endif
748
749 for (i = NUMPRI; i--; )
750 array_free (pending, [i]);
751
752 /* have to use the microsoft-never-gets-it-right macro */
753 array_free_microshit (fdchange);
754 array_free_microshit (timer);
755 array_free_microshit (periodic);
756 array_free_microshit (idle);
757 array_free_microshit (prepare);
758 array_free_microshit (check);
759
760 method = 0;
761}
762
763static void
764loop_fork (EV_P)
765{
766#if EV_USE_EPOLL
767 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
768#endif
769#if EV_USE_KQUEUE
770 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
771#endif
772
773 if (ev_is_active (&sigev))
774 {
775 /* default loop */
776
777 ev_ref (EV_A);
778 ev_io_stop (EV_A_ &sigev);
779 close (sigpipe [0]);
780 close (sigpipe [1]);
781
782 while (pipe (sigpipe))
783 syserr ("(libev) error creating pipe");
784
785 siginit (EV_A);
786 }
787
788 postfork = 0;
789}
790
791#if EV_MULTIPLICITY
792struct ev_loop *
793ev_loop_new (int methods)
794{
795 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
796
797 memset (loop, 0, sizeof (struct ev_loop));
798
799 loop_init (EV_A_ methods);
800
801 if (ev_method (EV_A))
802 return loop;
803
804 return 0;
805}
806
807void
808ev_loop_destroy (EV_P)
809{
810 loop_destroy (EV_A);
811 ev_free (loop);
812}
813
814void
815ev_loop_fork (EV_P)
816{
817 postfork = 1;
818}
819
820#endif
821
822#if EV_MULTIPLICITY
823struct ev_loop default_loop_struct;
824static struct ev_loop *default_loop;
825
826struct ev_loop *
827#else
828static int default_loop;
829
830int
831#endif
832ev_default_loop (int methods)
833{
834 if (sigpipe [0] == sigpipe [1])
358 if (pipe (sigpipe)) 835 if (pipe (sigpipe))
359 return 0; 836 return 0;
360 837
361 ev_method = EVMETHOD_NONE; 838 if (!default_loop)
362#if HAVE_EPOLL 839 {
363 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 840#if EV_MULTIPLICITY
841 struct ev_loop *loop = default_loop = &default_loop_struct;
842#else
843 default_loop = 1;
364#endif 844#endif
365#if HAVE_SELECT
366 if (ev_method == EVMETHOD_NONE) select_init (flags);
367#endif
368 845
846 loop_init (EV_A_ methods);
847
848 if (ev_method (EV_A))
849 {
850 siginit (EV_A);
851
852#ifndef WIN32
853 ev_signal_init (&childev, childcb, SIGCHLD);
854 ev_set_priority (&childev, EV_MAXPRI);
855 ev_signal_start (EV_A_ &childev);
856 ev_unref (EV_A); /* child watcher should not keep loop alive */
857#endif
858 }
859 else
860 default_loop = 0;
861 }
862
863 return default_loop;
864}
865
866void
867ev_default_destroy (void)
868{
869#if EV_MULTIPLICITY
870 struct ev_loop *loop = default_loop;
871#endif
872
873#ifndef WIN32
874 ev_ref (EV_A); /* child watcher */
875 ev_signal_stop (EV_A_ &childev);
876#endif
877
878 ev_ref (EV_A); /* signal watcher */
879 ev_io_stop (EV_A_ &sigev);
880
881 close (sigpipe [0]); sigpipe [0] = 0;
882 close (sigpipe [1]); sigpipe [1] = 0;
883
884 loop_destroy (EV_A);
885}
886
887void
888ev_default_fork (void)
889{
890#if EV_MULTIPLICITY
891 struct ev_loop *loop = default_loop;
892#endif
893
369 if (ev_method) 894 if (method)
370 { 895 postfork = 1;
371 evw_init (&sigev, sigcb);
372 siginit ();
373 }
374
375 return ev_method;
376} 896}
377 897
378/*****************************************************************************/ 898/*****************************************************************************/
379 899
380void ev_prefork (void)
381{
382 /* nop */
383}
384
385void ev_postfork_parent (void)
386{
387 /* nop */
388}
389
390void ev_postfork_child (void)
391{
392#if HAVE_EPOLL
393 if (ev_method == EVMETHOD_EPOLL)
394 epoll_postfork_child ();
395#endif
396
397 evio_stop (&sigev);
398 close (sigpipe [0]);
399 close (sigpipe [1]);
400 pipe (sigpipe);
401 siginit ();
402}
403
404/*****************************************************************************/
405
406static void 900static void
407fd_reify (void) 901call_pending (EV_P)
408{ 902{
409 int i; 903 int pri;
410 904
411 for (i = 0; i < fdchangecnt; ++i) 905 for (pri = NUMPRI; pri--; )
412 { 906 while (pendingcnt [pri])
413 int fd = fdchanges [i];
414 ANFD *anfd = anfds + fd;
415 struct ev_io *w;
416
417 int wev = 0;
418
419 for (w = anfd->head; w; w = w->next)
420 wev |= w->events;
421
422 if (anfd->wev != wev)
423 { 907 {
424 method_modify (fd, anfd->wev, wev);
425 anfd->wev = wev;
426 }
427 }
428
429 fdchangecnt = 0;
430}
431
432static void
433call_pending ()
434{
435 while (pendingcnt)
436 {
437 ANPENDING *p = pendings + --pendingcnt; 908 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
438 909
439 if (p->w) 910 if (p->w)
440 { 911 {
441 p->w->pending = 0; 912 p->w->pending = 0;
442 p->w->cb (p->w, p->events); 913 p->w->cb (EV_A_ p->w, p->events);
443 } 914 }
444 } 915 }
445} 916}
446 917
447static void 918static void
448timers_reify () 919timers_reify (EV_P)
449{ 920{
450 while (timercnt && timers [0]->at <= now) 921 while (timercnt && ((WT)timers [0])->at <= mn_now)
451 { 922 {
452 struct ev_timer *w = timers [0]; 923 struct ev_timer *w = timers [0];
453 924
454 event ((W)w, EV_TIMEOUT); 925 assert (("inactive timer on timer heap detected", ev_is_active (w)));
455 926
456 /* first reschedule or stop timer */ 927 /* first reschedule or stop timer */
457 if (w->repeat) 928 if (w->repeat)
458 { 929 {
930 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
459 w->at = now + w->repeat; 931 ((WT)w)->at = mn_now + w->repeat;
460 assert (("timer timeout in the past, negative repeat?", w->at > now));
461 downheap ((WT *)timers, timercnt, 0); 932 downheap ((WT *)timers, timercnt, 0);
462 } 933 }
463 else 934 else
464 evtimer_stop (w); /* nonrepeating: stop timer */ 935 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
465 }
466}
467 936
937 event (EV_A_ (W)w, EV_TIMEOUT);
938 }
939}
940
468static void 941static void
469periodics_reify () 942periodics_reify (EV_P)
470{ 943{
471 while (periodiccnt && periodics [0]->at <= ev_now) 944 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
472 { 945 {
473 struct ev_periodic *w = periodics [0]; 946 struct ev_periodic *w = periodics [0];
947
948 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
474 949
475 /* first reschedule or stop timer */ 950 /* first reschedule or stop timer */
476 if (w->interval) 951 if (w->interval)
477 { 952 {
478 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 953 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
479 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 954 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
480 downheap ((WT *)periodics, periodiccnt, 0); 955 downheap ((WT *)periodics, periodiccnt, 0);
481 } 956 }
482 else 957 else
483 evperiodic_stop (w); /* nonrepeating: stop timer */ 958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
484 959
485 event ((W)w, EV_TIMEOUT); 960 event (EV_A_ (W)w, EV_PERIODIC);
486 } 961 }
487} 962}
488 963
489static void 964static void
490periodics_reschedule (ev_tstamp diff) 965periodics_reschedule (EV_P)
491{ 966{
492 int i; 967 int i;
493 968
494 /* adjust periodics after time jump */ 969 /* adjust periodics after time jump */
495 for (i = 0; i < periodiccnt; ++i) 970 for (i = 0; i < periodiccnt; ++i)
496 { 971 {
497 struct ev_periodic *w = periodics [i]; 972 struct ev_periodic *w = periodics [i];
498 973
499 if (w->interval) 974 if (w->interval)
500 { 975 {
501 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 976 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
502 977
503 if (fabs (diff) >= 1e-4) 978 if (fabs (diff) >= 1e-4)
504 { 979 {
505 evperiodic_stop (w); 980 ev_periodic_stop (EV_A_ w);
506 evperiodic_start (w); 981 ev_periodic_start (EV_A_ w);
507 982
508 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 983 i = 0; /* restart loop, inefficient, but time jumps should be rare */
509 } 984 }
510 } 985 }
511 } 986 }
512} 987}
513 988
989inline int
990time_update_monotonic (EV_P)
991{
992 mn_now = get_clock ();
993
994 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
995 {
996 rt_now = rtmn_diff + mn_now;
997 return 0;
998 }
999 else
1000 {
1001 now_floor = mn_now;
1002 rt_now = ev_time ();
1003 return 1;
1004 }
1005}
1006
514static void 1007static void
515time_update () 1008time_update (EV_P)
516{ 1009{
517 int i; 1010 int i;
518 1011
519 ev_now = ev_time (); 1012#if EV_USE_MONOTONIC
520
521 if (have_monotonic) 1013 if (expect_true (have_monotonic))
522 { 1014 {
523 ev_tstamp odiff = diff; 1015 if (time_update_monotonic (EV_A))
524
525 for (i = 4; --i; ) /* loop a few times, before making important decisions */
526 { 1016 {
527 now = get_clock (); 1017 ev_tstamp odiff = rtmn_diff;
1018
1019 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1020 {
528 diff = ev_now - now; 1021 rtmn_diff = rt_now - mn_now;
529 1022
530 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1023 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
531 return; /* all is well */ 1024 return; /* all is well */
532 1025
533 ev_now = ev_time (); 1026 rt_now = ev_time ();
1027 mn_now = get_clock ();
1028 now_floor = mn_now;
1029 }
1030
1031 periodics_reschedule (EV_A);
1032 /* no timer adjustment, as the monotonic clock doesn't jump */
1033 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
534 } 1034 }
535
536 periodics_reschedule (diff - odiff);
537 /* no timer adjustment, as the monotonic clock doesn't jump */
538 } 1035 }
539 else 1036 else
1037#endif
540 { 1038 {
541 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 1039 rt_now = ev_time ();
1040
1041 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
542 { 1042 {
543 periodics_reschedule (ev_now - now); 1043 periodics_reschedule (EV_A);
544 1044
545 /* adjust timers. this is easy, as the offset is the same for all */ 1045 /* adjust timers. this is easy, as the offset is the same for all */
546 for (i = 0; i < timercnt; ++i) 1046 for (i = 0; i < timercnt; ++i)
547 timers [i]->at += diff; 1047 ((WT)timers [i])->at += rt_now - mn_now;
548 } 1048 }
549 1049
550 now = ev_now; 1050 mn_now = rt_now;
551 } 1051 }
552} 1052}
553 1053
554int ev_loop_done; 1054void
1055ev_ref (EV_P)
1056{
1057 ++activecnt;
1058}
555 1059
1060void
1061ev_unref (EV_P)
1062{
1063 --activecnt;
1064}
1065
1066static int loop_done;
1067
1068void
556void ev_loop (int flags) 1069ev_loop (EV_P_ int flags)
557{ 1070{
558 double block; 1071 double block;
559 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 1072 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
560 1073
561 do 1074 do
562 { 1075 {
563 /* queue check watchers (and execute them) */ 1076 /* queue check watchers (and execute them) */
564 if (checkcnt) 1077 if (expect_false (preparecnt))
565 { 1078 {
566 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1079 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
567 call_pending (); 1080 call_pending (EV_A);
568 } 1081 }
569 1082
1083 /* we might have forked, so reify kernel state if necessary */
1084 if (expect_false (postfork))
1085 loop_fork (EV_A);
1086
570 /* update fd-related kernel structures */ 1087 /* update fd-related kernel structures */
571 fd_reify (); 1088 fd_reify (EV_A);
572 1089
573 /* calculate blocking time */ 1090 /* calculate blocking time */
574 1091
575 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 1092 /* we only need this for !monotonic clockor timers, but as we basically
1093 always have timers, we just calculate it always */
1094#if EV_USE_MONOTONIC
1095 if (expect_true (have_monotonic))
1096 time_update_monotonic (EV_A);
1097 else
1098#endif
1099 {
576 ev_now = ev_time (); 1100 rt_now = ev_time ();
1101 mn_now = rt_now;
1102 }
577 1103
578 if (flags & EVLOOP_NONBLOCK || idlecnt) 1104 if (flags & EVLOOP_NONBLOCK || idlecnt)
579 block = 0.; 1105 block = 0.;
580 else 1106 else
581 { 1107 {
582 block = MAX_BLOCKTIME; 1108 block = MAX_BLOCKTIME;
583 1109
584 if (timercnt) 1110 if (timercnt)
585 { 1111 {
586 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1112 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
587 if (block > to) block = to; 1113 if (block > to) block = to;
588 } 1114 }
589 1115
590 if (periodiccnt) 1116 if (periodiccnt)
591 { 1117 {
592 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1118 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
593 if (block > to) block = to; 1119 if (block > to) block = to;
594 } 1120 }
595 1121
596 if (block < 0.) block = 0.; 1122 if (block < 0.) block = 0.;
597 } 1123 }
598 1124
599 method_poll (block); 1125 method_poll (EV_A_ block);
600 1126
601 /* update ev_now, do magic */ 1127 /* update rt_now, do magic */
602 time_update (); 1128 time_update (EV_A);
603 1129
604 /* queue pending timers and reschedule them */ 1130 /* queue pending timers and reschedule them */
605 timers_reify (); /* relative timers called last */ 1131 timers_reify (EV_A); /* relative timers called last */
606 periodics_reify (); /* absolute timers called first */ 1132 periodics_reify (EV_A); /* absolute timers called first */
607 1133
608 /* queue idle watchers unless io or timers are pending */ 1134 /* queue idle watchers unless io or timers are pending */
609 if (!pendingcnt) 1135 if (!pendingcnt)
610 queue_events ((W *)idles, idlecnt, EV_IDLE); 1136 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
611 1137
612 /* queue check watchers, to be executed first */ 1138 /* queue check watchers, to be executed first */
613 if (checkcnt) 1139 if (checkcnt)
614 queue_events ((W *)checks, checkcnt, EV_CHECK); 1140 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
615 1141
616 call_pending (); 1142 call_pending (EV_A);
617 } 1143 }
618 while (!ev_loop_done); 1144 while (activecnt && !loop_done);
619 1145
620 if (ev_loop_done != 2) 1146 if (loop_done != 2)
621 ev_loop_done = 0; 1147 loop_done = 0;
1148}
1149
1150void
1151ev_unloop (EV_P_ int how)
1152{
1153 loop_done = how;
622} 1154}
623 1155
624/*****************************************************************************/ 1156/*****************************************************************************/
625 1157
626static void 1158inline void
627wlist_add (WL *head, WL elem) 1159wlist_add (WL *head, WL elem)
628{ 1160{
629 elem->next = *head; 1161 elem->next = *head;
630 *head = elem; 1162 *head = elem;
631} 1163}
632 1164
633static void 1165inline void
634wlist_del (WL *head, WL elem) 1166wlist_del (WL *head, WL elem)
635{ 1167{
636 while (*head) 1168 while (*head)
637 { 1169 {
638 if (*head == elem) 1170 if (*head == elem)
643 1175
644 head = &(*head)->next; 1176 head = &(*head)->next;
645 } 1177 }
646} 1178}
647 1179
648static void 1180inline void
649ev_clear (W w) 1181ev_clear_pending (EV_P_ W w)
650{ 1182{
651 if (w->pending) 1183 if (w->pending)
652 { 1184 {
653 pendings [w->pending - 1].w = 0; 1185 pendings [ABSPRI (w)][w->pending - 1].w = 0;
654 w->pending = 0; 1186 w->pending = 0;
655 } 1187 }
656} 1188}
657 1189
658static void 1190inline void
659ev_start (W w, int active) 1191ev_start (EV_P_ W w, int active)
660{ 1192{
1193 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1194 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1195
661 w->active = active; 1196 w->active = active;
1197 ev_ref (EV_A);
662} 1198}
663 1199
664static void 1200inline void
665ev_stop (W w) 1201ev_stop (EV_P_ W w)
666{ 1202{
1203 ev_unref (EV_A);
667 w->active = 0; 1204 w->active = 0;
668} 1205}
669 1206
670/*****************************************************************************/ 1207/*****************************************************************************/
671 1208
672void 1209void
673evio_start (struct ev_io *w) 1210ev_io_start (EV_P_ struct ev_io *w)
674{ 1211{
1212 int fd = w->fd;
1213
675 if (ev_is_active (w)) 1214 if (ev_is_active (w))
676 return; 1215 return;
677 1216
678 int fd = w->fd; 1217 assert (("ev_io_start called with negative fd", fd >= 0));
679 1218
680 ev_start ((W)w, 1); 1219 ev_start (EV_A_ (W)w, 1);
681 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1220 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
682 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1221 wlist_add ((WL *)&anfds[fd].head, (WL)w);
683 1222
684 ++fdchangecnt; 1223 fd_change (EV_A_ fd);
685 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
686 fdchanges [fdchangecnt - 1] = fd;
687} 1224}
688 1225
689void 1226void
690evio_stop (struct ev_io *w) 1227ev_io_stop (EV_P_ struct ev_io *w)
691{ 1228{
692 ev_clear ((W)w); 1229 ev_clear_pending (EV_A_ (W)w);
693 if (!ev_is_active (w)) 1230 if (!ev_is_active (w))
694 return; 1231 return;
695 1232
696 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1233 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
697 ev_stop ((W)w); 1234 ev_stop (EV_A_ (W)w);
698 1235
699 ++fdchangecnt; 1236 fd_change (EV_A_ w->fd);
700 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
701 fdchanges [fdchangecnt - 1] = w->fd;
702} 1237}
703 1238
704void 1239void
705evtimer_start (struct ev_timer *w) 1240ev_timer_start (EV_P_ struct ev_timer *w)
706{ 1241{
707 if (ev_is_active (w)) 1242 if (ev_is_active (w))
708 return; 1243 return;
709 1244
710 w->at += now; 1245 ((WT)w)->at += mn_now;
711 1246
712 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1247 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
713 1248
714 ev_start ((W)w, ++timercnt); 1249 ev_start (EV_A_ (W)w, ++timercnt);
715 array_needsize (timers, timermax, timercnt, ); 1250 array_needsize (timers, timermax, timercnt, (void));
716 timers [timercnt - 1] = w; 1251 timers [timercnt - 1] = w;
717 upheap ((WT *)timers, timercnt - 1); 1252 upheap ((WT *)timers, timercnt - 1);
718}
719 1253
1254 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1255}
1256
720void 1257void
721evtimer_stop (struct ev_timer *w) 1258ev_timer_stop (EV_P_ struct ev_timer *w)
722{ 1259{
723 ev_clear ((W)w); 1260 ev_clear_pending (EV_A_ (W)w);
724 if (!ev_is_active (w)) 1261 if (!ev_is_active (w))
725 return; 1262 return;
726 1263
1264 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1265
727 if (w->active < timercnt--) 1266 if (((W)w)->active < timercnt--)
728 { 1267 {
729 timers [w->active - 1] = timers [timercnt]; 1268 timers [((W)w)->active - 1] = timers [timercnt];
730 downheap ((WT *)timers, timercnt, w->active - 1); 1269 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
731 } 1270 }
732 1271
733 w->at = w->repeat; 1272 ((WT)w)->at = w->repeat;
734 1273
735 ev_stop ((W)w); 1274 ev_stop (EV_A_ (W)w);
736} 1275}
737 1276
738void 1277void
739evtimer_again (struct ev_timer *w) 1278ev_timer_again (EV_P_ struct ev_timer *w)
740{ 1279{
741 if (ev_is_active (w)) 1280 if (ev_is_active (w))
742 { 1281 {
743 if (w->repeat) 1282 if (w->repeat)
744 { 1283 {
745 w->at = now + w->repeat; 1284 ((WT)w)->at = mn_now + w->repeat;
746 downheap ((WT *)timers, timercnt, w->active - 1); 1285 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
747 } 1286 }
748 else 1287 else
749 evtimer_stop (w); 1288 ev_timer_stop (EV_A_ w);
750 } 1289 }
751 else if (w->repeat) 1290 else if (w->repeat)
752 evtimer_start (w); 1291 ev_timer_start (EV_A_ w);
753} 1292}
754 1293
755void 1294void
756evperiodic_start (struct ev_periodic *w) 1295ev_periodic_start (EV_P_ struct ev_periodic *w)
757{ 1296{
758 if (ev_is_active (w)) 1297 if (ev_is_active (w))
759 return; 1298 return;
760 1299
761 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1300 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
762 1301
763 /* this formula differs from the one in periodic_reify because we do not always round up */ 1302 /* this formula differs from the one in periodic_reify because we do not always round up */
764 if (w->interval) 1303 if (w->interval)
765 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1304 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
766 1305
767 ev_start ((W)w, ++periodiccnt); 1306 ev_start (EV_A_ (W)w, ++periodiccnt);
768 array_needsize (periodics, periodicmax, periodiccnt, ); 1307 array_needsize (periodics, periodicmax, periodiccnt, (void));
769 periodics [periodiccnt - 1] = w; 1308 periodics [periodiccnt - 1] = w;
770 upheap ((WT *)periodics, periodiccnt - 1); 1309 upheap ((WT *)periodics, periodiccnt - 1);
771}
772 1310
1311 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1312}
1313
773void 1314void
774evperiodic_stop (struct ev_periodic *w) 1315ev_periodic_stop (EV_P_ struct ev_periodic *w)
775{ 1316{
776 ev_clear ((W)w); 1317 ev_clear_pending (EV_A_ (W)w);
777 if (!ev_is_active (w)) 1318 if (!ev_is_active (w))
778 return; 1319 return;
779 1320
1321 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1322
780 if (w->active < periodiccnt--) 1323 if (((W)w)->active < periodiccnt--)
781 { 1324 {
782 periodics [w->active - 1] = periodics [periodiccnt]; 1325 periodics [((W)w)->active - 1] = periodics [periodiccnt];
783 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1326 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
784 } 1327 }
785 1328
786 ev_stop ((W)w); 1329 ev_stop (EV_A_ (W)w);
787} 1330}
788 1331
789void 1332void
790evsignal_start (struct ev_signal *w) 1333ev_idle_start (EV_P_ struct ev_idle *w)
791{ 1334{
792 if (ev_is_active (w)) 1335 if (ev_is_active (w))
793 return; 1336 return;
794 1337
1338 ev_start (EV_A_ (W)w, ++idlecnt);
1339 array_needsize (idles, idlemax, idlecnt, (void));
1340 idles [idlecnt - 1] = w;
1341}
1342
1343void
1344ev_idle_stop (EV_P_ struct ev_idle *w)
1345{
1346 ev_clear_pending (EV_A_ (W)w);
1347 if (ev_is_active (w))
1348 return;
1349
1350 idles [((W)w)->active - 1] = idles [--idlecnt];
1351 ev_stop (EV_A_ (W)w);
1352}
1353
1354void
1355ev_prepare_start (EV_P_ struct ev_prepare *w)
1356{
1357 if (ev_is_active (w))
1358 return;
1359
1360 ev_start (EV_A_ (W)w, ++preparecnt);
1361 array_needsize (prepares, preparemax, preparecnt, (void));
1362 prepares [preparecnt - 1] = w;
1363}
1364
1365void
1366ev_prepare_stop (EV_P_ struct ev_prepare *w)
1367{
1368 ev_clear_pending (EV_A_ (W)w);
1369 if (ev_is_active (w))
1370 return;
1371
1372 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1373 ev_stop (EV_A_ (W)w);
1374}
1375
1376void
1377ev_check_start (EV_P_ struct ev_check *w)
1378{
1379 if (ev_is_active (w))
1380 return;
1381
1382 ev_start (EV_A_ (W)w, ++checkcnt);
1383 array_needsize (checks, checkmax, checkcnt, (void));
1384 checks [checkcnt - 1] = w;
1385}
1386
1387void
1388ev_check_stop (EV_P_ struct ev_check *w)
1389{
1390 ev_clear_pending (EV_A_ (W)w);
1391 if (ev_is_active (w))
1392 return;
1393
1394 checks [((W)w)->active - 1] = checks [--checkcnt];
1395 ev_stop (EV_A_ (W)w);
1396}
1397
1398#ifndef SA_RESTART
1399# define SA_RESTART 0
1400#endif
1401
1402void
1403ev_signal_start (EV_P_ struct ev_signal *w)
1404{
1405#if EV_MULTIPLICITY
1406 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1407#endif
1408 if (ev_is_active (w))
1409 return;
1410
1411 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1412
795 ev_start ((W)w, 1); 1413 ev_start (EV_A_ (W)w, 1);
796 array_needsize (signals, signalmax, w->signum, signals_init); 1414 array_needsize (signals, signalmax, w->signum, signals_init);
797 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1415 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
798 1416
799 if (!w->next) 1417 if (!((WL)w)->next)
800 { 1418 {
1419#if WIN32
1420 signal (w->signum, sighandler);
1421#else
801 struct sigaction sa; 1422 struct sigaction sa;
802 sa.sa_handler = sighandler; 1423 sa.sa_handler = sighandler;
803 sigfillset (&sa.sa_mask); 1424 sigfillset (&sa.sa_mask);
804 sa.sa_flags = 0; 1425 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
805 sigaction (w->signum, &sa, 0); 1426 sigaction (w->signum, &sa, 0);
1427#endif
806 } 1428 }
807} 1429}
808 1430
809void 1431void
810evsignal_stop (struct ev_signal *w) 1432ev_signal_stop (EV_P_ struct ev_signal *w)
811{ 1433{
812 ev_clear ((W)w); 1434 ev_clear_pending (EV_A_ (W)w);
813 if (!ev_is_active (w)) 1435 if (!ev_is_active (w))
814 return; 1436 return;
815 1437
816 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1438 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
817 ev_stop ((W)w); 1439 ev_stop (EV_A_ (W)w);
818 1440
819 if (!signals [w->signum - 1].head) 1441 if (!signals [w->signum - 1].head)
820 signal (w->signum, SIG_DFL); 1442 signal (w->signum, SIG_DFL);
821} 1443}
822 1444
823void evidle_start (struct ev_idle *w) 1445void
1446ev_child_start (EV_P_ struct ev_child *w)
824{ 1447{
1448#if EV_MULTIPLICITY
1449 assert (("child watchers are only supported in the default loop", loop == default_loop));
1450#endif
825 if (ev_is_active (w)) 1451 if (ev_is_active (w))
826 return; 1452 return;
827 1453
828 ev_start ((W)w, ++idlecnt); 1454 ev_start (EV_A_ (W)w, 1);
829 array_needsize (idles, idlemax, idlecnt, ); 1455 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
830 idles [idlecnt - 1] = w;
831} 1456}
832 1457
833void evidle_stop (struct ev_idle *w) 1458void
1459ev_child_stop (EV_P_ struct ev_child *w)
834{ 1460{
835 ev_clear ((W)w); 1461 ev_clear_pending (EV_A_ (W)w);
836 if (ev_is_active (w)) 1462 if (ev_is_active (w))
837 return; 1463 return;
838 1464
839 idles [w->active - 1] = idles [--idlecnt]; 1465 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
840 ev_stop ((W)w); 1466 ev_stop (EV_A_ (W)w);
841}
842
843void evprepare_start (struct ev_prepare *w)
844{
845 if (ev_is_active (w))
846 return;
847
848 ev_start ((W)w, ++preparecnt);
849 array_needsize (prepares, preparemax, preparecnt, );
850 prepares [preparecnt - 1] = w;
851}
852
853void evprepare_stop (struct ev_prepare *w)
854{
855 ev_clear ((W)w);
856 if (ev_is_active (w))
857 return;
858
859 prepares [w->active - 1] = prepares [--preparecnt];
860 ev_stop ((W)w);
861}
862
863void evcheck_start (struct ev_check *w)
864{
865 if (ev_is_active (w))
866 return;
867
868 ev_start ((W)w, ++checkcnt);
869 array_needsize (checks, checkmax, checkcnt, );
870 checks [checkcnt - 1] = w;
871}
872
873void evcheck_stop (struct ev_check *w)
874{
875 ev_clear ((W)w);
876 if (ev_is_active (w))
877 return;
878
879 checks [w->active - 1] = checks [--checkcnt];
880 ev_stop ((W)w);
881} 1467}
882 1468
883/*****************************************************************************/ 1469/*****************************************************************************/
884 1470
885struct ev_once 1471struct ev_once
889 void (*cb)(int revents, void *arg); 1475 void (*cb)(int revents, void *arg);
890 void *arg; 1476 void *arg;
891}; 1477};
892 1478
893static void 1479static void
894once_cb (struct ev_once *once, int revents) 1480once_cb (EV_P_ struct ev_once *once, int revents)
895{ 1481{
896 void (*cb)(int revents, void *arg) = once->cb; 1482 void (*cb)(int revents, void *arg) = once->cb;
897 void *arg = once->arg; 1483 void *arg = once->arg;
898 1484
899 evio_stop (&once->io); 1485 ev_io_stop (EV_A_ &once->io);
900 evtimer_stop (&once->to); 1486 ev_timer_stop (EV_A_ &once->to);
901 free (once); 1487 ev_free (once);
902 1488
903 cb (revents, arg); 1489 cb (revents, arg);
904} 1490}
905 1491
906static void 1492static void
907once_cb_io (struct ev_io *w, int revents) 1493once_cb_io (EV_P_ struct ev_io *w, int revents)
908{ 1494{
909 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1495 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
910} 1496}
911 1497
912static void 1498static void
913once_cb_to (struct ev_timer *w, int revents) 1499once_cb_to (EV_P_ struct ev_timer *w, int revents)
914{ 1500{
915 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1501 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
916} 1502}
917 1503
918void 1504void
919ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1505ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
920{ 1506{
921 struct ev_once *once = malloc (sizeof (struct ev_once)); 1507 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
922 1508
923 if (!once) 1509 if (!once)
924 cb (EV_ERROR, arg); 1510 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
925 else 1511 else
926 { 1512 {
927 once->cb = cb; 1513 once->cb = cb;
928 once->arg = arg; 1514 once->arg = arg;
929 1515
930 evw_init (&once->io, once_cb_io); 1516 ev_watcher_init (&once->io, once_cb_io);
931
932 if (fd >= 0) 1517 if (fd >= 0)
933 { 1518 {
934 evio_set (&once->io, fd, events); 1519 ev_io_set (&once->io, fd, events);
935 evio_start (&once->io); 1520 ev_io_start (EV_A_ &once->io);
936 } 1521 }
937 1522
938 evw_init (&once->to, once_cb_to); 1523 ev_watcher_init (&once->to, once_cb_to);
939
940 if (timeout >= 0.) 1524 if (timeout >= 0.)
941 { 1525 {
942 evtimer_set (&once->to, timeout, 0.); 1526 ev_timer_set (&once->to, timeout, 0.);
943 evtimer_start (&once->to); 1527 ev_timer_start (EV_A_ &once->to);
944 } 1528 }
945 } 1529 }
946} 1530}
947 1531
948/*****************************************************************************/
949
950#if 0
951
952struct ev_io wio;
953
954static void
955sin_cb (struct ev_io *w, int revents)
956{
957 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
958}
959
960static void
961ocb (struct ev_timer *w, int revents)
962{
963 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
964 evtimer_stop (w);
965 evtimer_start (w);
966}
967
968static void
969scb (struct ev_signal *w, int revents)
970{
971 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
972 evio_stop (&wio);
973 evio_start (&wio);
974}
975
976static void
977gcb (struct ev_signal *w, int revents)
978{
979 fprintf (stderr, "generic %x\n", revents);
980
981}
982
983int main (void)
984{
985 ev_init (0);
986
987 evio_init (&wio, sin_cb, 0, EV_READ);
988 evio_start (&wio);
989
990 struct ev_timer t[10000];
991
992#if 0
993 int i;
994 for (i = 0; i < 10000; ++i)
995 {
996 struct ev_timer *w = t + i;
997 evw_init (w, ocb, i);
998 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
999 evtimer_start (w);
1000 if (drand48 () < 0.5)
1001 evtimer_stop (w);
1002 }
1003#endif
1004
1005 struct ev_timer t1;
1006 evtimer_init (&t1, ocb, 5, 10);
1007 evtimer_start (&t1);
1008
1009 struct ev_signal sig;
1010 evsignal_init (&sig, scb, SIGQUIT);
1011 evsignal_start (&sig);
1012
1013 struct ev_check cw;
1014 evcheck_init (&cw, gcb);
1015 evcheck_start (&cw);
1016
1017 struct ev_idle iw;
1018 evidle_init (&iw, gcb);
1019 evidle_start (&iw);
1020
1021 ev_loop (0);
1022
1023 return 0;
1024}
1025
1026#endif
1027
1028
1029
1030

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines