ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.28 by root, Thu Nov 1 06:48:49 2007 UTC vs.
Revision 1.71 by root, Tue Nov 6 13:17:55 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
29 56
30#include <math.h> 57#include <math.h>
31#include <stdlib.h> 58#include <stdlib.h>
32#include <unistd.h>
33#include <fcntl.h> 59#include <fcntl.h>
34#include <signal.h>
35#include <stddef.h> 60#include <stddef.h>
36 61
37#include <stdio.h> 62#include <stdio.h>
38 63
39#include <assert.h> 64#include <assert.h>
40#include <errno.h> 65#include <errno.h>
41#include <sys/types.h> 66#include <sys/types.h>
42#include <sys/wait.h>
43#include <sys/time.h>
44#include <time.h> 67#include <time.h>
45 68
69#ifndef PERL
70# include <signal.h>
71#endif
72
73#ifndef WIN32
74# include <unistd.h>
75# include <sys/time.h>
76# include <sys/wait.h>
77#endif
78/**/
79
46#ifndef HAVE_MONOTONIC 80#ifndef EV_USE_MONOTONIC
47# ifdef CLOCK_MONOTONIC
48# define HAVE_MONOTONIC 1 81# define EV_USE_MONOTONIC 1
82#endif
83
84#ifndef EV_USE_SELECT
85# define EV_USE_SELECT 1
86#endif
87
88#ifndef EV_USE_POLL
89# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
90#endif
91
92#ifndef EV_USE_EPOLL
93# define EV_USE_EPOLL 0
94#endif
95
96#ifndef EV_USE_KQUEUE
97# define EV_USE_KQUEUE 0
98#endif
99
100#ifndef EV_USE_WIN32
101# ifdef WIN32
102# define EV_USE_WIN32 0 /* it does not exist, use select */
103# undef EV_USE_SELECT
104# define EV_USE_SELECT 1
105# else
106# define EV_USE_WIN32 0
49# endif 107# endif
50#endif 108#endif
51 109
52#ifndef HAVE_SELECT
53# define HAVE_SELECT 1
54#endif
55
56#ifndef HAVE_EPOLL
57# define HAVE_EPOLL 0
58#endif
59
60#ifndef HAVE_REALTIME 110#ifndef EV_USE_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 111# define EV_USE_REALTIME 1
62#endif 112#endif
113
114/**/
115
116#ifndef CLOCK_MONOTONIC
117# undef EV_USE_MONOTONIC
118# define EV_USE_MONOTONIC 0
119#endif
120
121#ifndef CLOCK_REALTIME
122# undef EV_USE_REALTIME
123# define EV_USE_REALTIME 0
124#endif
125
126/**/
63 127
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 128#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 129#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 130#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
131/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
67 132
68#include "ev.h" 133#include "ev.h"
134
135#if __GNUC__ >= 3
136# define expect(expr,value) __builtin_expect ((expr),(value))
137# define inline inline
138#else
139# define expect(expr,value) (expr)
140# define inline static
141#endif
142
143#define expect_false(expr) expect ((expr) != 0, 0)
144#define expect_true(expr) expect ((expr) != 0, 1)
145
146#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
147#define ABSPRI(w) ((w)->priority - EV_MINPRI)
69 148
70typedef struct ev_watcher *W; 149typedef struct ev_watcher *W;
71typedef struct ev_watcher_list *WL; 150typedef struct ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 151typedef struct ev_watcher_time *WT;
73 152
74static ev_tstamp now, diff; /* monotonic clock */ 153static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
75ev_tstamp ev_now;
76int ev_method;
77 154
78static int have_monotonic; /* runtime */ 155#if WIN32
79 156/* note: the comment below could not be substantiated, but what would I care */
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 157/* MSDN says this is required to handle SIGFPE */
81static void (*method_modify)(int fd, int oev, int nev); 158volatile double SIGFPE_REQ = 0.0f;
82static void (*method_poll)(ev_tstamp timeout); 159#endif
83 160
84/*****************************************************************************/ 161/*****************************************************************************/
85 162
86ev_tstamp 163static void (*syserr_cb)(const char *msg);
164
165void ev_set_syserr_cb (void (*cb)(const char *msg))
166{
167 syserr_cb = cb;
168}
169
170static void
171syserr (const char *msg)
172{
173 if (!msg)
174 msg = "(libev) system error";
175
176 if (syserr_cb)
177 syserr_cb (msg);
178 else
179 {
180 perror (msg);
181 abort ();
182 }
183}
184
185static void *(*alloc)(void *ptr, long size);
186
187void ev_set_allocator (void *(*cb)(void *ptr, long size))
188{
189 alloc = cb;
190}
191
192static void *
193ev_realloc (void *ptr, long size)
194{
195 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
196
197 if (!ptr && size)
198 {
199 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
200 abort ();
201 }
202
203 return ptr;
204}
205
206#define ev_malloc(size) ev_realloc (0, (size))
207#define ev_free(ptr) ev_realloc ((ptr), 0)
208
209/*****************************************************************************/
210
211typedef struct
212{
213 WL head;
214 unsigned char events;
215 unsigned char reify;
216} ANFD;
217
218typedef struct
219{
220 W w;
221 int events;
222} ANPENDING;
223
224#if EV_MULTIPLICITY
225
226struct ev_loop
227{
228# define VAR(name,decl) decl;
229# include "ev_vars.h"
230};
231# undef VAR
232# include "ev_wrap.h"
233
234#else
235
236# define VAR(name,decl) static decl;
237# include "ev_vars.h"
238# undef VAR
239
240#endif
241
242/*****************************************************************************/
243
244inline ev_tstamp
87ev_time (void) 245ev_time (void)
88{ 246{
89#if HAVE_REALTIME 247#if EV_USE_REALTIME
90 struct timespec ts; 248 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 249 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 250 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 251#else
94 struct timeval tv; 252 struct timeval tv;
95 gettimeofday (&tv, 0); 253 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 254 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif 255#endif
98} 256}
99 257
100static ev_tstamp 258inline ev_tstamp
101get_clock (void) 259get_clock (void)
102{ 260{
103#if HAVE_MONOTONIC 261#if EV_USE_MONOTONIC
104 if (have_monotonic) 262 if (expect_true (have_monotonic))
105 { 263 {
106 struct timespec ts; 264 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 265 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 266 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 267 }
110#endif 268#endif
111 269
112 return ev_time (); 270 return ev_time ();
113} 271}
114 272
273ev_tstamp
274ev_now (EV_P)
275{
276 return rt_now;
277}
278
279#define array_roundsize(base,n) ((n) | 4 & ~3)
280
115#define array_needsize(base,cur,cnt,init) \ 281#define array_needsize(base,cur,cnt,init) \
116 if ((cnt) > cur) \ 282 if (expect_false ((cnt) > cur)) \
117 { \ 283 { \
118 int newcnt = cur; \ 284 int newcnt = cur; \
119 do \ 285 do \
120 { \ 286 { \
121 newcnt = (newcnt << 1) | 4 & ~3; \ 287 newcnt = array_roundsize (base, newcnt << 1); \
122 } \ 288 } \
123 while ((cnt) > newcnt); \ 289 while ((cnt) > newcnt); \
124 \ 290 \
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 291 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
126 init (base + cur, newcnt - cur); \ 292 init (base + cur, newcnt - cur); \
127 cur = newcnt; \ 293 cur = newcnt; \
128 } 294 }
295
296#define array_slim(stem) \
297 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
298 { \
299 stem ## max = array_roundsize (stem ## cnt >> 1); \
300 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
301 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
302 }
303
304/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
305/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
306#define array_free_microshit(stem) \
307 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
308
309#define array_free(stem, idx) \
310 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
129 311
130/*****************************************************************************/ 312/*****************************************************************************/
131
132typedef struct
133{
134 struct ev_io *head;
135 int events;
136} ANFD;
137
138static ANFD *anfds;
139static int anfdmax;
140 313
141static void 314static void
142anfds_init (ANFD *base, int count) 315anfds_init (ANFD *base, int count)
143{ 316{
144 while (count--) 317 while (count--)
145 { 318 {
146 base->head = 0; 319 base->head = 0;
147 base->events = EV_NONE; 320 base->events = EV_NONE;
321 base->reify = 0;
322
148 ++base; 323 ++base;
149 } 324 }
150} 325}
151 326
152typedef struct
153{
154 W w;
155 int events;
156} ANPENDING;
157
158static ANPENDING *pendings;
159static int pendingmax, pendingcnt;
160
161static void 327static void
162event (W w, int events) 328event (EV_P_ W w, int events)
163{ 329{
164 if (w->active) 330 if (w->pending)
165 { 331 {
166 w->pending = ++pendingcnt;
167 array_needsize (pendings, pendingmax, pendingcnt, );
168 pendings [pendingcnt - 1].w = w;
169 pendings [pendingcnt - 1].events = events; 332 pendings [ABSPRI (w)][w->pending - 1].events |= events;
333 return;
170 } 334 }
171}
172 335
336 w->pending = ++pendingcnt [ABSPRI (w)];
337 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
338 pendings [ABSPRI (w)][w->pending - 1].w = w;
339 pendings [ABSPRI (w)][w->pending - 1].events = events;
340}
341
173static void 342static void
174queue_events (W *events, int eventcnt, int type) 343queue_events (EV_P_ W *events, int eventcnt, int type)
175{ 344{
176 int i; 345 int i;
177 346
178 for (i = 0; i < eventcnt; ++i) 347 for (i = 0; i < eventcnt; ++i)
179 event (events [i], type); 348 event (EV_A_ events [i], type);
180} 349}
181 350
182static void 351static void
183fd_event (int fd, int events) 352fd_event (EV_P_ int fd, int events)
184{ 353{
185 ANFD *anfd = anfds + fd; 354 ANFD *anfd = anfds + fd;
186 struct ev_io *w; 355 struct ev_io *w;
187 356
188 for (w = anfd->head; w; w = w->next) 357 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
189 { 358 {
190 int ev = w->events & events; 359 int ev = w->events & events;
191 360
192 if (ev) 361 if (ev)
193 event ((W)w, ev); 362 event (EV_A_ (W)w, ev);
194 } 363 }
195} 364}
196 365
197/*****************************************************************************/ 366/*****************************************************************************/
198 367
199static int *fdchanges;
200static int fdchangemax, fdchangecnt;
201
202static void 368static void
203fd_reify (void) 369fd_reify (EV_P)
204{ 370{
205 int i; 371 int i;
206 372
207 for (i = 0; i < fdchangecnt; ++i) 373 for (i = 0; i < fdchangecnt; ++i)
208 { 374 {
210 ANFD *anfd = anfds + fd; 376 ANFD *anfd = anfds + fd;
211 struct ev_io *w; 377 struct ev_io *w;
212 378
213 int events = 0; 379 int events = 0;
214 380
215 for (w = anfd->head; w; w = w->next) 381 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
216 events |= w->events; 382 events |= w->events;
217 383
218 anfd->events &= ~EV_REIFY; 384 anfd->reify = 0;
219 385
220 if (anfd->events != events)
221 {
222 method_modify (fd, anfd->events, events); 386 method_modify (EV_A_ fd, anfd->events, events);
223 anfd->events = events; 387 anfd->events = events;
224 }
225 } 388 }
226 389
227 fdchangecnt = 0; 390 fdchangecnt = 0;
228} 391}
229 392
230static void 393static void
231fd_change (int fd) 394fd_change (EV_P_ int fd)
232{ 395{
233 if (anfds [fd].events & EV_REIFY) 396 if (anfds [fd].reify)
234 return; 397 return;
235 398
236 anfds [fd].events |= EV_REIFY; 399 anfds [fd].reify = 1;
237 400
238 ++fdchangecnt; 401 ++fdchangecnt;
239 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 402 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void));
240 fdchanges [fdchangecnt - 1] = fd; 403 fdchanges [fdchangecnt - 1] = fd;
241} 404}
242 405
406static void
407fd_kill (EV_P_ int fd)
408{
409 struct ev_io *w;
410
411 while ((w = (struct ev_io *)anfds [fd].head))
412 {
413 ev_io_stop (EV_A_ w);
414 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
415 }
416}
417
418static int
419fd_valid (int fd)
420{
421#ifdef WIN32
422 return !!win32_get_osfhandle (fd);
423#else
424 return fcntl (fd, F_GETFD) != -1;
425#endif
426}
427
243/* called on EBADF to verify fds */ 428/* called on EBADF to verify fds */
244static void 429static void
245fd_recheck (void) 430fd_ebadf (EV_P)
246{ 431{
247 int fd; 432 int fd;
248 433
249 for (fd = 0; fd < anfdmax; ++fd) 434 for (fd = 0; fd < anfdmax; ++fd)
250 if (anfds [fd].events) 435 if (anfds [fd].events)
251 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 436 if (!fd_valid (fd) == -1 && errno == EBADF)
252 while (anfds [fd].head) 437 fd_kill (EV_A_ fd);
438}
439
440/* called on ENOMEM in select/poll to kill some fds and retry */
441static void
442fd_enomem (EV_P)
443{
444 int fd;
445
446 for (fd = anfdmax; fd--; )
447 if (anfds [fd].events)
253 { 448 {
254 event ((W)anfds [fd].head, EV_ERROR); 449 fd_kill (EV_A_ fd);
255 ev_io_stop (anfds [fd].head); 450 return;
256 } 451 }
452}
453
454/* usually called after fork if method needs to re-arm all fds from scratch */
455static void
456fd_rearm_all (EV_P)
457{
458 int fd;
459
460 /* this should be highly optimised to not do anything but set a flag */
461 for (fd = 0; fd < anfdmax; ++fd)
462 if (anfds [fd].events)
463 {
464 anfds [fd].events = 0;
465 fd_change (EV_A_ fd);
466 }
257} 467}
258 468
259/*****************************************************************************/ 469/*****************************************************************************/
260 470
261static struct ev_timer **timers;
262static int timermax, timercnt;
263
264static struct ev_periodic **periodics;
265static int periodicmax, periodiccnt;
266
267static void 471static void
268upheap (WT *timers, int k) 472upheap (WT *heap, int k)
269{ 473{
270 WT w = timers [k]; 474 WT w = heap [k];
271 475
272 while (k && timers [k >> 1]->at > w->at) 476 while (k && heap [k >> 1]->at > w->at)
273 { 477 {
274 timers [k] = timers [k >> 1]; 478 heap [k] = heap [k >> 1];
275 timers [k]->active = k + 1; 479 ((W)heap [k])->active = k + 1;
276 k >>= 1; 480 k >>= 1;
277 } 481 }
278 482
279 timers [k] = w; 483 heap [k] = w;
280 timers [k]->active = k + 1; 484 ((W)heap [k])->active = k + 1;
281 485
282} 486}
283 487
284static void 488static void
285downheap (WT *timers, int N, int k) 489downheap (WT *heap, int N, int k)
286{ 490{
287 WT w = timers [k]; 491 WT w = heap [k];
288 492
289 while (k < (N >> 1)) 493 while (k < (N >> 1))
290 { 494 {
291 int j = k << 1; 495 int j = k << 1;
292 496
293 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 497 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
294 ++j; 498 ++j;
295 499
296 if (w->at <= timers [j]->at) 500 if (w->at <= heap [j]->at)
297 break; 501 break;
298 502
299 timers [k] = timers [j]; 503 heap [k] = heap [j];
300 timers [k]->active = k + 1; 504 ((W)heap [k])->active = k + 1;
301 k = j; 505 k = j;
302 } 506 }
303 507
304 timers [k] = w; 508 heap [k] = w;
305 timers [k]->active = k + 1; 509 ((W)heap [k])->active = k + 1;
306} 510}
307 511
308/*****************************************************************************/ 512/*****************************************************************************/
309 513
310typedef struct 514typedef struct
311{ 515{
312 struct ev_signal *head; 516 WL head;
313 sig_atomic_t gotsig; 517 sig_atomic_t volatile gotsig;
314} ANSIG; 518} ANSIG;
315 519
316static ANSIG *signals; 520static ANSIG *signals;
317static int signalmax; 521static int signalmax;
318 522
319static int sigpipe [2]; 523static int sigpipe [2];
320static sig_atomic_t gotsig; 524static sig_atomic_t volatile gotsig;
321static struct ev_io sigev; 525static struct ev_io sigev;
322 526
323static void 527static void
324signals_init (ANSIG *base, int count) 528signals_init (ANSIG *base, int count)
325{ 529{
326 while (count--) 530 while (count--)
327 { 531 {
328 base->head = 0; 532 base->head = 0;
329 base->gotsig = 0; 533 base->gotsig = 0;
534
330 ++base; 535 ++base;
331 } 536 }
332} 537}
333 538
334static void 539static void
335sighandler (int signum) 540sighandler (int signum)
336{ 541{
542#if WIN32
543 signal (signum, sighandler);
544#endif
545
337 signals [signum - 1].gotsig = 1; 546 signals [signum - 1].gotsig = 1;
338 547
339 if (!gotsig) 548 if (!gotsig)
340 { 549 {
550 int old_errno = errno;
341 gotsig = 1; 551 gotsig = 1;
342 write (sigpipe [1], &gotsig, 1); 552 write (sigpipe [1], &signum, 1);
553 errno = old_errno;
343 } 554 }
344} 555}
345 556
346static void 557static void
347sigcb (struct ev_io *iow, int revents) 558sigcb (EV_P_ struct ev_io *iow, int revents)
348{ 559{
349 struct ev_signal *w; 560 WL w;
350 int sig; 561 int signum;
351 562
563 read (sigpipe [0], &revents, 1);
352 gotsig = 0; 564 gotsig = 0;
353 read (sigpipe [0], &revents, 1);
354 565
355 for (sig = signalmax; sig--; ) 566 for (signum = signalmax; signum--; )
356 if (signals [sig].gotsig) 567 if (signals [signum].gotsig)
357 { 568 {
358 signals [sig].gotsig = 0; 569 signals [signum].gotsig = 0;
359 570
360 for (w = signals [sig].head; w; w = w->next) 571 for (w = signals [signum].head; w; w = w->next)
361 event ((W)w, EV_SIGNAL); 572 event (EV_A_ (W)w, EV_SIGNAL);
362 } 573 }
363} 574}
364 575
365static void 576static void
366siginit (void) 577siginit (EV_P)
367{ 578{
579#ifndef WIN32
368 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 580 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
369 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 581 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
370 582
371 /* rather than sort out wether we really need nb, set it */ 583 /* rather than sort out wether we really need nb, set it */
372 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 584 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
373 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 585 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
586#endif
374 587
375 ev_io_set (&sigev, sigpipe [0], EV_READ); 588 ev_io_set (&sigev, sigpipe [0], EV_READ);
376 ev_io_start (&sigev); 589 ev_io_start (EV_A_ &sigev);
590 ev_unref (EV_A); /* child watcher should not keep loop alive */
377} 591}
378 592
379/*****************************************************************************/ 593/*****************************************************************************/
380 594
381static struct ev_idle **idles;
382static int idlemax, idlecnt;
383
384static struct ev_prepare **prepares;
385static int preparemax, preparecnt;
386
387static struct ev_check **checks;
388static int checkmax, checkcnt;
389
390/*****************************************************************************/
391
392static struct ev_child *childs [PID_HASHSIZE]; 595static struct ev_child *childs [PID_HASHSIZE];
596
597#ifndef WIN32
598
393static struct ev_signal childev; 599static struct ev_signal childev;
394 600
395#ifndef WCONTINUED 601#ifndef WCONTINUED
396# define WCONTINUED 0 602# define WCONTINUED 0
397#endif 603#endif
398 604
399static void 605static void
400childcb (struct ev_signal *sw, int revents) 606child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
401{ 607{
402 struct ev_child *w; 608 struct ev_child *w;
609
610 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
611 if (w->pid == pid || !w->pid)
612 {
613 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
614 w->rpid = pid;
615 w->rstatus = status;
616 event (EV_A_ (W)w, EV_CHILD);
617 }
618}
619
620static void
621childcb (EV_P_ struct ev_signal *sw, int revents)
622{
403 int pid, status; 623 int pid, status;
404 624
405 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 625 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
406 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 626 {
407 if (w->pid == pid || w->pid == -1) 627 /* make sure we are called again until all childs have been reaped */
408 { 628 event (EV_A_ (W)sw, EV_SIGNAL);
409 w->status = status; 629
410 event ((W)w, EV_CHILD); 630 child_reap (EV_A_ sw, pid, pid, status);
411 } 631 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
632 }
412} 633}
634
635#endif
413 636
414/*****************************************************************************/ 637/*****************************************************************************/
415 638
639#if EV_USE_KQUEUE
640# include "ev_kqueue.c"
641#endif
416#if HAVE_EPOLL 642#if EV_USE_EPOLL
417# include "ev_epoll.c" 643# include "ev_epoll.c"
418#endif 644#endif
645#if EV_USE_POLL
646# include "ev_poll.c"
647#endif
419#if HAVE_SELECT 648#if EV_USE_SELECT
420# include "ev_select.c" 649# include "ev_select.c"
421#endif 650#endif
422 651
423int 652int
424ev_version_major (void) 653ev_version_major (void)
430ev_version_minor (void) 659ev_version_minor (void)
431{ 660{
432 return EV_VERSION_MINOR; 661 return EV_VERSION_MINOR;
433} 662}
434 663
435int ev_init (int flags) 664/* return true if we are running with elevated privileges and should ignore env variables */
665static int
666enable_secure (void)
436{ 667{
668#ifdef WIN32
669 return 0;
670#else
671 return getuid () != geteuid ()
672 || getgid () != getegid ();
673#endif
674}
675
676int
677ev_method (EV_P)
678{
679 return method;
680}
681
682static void
683loop_init (EV_P_ int methods)
684{
437 if (!ev_method) 685 if (!method)
438 { 686 {
439#if HAVE_MONOTONIC 687#if EV_USE_MONOTONIC
440 { 688 {
441 struct timespec ts; 689 struct timespec ts;
442 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 690 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
443 have_monotonic = 1; 691 have_monotonic = 1;
444 } 692 }
445#endif 693#endif
446 694
447 ev_now = ev_time (); 695 rt_now = ev_time ();
448 now = get_clock (); 696 mn_now = get_clock ();
697 now_floor = mn_now;
449 diff = ev_now - now; 698 rtmn_diff = rt_now - mn_now;
450 699
700 if (methods == EVMETHOD_AUTO)
701 if (!enable_secure () && getenv ("LIBEV_METHODS"))
702 methods = atoi (getenv ("LIBEV_METHODS"));
703 else
704 methods = EVMETHOD_ANY;
705
706 method = 0;
707#if EV_USE_WIN32
708 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
709#endif
710#if EV_USE_KQUEUE
711 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
712#endif
713#if EV_USE_EPOLL
714 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
715#endif
716#if EV_USE_POLL
717 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
718#endif
719#if EV_USE_SELECT
720 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
721#endif
722
723 ev_watcher_init (&sigev, sigcb);
724 ev_set_priority (&sigev, EV_MAXPRI);
725 }
726}
727
728void
729loop_destroy (EV_P)
730{
731 int i;
732
733#if EV_USE_WIN32
734 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
735#endif
736#if EV_USE_KQUEUE
737 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
738#endif
739#if EV_USE_EPOLL
740 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
741#endif
742#if EV_USE_POLL
743 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
744#endif
745#if EV_USE_SELECT
746 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
747#endif
748
749 for (i = NUMPRI; i--; )
750 array_free (pending, [i]);
751
752 /* have to use the microsoft-never-gets-it-right macro */
753 array_free_microshit (fdchange);
754 array_free_microshit (timer);
755 array_free_microshit (periodic);
756 array_free_microshit (idle);
757 array_free_microshit (prepare);
758 array_free_microshit (check);
759
760 method = 0;
761}
762
763static void
764loop_fork (EV_P)
765{
766#if EV_USE_EPOLL
767 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
768#endif
769#if EV_USE_KQUEUE
770 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
771#endif
772
773 if (ev_is_active (&sigev))
774 {
775 /* default loop */
776
777 ev_ref (EV_A);
778 ev_io_stop (EV_A_ &sigev);
779 close (sigpipe [0]);
780 close (sigpipe [1]);
781
782 while (pipe (sigpipe))
783 syserr ("(libev) error creating pipe");
784
785 siginit (EV_A);
786 }
787
788 postfork = 0;
789}
790
791#if EV_MULTIPLICITY
792struct ev_loop *
793ev_loop_new (int methods)
794{
795 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
796
797 memset (loop, 0, sizeof (struct ev_loop));
798
799 loop_init (EV_A_ methods);
800
801 if (ev_method (EV_A))
802 return loop;
803
804 return 0;
805}
806
807void
808ev_loop_destroy (EV_P)
809{
810 loop_destroy (EV_A);
811 ev_free (loop);
812}
813
814void
815ev_loop_fork (EV_P)
816{
817 postfork = 1;
818}
819
820#endif
821
822#if EV_MULTIPLICITY
823struct ev_loop default_loop_struct;
824static struct ev_loop *default_loop;
825
826struct ev_loop *
827#else
828static int default_loop;
829
830int
831#endif
832ev_default_loop (int methods)
833{
834 if (sigpipe [0] == sigpipe [1])
451 if (pipe (sigpipe)) 835 if (pipe (sigpipe))
452 return 0; 836 return 0;
453 837
454 ev_method = EVMETHOD_NONE; 838 if (!default_loop)
455#if HAVE_EPOLL 839 {
456 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 840#if EV_MULTIPLICITY
841 struct ev_loop *loop = default_loop = &default_loop_struct;
842#else
843 default_loop = 1;
457#endif 844#endif
458#if HAVE_SELECT
459 if (ev_method == EVMETHOD_NONE) select_init (flags);
460#endif
461 845
846 loop_init (EV_A_ methods);
847
462 if (ev_method) 848 if (ev_method (EV_A))
463 { 849 {
464 ev_watcher_init (&sigev, sigcb);
465 siginit (); 850 siginit (EV_A);
466 851
852#ifndef WIN32
467 ev_signal_init (&childev, childcb, SIGCHLD); 853 ev_signal_init (&childev, childcb, SIGCHLD);
854 ev_set_priority (&childev, EV_MAXPRI);
468 ev_signal_start (&childev); 855 ev_signal_start (EV_A_ &childev);
856 ev_unref (EV_A); /* child watcher should not keep loop alive */
857#endif
469 } 858 }
859 else
860 default_loop = 0;
470 } 861 }
471 862
472 return ev_method; 863 return default_loop;
864}
865
866void
867ev_default_destroy (void)
868{
869#if EV_MULTIPLICITY
870 struct ev_loop *loop = default_loop;
871#endif
872
873#ifndef WIN32
874 ev_ref (EV_A); /* child watcher */
875 ev_signal_stop (EV_A_ &childev);
876#endif
877
878 ev_ref (EV_A); /* signal watcher */
879 ev_io_stop (EV_A_ &sigev);
880
881 close (sigpipe [0]); sigpipe [0] = 0;
882 close (sigpipe [1]); sigpipe [1] = 0;
883
884 loop_destroy (EV_A);
885}
886
887void
888ev_default_fork (void)
889{
890#if EV_MULTIPLICITY
891 struct ev_loop *loop = default_loop;
892#endif
893
894 if (method)
895 postfork = 1;
473} 896}
474 897
475/*****************************************************************************/ 898/*****************************************************************************/
476 899
477void
478ev_prefork (void)
479{
480 /* nop */
481}
482
483void
484ev_postfork_parent (void)
485{
486 /* nop */
487}
488
489void
490ev_postfork_child (void)
491{
492#if HAVE_EPOLL
493 if (ev_method == EVMETHOD_EPOLL)
494 epoll_postfork_child ();
495#endif
496
497 ev_io_stop (&sigev);
498 close (sigpipe [0]);
499 close (sigpipe [1]);
500 pipe (sigpipe);
501 siginit ();
502}
503
504/*****************************************************************************/
505
506static void 900static void
507call_pending (void) 901call_pending (EV_P)
508{ 902{
903 int pri;
904
905 for (pri = NUMPRI; pri--; )
509 while (pendingcnt) 906 while (pendingcnt [pri])
510 { 907 {
511 ANPENDING *p = pendings + --pendingcnt; 908 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
512 909
513 if (p->w) 910 if (p->w)
514 { 911 {
515 p->w->pending = 0; 912 p->w->pending = 0;
516 p->w->cb (p->w, p->events); 913 p->w->cb (EV_A_ p->w, p->events);
517 } 914 }
518 } 915 }
519} 916}
520 917
521static void 918static void
522timers_reify (void) 919timers_reify (EV_P)
523{ 920{
524 while (timercnt && timers [0]->at <= now) 921 while (timercnt && ((WT)timers [0])->at <= mn_now)
525 { 922 {
526 struct ev_timer *w = timers [0]; 923 struct ev_timer *w = timers [0];
527 924
528 event ((W)w, EV_TIMEOUT); 925 assert (("inactive timer on timer heap detected", ev_is_active (w)));
529 926
530 /* first reschedule or stop timer */ 927 /* first reschedule or stop timer */
531 if (w->repeat) 928 if (w->repeat)
532 { 929 {
930 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
533 w->at = now + w->repeat; 931 ((WT)w)->at = mn_now + w->repeat;
534 assert (("timer timeout in the past, negative repeat?", w->at > now));
535 downheap ((WT *)timers, timercnt, 0); 932 downheap ((WT *)timers, timercnt, 0);
536 } 933 }
537 else 934 else
538 ev_timer_stop (w); /* nonrepeating: stop timer */ 935 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
539 }
540}
541 936
937 event (EV_A_ (W)w, EV_TIMEOUT);
938 }
939}
940
542static void 941static void
543periodics_reify (void) 942periodics_reify (EV_P)
544{ 943{
545 while (periodiccnt && periodics [0]->at <= ev_now) 944 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
546 { 945 {
547 struct ev_periodic *w = periodics [0]; 946 struct ev_periodic *w = periodics [0];
947
948 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
548 949
549 /* first reschedule or stop timer */ 950 /* first reschedule or stop timer */
550 if (w->interval) 951 if (w->interval)
551 { 952 {
552 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 953 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
553 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 954 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
554 downheap ((WT *)periodics, periodiccnt, 0); 955 downheap ((WT *)periodics, periodiccnt, 0);
555 } 956 }
556 else 957 else
557 ev_periodic_stop (w); /* nonrepeating: stop timer */ 958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
558 959
559 event ((W)w, EV_TIMEOUT); 960 event (EV_A_ (W)w, EV_PERIODIC);
560 } 961 }
561} 962}
562 963
563static void 964static void
564periodics_reschedule (ev_tstamp diff) 965periodics_reschedule (EV_P)
565{ 966{
566 int i; 967 int i;
567 968
568 /* adjust periodics after time jump */ 969 /* adjust periodics after time jump */
569 for (i = 0; i < periodiccnt; ++i) 970 for (i = 0; i < periodiccnt; ++i)
570 { 971 {
571 struct ev_periodic *w = periodics [i]; 972 struct ev_periodic *w = periodics [i];
572 973
573 if (w->interval) 974 if (w->interval)
574 { 975 {
575 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 976 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
576 977
577 if (fabs (diff) >= 1e-4) 978 if (fabs (diff) >= 1e-4)
578 { 979 {
579 ev_periodic_stop (w); 980 ev_periodic_stop (EV_A_ w);
580 ev_periodic_start (w); 981 ev_periodic_start (EV_A_ w);
581 982
582 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 983 i = 0; /* restart loop, inefficient, but time jumps should be rare */
583 } 984 }
584 } 985 }
585 } 986 }
586} 987}
587 988
989inline int
990time_update_monotonic (EV_P)
991{
992 mn_now = get_clock ();
993
994 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
995 {
996 rt_now = rtmn_diff + mn_now;
997 return 0;
998 }
999 else
1000 {
1001 now_floor = mn_now;
1002 rt_now = ev_time ();
1003 return 1;
1004 }
1005}
1006
588static void 1007static void
589time_update (void) 1008time_update (EV_P)
590{ 1009{
591 int i; 1010 int i;
592 1011
593 ev_now = ev_time (); 1012#if EV_USE_MONOTONIC
594
595 if (have_monotonic) 1013 if (expect_true (have_monotonic))
596 { 1014 {
597 ev_tstamp odiff = diff; 1015 if (time_update_monotonic (EV_A))
598
599 for (i = 4; --i; ) /* loop a few times, before making important decisions */
600 { 1016 {
601 now = get_clock (); 1017 ev_tstamp odiff = rtmn_diff;
1018
1019 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1020 {
602 diff = ev_now - now; 1021 rtmn_diff = rt_now - mn_now;
603 1022
604 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1023 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
605 return; /* all is well */ 1024 return; /* all is well */
606 1025
607 ev_now = ev_time (); 1026 rt_now = ev_time ();
1027 mn_now = get_clock ();
1028 now_floor = mn_now;
1029 }
1030
1031 periodics_reschedule (EV_A);
1032 /* no timer adjustment, as the monotonic clock doesn't jump */
1033 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
608 } 1034 }
609
610 periodics_reschedule (diff - odiff);
611 /* no timer adjustment, as the monotonic clock doesn't jump */
612 } 1035 }
613 else 1036 else
1037#endif
614 { 1038 {
615 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 1039 rt_now = ev_time ();
1040
1041 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
616 { 1042 {
617 periodics_reschedule (ev_now - now); 1043 periodics_reschedule (EV_A);
618 1044
619 /* adjust timers. this is easy, as the offset is the same for all */ 1045 /* adjust timers. this is easy, as the offset is the same for all */
620 for (i = 0; i < timercnt; ++i) 1046 for (i = 0; i < timercnt; ++i)
621 timers [i]->at += diff; 1047 ((WT)timers [i])->at += rt_now - mn_now;
622 } 1048 }
623 1049
624 now = ev_now; 1050 mn_now = rt_now;
625 } 1051 }
626} 1052}
627 1053
628int ev_loop_done; 1054void
1055ev_ref (EV_P)
1056{
1057 ++activecnt;
1058}
629 1059
1060void
1061ev_unref (EV_P)
1062{
1063 --activecnt;
1064}
1065
1066static int loop_done;
1067
1068void
630void ev_loop (int flags) 1069ev_loop (EV_P_ int flags)
631{ 1070{
632 double block; 1071 double block;
633 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1072 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
634 1073
635 do 1074 do
636 { 1075 {
637 /* queue check watchers (and execute them) */ 1076 /* queue check watchers (and execute them) */
638 if (preparecnt) 1077 if (expect_false (preparecnt))
639 { 1078 {
640 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1079 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
641 call_pending (); 1080 call_pending (EV_A);
642 } 1081 }
643 1082
1083 /* we might have forked, so reify kernel state if necessary */
1084 if (expect_false (postfork))
1085 loop_fork (EV_A);
1086
644 /* update fd-related kernel structures */ 1087 /* update fd-related kernel structures */
645 fd_reify (); 1088 fd_reify (EV_A);
646 1089
647 /* calculate blocking time */ 1090 /* calculate blocking time */
648 1091
649 /* we only need this for !monotonic clockor timers, but as we basically 1092 /* we only need this for !monotonic clockor timers, but as we basically
650 always have timers, we just calculate it always */ 1093 always have timers, we just calculate it always */
1094#if EV_USE_MONOTONIC
1095 if (expect_true (have_monotonic))
1096 time_update_monotonic (EV_A);
1097 else
1098#endif
1099 {
651 ev_now = ev_time (); 1100 rt_now = ev_time ();
1101 mn_now = rt_now;
1102 }
652 1103
653 if (flags & EVLOOP_NONBLOCK || idlecnt) 1104 if (flags & EVLOOP_NONBLOCK || idlecnt)
654 block = 0.; 1105 block = 0.;
655 else 1106 else
656 { 1107 {
657 block = MAX_BLOCKTIME; 1108 block = MAX_BLOCKTIME;
658 1109
659 if (timercnt) 1110 if (timercnt)
660 { 1111 {
661 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1112 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
662 if (block > to) block = to; 1113 if (block > to) block = to;
663 } 1114 }
664 1115
665 if (periodiccnt) 1116 if (periodiccnt)
666 { 1117 {
667 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1118 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
668 if (block > to) block = to; 1119 if (block > to) block = to;
669 } 1120 }
670 1121
671 if (block < 0.) block = 0.; 1122 if (block < 0.) block = 0.;
672 } 1123 }
673 1124
674 method_poll (block); 1125 method_poll (EV_A_ block);
675 1126
676 /* update ev_now, do magic */ 1127 /* update rt_now, do magic */
677 time_update (); 1128 time_update (EV_A);
678 1129
679 /* queue pending timers and reschedule them */ 1130 /* queue pending timers and reschedule them */
680 timers_reify (); /* relative timers called last */ 1131 timers_reify (EV_A); /* relative timers called last */
681 periodics_reify (); /* absolute timers called first */ 1132 periodics_reify (EV_A); /* absolute timers called first */
682 1133
683 /* queue idle watchers unless io or timers are pending */ 1134 /* queue idle watchers unless io or timers are pending */
684 if (!pendingcnt) 1135 if (!pendingcnt)
685 queue_events ((W *)idles, idlecnt, EV_IDLE); 1136 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
686 1137
687 /* queue check watchers, to be executed first */ 1138 /* queue check watchers, to be executed first */
688 if (checkcnt) 1139 if (checkcnt)
689 queue_events ((W *)checks, checkcnt, EV_CHECK); 1140 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
690 1141
691 call_pending (); 1142 call_pending (EV_A);
692 } 1143 }
693 while (!ev_loop_done); 1144 while (activecnt && !loop_done);
694 1145
695 if (ev_loop_done != 2) 1146 if (loop_done != 2)
696 ev_loop_done = 0; 1147 loop_done = 0;
1148}
1149
1150void
1151ev_unloop (EV_P_ int how)
1152{
1153 loop_done = how;
697} 1154}
698 1155
699/*****************************************************************************/ 1156/*****************************************************************************/
700 1157
701static void 1158inline void
702wlist_add (WL *head, WL elem) 1159wlist_add (WL *head, WL elem)
703{ 1160{
704 elem->next = *head; 1161 elem->next = *head;
705 *head = elem; 1162 *head = elem;
706} 1163}
707 1164
708static void 1165inline void
709wlist_del (WL *head, WL elem) 1166wlist_del (WL *head, WL elem)
710{ 1167{
711 while (*head) 1168 while (*head)
712 { 1169 {
713 if (*head == elem) 1170 if (*head == elem)
718 1175
719 head = &(*head)->next; 1176 head = &(*head)->next;
720 } 1177 }
721} 1178}
722 1179
723static void 1180inline void
724ev_clear (W w) 1181ev_clear_pending (EV_P_ W w)
725{ 1182{
726 if (w->pending) 1183 if (w->pending)
727 { 1184 {
728 pendings [w->pending - 1].w = 0; 1185 pendings [ABSPRI (w)][w->pending - 1].w = 0;
729 w->pending = 0; 1186 w->pending = 0;
730 } 1187 }
731} 1188}
732 1189
733static void 1190inline void
734ev_start (W w, int active) 1191ev_start (EV_P_ W w, int active)
735{ 1192{
1193 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1194 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1195
736 w->active = active; 1196 w->active = active;
1197 ev_ref (EV_A);
737} 1198}
738 1199
739static void 1200inline void
740ev_stop (W w) 1201ev_stop (EV_P_ W w)
741{ 1202{
1203 ev_unref (EV_A);
742 w->active = 0; 1204 w->active = 0;
743} 1205}
744 1206
745/*****************************************************************************/ 1207/*****************************************************************************/
746 1208
747void 1209void
748ev_io_start (struct ev_io *w) 1210ev_io_start (EV_P_ struct ev_io *w)
749{ 1211{
1212 int fd = w->fd;
1213
750 if (ev_is_active (w)) 1214 if (ev_is_active (w))
751 return; 1215 return;
752 1216
753 int fd = w->fd; 1217 assert (("ev_io_start called with negative fd", fd >= 0));
754 1218
755 ev_start ((W)w, 1); 1219 ev_start (EV_A_ (W)w, 1);
756 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1220 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
757 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1221 wlist_add ((WL *)&anfds[fd].head, (WL)w);
758 1222
759 fd_change (fd); 1223 fd_change (EV_A_ fd);
760} 1224}
761 1225
762void 1226void
763ev_io_stop (struct ev_io *w) 1227ev_io_stop (EV_P_ struct ev_io *w)
764{ 1228{
765 ev_clear ((W)w); 1229 ev_clear_pending (EV_A_ (W)w);
766 if (!ev_is_active (w)) 1230 if (!ev_is_active (w))
767 return; 1231 return;
768 1232
769 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1233 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
770 ev_stop ((W)w); 1234 ev_stop (EV_A_ (W)w);
771 1235
772 fd_change (w->fd); 1236 fd_change (EV_A_ w->fd);
773} 1237}
774 1238
775void 1239void
776ev_timer_start (struct ev_timer *w) 1240ev_timer_start (EV_P_ struct ev_timer *w)
777{ 1241{
778 if (ev_is_active (w)) 1242 if (ev_is_active (w))
779 return; 1243 return;
780 1244
781 w->at += now; 1245 ((WT)w)->at += mn_now;
782 1246
783 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1247 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
784 1248
785 ev_start ((W)w, ++timercnt); 1249 ev_start (EV_A_ (W)w, ++timercnt);
786 array_needsize (timers, timermax, timercnt, ); 1250 array_needsize (timers, timermax, timercnt, (void));
787 timers [timercnt - 1] = w; 1251 timers [timercnt - 1] = w;
788 upheap ((WT *)timers, timercnt - 1); 1252 upheap ((WT *)timers, timercnt - 1);
789}
790 1253
1254 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1255}
1256
791void 1257void
792ev_timer_stop (struct ev_timer *w) 1258ev_timer_stop (EV_P_ struct ev_timer *w)
793{ 1259{
794 ev_clear ((W)w); 1260 ev_clear_pending (EV_A_ (W)w);
795 if (!ev_is_active (w)) 1261 if (!ev_is_active (w))
796 return; 1262 return;
797 1263
1264 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1265
798 if (w->active < timercnt--) 1266 if (((W)w)->active < timercnt--)
799 { 1267 {
800 timers [w->active - 1] = timers [timercnt]; 1268 timers [((W)w)->active - 1] = timers [timercnt];
801 downheap ((WT *)timers, timercnt, w->active - 1); 1269 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
802 } 1270 }
803 1271
804 w->at = w->repeat; 1272 ((WT)w)->at = w->repeat;
805 1273
806 ev_stop ((W)w); 1274 ev_stop (EV_A_ (W)w);
807} 1275}
808 1276
809void 1277void
810ev_timer_again (struct ev_timer *w) 1278ev_timer_again (EV_P_ struct ev_timer *w)
811{ 1279{
812 if (ev_is_active (w)) 1280 if (ev_is_active (w))
813 { 1281 {
814 if (w->repeat) 1282 if (w->repeat)
815 { 1283 {
816 w->at = now + w->repeat; 1284 ((WT)w)->at = mn_now + w->repeat;
817 downheap ((WT *)timers, timercnt, w->active - 1); 1285 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
818 } 1286 }
819 else 1287 else
820 ev_timer_stop (w); 1288 ev_timer_stop (EV_A_ w);
821 } 1289 }
822 else if (w->repeat) 1290 else if (w->repeat)
823 ev_timer_start (w); 1291 ev_timer_start (EV_A_ w);
824} 1292}
825 1293
826void 1294void
827ev_periodic_start (struct ev_periodic *w) 1295ev_periodic_start (EV_P_ struct ev_periodic *w)
828{ 1296{
829 if (ev_is_active (w)) 1297 if (ev_is_active (w))
830 return; 1298 return;
831 1299
832 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1300 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
833 1301
834 /* this formula differs from the one in periodic_reify because we do not always round up */ 1302 /* this formula differs from the one in periodic_reify because we do not always round up */
835 if (w->interval) 1303 if (w->interval)
836 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1304 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
837 1305
838 ev_start ((W)w, ++periodiccnt); 1306 ev_start (EV_A_ (W)w, ++periodiccnt);
839 array_needsize (periodics, periodicmax, periodiccnt, ); 1307 array_needsize (periodics, periodicmax, periodiccnt, (void));
840 periodics [periodiccnt - 1] = w; 1308 periodics [periodiccnt - 1] = w;
841 upheap ((WT *)periodics, periodiccnt - 1); 1309 upheap ((WT *)periodics, periodiccnt - 1);
842}
843 1310
1311 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1312}
1313
844void 1314void
845ev_periodic_stop (struct ev_periodic *w) 1315ev_periodic_stop (EV_P_ struct ev_periodic *w)
846{ 1316{
847 ev_clear ((W)w); 1317 ev_clear_pending (EV_A_ (W)w);
848 if (!ev_is_active (w)) 1318 if (!ev_is_active (w))
849 return; 1319 return;
850 1320
1321 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1322
851 if (w->active < periodiccnt--) 1323 if (((W)w)->active < periodiccnt--)
852 { 1324 {
853 periodics [w->active - 1] = periodics [periodiccnt]; 1325 periodics [((W)w)->active - 1] = periodics [periodiccnt];
854 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1326 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
855 } 1327 }
856 1328
857 ev_stop ((W)w); 1329 ev_stop (EV_A_ (W)w);
858} 1330}
859 1331
860void 1332void
861ev_signal_start (struct ev_signal *w) 1333ev_idle_start (EV_P_ struct ev_idle *w)
862{ 1334{
863 if (ev_is_active (w)) 1335 if (ev_is_active (w))
864 return; 1336 return;
865 1337
1338 ev_start (EV_A_ (W)w, ++idlecnt);
1339 array_needsize (idles, idlemax, idlecnt, (void));
1340 idles [idlecnt - 1] = w;
1341}
1342
1343void
1344ev_idle_stop (EV_P_ struct ev_idle *w)
1345{
1346 ev_clear_pending (EV_A_ (W)w);
1347 if (ev_is_active (w))
1348 return;
1349
1350 idles [((W)w)->active - 1] = idles [--idlecnt];
1351 ev_stop (EV_A_ (W)w);
1352}
1353
1354void
1355ev_prepare_start (EV_P_ struct ev_prepare *w)
1356{
1357 if (ev_is_active (w))
1358 return;
1359
1360 ev_start (EV_A_ (W)w, ++preparecnt);
1361 array_needsize (prepares, preparemax, preparecnt, (void));
1362 prepares [preparecnt - 1] = w;
1363}
1364
1365void
1366ev_prepare_stop (EV_P_ struct ev_prepare *w)
1367{
1368 ev_clear_pending (EV_A_ (W)w);
1369 if (ev_is_active (w))
1370 return;
1371
1372 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1373 ev_stop (EV_A_ (W)w);
1374}
1375
1376void
1377ev_check_start (EV_P_ struct ev_check *w)
1378{
1379 if (ev_is_active (w))
1380 return;
1381
1382 ev_start (EV_A_ (W)w, ++checkcnt);
1383 array_needsize (checks, checkmax, checkcnt, (void));
1384 checks [checkcnt - 1] = w;
1385}
1386
1387void
1388ev_check_stop (EV_P_ struct ev_check *w)
1389{
1390 ev_clear_pending (EV_A_ (W)w);
1391 if (ev_is_active (w))
1392 return;
1393
1394 checks [((W)w)->active - 1] = checks [--checkcnt];
1395 ev_stop (EV_A_ (W)w);
1396}
1397
1398#ifndef SA_RESTART
1399# define SA_RESTART 0
1400#endif
1401
1402void
1403ev_signal_start (EV_P_ struct ev_signal *w)
1404{
1405#if EV_MULTIPLICITY
1406 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1407#endif
1408 if (ev_is_active (w))
1409 return;
1410
1411 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1412
866 ev_start ((W)w, 1); 1413 ev_start (EV_A_ (W)w, 1);
867 array_needsize (signals, signalmax, w->signum, signals_init); 1414 array_needsize (signals, signalmax, w->signum, signals_init);
868 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1415 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
869 1416
870 if (!w->next) 1417 if (!((WL)w)->next)
871 { 1418 {
1419#if WIN32
1420 signal (w->signum, sighandler);
1421#else
872 struct sigaction sa; 1422 struct sigaction sa;
873 sa.sa_handler = sighandler; 1423 sa.sa_handler = sighandler;
874 sigfillset (&sa.sa_mask); 1424 sigfillset (&sa.sa_mask);
875 sa.sa_flags = 0; 1425 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
876 sigaction (w->signum, &sa, 0); 1426 sigaction (w->signum, &sa, 0);
1427#endif
877 } 1428 }
878} 1429}
879 1430
880void 1431void
881ev_signal_stop (struct ev_signal *w) 1432ev_signal_stop (EV_P_ struct ev_signal *w)
882{ 1433{
883 ev_clear ((W)w); 1434 ev_clear_pending (EV_A_ (W)w);
884 if (!ev_is_active (w)) 1435 if (!ev_is_active (w))
885 return; 1436 return;
886 1437
887 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1438 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
888 ev_stop ((W)w); 1439 ev_stop (EV_A_ (W)w);
889 1440
890 if (!signals [w->signum - 1].head) 1441 if (!signals [w->signum - 1].head)
891 signal (w->signum, SIG_DFL); 1442 signal (w->signum, SIG_DFL);
892} 1443}
893 1444
894void 1445void
895ev_idle_start (struct ev_idle *w) 1446ev_child_start (EV_P_ struct ev_child *w)
896{ 1447{
1448#if EV_MULTIPLICITY
1449 assert (("child watchers are only supported in the default loop", loop == default_loop));
1450#endif
897 if (ev_is_active (w)) 1451 if (ev_is_active (w))
898 return; 1452 return;
899 1453
900 ev_start ((W)w, ++idlecnt); 1454 ev_start (EV_A_ (W)w, 1);
901 array_needsize (idles, idlemax, idlecnt, ); 1455 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
902 idles [idlecnt - 1] = w;
903} 1456}
904 1457
905void 1458void
906ev_idle_stop (struct ev_idle *w) 1459ev_child_stop (EV_P_ struct ev_child *w)
907{ 1460{
908 ev_clear ((W)w); 1461 ev_clear_pending (EV_A_ (W)w);
909 if (ev_is_active (w)) 1462 if (ev_is_active (w))
910 return; 1463 return;
911 1464
912 idles [w->active - 1] = idles [--idlecnt];
913 ev_stop ((W)w);
914}
915
916void
917ev_prepare_start (struct ev_prepare *w)
918{
919 if (ev_is_active (w))
920 return;
921
922 ev_start ((W)w, ++preparecnt);
923 array_needsize (prepares, preparemax, preparecnt, );
924 prepares [preparecnt - 1] = w;
925}
926
927void
928ev_prepare_stop (struct ev_prepare *w)
929{
930 ev_clear ((W)w);
931 if (ev_is_active (w))
932 return;
933
934 prepares [w->active - 1] = prepares [--preparecnt];
935 ev_stop ((W)w);
936}
937
938void
939ev_check_start (struct ev_check *w)
940{
941 if (ev_is_active (w))
942 return;
943
944 ev_start ((W)w, ++checkcnt);
945 array_needsize (checks, checkmax, checkcnt, );
946 checks [checkcnt - 1] = w;
947}
948
949void
950ev_check_stop (struct ev_check *w)
951{
952 ev_clear ((W)w);
953 if (ev_is_active (w))
954 return;
955
956 checks [w->active - 1] = checks [--checkcnt];
957 ev_stop ((W)w);
958}
959
960void
961ev_child_start (struct ev_child *w)
962{
963 if (ev_is_active (w))
964 return;
965
966 ev_start ((W)w, 1);
967 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
968}
969
970void
971ev_child_stop (struct ev_child *w)
972{
973 ev_clear ((W)w);
974 if (ev_is_active (w))
975 return;
976
977 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1465 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
978 ev_stop ((W)w); 1466 ev_stop (EV_A_ (W)w);
979} 1467}
980 1468
981/*****************************************************************************/ 1469/*****************************************************************************/
982 1470
983struct ev_once 1471struct ev_once
987 void (*cb)(int revents, void *arg); 1475 void (*cb)(int revents, void *arg);
988 void *arg; 1476 void *arg;
989}; 1477};
990 1478
991static void 1479static void
992once_cb (struct ev_once *once, int revents) 1480once_cb (EV_P_ struct ev_once *once, int revents)
993{ 1481{
994 void (*cb)(int revents, void *arg) = once->cb; 1482 void (*cb)(int revents, void *arg) = once->cb;
995 void *arg = once->arg; 1483 void *arg = once->arg;
996 1484
997 ev_io_stop (&once->io); 1485 ev_io_stop (EV_A_ &once->io);
998 ev_timer_stop (&once->to); 1486 ev_timer_stop (EV_A_ &once->to);
999 free (once); 1487 ev_free (once);
1000 1488
1001 cb (revents, arg); 1489 cb (revents, arg);
1002} 1490}
1003 1491
1004static void 1492static void
1005once_cb_io (struct ev_io *w, int revents) 1493once_cb_io (EV_P_ struct ev_io *w, int revents)
1006{ 1494{
1007 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1495 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1008} 1496}
1009 1497
1010static void 1498static void
1011once_cb_to (struct ev_timer *w, int revents) 1499once_cb_to (EV_P_ struct ev_timer *w, int revents)
1012{ 1500{
1013 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1501 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1014} 1502}
1015 1503
1016void 1504void
1017ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1505ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1018{ 1506{
1019 struct ev_once *once = malloc (sizeof (struct ev_once)); 1507 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1020 1508
1021 if (!once) 1509 if (!once)
1022 cb (EV_ERROR, arg); 1510 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1023 else 1511 else
1024 { 1512 {
1025 once->cb = cb; 1513 once->cb = cb;
1026 once->arg = arg; 1514 once->arg = arg;
1027 1515
1028 ev_watcher_init (&once->io, once_cb_io); 1516 ev_watcher_init (&once->io, once_cb_io);
1029
1030 if (fd >= 0) 1517 if (fd >= 0)
1031 { 1518 {
1032 ev_io_set (&once->io, fd, events); 1519 ev_io_set (&once->io, fd, events);
1033 ev_io_start (&once->io); 1520 ev_io_start (EV_A_ &once->io);
1034 } 1521 }
1035 1522
1036 ev_watcher_init (&once->to, once_cb_to); 1523 ev_watcher_init (&once->to, once_cb_to);
1037
1038 if (timeout >= 0.) 1524 if (timeout >= 0.)
1039 { 1525 {
1040 ev_timer_set (&once->to, timeout, 0.); 1526 ev_timer_set (&once->to, timeout, 0.);
1041 ev_timer_start (&once->to); 1527 ev_timer_start (EV_A_ &once->to);
1042 } 1528 }
1043 } 1529 }
1044} 1530}
1045 1531
1046/*****************************************************************************/
1047
1048#if 0
1049
1050struct ev_io wio;
1051
1052static void
1053sin_cb (struct ev_io *w, int revents)
1054{
1055 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1056}
1057
1058static void
1059ocb (struct ev_timer *w, int revents)
1060{
1061 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1062 ev_timer_stop (w);
1063 ev_timer_start (w);
1064}
1065
1066static void
1067scb (struct ev_signal *w, int revents)
1068{
1069 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1070 ev_io_stop (&wio);
1071 ev_io_start (&wio);
1072}
1073
1074static void
1075gcb (struct ev_signal *w, int revents)
1076{
1077 fprintf (stderr, "generic %x\n", revents);
1078
1079}
1080
1081int main (void)
1082{
1083 ev_init (0);
1084
1085 ev_io_init (&wio, sin_cb, 0, EV_READ);
1086 ev_io_start (&wio);
1087
1088 struct ev_timer t[10000];
1089
1090#if 0
1091 int i;
1092 for (i = 0; i < 10000; ++i)
1093 {
1094 struct ev_timer *w = t + i;
1095 ev_watcher_init (w, ocb, i);
1096 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1097 ev_timer_start (w);
1098 if (drand48 () < 0.5)
1099 ev_timer_stop (w);
1100 }
1101#endif
1102
1103 struct ev_timer t1;
1104 ev_timer_init (&t1, ocb, 5, 10);
1105 ev_timer_start (&t1);
1106
1107 struct ev_signal sig;
1108 ev_signal_init (&sig, scb, SIGQUIT);
1109 ev_signal_start (&sig);
1110
1111 struct ev_check cw;
1112 ev_check_init (&cw, gcb);
1113 ev_check_start (&cw);
1114
1115 struct ev_idle iw;
1116 ev_idle_init (&iw, gcb);
1117 ev_idle_start (&iw);
1118
1119 ev_loop (0);
1120
1121 return 0;
1122}
1123
1124#endif
1125
1126
1127
1128

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines