ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.71 by root, Tue Nov 6 13:17:55 2007 UTC vs.
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <fcntl.h> 136#include <fcntl.h>
64#include <assert.h> 141#include <assert.h>
65#include <errno.h> 142#include <errno.h>
66#include <sys/types.h> 143#include <sys/types.h>
67#include <time.h> 144#include <time.h>
68 145
69#ifndef PERL
70# include <signal.h> 146#include <signal.h>
71#endif
72 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
73#ifndef WIN32 154#ifndef _WIN32
74# include <unistd.h>
75# include <sys/time.h> 155# include <sys/time.h>
76# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
77#endif 163# endif
78/**/ 164#endif
165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
79 167
80#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
81# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
82#endif 178#endif
83 179
84#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
85# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
86#endif 182#endif
87 183
88#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
89# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
90#endif 190#endif
91 191
92#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
93# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
94#endif 198#endif
95 199
96#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
97# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
98#endif 202#endif
99 203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
100#ifndef EV_USE_WIN32 208#ifndef EV_USE_INOTIFY
101# ifdef WIN32 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
102# define EV_USE_WIN32 0 /* it does not exist, use select */
103# undef EV_USE_SELECT
104# define EV_USE_SELECT 1 210# define EV_USE_INOTIFY 1
105# else 211# else
106# define EV_USE_WIN32 0 212# define EV_USE_INOTIFY 0
107# endif 213# endif
108#endif 214#endif
109 215
110#ifndef EV_USE_REALTIME 216#ifndef EV_PID_HASHSIZE
111# define EV_USE_REALTIME 1 217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
112#endif 221# endif
222#endif
113 223
114/**/ 224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
115 241
116#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
117# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
118# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
119#endif 245#endif
121#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
122# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
123# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
124#endif 250#endif
125 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
126/**/ 283/**/
127 284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
128#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
129#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
130#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
131/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
132 298
133#include "ev.h"
134
135#if __GNUC__ >= 3 299#if __GNUC__ >= 4
136# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
137# define inline inline 301# define noinline __attribute__ ((noinline))
138#else 302#else
139# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
140# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
141#endif 308#endif
142 309
143#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
144#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
145 319
146#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
147#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
148 322
323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325
149typedef struct ev_watcher *W; 326typedef ev_watcher *W;
150typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
151typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
152 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
153static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
154 338
155#if WIN32 339#ifdef _WIN32
156/* note: the comment below could not be substantiated, but what would I care */ 340# include "ev_win32.c"
157/* MSDN says this is required to handle SIGFPE */
158volatile double SIGFPE_REQ = 0.0f;
159#endif 341#endif
160 342
161/*****************************************************************************/ 343/*****************************************************************************/
162 344
163static void (*syserr_cb)(const char *msg); 345static void (*syserr_cb)(const char *msg);
164 346
347void
165void ev_set_syserr_cb (void (*cb)(const char *msg)) 348ev_set_syserr_cb (void (*cb)(const char *msg))
166{ 349{
167 syserr_cb = cb; 350 syserr_cb = cb;
168} 351}
169 352
170static void 353static void noinline
171syserr (const char *msg) 354syserr (const char *msg)
172{ 355{
173 if (!msg) 356 if (!msg)
174 msg = "(libev) system error"; 357 msg = "(libev) system error";
175 358
180 perror (msg); 363 perror (msg);
181 abort (); 364 abort ();
182 } 365 }
183} 366}
184 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
185static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
186 384
385void
187void ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
188{ 387{
189 alloc = cb; 388 alloc = cb;
190} 389}
191 390
192static void * 391inline_speed void *
193ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
194{ 393{
195 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
196 395
197 if (!ptr && size) 396 if (!ptr && size)
198 { 397 {
199 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
200 abort (); 399 abort ();
211typedef struct 410typedef struct
212{ 411{
213 WL head; 412 WL head;
214 unsigned char events; 413 unsigned char events;
215 unsigned char reify; 414 unsigned char reify;
415#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle;
417#endif
216} ANFD; 418} ANFD;
217 419
218typedef struct 420typedef struct
219{ 421{
220 W w; 422 W w;
221 int events; 423 int events;
222} ANPENDING; 424} ANPENDING;
223 425
426#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */
428typedef struct
429{
430 WL head;
431} ANFS;
432#endif
433
434/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT
437 typedef struct {
438 WT w;
439 ev_tstamp at;
440 } ANHE;
441
442 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
445#else
446 typedef WT ANHE;
447
448 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he)
451#endif
452
224#if EV_MULTIPLICITY 453#if EV_MULTIPLICITY
225 454
226struct ev_loop 455 struct ev_loop
227{ 456 {
457 ev_tstamp ev_rt_now;
458 #define ev_rt_now ((loop)->ev_rt_now)
228# define VAR(name,decl) decl; 459 #define VAR(name,decl) decl;
229# include "ev_vars.h" 460 #include "ev_vars.h"
230};
231# undef VAR 461 #undef VAR
462 };
232# include "ev_wrap.h" 463 #include "ev_wrap.h"
464
465 static struct ev_loop default_loop_struct;
466 struct ev_loop *ev_default_loop_ptr;
233 467
234#else 468#else
235 469
470 ev_tstamp ev_rt_now;
236# define VAR(name,decl) static decl; 471 #define VAR(name,decl) static decl;
237# include "ev_vars.h" 472 #include "ev_vars.h"
238# undef VAR 473 #undef VAR
474
475 static int ev_default_loop_ptr;
239 476
240#endif 477#endif
241 478
242/*****************************************************************************/ 479/*****************************************************************************/
243 480
244inline ev_tstamp 481ev_tstamp
245ev_time (void) 482ev_time (void)
246{ 483{
247#if EV_USE_REALTIME 484#if EV_USE_REALTIME
248 struct timespec ts; 485 struct timespec ts;
249 clock_gettime (CLOCK_REALTIME, &ts); 486 clock_gettime (CLOCK_REALTIME, &ts);
253 gettimeofday (&tv, 0); 490 gettimeofday (&tv, 0);
254 return tv.tv_sec + tv.tv_usec * 1e-6; 491 return tv.tv_sec + tv.tv_usec * 1e-6;
255#endif 492#endif
256} 493}
257 494
258inline ev_tstamp 495ev_tstamp inline_size
259get_clock (void) 496get_clock (void)
260{ 497{
261#if EV_USE_MONOTONIC 498#if EV_USE_MONOTONIC
262 if (expect_true (have_monotonic)) 499 if (expect_true (have_monotonic))
263 { 500 {
268#endif 505#endif
269 506
270 return ev_time (); 507 return ev_time ();
271} 508}
272 509
510#if EV_MULTIPLICITY
273ev_tstamp 511ev_tstamp
274ev_now (EV_P) 512ev_now (EV_P)
275{ 513{
276 return rt_now; 514 return ev_rt_now;
277} 515}
516#endif
278 517
279#define array_roundsize(base,n) ((n) | 4 & ~3) 518void
519ev_sleep (ev_tstamp delay)
520{
521 if (delay > 0.)
522 {
523#if EV_USE_NANOSLEEP
524 struct timespec ts;
280 525
526 ts.tv_sec = (time_t)delay;
527 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
528
529 nanosleep (&ts, 0);
530#elif defined(_WIN32)
531 Sleep ((unsigned long)(delay * 1e3));
532#else
533 struct timeval tv;
534
535 tv.tv_sec = (time_t)delay;
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
537
538 select (0, 0, 0, 0, &tv);
539#endif
540 }
541}
542
543/*****************************************************************************/
544
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546
547int inline_size
548array_nextsize (int elem, int cur, int cnt)
549{
550 int ncur = cur + 1;
551
552 do
553 ncur <<= 1;
554 while (cnt > ncur);
555
556 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
557 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
558 {
559 ncur *= elem;
560 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
561 ncur = ncur - sizeof (void *) * 4;
562 ncur /= elem;
563 }
564
565 return ncur;
566}
567
568static noinline void *
569array_realloc (int elem, void *base, int *cur, int cnt)
570{
571 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur);
573}
574
281#define array_needsize(base,cur,cnt,init) \ 575#define array_needsize(type,base,cur,cnt,init) \
282 if (expect_false ((cnt) > cur)) \ 576 if (expect_false ((cnt) > (cur))) \
283 { \ 577 { \
284 int newcnt = cur; \ 578 int ocur_ = (cur); \
285 do \ 579 (base) = (type *)array_realloc \
286 { \ 580 (sizeof (type), (base), &(cur), (cnt)); \
287 newcnt = array_roundsize (base, newcnt << 1); \ 581 init ((base) + (ocur_), (cur) - ocur_); \
288 } \
289 while ((cnt) > newcnt); \
290 \
291 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
292 init (base + cur, newcnt - cur); \
293 cur = newcnt; \
294 } 582 }
295 583
584#if 0
296#define array_slim(stem) \ 585#define array_slim(type,stem) \
297 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 586 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
298 { \ 587 { \
299 stem ## max = array_roundsize (stem ## cnt >> 1); \ 588 stem ## max = array_roundsize (stem ## cnt >> 1); \
300 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 589 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
301 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
302 } 591 }
303 592#endif
304/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
305/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
306#define array_free_microshit(stem) \
307 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
308 593
309#define array_free(stem, idx) \ 594#define array_free(stem, idx) \
310 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
311 596
312/*****************************************************************************/ 597/*****************************************************************************/
313 598
314static void 599void noinline
600ev_feed_event (EV_P_ void *w, int revents)
601{
602 W w_ = (W)w;
603 int pri = ABSPRI (w_);
604
605 if (expect_false (w_->pending))
606 pendings [pri][w_->pending - 1].events |= revents;
607 else
608 {
609 w_->pending = ++pendingcnt [pri];
610 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
611 pendings [pri][w_->pending - 1].w = w_;
612 pendings [pri][w_->pending - 1].events = revents;
613 }
614}
615
616void inline_speed
617queue_events (EV_P_ W *events, int eventcnt, int type)
618{
619 int i;
620
621 for (i = 0; i < eventcnt; ++i)
622 ev_feed_event (EV_A_ events [i], type);
623}
624
625/*****************************************************************************/
626
627void inline_size
315anfds_init (ANFD *base, int count) 628anfds_init (ANFD *base, int count)
316{ 629{
317 while (count--) 630 while (count--)
318 { 631 {
319 base->head = 0; 632 base->head = 0;
322 635
323 ++base; 636 ++base;
324 } 637 }
325} 638}
326 639
327static void 640void inline_speed
328event (EV_P_ W w, int events)
329{
330 if (w->pending)
331 {
332 pendings [ABSPRI (w)][w->pending - 1].events |= events;
333 return;
334 }
335
336 w->pending = ++pendingcnt [ABSPRI (w)];
337 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
338 pendings [ABSPRI (w)][w->pending - 1].w = w;
339 pendings [ABSPRI (w)][w->pending - 1].events = events;
340}
341
342static void
343queue_events (EV_P_ W *events, int eventcnt, int type)
344{
345 int i;
346
347 for (i = 0; i < eventcnt; ++i)
348 event (EV_A_ events [i], type);
349}
350
351static void
352fd_event (EV_P_ int fd, int events) 641fd_event (EV_P_ int fd, int revents)
353{ 642{
354 ANFD *anfd = anfds + fd; 643 ANFD *anfd = anfds + fd;
355 struct ev_io *w; 644 ev_io *w;
356 645
357 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 646 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
358 { 647 {
359 int ev = w->events & events; 648 int ev = w->events & revents;
360 649
361 if (ev) 650 if (ev)
362 event (EV_A_ (W)w, ev); 651 ev_feed_event (EV_A_ (W)w, ev);
363 } 652 }
364} 653}
365 654
366/*****************************************************************************/ 655void
656ev_feed_fd_event (EV_P_ int fd, int revents)
657{
658 if (fd >= 0 && fd < anfdmax)
659 fd_event (EV_A_ fd, revents);
660}
367 661
368static void 662void inline_size
369fd_reify (EV_P) 663fd_reify (EV_P)
370{ 664{
371 int i; 665 int i;
372 666
373 for (i = 0; i < fdchangecnt; ++i) 667 for (i = 0; i < fdchangecnt; ++i)
374 { 668 {
375 int fd = fdchanges [i]; 669 int fd = fdchanges [i];
376 ANFD *anfd = anfds + fd; 670 ANFD *anfd = anfds + fd;
377 struct ev_io *w; 671 ev_io *w;
378 672
379 int events = 0; 673 unsigned char events = 0;
380 674
381 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 675 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
382 events |= w->events; 676 events |= (unsigned char)w->events;
383 677
678#if EV_SELECT_IS_WINSOCKET
679 if (events)
680 {
681 unsigned long argp;
682 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else
685 anfd->handle = _get_osfhandle (fd);
686 #endif
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
688 }
689#endif
690
691 {
692 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify;
694
384 anfd->reify = 0; 695 anfd->reify = 0;
385
386 method_modify (EV_A_ fd, anfd->events, events);
387 anfd->events = events; 696 anfd->events = events;
697
698 if (o_events != events || o_reify & EV_IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events);
700 }
388 } 701 }
389 702
390 fdchangecnt = 0; 703 fdchangecnt = 0;
391} 704}
392 705
393static void 706void inline_size
394fd_change (EV_P_ int fd) 707fd_change (EV_P_ int fd, int flags)
395{ 708{
396 if (anfds [fd].reify) 709 unsigned char reify = anfds [fd].reify;
397 return;
398
399 anfds [fd].reify = 1; 710 anfds [fd].reify |= flags;
400 711
712 if (expect_true (!reify))
713 {
401 ++fdchangecnt; 714 ++fdchangecnt;
402 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
403 fdchanges [fdchangecnt - 1] = fd; 716 fdchanges [fdchangecnt - 1] = fd;
717 }
404} 718}
405 719
406static void 720void inline_speed
407fd_kill (EV_P_ int fd) 721fd_kill (EV_P_ int fd)
408{ 722{
409 struct ev_io *w; 723 ev_io *w;
410 724
411 while ((w = (struct ev_io *)anfds [fd].head)) 725 while ((w = (ev_io *)anfds [fd].head))
412 { 726 {
413 ev_io_stop (EV_A_ w); 727 ev_io_stop (EV_A_ w);
414 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 728 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
415 } 729 }
416} 730}
417 731
418static int 732int inline_size
419fd_valid (int fd) 733fd_valid (int fd)
420{ 734{
421#ifdef WIN32 735#ifdef _WIN32
422 return !!win32_get_osfhandle (fd); 736 return _get_osfhandle (fd) != -1;
423#else 737#else
424 return fcntl (fd, F_GETFD) != -1; 738 return fcntl (fd, F_GETFD) != -1;
425#endif 739#endif
426} 740}
427 741
428/* called on EBADF to verify fds */ 742/* called on EBADF to verify fds */
429static void 743static void noinline
430fd_ebadf (EV_P) 744fd_ebadf (EV_P)
431{ 745{
432 int fd; 746 int fd;
433 747
434 for (fd = 0; fd < anfdmax; ++fd) 748 for (fd = 0; fd < anfdmax; ++fd)
436 if (!fd_valid (fd) == -1 && errno == EBADF) 750 if (!fd_valid (fd) == -1 && errno == EBADF)
437 fd_kill (EV_A_ fd); 751 fd_kill (EV_A_ fd);
438} 752}
439 753
440/* called on ENOMEM in select/poll to kill some fds and retry */ 754/* called on ENOMEM in select/poll to kill some fds and retry */
441static void 755static void noinline
442fd_enomem (EV_P) 756fd_enomem (EV_P)
443{ 757{
444 int fd; 758 int fd;
445 759
446 for (fd = anfdmax; fd--; ) 760 for (fd = anfdmax; fd--; )
449 fd_kill (EV_A_ fd); 763 fd_kill (EV_A_ fd);
450 return; 764 return;
451 } 765 }
452} 766}
453 767
454/* usually called after fork if method needs to re-arm all fds from scratch */ 768/* usually called after fork if backend needs to re-arm all fds from scratch */
455static void 769static void noinline
456fd_rearm_all (EV_P) 770fd_rearm_all (EV_P)
457{ 771{
458 int fd; 772 int fd;
459 773
460 /* this should be highly optimised to not do anything but set a flag */
461 for (fd = 0; fd < anfdmax; ++fd) 774 for (fd = 0; fd < anfdmax; ++fd)
462 if (anfds [fd].events) 775 if (anfds [fd].events)
463 { 776 {
464 anfds [fd].events = 0; 777 anfds [fd].events = 0;
465 fd_change (EV_A_ fd); 778 fd_change (EV_A_ fd, EV_IOFDSET | 1);
466 } 779 }
467} 780}
468 781
469/*****************************************************************************/ 782/*****************************************************************************/
470 783
471static void 784/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree.
788 */
789
790/*
791 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers.
795 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP
798
799#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801
802/* towards the root */
803void inline_speed
472upheap (WT *heap, int k) 804upheap (ANHE *heap, int k)
473{ 805{
474 WT w = heap [k]; 806 ANHE he = heap [k];
475 807
476 while (k && heap [k >> 1]->at > w->at) 808 for (;;)
477 { 809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
478 heap [k] = heap [k >> 1]; 815 heap [k] = heap [p];
479 ((W)heap [k])->active = k + 1; 816 ev_active (ANHE_w (heap [k])) = k;
480 k >>= 1; 817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823
824/* away from the root */
825void inline_speed
826downheap (ANHE *heap, int N, int k)
827{
828 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0;
830
831 for (;;)
832 {
833 ev_tstamp minat;
834 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
836
837 // find minimum child
838 if (expect_true (pos + DHEAP - 1 < E))
839 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 }
845 else if (pos < E)
846 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else
853 break;
854
855 if (ANHE_at (he) <= minat)
856 break;
857
858 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860
861 k = minpos - heap;
862 }
863
864 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866}
867
868#else // 4HEAP
869
870#define HEAP0 1
871
872/* towards the root */
873void inline_speed
874upheap (ANHE *heap, int k)
875{
876 ANHE he = heap [k];
877
878 for (;;)
879 {
880 int p = k >> 1;
881
882 /* maybe we could use a dummy element at heap [0]? */
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break;
885
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
481 } 889 }
482 890
483 heap [k] = w; 891 heap [k] = w;
484 ((W)heap [k])->active = k + 1; 892 ev_active (ANHE_w (heap [k])) = k;
485
486} 893}
487 894
488static void 895/* away from the root */
896void inline_speed
489downheap (WT *heap, int N, int k) 897downheap (ANHE *heap, int N, int k)
490{ 898{
491 WT w = heap [k]; 899 ANHE he = heap [k];
492 900
493 while (k < (N >> 1)) 901 for (;;)
494 { 902 {
495 int j = k << 1; 903 int c = k << 1;
496 904
497 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 905 if (c > N)
498 ++j;
499
500 if (w->at <= heap [j]->at)
501 break; 906 break;
502 907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0;
910
911 if (w->at <= ANHE_at (heap [c]))
912 break;
913
503 heap [k] = heap [j]; 914 heap [k] = heap [c];
504 ((W)heap [k])->active = k + 1; 915 ev_active (ANHE_w (heap [k])) = k;
916
505 k = j; 917 k = c;
506 } 918 }
507 919
508 heap [k] = w; 920 heap [k] = he;
509 ((W)heap [k])->active = k + 1; 921 ev_active (ANHE_w (he)) = k;
922}
923#endif
924
925void inline_size
926adjustheap (ANHE *heap, int N, int k)
927{
928 upheap (heap, k);
929 downheap (heap, N, k);
510} 930}
511 931
512/*****************************************************************************/ 932/*****************************************************************************/
513 933
514typedef struct 934typedef struct
515{ 935{
516 WL head; 936 WL head;
517 sig_atomic_t volatile gotsig; 937 EV_ATOMIC_T gotsig;
518} ANSIG; 938} ANSIG;
519 939
520static ANSIG *signals; 940static ANSIG *signals;
521static int signalmax; 941static int signalmax;
522 942
523static int sigpipe [2]; 943static EV_ATOMIC_T gotsig;
524static sig_atomic_t volatile gotsig;
525static struct ev_io sigev;
526 944
527static void 945void inline_size
528signals_init (ANSIG *base, int count) 946signals_init (ANSIG *base, int count)
529{ 947{
530 while (count--) 948 while (count--)
531 { 949 {
532 base->head = 0; 950 base->head = 0;
534 952
535 ++base; 953 ++base;
536 } 954 }
537} 955}
538 956
957/*****************************************************************************/
958
959void inline_speed
960fd_intern (int fd)
961{
962#ifdef _WIN32
963 int arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif
969}
970
971static void noinline
972evpipe_init (EV_P)
973{
974 if (!ev_is_active (&pipeev))
975 {
976#if EV_USE_EVENTFD
977 if ((evfd = eventfd (0, 0)) >= 0)
978 {
979 evpipe [0] = -1;
980 fd_intern (evfd);
981 ev_io_set (&pipeev, evfd, EV_READ);
982 }
983 else
984#endif
985 {
986 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe");
988
989 fd_intern (evpipe [0]);
990 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ);
992 }
993
994 ev_io_start (EV_A_ &pipeev);
995 ev_unref (EV_A); /* watcher should not keep loop alive */
996 }
997}
998
999void inline_size
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{
1002 if (!*flag)
1003 {
1004 int old_errno = errno; /* save errno because write might clobber it */
1005
1006 *flag = 1;
1007
1008#if EV_USE_EVENTFD
1009 if (evfd >= 0)
1010 {
1011 uint64_t counter = 1;
1012 write (evfd, &counter, sizeof (uint64_t));
1013 }
1014 else
1015#endif
1016 write (evpipe [1], &old_errno, 1);
1017
1018 errno = old_errno;
1019 }
1020}
1021
539static void 1022static void
1023pipecb (EV_P_ ev_io *iow, int revents)
1024{
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 {
1034 char dummy;
1035 read (evpipe [0], &dummy, 1);
1036 }
1037
1038 if (gotsig && ev_is_default_loop (EV_A))
1039 {
1040 int signum;
1041 gotsig = 0;
1042
1043 for (signum = signalmax; signum--; )
1044 if (signals [signum].gotsig)
1045 ev_feed_signal_event (EV_A_ signum + 1);
1046 }
1047
1048#if EV_ASYNC_ENABLE
1049 if (gotasync)
1050 {
1051 int i;
1052 gotasync = 0;
1053
1054 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent)
1056 {
1057 asyncs [i]->sent = 0;
1058 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1059 }
1060 }
1061#endif
1062}
1063
1064/*****************************************************************************/
1065
1066static void
540sighandler (int signum) 1067ev_sighandler (int signum)
541{ 1068{
1069#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct;
1071#endif
1072
542#if WIN32 1073#if _WIN32
543 signal (signum, sighandler); 1074 signal (signum, ev_sighandler);
544#endif 1075#endif
545 1076
546 signals [signum - 1].gotsig = 1; 1077 signals [signum - 1].gotsig = 1;
547 1078 evpipe_write (EV_A_ &gotsig);
548 if (!gotsig)
549 {
550 int old_errno = errno;
551 gotsig = 1;
552 write (sigpipe [1], &signum, 1);
553 errno = old_errno;
554 }
555} 1079}
556 1080
557static void 1081void noinline
558sigcb (EV_P_ struct ev_io *iow, int revents) 1082ev_feed_signal_event (EV_P_ int signum)
559{ 1083{
560 WL w; 1084 WL w;
1085
1086#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1088#endif
1089
561 int signum; 1090 --signum;
562 1091
563 read (sigpipe [0], &revents, 1); 1092 if (signum < 0 || signum >= signalmax)
564 gotsig = 0; 1093 return;
565 1094
566 for (signum = signalmax; signum--; )
567 if (signals [signum].gotsig)
568 {
569 signals [signum].gotsig = 0; 1095 signals [signum].gotsig = 0;
570 1096
571 for (w = signals [signum].head; w; w = w->next) 1097 for (w = signals [signum].head; w; w = w->next)
572 event (EV_A_ (W)w, EV_SIGNAL); 1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
573 }
574}
575
576static void
577siginit (EV_P)
578{
579#ifndef WIN32
580 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
581 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
582
583 /* rather than sort out wether we really need nb, set it */
584 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
585 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
586#endif
587
588 ev_io_set (&sigev, sigpipe [0], EV_READ);
589 ev_io_start (EV_A_ &sigev);
590 ev_unref (EV_A); /* child watcher should not keep loop alive */
591} 1099}
592 1100
593/*****************************************************************************/ 1101/*****************************************************************************/
594 1102
595static struct ev_child *childs [PID_HASHSIZE]; 1103static WL childs [EV_PID_HASHSIZE];
596 1104
597#ifndef WIN32 1105#ifndef _WIN32
598 1106
599static struct ev_signal childev; 1107static ev_signal childev;
1108
1109#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0
1111#endif
1112
1113void inline_speed
1114child_reap (EV_P_ int chain, int pid, int status)
1115{
1116 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1118
1119 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1120 {
1121 if ((w->pid == pid || !w->pid)
1122 && (!traced || (w->flags & 1)))
1123 {
1124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1125 w->rpid = pid;
1126 w->rstatus = status;
1127 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1128 }
1129 }
1130}
600 1131
601#ifndef WCONTINUED 1132#ifndef WCONTINUED
602# define WCONTINUED 0 1133# define WCONTINUED 0
603#endif 1134#endif
604 1135
605static void 1136static void
606child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
607{
608 struct ev_child *w;
609
610 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
611 if (w->pid == pid || !w->pid)
612 {
613 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
614 w->rpid = pid;
615 w->rstatus = status;
616 event (EV_A_ (W)w, EV_CHILD);
617 }
618}
619
620static void
621childcb (EV_P_ struct ev_signal *sw, int revents) 1137childcb (EV_P_ ev_signal *sw, int revents)
622{ 1138{
623 int pid, status; 1139 int pid, status;
624 1140
1141 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
625 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1142 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
626 { 1143 if (!WCONTINUED
1144 || errno != EINVAL
1145 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1146 return;
1147
627 /* make sure we are called again until all childs have been reaped */ 1148 /* make sure we are called again until all children have been reaped */
1149 /* we need to do it this way so that the callback gets called before we continue */
628 event (EV_A_ (W)sw, EV_SIGNAL); 1150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
629 1151
630 child_reap (EV_A_ sw, pid, pid, status); 1152 child_reap (EV_A_ pid, pid, status);
1153 if (EV_PID_HASHSIZE > 1)
631 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
632 }
633} 1155}
634 1156
635#endif 1157#endif
636 1158
637/*****************************************************************************/ 1159/*****************************************************************************/
638 1160
1161#if EV_USE_PORT
1162# include "ev_port.c"
1163#endif
639#if EV_USE_KQUEUE 1164#if EV_USE_KQUEUE
640# include "ev_kqueue.c" 1165# include "ev_kqueue.c"
641#endif 1166#endif
642#if EV_USE_EPOLL 1167#if EV_USE_EPOLL
643# include "ev_epoll.c" 1168# include "ev_epoll.c"
660{ 1185{
661 return EV_VERSION_MINOR; 1186 return EV_VERSION_MINOR;
662} 1187}
663 1188
664/* return true if we are running with elevated privileges and should ignore env variables */ 1189/* return true if we are running with elevated privileges and should ignore env variables */
665static int 1190int inline_size
666enable_secure (void) 1191enable_secure (void)
667{ 1192{
668#ifdef WIN32 1193#ifdef _WIN32
669 return 0; 1194 return 0;
670#else 1195#else
671 return getuid () != geteuid () 1196 return getuid () != geteuid ()
672 || getgid () != getegid (); 1197 || getgid () != getegid ();
673#endif 1198#endif
674} 1199}
675 1200
676int 1201unsigned int
677ev_method (EV_P) 1202ev_supported_backends (void)
678{ 1203{
679 return method; 1204 unsigned int flags = 0;
680}
681 1205
682static void 1206 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
683loop_init (EV_P_ int methods) 1207 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1208 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1209 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1210 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1211
1212 return flags;
1213}
1214
1215unsigned int
1216ev_recommended_backends (void)
684{ 1217{
685 if (!method) 1218 unsigned int flags = ev_supported_backends ();
1219
1220#ifndef __NetBSD__
1221 /* kqueue is borked on everything but netbsd apparently */
1222 /* it usually doesn't work correctly on anything but sockets and pipes */
1223 flags &= ~EVBACKEND_KQUEUE;
1224#endif
1225#ifdef __APPLE__
1226 // flags &= ~EVBACKEND_KQUEUE; for documentation
1227 flags &= ~EVBACKEND_POLL;
1228#endif
1229
1230 return flags;
1231}
1232
1233unsigned int
1234ev_embeddable_backends (void)
1235{
1236 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1237
1238 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1239 /* please fix it and tell me how to detect the fix */
1240 flags &= ~EVBACKEND_EPOLL;
1241
1242 return flags;
1243}
1244
1245unsigned int
1246ev_backend (EV_P)
1247{
1248 return backend;
1249}
1250
1251unsigned int
1252ev_loop_count (EV_P)
1253{
1254 return loop_count;
1255}
1256
1257void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1259{
1260 io_blocktime = interval;
1261}
1262
1263void
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1265{
1266 timeout_blocktime = interval;
1267}
1268
1269static void noinline
1270loop_init (EV_P_ unsigned int flags)
1271{
1272 if (!backend)
686 { 1273 {
687#if EV_USE_MONOTONIC 1274#if EV_USE_MONOTONIC
688 { 1275 {
689 struct timespec ts; 1276 struct timespec ts;
690 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
691 have_monotonic = 1; 1278 have_monotonic = 1;
692 } 1279 }
693#endif 1280#endif
694 1281
695 rt_now = ev_time (); 1282 ev_rt_now = ev_time ();
696 mn_now = get_clock (); 1283 mn_now = get_clock ();
697 now_floor = mn_now; 1284 now_floor = mn_now;
698 rtmn_diff = rt_now - mn_now; 1285 rtmn_diff = ev_rt_now - mn_now;
699 1286
700 if (methods == EVMETHOD_AUTO) 1287 io_blocktime = 0.;
701 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1288 timeout_blocktime = 0.;
1289 backend = 0;
1290 backend_fd = -1;
1291 gotasync = 0;
1292#if EV_USE_INOTIFY
1293 fs_fd = -2;
1294#endif
1295
1296 /* pid check not overridable via env */
1297#ifndef _WIN32
1298 if (flags & EVFLAG_FORKCHECK)
1299 curpid = getpid ();
1300#endif
1301
1302 if (!(flags & EVFLAG_NOENV)
1303 && !enable_secure ()
1304 && getenv ("LIBEV_FLAGS"))
702 methods = atoi (getenv ("LIBEV_METHODS")); 1305 flags = atoi (getenv ("LIBEV_FLAGS"));
703 else
704 methods = EVMETHOD_ANY;
705 1306
706 method = 0; 1307 if (!(flags & 0x0000ffffU))
707#if EV_USE_WIN32 1308 flags |= ev_recommended_backends ();
708 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1309
1310#if EV_USE_PORT
1311 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
709#endif 1312#endif
710#if EV_USE_KQUEUE 1313#if EV_USE_KQUEUE
711 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1314 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
712#endif 1315#endif
713#if EV_USE_EPOLL 1316#if EV_USE_EPOLL
714 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1317 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
715#endif 1318#endif
716#if EV_USE_POLL 1319#if EV_USE_POLL
717 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1320 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
718#endif 1321#endif
719#if EV_USE_SELECT 1322#if EV_USE_SELECT
720 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
721#endif 1324#endif
722 1325
723 ev_watcher_init (&sigev, sigcb); 1326 ev_init (&pipeev, pipecb);
724 ev_set_priority (&sigev, EV_MAXPRI); 1327 ev_set_priority (&pipeev, EV_MAXPRI);
725 } 1328 }
726} 1329}
727 1330
728void 1331static void noinline
729loop_destroy (EV_P) 1332loop_destroy (EV_P)
730{ 1333{
731 int i; 1334 int i;
732 1335
1336 if (ev_is_active (&pipeev))
1337 {
1338 ev_ref (EV_A); /* signal watcher */
1339 ev_io_stop (EV_A_ &pipeev);
1340
1341#if EV_USE_EVENTFD
1342 if (evfd >= 0)
1343 close (evfd);
1344#endif
1345
1346 if (evpipe [0] >= 0)
1347 {
1348 close (evpipe [0]);
1349 close (evpipe [1]);
1350 }
1351 }
1352
733#if EV_USE_WIN32 1353#if EV_USE_INOTIFY
734 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1354 if (fs_fd >= 0)
1355 close (fs_fd);
1356#endif
1357
1358 if (backend_fd >= 0)
1359 close (backend_fd);
1360
1361#if EV_USE_PORT
1362 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
735#endif 1363#endif
736#if EV_USE_KQUEUE 1364#if EV_USE_KQUEUE
737 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1365 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
738#endif 1366#endif
739#if EV_USE_EPOLL 1367#if EV_USE_EPOLL
740 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1368 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
741#endif 1369#endif
742#if EV_USE_POLL 1370#if EV_USE_POLL
743 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1371 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
744#endif 1372#endif
745#if EV_USE_SELECT 1373#if EV_USE_SELECT
746 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1374 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
747#endif 1375#endif
748 1376
749 for (i = NUMPRI; i--; ) 1377 for (i = NUMPRI; i--; )
1378 {
750 array_free (pending, [i]); 1379 array_free (pending, [i]);
1380#if EV_IDLE_ENABLE
1381 array_free (idle, [i]);
1382#endif
1383 }
1384
1385 ev_free (anfds); anfdmax = 0;
751 1386
752 /* have to use the microsoft-never-gets-it-right macro */ 1387 /* have to use the microsoft-never-gets-it-right macro */
753 array_free_microshit (fdchange); 1388 array_free (fdchange, EMPTY);
754 array_free_microshit (timer); 1389 array_free (timer, EMPTY);
755 array_free_microshit (periodic); 1390#if EV_PERIODIC_ENABLE
756 array_free_microshit (idle); 1391 array_free (periodic, EMPTY);
757 array_free_microshit (prepare); 1392#endif
758 array_free_microshit (check); 1393#if EV_FORK_ENABLE
1394 array_free (fork, EMPTY);
1395#endif
1396 array_free (prepare, EMPTY);
1397 array_free (check, EMPTY);
1398#if EV_ASYNC_ENABLE
1399 array_free (async, EMPTY);
1400#endif
759 1401
760 method = 0; 1402 backend = 0;
761} 1403}
762 1404
763static void 1405#if EV_USE_INOTIFY
1406void inline_size infy_fork (EV_P);
1407#endif
1408
1409void inline_size
764loop_fork (EV_P) 1410loop_fork (EV_P)
765{ 1411{
1412#if EV_USE_PORT
1413 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1414#endif
1415#if EV_USE_KQUEUE
1416 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1417#endif
766#if EV_USE_EPOLL 1418#if EV_USE_EPOLL
767 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1419 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
768#endif 1420#endif
769#if EV_USE_KQUEUE 1421#if EV_USE_INOTIFY
770 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1422 infy_fork (EV_A);
771#endif 1423#endif
772 1424
773 if (ev_is_active (&sigev)) 1425 if (ev_is_active (&pipeev))
774 { 1426 {
775 /* default loop */ 1427 /* this "locks" the handlers against writing to the pipe */
1428 /* while we modify the fd vars */
1429 gotsig = 1;
1430#if EV_ASYNC_ENABLE
1431 gotasync = 1;
1432#endif
776 1433
777 ev_ref (EV_A); 1434 ev_ref (EV_A);
778 ev_io_stop (EV_A_ &sigev); 1435 ev_io_stop (EV_A_ &pipeev);
1436
1437#if EV_USE_EVENTFD
1438 if (evfd >= 0)
1439 close (evfd);
1440#endif
1441
1442 if (evpipe [0] >= 0)
1443 {
779 close (sigpipe [0]); 1444 close (evpipe [0]);
780 close (sigpipe [1]); 1445 close (evpipe [1]);
1446 }
781 1447
782 while (pipe (sigpipe))
783 syserr ("(libev) error creating pipe");
784
785 siginit (EV_A); 1448 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ);
786 } 1451 }
787 1452
788 postfork = 0; 1453 postfork = 0;
789} 1454}
790 1455
791#if EV_MULTIPLICITY 1456#if EV_MULTIPLICITY
792struct ev_loop * 1457struct ev_loop *
793ev_loop_new (int methods) 1458ev_loop_new (unsigned int flags)
794{ 1459{
795 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
796 1461
797 memset (loop, 0, sizeof (struct ev_loop)); 1462 memset (loop, 0, sizeof (struct ev_loop));
798 1463
799 loop_init (EV_A_ methods); 1464 loop_init (EV_A_ flags);
800 1465
801 if (ev_method (EV_A)) 1466 if (ev_backend (EV_A))
802 return loop; 1467 return loop;
803 1468
804 return 0; 1469 return 0;
805} 1470}
806 1471
812} 1477}
813 1478
814void 1479void
815ev_loop_fork (EV_P) 1480ev_loop_fork (EV_P)
816{ 1481{
817 postfork = 1; 1482 postfork = 1; /* must be in line with ev_default_fork */
818} 1483}
819
820#endif 1484#endif
821 1485
822#if EV_MULTIPLICITY 1486#if EV_MULTIPLICITY
823struct ev_loop default_loop_struct;
824static struct ev_loop *default_loop;
825
826struct ev_loop * 1487struct ev_loop *
1488ev_default_loop_init (unsigned int flags)
827#else 1489#else
828static int default_loop;
829
830int 1490int
1491ev_default_loop (unsigned int flags)
831#endif 1492#endif
832ev_default_loop (int methods)
833{ 1493{
834 if (sigpipe [0] == sigpipe [1])
835 if (pipe (sigpipe))
836 return 0;
837
838 if (!default_loop) 1494 if (!ev_default_loop_ptr)
839 { 1495 {
840#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
841 struct ev_loop *loop = default_loop = &default_loop_struct; 1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
842#else 1498#else
843 default_loop = 1; 1499 ev_default_loop_ptr = 1;
844#endif 1500#endif
845 1501
846 loop_init (EV_A_ methods); 1502 loop_init (EV_A_ flags);
847 1503
848 if (ev_method (EV_A)) 1504 if (ev_backend (EV_A))
849 { 1505 {
850 siginit (EV_A);
851
852#ifndef WIN32 1506#ifndef _WIN32
853 ev_signal_init (&childev, childcb, SIGCHLD); 1507 ev_signal_init (&childev, childcb, SIGCHLD);
854 ev_set_priority (&childev, EV_MAXPRI); 1508 ev_set_priority (&childev, EV_MAXPRI);
855 ev_signal_start (EV_A_ &childev); 1509 ev_signal_start (EV_A_ &childev);
856 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1510 ev_unref (EV_A); /* child watcher should not keep loop alive */
857#endif 1511#endif
858 } 1512 }
859 else 1513 else
860 default_loop = 0; 1514 ev_default_loop_ptr = 0;
861 } 1515 }
862 1516
863 return default_loop; 1517 return ev_default_loop_ptr;
864} 1518}
865 1519
866void 1520void
867ev_default_destroy (void) 1521ev_default_destroy (void)
868{ 1522{
869#if EV_MULTIPLICITY 1523#if EV_MULTIPLICITY
870 struct ev_loop *loop = default_loop; 1524 struct ev_loop *loop = ev_default_loop_ptr;
871#endif 1525#endif
872 1526
873#ifndef WIN32 1527#ifndef _WIN32
874 ev_ref (EV_A); /* child watcher */ 1528 ev_ref (EV_A); /* child watcher */
875 ev_signal_stop (EV_A_ &childev); 1529 ev_signal_stop (EV_A_ &childev);
876#endif 1530#endif
877 1531
878 ev_ref (EV_A); /* signal watcher */
879 ev_io_stop (EV_A_ &sigev);
880
881 close (sigpipe [0]); sigpipe [0] = 0;
882 close (sigpipe [1]); sigpipe [1] = 0;
883
884 loop_destroy (EV_A); 1532 loop_destroy (EV_A);
885} 1533}
886 1534
887void 1535void
888ev_default_fork (void) 1536ev_default_fork (void)
889{ 1537{
890#if EV_MULTIPLICITY 1538#if EV_MULTIPLICITY
891 struct ev_loop *loop = default_loop; 1539 struct ev_loop *loop = ev_default_loop_ptr;
892#endif 1540#endif
893 1541
894 if (method) 1542 if (backend)
895 postfork = 1; 1543 postfork = 1; /* must be in line with ev_loop_fork */
896} 1544}
897 1545
898/*****************************************************************************/ 1546/*****************************************************************************/
899 1547
900static void 1548void
1549ev_invoke (EV_P_ void *w, int revents)
1550{
1551 EV_CB_INVOKE ((W)w, revents);
1552}
1553
1554void inline_speed
901call_pending (EV_P) 1555call_pending (EV_P)
902{ 1556{
903 int pri; 1557 int pri;
904 1558
905 for (pri = NUMPRI; pri--; ) 1559 for (pri = NUMPRI; pri--; )
906 while (pendingcnt [pri]) 1560 while (pendingcnt [pri])
907 { 1561 {
908 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1562 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
909 1563
910 if (p->w) 1564 if (expect_true (p->w))
911 { 1565 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1567
912 p->w->pending = 0; 1568 p->w->pending = 0;
913 p->w->cb (EV_A_ p->w, p->events); 1569 EV_CB_INVOKE (p->w, p->events);
914 } 1570 }
915 } 1571 }
916} 1572}
917 1573
918static void 1574#if EV_IDLE_ENABLE
1575void inline_size
1576idle_reify (EV_P)
1577{
1578 if (expect_false (idleall))
1579 {
1580 int pri;
1581
1582 for (pri = NUMPRI; pri--; )
1583 {
1584 if (pendingcnt [pri])
1585 break;
1586
1587 if (idlecnt [pri])
1588 {
1589 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1590 break;
1591 }
1592 }
1593 }
1594}
1595#endif
1596
1597void inline_size
919timers_reify (EV_P) 1598timers_reify (EV_P)
920{ 1599{
921 while (timercnt && ((WT)timers [0])->at <= mn_now) 1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
922 { 1601 {
923 struct ev_timer *w = timers [0]; 1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
924 1603
925 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
926 1605
927 /* first reschedule or stop timer */ 1606 /* first reschedule or stop timer */
928 if (w->repeat) 1607 if (w->repeat)
929 { 1608 {
930 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
931 ((WT)w)->at = mn_now + w->repeat; 1610
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]);
932 downheap ((WT *)timers, timercnt, 0); 1616 downheap (timers, timercnt, HEAP0);
933 } 1617 }
934 else 1618 else
935 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
936 1620
937 event (EV_A_ (W)w, EV_TIMEOUT); 1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
938 } 1622 }
939} 1623}
940 1624
941static void 1625#if EV_PERIODIC_ENABLE
1626void inline_size
942periodics_reify (EV_P) 1627periodics_reify (EV_P)
943{ 1628{
944 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
945 { 1630 {
946 struct ev_periodic *w = periodics [0]; 1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
947 1632
948 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
949 1634
950 /* first reschedule or stop timer */ 1635 /* first reschedule or stop timer */
951 if (w->interval) 1636 if (w->reschedule_cb)
952 { 1637 {
953 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1640 ANHE_at_set (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0);
1642 }
1643 else if (w->interval)
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
954 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
955 downheap ((WT *)periodics, periodiccnt, 0); 1649 downheap (periodics, periodiccnt, HEAP0);
956 } 1650 }
957 else 1651 else
958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
959 1653
960 event (EV_A_ (W)w, EV_PERIODIC); 1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
961 } 1655 }
962} 1656}
963 1657
964static void 1658static void noinline
965periodics_reschedule (EV_P) 1659periodics_reschedule (EV_P)
966{ 1660{
967 int i; 1661 int i;
968 1662
969 /* adjust periodics after time jump */ 1663 /* adjust periodics after time jump */
970 for (i = 0; i < periodiccnt; ++i) 1664 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
971 { 1665 {
972 struct ev_periodic *w = periodics [i]; 1666 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
973 1667
1668 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
974 if (w->interval) 1670 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1672
1673 ANHE_at_set (periodics [i]);
1674 }
1675
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1677 for (i = periodiccnt >> 1; --i; )
1678 downheap (periodics, periodiccnt, i + HEAP0);
1679}
1680#endif
1681
1682void inline_speed
1683time_update (EV_P_ ev_tstamp max_block)
1684{
1685 int i;
1686
1687#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic))
1689 {
1690 ev_tstamp odiff = rtmn_diff;
1691
1692 mn_now = get_clock ();
1693
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1695 /* interpolate in the meantime */
1696 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
975 { 1697 {
976 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1698 ev_rt_now = rtmn_diff + mn_now;
1699 return;
1700 }
977 1701
978 if (fabs (diff) >= 1e-4) 1702 now_floor = mn_now;
1703 ev_rt_now = ev_time ();
1704
1705 /* loop a few times, before making important decisions.
1706 * on the choice of "4": one iteration isn't enough,
1707 * in case we get preempted during the calls to
1708 * ev_time and get_clock. a second call is almost guaranteed
1709 * to succeed in that case, though. and looping a few more times
1710 * doesn't hurt either as we only do this on time-jumps or
1711 * in the unlikely event of having been preempted here.
1712 */
1713 for (i = 4; --i; )
1714 {
1715 rtmn_diff = ev_rt_now - mn_now;
1716
1717 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1718 return; /* all is well */
1719
1720 ev_rt_now = ev_time ();
1721 mn_now = get_clock ();
1722 now_floor = mn_now;
1723 }
1724
1725# if EV_PERIODIC_ENABLE
1726 periodics_reschedule (EV_A);
1727# endif
1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1730 }
1731 else
1732#endif
1733 {
1734 ev_rt_now = ev_time ();
1735
1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1737 {
1738#if EV_PERIODIC_ENABLE
1739 periodics_reschedule (EV_A);
1740#endif
1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i)
979 { 1743 {
980 ev_periodic_stop (EV_A_ w); 1744 ANHE *he = timers + i + HEAP0;
981 ev_periodic_start (EV_A_ w); 1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
982 1746 ANHE_at_set (*he);
983 i = 0; /* restart loop, inefficient, but time jumps should be rare */
984 } 1747 }
985 } 1748 }
986 }
987}
988 1749
989inline int
990time_update_monotonic (EV_P)
991{
992 mn_now = get_clock ();
993
994 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
995 {
996 rt_now = rtmn_diff + mn_now;
997 return 0;
998 }
999 else
1000 {
1001 now_floor = mn_now;
1002 rt_now = ev_time ();
1003 return 1;
1004 }
1005}
1006
1007static void
1008time_update (EV_P)
1009{
1010 int i;
1011
1012#if EV_USE_MONOTONIC
1013 if (expect_true (have_monotonic))
1014 {
1015 if (time_update_monotonic (EV_A))
1016 {
1017 ev_tstamp odiff = rtmn_diff;
1018
1019 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1020 {
1021 rtmn_diff = rt_now - mn_now;
1022
1023 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1024 return; /* all is well */
1025
1026 rt_now = ev_time ();
1027 mn_now = get_clock ();
1028 now_floor = mn_now;
1029 }
1030
1031 periodics_reschedule (EV_A);
1032 /* no timer adjustment, as the monotonic clock doesn't jump */
1033 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1034 }
1035 }
1036 else
1037#endif
1038 {
1039 rt_now = ev_time ();
1040
1041 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1042 {
1043 periodics_reschedule (EV_A);
1044
1045 /* adjust timers. this is easy, as the offset is the same for all */
1046 for (i = 0; i < timercnt; ++i)
1047 ((WT)timers [i])->at += rt_now - mn_now;
1048 }
1049
1050 mn_now = rt_now; 1750 mn_now = ev_rt_now;
1051 } 1751 }
1052} 1752}
1053 1753
1054void 1754void
1055ev_ref (EV_P) 1755ev_ref (EV_P)
1066static int loop_done; 1766static int loop_done;
1067 1767
1068void 1768void
1069ev_loop (EV_P_ int flags) 1769ev_loop (EV_P_ int flags)
1070{ 1770{
1071 double block; 1771 loop_done = EVUNLOOP_CANCEL;
1072 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1772
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1073 1774
1074 do 1775 do
1075 { 1776 {
1777#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid))
1780 {
1781 curpid = getpid ();
1782 postfork = 1;
1783 }
1784#endif
1785
1786#if EV_FORK_ENABLE
1787 /* we might have forked, so queue fork handlers */
1788 if (expect_false (postfork))
1789 if (forkcnt)
1790 {
1791 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1792 call_pending (EV_A);
1793 }
1794#endif
1795
1076 /* queue check watchers (and execute them) */ 1796 /* queue prepare watchers (and execute them) */
1077 if (expect_false (preparecnt)) 1797 if (expect_false (preparecnt))
1078 { 1798 {
1079 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1080 call_pending (EV_A); 1800 call_pending (EV_A);
1081 } 1801 }
1082 1802
1803 if (expect_false (!activecnt))
1804 break;
1805
1083 /* we might have forked, so reify kernel state if necessary */ 1806 /* we might have forked, so reify kernel state if necessary */
1084 if (expect_false (postfork)) 1807 if (expect_false (postfork))
1085 loop_fork (EV_A); 1808 loop_fork (EV_A);
1086 1809
1087 /* update fd-related kernel structures */ 1810 /* update fd-related kernel structures */
1088 fd_reify (EV_A); 1811 fd_reify (EV_A);
1089 1812
1090 /* calculate blocking time */ 1813 /* calculate blocking time */
1814 {
1815 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.;
1091 1817
1092 /* we only need this for !monotonic clockor timers, but as we basically 1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1093 always have timers, we just calculate it always */
1094#if EV_USE_MONOTONIC
1095 if (expect_true (have_monotonic))
1096 time_update_monotonic (EV_A);
1097 else
1098#endif
1099 { 1819 {
1100 rt_now = ev_time (); 1820 /* update time to cancel out callback processing overhead */
1101 mn_now = rt_now; 1821 time_update (EV_A_ 1e100);
1102 }
1103 1822
1104 if (flags & EVLOOP_NONBLOCK || idlecnt)
1105 block = 0.;
1106 else
1107 {
1108 block = MAX_BLOCKTIME; 1823 waittime = MAX_BLOCKTIME;
1109 1824
1110 if (timercnt) 1825 if (timercnt)
1111 { 1826 {
1112 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1113 if (block > to) block = to; 1828 if (waittime > to) waittime = to;
1114 } 1829 }
1115 1830
1831#if EV_PERIODIC_ENABLE
1116 if (periodiccnt) 1832 if (periodiccnt)
1117 { 1833 {
1118 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1119 if (block > to) block = to; 1835 if (waittime > to) waittime = to;
1120 } 1836 }
1837#endif
1121 1838
1122 if (block < 0.) block = 0.; 1839 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime;
1841
1842 sleeptime = waittime - backend_fudge;
1843
1844 if (expect_true (sleeptime > io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 {
1849 ev_sleep (sleeptime);
1850 waittime -= sleeptime;
1851 }
1123 } 1852 }
1124 1853
1125 method_poll (EV_A_ block); 1854 ++loop_count;
1855 backend_poll (EV_A_ waittime);
1126 1856
1127 /* update rt_now, do magic */ 1857 /* update ev_rt_now, do magic */
1128 time_update (EV_A); 1858 time_update (EV_A_ waittime + sleeptime);
1859 }
1129 1860
1130 /* queue pending timers and reschedule them */ 1861 /* queue pending timers and reschedule them */
1131 timers_reify (EV_A); /* relative timers called last */ 1862 timers_reify (EV_A); /* relative timers called last */
1863#if EV_PERIODIC_ENABLE
1132 periodics_reify (EV_A); /* absolute timers called first */ 1864 periodics_reify (EV_A); /* absolute timers called first */
1865#endif
1133 1866
1867#if EV_IDLE_ENABLE
1134 /* queue idle watchers unless io or timers are pending */ 1868 /* queue idle watchers unless other events are pending */
1135 if (!pendingcnt) 1869 idle_reify (EV_A);
1136 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1870#endif
1137 1871
1138 /* queue check watchers, to be executed first */ 1872 /* queue check watchers, to be executed first */
1139 if (checkcnt) 1873 if (expect_false (checkcnt))
1140 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1141 1875
1142 call_pending (EV_A); 1876 call_pending (EV_A);
1143 } 1877 }
1144 while (activecnt && !loop_done); 1878 while (expect_true (
1879 activecnt
1880 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1882 ));
1145 1883
1146 if (loop_done != 2) 1884 if (loop_done == EVUNLOOP_ONE)
1147 loop_done = 0; 1885 loop_done = EVUNLOOP_CANCEL;
1148} 1886}
1149 1887
1150void 1888void
1151ev_unloop (EV_P_ int how) 1889ev_unloop (EV_P_ int how)
1152{ 1890{
1153 loop_done = how; 1891 loop_done = how;
1154} 1892}
1155 1893
1156/*****************************************************************************/ 1894/*****************************************************************************/
1157 1895
1158inline void 1896void inline_size
1159wlist_add (WL *head, WL elem) 1897wlist_add (WL *head, WL elem)
1160{ 1898{
1161 elem->next = *head; 1899 elem->next = *head;
1162 *head = elem; 1900 *head = elem;
1163} 1901}
1164 1902
1165inline void 1903void inline_size
1166wlist_del (WL *head, WL elem) 1904wlist_del (WL *head, WL elem)
1167{ 1905{
1168 while (*head) 1906 while (*head)
1169 { 1907 {
1170 if (*head == elem) 1908 if (*head == elem)
1175 1913
1176 head = &(*head)->next; 1914 head = &(*head)->next;
1177 } 1915 }
1178} 1916}
1179 1917
1180inline void 1918void inline_speed
1181ev_clear_pending (EV_P_ W w) 1919clear_pending (EV_P_ W w)
1182{ 1920{
1183 if (w->pending) 1921 if (w->pending)
1184 { 1922 {
1185 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1923 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1186 w->pending = 0; 1924 w->pending = 0;
1187 } 1925 }
1188} 1926}
1189 1927
1190inline void 1928int
1929ev_clear_pending (EV_P_ void *w)
1930{
1931 W w_ = (W)w;
1932 int pending = w_->pending;
1933
1934 if (expect_true (pending))
1935 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1937 w_->pending = 0;
1938 p->w = 0;
1939 return p->events;
1940 }
1941 else
1942 return 0;
1943}
1944
1945void inline_size
1946pri_adjust (EV_P_ W w)
1947{
1948 int pri = w->priority;
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri;
1952}
1953
1954void inline_speed
1191ev_start (EV_P_ W w, int active) 1955ev_start (EV_P_ W w, int active)
1192{ 1956{
1193 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1957 pri_adjust (EV_A_ w);
1194 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1195
1196 w->active = active; 1958 w->active = active;
1197 ev_ref (EV_A); 1959 ev_ref (EV_A);
1198} 1960}
1199 1961
1200inline void 1962void inline_size
1201ev_stop (EV_P_ W w) 1963ev_stop (EV_P_ W w)
1202{ 1964{
1203 ev_unref (EV_A); 1965 ev_unref (EV_A);
1204 w->active = 0; 1966 w->active = 0;
1205} 1967}
1206 1968
1207/*****************************************************************************/ 1969/*****************************************************************************/
1208 1970
1209void 1971void noinline
1210ev_io_start (EV_P_ struct ev_io *w) 1972ev_io_start (EV_P_ ev_io *w)
1211{ 1973{
1212 int fd = w->fd; 1974 int fd = w->fd;
1213 1975
1214 if (ev_is_active (w)) 1976 if (expect_false (ev_is_active (w)))
1215 return; 1977 return;
1216 1978
1217 assert (("ev_io_start called with negative fd", fd >= 0)); 1979 assert (("ev_io_start called with negative fd", fd >= 0));
1218 1980
1219 ev_start (EV_A_ (W)w, 1); 1981 ev_start (EV_A_ (W)w, 1);
1220 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1221 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1983 wlist_add (&anfds[fd].head, (WL)w);
1222 1984
1223 fd_change (EV_A_ fd); 1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1986 w->events &= ~EV_IOFDSET;
1224} 1987}
1225 1988
1226void 1989void noinline
1227ev_io_stop (EV_P_ struct ev_io *w) 1990ev_io_stop (EV_P_ ev_io *w)
1228{ 1991{
1229 ev_clear_pending (EV_A_ (W)w); 1992 clear_pending (EV_A_ (W)w);
1230 if (!ev_is_active (w)) 1993 if (expect_false (!ev_is_active (w)))
1231 return; 1994 return;
1232 1995
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1997
1233 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1998 wlist_del (&anfds[w->fd].head, (WL)w);
1234 ev_stop (EV_A_ (W)w); 1999 ev_stop (EV_A_ (W)w);
1235 2000
1236 fd_change (EV_A_ w->fd); 2001 fd_change (EV_A_ w->fd, 1);
1237} 2002}
1238 2003
1239void 2004void noinline
1240ev_timer_start (EV_P_ struct ev_timer *w) 2005ev_timer_start (EV_P_ ev_timer *w)
1241{ 2006{
1242 if (ev_is_active (w)) 2007 if (expect_false (ev_is_active (w)))
1243 return; 2008 return;
1244 2009
1245 ((WT)w)->at += mn_now; 2010 ev_at (w) += mn_now;
1246 2011
1247 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1248 2013
1249 ev_start (EV_A_ (W)w, ++timercnt); 2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1250 array_needsize (timers, timermax, timercnt, (void)); 2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1251 timers [timercnt - 1] = w; 2016 ANHE_w (timers [ev_active (w)]) = (WT)w;
1252 upheap ((WT *)timers, timercnt - 1); 2017 ANHE_at_set (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w));
1253 2019
1254 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1255} 2021}
1256 2022
1257void 2023void noinline
1258ev_timer_stop (EV_P_ struct ev_timer *w) 2024ev_timer_stop (EV_P_ ev_timer *w)
1259{ 2025{
1260 ev_clear_pending (EV_A_ (W)w); 2026 clear_pending (EV_A_ (W)w);
1261 if (!ev_is_active (w)) 2027 if (expect_false (!ev_is_active (w)))
1262 return; 2028 return;
1263 2029
2030 {
2031 int active = ev_active (w);
2032
1264 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1265 2034
1266 if (((W)w)->active < timercnt--) 2035 if (expect_true (active < timercnt + HEAP0 - 1))
1267 { 2036 {
1268 timers [((W)w)->active - 1] = timers [timercnt]; 2037 timers [active] = timers [timercnt + HEAP0 - 1];
1269 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2038 adjustheap (timers, timercnt, active);
1270 } 2039 }
1271 2040
1272 ((WT)w)->at = w->repeat; 2041 --timercnt;
2042 }
2043
2044 ev_at (w) -= mn_now;
1273 2045
1274 ev_stop (EV_A_ (W)w); 2046 ev_stop (EV_A_ (W)w);
1275} 2047}
1276 2048
1277void 2049void noinline
1278ev_timer_again (EV_P_ struct ev_timer *w) 2050ev_timer_again (EV_P_ ev_timer *w)
1279{ 2051{
1280 if (ev_is_active (w)) 2052 if (ev_is_active (w))
1281 { 2053 {
1282 if (w->repeat) 2054 if (w->repeat)
1283 { 2055 {
1284 ((WT)w)->at = mn_now + w->repeat; 2056 ev_at (w) = mn_now + w->repeat;
1285 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2057 ANHE_at_set (timers [ev_active (w)]);
2058 adjustheap (timers, timercnt, ev_active (w));
1286 } 2059 }
1287 else 2060 else
1288 ev_timer_stop (EV_A_ w); 2061 ev_timer_stop (EV_A_ w);
1289 } 2062 }
1290 else if (w->repeat) 2063 else if (w->repeat)
2064 {
2065 ev_at (w) = w->repeat;
1291 ev_timer_start (EV_A_ w); 2066 ev_timer_start (EV_A_ w);
2067 }
1292} 2068}
1293 2069
1294void 2070#if EV_PERIODIC_ENABLE
2071void noinline
1295ev_periodic_start (EV_P_ struct ev_periodic *w) 2072ev_periodic_start (EV_P_ ev_periodic *w)
1296{ 2073{
1297 if (ev_is_active (w)) 2074 if (expect_false (ev_is_active (w)))
1298 return; 2075 return;
1299 2076
2077 if (w->reschedule_cb)
2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2079 else if (w->interval)
2080 {
1300 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1301
1302 /* this formula differs from the one in periodic_reify because we do not always round up */ 2082 /* this formula differs from the one in periodic_reify because we do not always round up */
1303 if (w->interval)
1304 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 }
2085 else
2086 ev_at (w) = w->offset;
1305 2087
1306 ev_start (EV_A_ (W)w, ++periodiccnt); 2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1307 array_needsize (periodics, periodicmax, periodiccnt, (void)); 2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1308 periodics [periodiccnt - 1] = w; 2090 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1309 upheap ((WT *)periodics, periodiccnt - 1); 2091 upheap (periodics, ev_active (w));
1310 2092
1311 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1312} 2094}
1313 2095
1314void 2096void noinline
1315ev_periodic_stop (EV_P_ struct ev_periodic *w) 2097ev_periodic_stop (EV_P_ ev_periodic *w)
1316{ 2098{
1317 ev_clear_pending (EV_A_ (W)w); 2099 clear_pending (EV_A_ (W)w);
1318 if (!ev_is_active (w)) 2100 if (expect_false (!ev_is_active (w)))
1319 return; 2101 return;
1320 2102
2103 {
2104 int active = ev_active (w);
2105
1321 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1322 2107
1323 if (((W)w)->active < periodiccnt--) 2108 if (expect_true (active < periodiccnt + HEAP0 - 1))
1324 { 2109 {
1325 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1326 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2111 adjustheap (periodics, periodiccnt, active);
1327 } 2112 }
2113
2114 --periodiccnt;
2115 }
1328 2116
1329 ev_stop (EV_A_ (W)w); 2117 ev_stop (EV_A_ (W)w);
1330} 2118}
1331 2119
1332void 2120void noinline
1333ev_idle_start (EV_P_ struct ev_idle *w) 2121ev_periodic_again (EV_P_ ev_periodic *w)
1334{ 2122{
1335 if (ev_is_active (w)) 2123 /* TODO: use adjustheap and recalculation */
1336 return;
1337
1338 ev_start (EV_A_ (W)w, ++idlecnt);
1339 array_needsize (idles, idlemax, idlecnt, (void));
1340 idles [idlecnt - 1] = w;
1341}
1342
1343void
1344ev_idle_stop (EV_P_ struct ev_idle *w)
1345{
1346 ev_clear_pending (EV_A_ (W)w);
1347 if (ev_is_active (w))
1348 return;
1349
1350 idles [((W)w)->active - 1] = idles [--idlecnt];
1351 ev_stop (EV_A_ (W)w); 2124 ev_periodic_stop (EV_A_ w);
2125 ev_periodic_start (EV_A_ w);
1352} 2126}
1353 2127#endif
1354void
1355ev_prepare_start (EV_P_ struct ev_prepare *w)
1356{
1357 if (ev_is_active (w))
1358 return;
1359
1360 ev_start (EV_A_ (W)w, ++preparecnt);
1361 array_needsize (prepares, preparemax, preparecnt, (void));
1362 prepares [preparecnt - 1] = w;
1363}
1364
1365void
1366ev_prepare_stop (EV_P_ struct ev_prepare *w)
1367{
1368 ev_clear_pending (EV_A_ (W)w);
1369 if (ev_is_active (w))
1370 return;
1371
1372 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1373 ev_stop (EV_A_ (W)w);
1374}
1375
1376void
1377ev_check_start (EV_P_ struct ev_check *w)
1378{
1379 if (ev_is_active (w))
1380 return;
1381
1382 ev_start (EV_A_ (W)w, ++checkcnt);
1383 array_needsize (checks, checkmax, checkcnt, (void));
1384 checks [checkcnt - 1] = w;
1385}
1386
1387void
1388ev_check_stop (EV_P_ struct ev_check *w)
1389{
1390 ev_clear_pending (EV_A_ (W)w);
1391 if (ev_is_active (w))
1392 return;
1393
1394 checks [((W)w)->active - 1] = checks [--checkcnt];
1395 ev_stop (EV_A_ (W)w);
1396}
1397 2128
1398#ifndef SA_RESTART 2129#ifndef SA_RESTART
1399# define SA_RESTART 0 2130# define SA_RESTART 0
1400#endif 2131#endif
1401 2132
1402void 2133void noinline
1403ev_signal_start (EV_P_ struct ev_signal *w) 2134ev_signal_start (EV_P_ ev_signal *w)
1404{ 2135{
1405#if EV_MULTIPLICITY 2136#if EV_MULTIPLICITY
1406 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1407#endif 2138#endif
1408 if (ev_is_active (w)) 2139 if (expect_false (ev_is_active (w)))
1409 return; 2140 return;
1410 2141
1411 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1412 2143
2144 evpipe_init (EV_A);
2145
2146 {
2147#ifndef _WIN32
2148 sigset_t full, prev;
2149 sigfillset (&full);
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif
2152
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2154
2155#ifndef _WIN32
2156 sigprocmask (SIG_SETMASK, &prev, 0);
2157#endif
2158 }
2159
1413 ev_start (EV_A_ (W)w, 1); 2160 ev_start (EV_A_ (W)w, 1);
1414 array_needsize (signals, signalmax, w->signum, signals_init);
1415 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2161 wlist_add (&signals [w->signum - 1].head, (WL)w);
1416 2162
1417 if (!((WL)w)->next) 2163 if (!((WL)w)->next)
1418 { 2164 {
1419#if WIN32 2165#if _WIN32
1420 signal (w->signum, sighandler); 2166 signal (w->signum, ev_sighandler);
1421#else 2167#else
1422 struct sigaction sa; 2168 struct sigaction sa;
1423 sa.sa_handler = sighandler; 2169 sa.sa_handler = ev_sighandler;
1424 sigfillset (&sa.sa_mask); 2170 sigfillset (&sa.sa_mask);
1425 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1426 sigaction (w->signum, &sa, 0); 2172 sigaction (w->signum, &sa, 0);
1427#endif 2173#endif
1428 } 2174 }
1429} 2175}
1430 2176
1431void 2177void noinline
1432ev_signal_stop (EV_P_ struct ev_signal *w) 2178ev_signal_stop (EV_P_ ev_signal *w)
1433{ 2179{
1434 ev_clear_pending (EV_A_ (W)w); 2180 clear_pending (EV_A_ (W)w);
1435 if (!ev_is_active (w)) 2181 if (expect_false (!ev_is_active (w)))
1436 return; 2182 return;
1437 2183
1438 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2184 wlist_del (&signals [w->signum - 1].head, (WL)w);
1439 ev_stop (EV_A_ (W)w); 2185 ev_stop (EV_A_ (W)w);
1440 2186
1441 if (!signals [w->signum - 1].head) 2187 if (!signals [w->signum - 1].head)
1442 signal (w->signum, SIG_DFL); 2188 signal (w->signum, SIG_DFL);
1443} 2189}
1444 2190
1445void 2191void
1446ev_child_start (EV_P_ struct ev_child *w) 2192ev_child_start (EV_P_ ev_child *w)
1447{ 2193{
1448#if EV_MULTIPLICITY 2194#if EV_MULTIPLICITY
1449 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1450#endif 2196#endif
1451 if (ev_is_active (w)) 2197 if (expect_false (ev_is_active (w)))
1452 return; 2198 return;
1453 2199
1454 ev_start (EV_A_ (W)w, 1); 2200 ev_start (EV_A_ (W)w, 1);
1455 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1456} 2202}
1457 2203
1458void 2204void
1459ev_child_stop (EV_P_ struct ev_child *w) 2205ev_child_stop (EV_P_ ev_child *w)
1460{ 2206{
1461 ev_clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
1462 if (ev_is_active (w)) 2208 if (expect_false (!ev_is_active (w)))
1463 return; 2209 return;
1464 2210
1465 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1466 ev_stop (EV_A_ (W)w); 2212 ev_stop (EV_A_ (W)w);
1467} 2213}
1468 2214
2215#if EV_STAT_ENABLE
2216
2217# ifdef _WIN32
2218# undef lstat
2219# define lstat(a,b) _stati64 (a,b)
2220# endif
2221
2222#define DEF_STAT_INTERVAL 5.0074891
2223#define MIN_STAT_INTERVAL 0.1074891
2224
2225static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2226
2227#if EV_USE_INOTIFY
2228# define EV_INOTIFY_BUFSIZE 8192
2229
2230static void noinline
2231infy_add (EV_P_ ev_stat *w)
2232{
2233 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2234
2235 if (w->wd < 0)
2236 {
2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2238
2239 /* monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */
2241 /* but an efficiency issue only */
2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2243 {
2244 char path [4096];
2245 strcpy (path, w->path);
2246
2247 do
2248 {
2249 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2250 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2251
2252 char *pend = strrchr (path, '/');
2253
2254 if (!pend)
2255 break; /* whoops, no '/', complain to your admin */
2256
2257 *pend = 0;
2258 w->wd = inotify_add_watch (fs_fd, path, mask);
2259 }
2260 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2261 }
2262 }
2263 else
2264 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2265
2266 if (w->wd >= 0)
2267 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2268}
2269
2270static void noinline
2271infy_del (EV_P_ ev_stat *w)
2272{
2273 int slot;
2274 int wd = w->wd;
2275
2276 if (wd < 0)
2277 return;
2278
2279 w->wd = -2;
2280 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2281 wlist_del (&fs_hash [slot].head, (WL)w);
2282
2283 /* remove this watcher, if others are watching it, they will rearm */
2284 inotify_rm_watch (fs_fd, wd);
2285}
2286
2287static void noinline
2288infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2289{
2290 if (slot < 0)
2291 /* overflow, need to check for all hahs slots */
2292 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2293 infy_wd (EV_A_ slot, wd, ev);
2294 else
2295 {
2296 WL w_;
2297
2298 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2299 {
2300 ev_stat *w = (ev_stat *)w_;
2301 w_ = w_->next; /* lets us remove this watcher and all before it */
2302
2303 if (w->wd == wd || wd == -1)
2304 {
2305 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2306 {
2307 w->wd = -1;
2308 infy_add (EV_A_ w); /* re-add, no matter what */
2309 }
2310
2311 stat_timer_cb (EV_A_ &w->timer, 0);
2312 }
2313 }
2314 }
2315}
2316
2317static void
2318infy_cb (EV_P_ ev_io *w, int revents)
2319{
2320 char buf [EV_INOTIFY_BUFSIZE];
2321 struct inotify_event *ev = (struct inotify_event *)buf;
2322 int ofs;
2323 int len = read (fs_fd, buf, sizeof (buf));
2324
2325 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2326 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2327}
2328
2329void inline_size
2330infy_init (EV_P)
2331{
2332 if (fs_fd != -2)
2333 return;
2334
2335 fs_fd = inotify_init ();
2336
2337 if (fs_fd >= 0)
2338 {
2339 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2340 ev_set_priority (&fs_w, EV_MAXPRI);
2341 ev_io_start (EV_A_ &fs_w);
2342 }
2343}
2344
2345void inline_size
2346infy_fork (EV_P)
2347{
2348 int slot;
2349
2350 if (fs_fd < 0)
2351 return;
2352
2353 close (fs_fd);
2354 fs_fd = inotify_init ();
2355
2356 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2357 {
2358 WL w_ = fs_hash [slot].head;
2359 fs_hash [slot].head = 0;
2360
2361 while (w_)
2362 {
2363 ev_stat *w = (ev_stat *)w_;
2364 w_ = w_->next; /* lets us add this watcher */
2365
2366 w->wd = -1;
2367
2368 if (fs_fd >= 0)
2369 infy_add (EV_A_ w); /* re-add, no matter what */
2370 else
2371 ev_timer_start (EV_A_ &w->timer);
2372 }
2373
2374 }
2375}
2376
2377#endif
2378
2379void
2380ev_stat_stat (EV_P_ ev_stat *w)
2381{
2382 if (lstat (w->path, &w->attr) < 0)
2383 w->attr.st_nlink = 0;
2384 else if (!w->attr.st_nlink)
2385 w->attr.st_nlink = 1;
2386}
2387
2388static void noinline
2389stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2390{
2391 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2392
2393 /* we copy this here each the time so that */
2394 /* prev has the old value when the callback gets invoked */
2395 w->prev = w->attr;
2396 ev_stat_stat (EV_A_ w);
2397
2398 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2399 if (
2400 w->prev.st_dev != w->attr.st_dev
2401 || w->prev.st_ino != w->attr.st_ino
2402 || w->prev.st_mode != w->attr.st_mode
2403 || w->prev.st_nlink != w->attr.st_nlink
2404 || w->prev.st_uid != w->attr.st_uid
2405 || w->prev.st_gid != w->attr.st_gid
2406 || w->prev.st_rdev != w->attr.st_rdev
2407 || w->prev.st_size != w->attr.st_size
2408 || w->prev.st_atime != w->attr.st_atime
2409 || w->prev.st_mtime != w->attr.st_mtime
2410 || w->prev.st_ctime != w->attr.st_ctime
2411 ) {
2412 #if EV_USE_INOTIFY
2413 infy_del (EV_A_ w);
2414 infy_add (EV_A_ w);
2415 ev_stat_stat (EV_A_ w); /* avoid race... */
2416 #endif
2417
2418 ev_feed_event (EV_A_ w, EV_STAT);
2419 }
2420}
2421
2422void
2423ev_stat_start (EV_P_ ev_stat *w)
2424{
2425 if (expect_false (ev_is_active (w)))
2426 return;
2427
2428 /* since we use memcmp, we need to clear any padding data etc. */
2429 memset (&w->prev, 0, sizeof (ev_statdata));
2430 memset (&w->attr, 0, sizeof (ev_statdata));
2431
2432 ev_stat_stat (EV_A_ w);
2433
2434 if (w->interval < MIN_STAT_INTERVAL)
2435 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2436
2437 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2438 ev_set_priority (&w->timer, ev_priority (w));
2439
2440#if EV_USE_INOTIFY
2441 infy_init (EV_A);
2442
2443 if (fs_fd >= 0)
2444 infy_add (EV_A_ w);
2445 else
2446#endif
2447 ev_timer_start (EV_A_ &w->timer);
2448
2449 ev_start (EV_A_ (W)w, 1);
2450}
2451
2452void
2453ev_stat_stop (EV_P_ ev_stat *w)
2454{
2455 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w)))
2457 return;
2458
2459#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w);
2461#endif
2462 ev_timer_stop (EV_A_ &w->timer);
2463
2464 ev_stop (EV_A_ (W)w);
2465}
2466#endif
2467
2468#if EV_IDLE_ENABLE
2469void
2470ev_idle_start (EV_P_ ev_idle *w)
2471{
2472 if (expect_false (ev_is_active (w)))
2473 return;
2474
2475 pri_adjust (EV_A_ (W)w);
2476
2477 {
2478 int active = ++idlecnt [ABSPRI (w)];
2479
2480 ++idleall;
2481 ev_start (EV_A_ (W)w, active);
2482
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w;
2485 }
2486}
2487
2488void
2489ev_idle_stop (EV_P_ ev_idle *w)
2490{
2491 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w)))
2493 return;
2494
2495 {
2496 int active = ev_active (w);
2497
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500
2501 ev_stop (EV_A_ (W)w);
2502 --idleall;
2503 }
2504}
2505#endif
2506
2507void
2508ev_prepare_start (EV_P_ ev_prepare *w)
2509{
2510 if (expect_false (ev_is_active (w)))
2511 return;
2512
2513 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2515 prepares [preparecnt - 1] = w;
2516}
2517
2518void
2519ev_prepare_stop (EV_P_ ev_prepare *w)
2520{
2521 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w)))
2523 return;
2524
2525 {
2526 int active = ev_active (w);
2527
2528 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active;
2530 }
2531
2532 ev_stop (EV_A_ (W)w);
2533}
2534
2535void
2536ev_check_start (EV_P_ ev_check *w)
2537{
2538 if (expect_false (ev_is_active (w)))
2539 return;
2540
2541 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2543 checks [checkcnt - 1] = w;
2544}
2545
2546void
2547ev_check_stop (EV_P_ ev_check *w)
2548{
2549 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w)))
2551 return;
2552
2553 {
2554 int active = ev_active (w);
2555
2556 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active;
2558 }
2559
2560 ev_stop (EV_A_ (W)w);
2561}
2562
2563#if EV_EMBED_ENABLE
2564void noinline
2565ev_embed_sweep (EV_P_ ev_embed *w)
2566{
2567 ev_loop (w->other, EVLOOP_NONBLOCK);
2568}
2569
2570static void
2571embed_io_cb (EV_P_ ev_io *io, int revents)
2572{
2573 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2574
2575 if (ev_cb (w))
2576 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2577 else
2578 ev_loop (w->other, EVLOOP_NONBLOCK);
2579}
2580
2581static void
2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583{
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585
2586 {
2587 struct ev_loop *loop = w->other;
2588
2589 while (fdchangecnt)
2590 {
2591 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2593 }
2594 }
2595}
2596
2597#if 0
2598static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2600{
2601 ev_idle_stop (EV_A_ idle);
2602}
2603#endif
2604
2605void
2606ev_embed_start (EV_P_ ev_embed *w)
2607{
2608 if (expect_false (ev_is_active (w)))
2609 return;
2610
2611 {
2612 struct ev_loop *loop = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 }
2616
2617 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io);
2619
2620 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare);
2623
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625
2626 ev_start (EV_A_ (W)w, 1);
2627}
2628
2629void
2630ev_embed_stop (EV_P_ ev_embed *w)
2631{
2632 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w)))
2634 return;
2635
2636 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare);
2638
2639 ev_stop (EV_A_ (W)w);
2640}
2641#endif
2642
2643#if EV_FORK_ENABLE
2644void
2645ev_fork_start (EV_P_ ev_fork *w)
2646{
2647 if (expect_false (ev_is_active (w)))
2648 return;
2649
2650 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w;
2653}
2654
2655void
2656ev_fork_stop (EV_P_ ev_fork *w)
2657{
2658 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w)))
2660 return;
2661
2662 {
2663 int active = ev_active (w);
2664
2665 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active;
2667 }
2668
2669 ev_stop (EV_A_ (W)w);
2670}
2671#endif
2672
2673#if EV_ASYNC_ENABLE
2674void
2675ev_async_start (EV_P_ ev_async *w)
2676{
2677 if (expect_false (ev_is_active (w)))
2678 return;
2679
2680 evpipe_init (EV_A);
2681
2682 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w;
2685}
2686
2687void
2688ev_async_stop (EV_P_ ev_async *w)
2689{
2690 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w)))
2692 return;
2693
2694 {
2695 int active = ev_active (w);
2696
2697 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active;
2699 }
2700
2701 ev_stop (EV_A_ (W)w);
2702}
2703
2704void
2705ev_async_send (EV_P_ ev_async *w)
2706{
2707 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync);
2709}
2710#endif
2711
1469/*****************************************************************************/ 2712/*****************************************************************************/
1470 2713
1471struct ev_once 2714struct ev_once
1472{ 2715{
1473 struct ev_io io; 2716 ev_io io;
1474 struct ev_timer to; 2717 ev_timer to;
1475 void (*cb)(int revents, void *arg); 2718 void (*cb)(int revents, void *arg);
1476 void *arg; 2719 void *arg;
1477}; 2720};
1478 2721
1479static void 2722static void
1488 2731
1489 cb (revents, arg); 2732 cb (revents, arg);
1490} 2733}
1491 2734
1492static void 2735static void
1493once_cb_io (EV_P_ struct ev_io *w, int revents) 2736once_cb_io (EV_P_ ev_io *w, int revents)
1494{ 2737{
1495 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1496} 2739}
1497 2740
1498static void 2741static void
1499once_cb_to (EV_P_ struct ev_timer *w, int revents) 2742once_cb_to (EV_P_ ev_timer *w, int revents)
1500{ 2743{
1501 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2744 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1502} 2745}
1503 2746
1504void 2747void
1505ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2748ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1506{ 2749{
1507 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 2750 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1508 2751
1509 if (!once) 2752 if (expect_false (!once))
2753 {
1510 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2754 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1511 else 2755 return;
1512 { 2756 }
2757
1513 once->cb = cb; 2758 once->cb = cb;
1514 once->arg = arg; 2759 once->arg = arg;
1515 2760
1516 ev_watcher_init (&once->io, once_cb_io); 2761 ev_init (&once->io, once_cb_io);
1517 if (fd >= 0) 2762 if (fd >= 0)
1518 { 2763 {
1519 ev_io_set (&once->io, fd, events); 2764 ev_io_set (&once->io, fd, events);
1520 ev_io_start (EV_A_ &once->io); 2765 ev_io_start (EV_A_ &once->io);
1521 } 2766 }
1522 2767
1523 ev_watcher_init (&once->to, once_cb_to); 2768 ev_init (&once->to, once_cb_to);
1524 if (timeout >= 0.) 2769 if (timeout >= 0.)
1525 { 2770 {
1526 ev_timer_set (&once->to, timeout, 0.); 2771 ev_timer_set (&once->to, timeout, 0.);
1527 ev_timer_start (EV_A_ &once->to); 2772 ev_timer_start (EV_A_ &once->to);
1528 }
1529 } 2773 }
1530} 2774}
1531 2775
2776#if EV_MULTIPLICITY
2777 #include "ev_wrap.h"
2778#endif
2779
2780#ifdef __cplusplus
2781}
2782#endif
2783

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines