ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.71 by root, Tue Nov 6 13:17:55 2007 UTC vs.
Revision 1.78 by root, Thu Nov 8 21:08:56 2007 UTC

64#include <assert.h> 64#include <assert.h>
65#include <errno.h> 65#include <errno.h>
66#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h> 67#include <time.h>
68 68
69#ifndef PERL
70# include <signal.h> 69#include <signal.h>
71#endif
72 70
73#ifndef WIN32 71#ifndef WIN32
74# include <unistd.h> 72# include <unistd.h>
75# include <sys/time.h> 73# include <sys/time.h>
76# include <sys/wait.h> 74# include <sys/wait.h>
150typedef struct ev_watcher_list *WL; 148typedef struct ev_watcher_list *WL;
151typedef struct ev_watcher_time *WT; 149typedef struct ev_watcher_time *WT;
152 150
153static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
154 152
155#if WIN32 153#include "ev_win32.c"
156/* note: the comment below could not be substantiated, but what would I care */
157/* MSDN says this is required to handle SIGFPE */
158volatile double SIGFPE_REQ = 0.0f;
159#endif
160 154
161/*****************************************************************************/ 155/*****************************************************************************/
162 156
163static void (*syserr_cb)(const char *msg); 157static void (*syserr_cb)(const char *msg);
164 158
274ev_now (EV_P) 268ev_now (EV_P)
275{ 269{
276 return rt_now; 270 return rt_now;
277} 271}
278 272
279#define array_roundsize(base,n) ((n) | 4 & ~3) 273#define array_roundsize(type,n) ((n) | 4 & ~3)
280 274
281#define array_needsize(base,cur,cnt,init) \ 275#define array_needsize(type,base,cur,cnt,init) \
282 if (expect_false ((cnt) > cur)) \ 276 if (expect_false ((cnt) > cur)) \
283 { \ 277 { \
284 int newcnt = cur; \ 278 int newcnt = cur; \
285 do \ 279 do \
286 { \ 280 { \
287 newcnt = array_roundsize (base, newcnt << 1); \ 281 newcnt = array_roundsize (type, newcnt << 1); \
288 } \ 282 } \
289 while ((cnt) > newcnt); \ 283 while ((cnt) > newcnt); \
290 \ 284 \
291 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
292 init (base + cur, newcnt - cur); \ 286 init (base + cur, newcnt - cur); \
293 cur = newcnt; \ 287 cur = newcnt; \
294 } 288 }
295 289
296#define array_slim(stem) \ 290#define array_slim(type,stem) \
297 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
298 { \ 292 { \
299 stem ## max = array_roundsize (stem ## cnt >> 1); \ 293 stem ## max = array_roundsize (stem ## cnt >> 1); \
300 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
301 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
302 } 296 }
303 297
304/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */ 298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
305/* bringing us everlasting joy in form of stupid extra macros that are not required in C */ 299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
322 316
323 ++base; 317 ++base;
324 } 318 }
325} 319}
326 320
327static void 321void
328event (EV_P_ W w, int events) 322ev_feed_event (EV_P_ void *w, int revents)
329{ 323{
324 W w_ = (W)w;
325
330 if (w->pending) 326 if (w_->pending)
331 { 327 {
332 pendings [ABSPRI (w)][w->pending - 1].events |= events; 328 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
333 return; 329 return;
334 } 330 }
335 331
336 w->pending = ++pendingcnt [ABSPRI (w)]; 332 w_->pending = ++pendingcnt [ABSPRI (w_)];
337 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 333 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
338 pendings [ABSPRI (w)][w->pending - 1].w = w; 334 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
339 pendings [ABSPRI (w)][w->pending - 1].events = events; 335 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
340} 336}
341 337
342static void 338static void
343queue_events (EV_P_ W *events, int eventcnt, int type) 339queue_events (EV_P_ W *events, int eventcnt, int type)
344{ 340{
345 int i; 341 int i;
346 342
347 for (i = 0; i < eventcnt; ++i) 343 for (i = 0; i < eventcnt; ++i)
348 event (EV_A_ events [i], type); 344 ev_feed_event (EV_A_ events [i], type);
349} 345}
350 346
351static void 347static void
352fd_event (EV_P_ int fd, int events) 348fd_event (EV_P_ int fd, int events)
353{ 349{
357 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 353 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
358 { 354 {
359 int ev = w->events & events; 355 int ev = w->events & events;
360 356
361 if (ev) 357 if (ev)
362 event (EV_A_ (W)w, ev); 358 ev_feed_event (EV_A_ (W)w, ev);
363 } 359 }
364} 360}
365 361
366/*****************************************************************************/ 362/*****************************************************************************/
367 363
397 return; 393 return;
398 394
399 anfds [fd].reify = 1; 395 anfds [fd].reify = 1;
400 396
401 ++fdchangecnt; 397 ++fdchangecnt;
402 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 398 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
403 fdchanges [fdchangecnt - 1] = fd; 399 fdchanges [fdchangecnt - 1] = fd;
404} 400}
405 401
406static void 402static void
407fd_kill (EV_P_ int fd) 403fd_kill (EV_P_ int fd)
409 struct ev_io *w; 405 struct ev_io *w;
410 406
411 while ((w = (struct ev_io *)anfds [fd].head)) 407 while ((w = (struct ev_io *)anfds [fd].head))
412 { 408 {
413 ev_io_stop (EV_A_ w); 409 ev_io_stop (EV_A_ w);
414 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 410 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
415 } 411 }
416} 412}
417 413
418static int 414static int
419fd_valid (int fd) 415fd_valid (int fd)
547 543
548 if (!gotsig) 544 if (!gotsig)
549 { 545 {
550 int old_errno = errno; 546 int old_errno = errno;
551 gotsig = 1; 547 gotsig = 1;
548#ifdef WIN32
549 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
550#else
552 write (sigpipe [1], &signum, 1); 551 write (sigpipe [1], &signum, 1);
552#endif
553 errno = old_errno; 553 errno = old_errno;
554 } 554 }
555} 555}
556 556
557static void 557static void
558sigcb (EV_P_ struct ev_io *iow, int revents) 558sigcb (EV_P_ struct ev_io *iow, int revents)
559{ 559{
560 WL w; 560 WL w;
561 int signum; 561 int signum;
562 562
563#ifdef WIN32
564 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
565#else
563 read (sigpipe [0], &revents, 1); 566 read (sigpipe [0], &revents, 1);
567#endif
564 gotsig = 0; 568 gotsig = 0;
565 569
566 for (signum = signalmax; signum--; ) 570 for (signum = signalmax; signum--; )
567 if (signals [signum].gotsig) 571 if (signals [signum].gotsig)
568 { 572 {
569 signals [signum].gotsig = 0; 573 signals [signum].gotsig = 0;
570 574
571 for (w = signals [signum].head; w; w = w->next) 575 for (w = signals [signum].head; w; w = w->next)
572 event (EV_A_ (W)w, EV_SIGNAL); 576 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
573 } 577 }
574} 578}
575 579
576static void 580static void
577siginit (EV_P) 581siginit (EV_P)
611 if (w->pid == pid || !w->pid) 615 if (w->pid == pid || !w->pid)
612 { 616 {
613 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 617 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
614 w->rpid = pid; 618 w->rpid = pid;
615 w->rstatus = status; 619 w->rstatus = status;
616 event (EV_A_ (W)w, EV_CHILD); 620 ev_feed_event (EV_A_ (W)w, EV_CHILD);
617 } 621 }
618} 622}
619 623
620static void 624static void
621childcb (EV_P_ struct ev_signal *sw, int revents) 625childcb (EV_P_ struct ev_signal *sw, int revents)
623 int pid, status; 627 int pid, status;
624 628
625 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 629 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
626 { 630 {
627 /* make sure we are called again until all childs have been reaped */ 631 /* make sure we are called again until all childs have been reaped */
628 event (EV_A_ (W)sw, EV_SIGNAL); 632 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
629 633
630 child_reap (EV_A_ sw, pid, pid, status); 634 child_reap (EV_A_ sw, pid, pid, status);
631 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 635 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
632 } 636 }
633} 637}
894 if (method) 898 if (method)
895 postfork = 1; 899 postfork = 1;
896} 900}
897 901
898/*****************************************************************************/ 902/*****************************************************************************/
903
904static int
905any_pending (EV_P)
906{
907 int pri;
908
909 for (pri = NUMPRI; pri--; )
910 if (pendingcnt [pri])
911 return 1;
912
913 return 0;
914}
899 915
900static void 916static void
901call_pending (EV_P) 917call_pending (EV_P)
902{ 918{
903 int pri; 919 int pri;
932 downheap ((WT *)timers, timercnt, 0); 948 downheap ((WT *)timers, timercnt, 0);
933 } 949 }
934 else 950 else
935 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 951 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
936 952
937 event (EV_A_ (W)w, EV_TIMEOUT); 953 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
938 } 954 }
939} 955}
940 956
941static void 957static void
942periodics_reify (EV_P) 958periodics_reify (EV_P)
946 struct ev_periodic *w = periodics [0]; 962 struct ev_periodic *w = periodics [0];
947 963
948 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 964 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
949 965
950 /* first reschedule or stop timer */ 966 /* first reschedule or stop timer */
967 if (w->reschedule_cb)
968 {
969 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
970
971 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
972 downheap ((WT *)periodics, periodiccnt, 0);
973 }
951 if (w->interval) 974 else if (w->interval)
952 { 975 {
953 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 976 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
954 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 977 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
955 downheap ((WT *)periodics, periodiccnt, 0); 978 downheap ((WT *)periodics, periodiccnt, 0);
956 } 979 }
957 else 980 else
958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 981 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
959 982
960 event (EV_A_ (W)w, EV_PERIODIC); 983 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
961 } 984 }
962} 985}
963 986
964static void 987static void
965periodics_reschedule (EV_P) 988periodics_reschedule (EV_P)
969 /* adjust periodics after time jump */ 992 /* adjust periodics after time jump */
970 for (i = 0; i < periodiccnt; ++i) 993 for (i = 0; i < periodiccnt; ++i)
971 { 994 {
972 struct ev_periodic *w = periodics [i]; 995 struct ev_periodic *w = periodics [i];
973 996
997 if (w->reschedule_cb)
998 ((WT)w)->at = w->reschedule_cb (w, rt_now);
974 if (w->interval) 999 else if (w->interval)
975 {
976 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1000 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
977
978 if (fabs (diff) >= 1e-4)
979 {
980 ev_periodic_stop (EV_A_ w);
981 ev_periodic_start (EV_A_ w);
982
983 i = 0; /* restart loop, inefficient, but time jumps should be rare */
984 }
985 }
986 } 1001 }
1002
1003 /* now rebuild the heap */
1004 for (i = periodiccnt >> 1; i--; )
1005 downheap ((WT *)periodics, periodiccnt, i);
987} 1006}
988 1007
989inline int 1008inline int
990time_update_monotonic (EV_P) 1009time_update_monotonic (EV_P)
991{ 1010{
1087 /* update fd-related kernel structures */ 1106 /* update fd-related kernel structures */
1088 fd_reify (EV_A); 1107 fd_reify (EV_A);
1089 1108
1090 /* calculate blocking time */ 1109 /* calculate blocking time */
1091 1110
1092 /* we only need this for !monotonic clockor timers, but as we basically 1111 /* we only need this for !monotonic clock or timers, but as we basically
1093 always have timers, we just calculate it always */ 1112 always have timers, we just calculate it always */
1094#if EV_USE_MONOTONIC 1113#if EV_USE_MONOTONIC
1095 if (expect_true (have_monotonic)) 1114 if (expect_true (have_monotonic))
1096 time_update_monotonic (EV_A); 1115 time_update_monotonic (EV_A);
1097 else 1116 else
1130 /* queue pending timers and reschedule them */ 1149 /* queue pending timers and reschedule them */
1131 timers_reify (EV_A); /* relative timers called last */ 1150 timers_reify (EV_A); /* relative timers called last */
1132 periodics_reify (EV_A); /* absolute timers called first */ 1151 periodics_reify (EV_A); /* absolute timers called first */
1133 1152
1134 /* queue idle watchers unless io or timers are pending */ 1153 /* queue idle watchers unless io or timers are pending */
1135 if (!pendingcnt) 1154 if (idlecnt && !any_pending (EV_A))
1136 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1155 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1137 1156
1138 /* queue check watchers, to be executed first */ 1157 /* queue check watchers, to be executed first */
1139 if (checkcnt) 1158 if (checkcnt)
1140 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1159 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1215 return; 1234 return;
1216 1235
1217 assert (("ev_io_start called with negative fd", fd >= 0)); 1236 assert (("ev_io_start called with negative fd", fd >= 0));
1218 1237
1219 ev_start (EV_A_ (W)w, 1); 1238 ev_start (EV_A_ (W)w, 1);
1220 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1239 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1221 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1240 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1222 1241
1223 fd_change (EV_A_ fd); 1242 fd_change (EV_A_ fd);
1224} 1243}
1225 1244
1245 ((WT)w)->at += mn_now; 1264 ((WT)w)->at += mn_now;
1246 1265
1247 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1266 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1248 1267
1249 ev_start (EV_A_ (W)w, ++timercnt); 1268 ev_start (EV_A_ (W)w, ++timercnt);
1250 array_needsize (timers, timermax, timercnt, (void)); 1269 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1251 timers [timercnt - 1] = w; 1270 timers [timercnt - 1] = w;
1252 upheap ((WT *)timers, timercnt - 1); 1271 upheap ((WT *)timers, timercnt - 1);
1253 1272
1254 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1273 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1255} 1274}
1295ev_periodic_start (EV_P_ struct ev_periodic *w) 1314ev_periodic_start (EV_P_ struct ev_periodic *w)
1296{ 1315{
1297 if (ev_is_active (w)) 1316 if (ev_is_active (w))
1298 return; 1317 return;
1299 1318
1319 if (w->reschedule_cb)
1320 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1321 else if (w->interval)
1322 {
1300 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1323 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1301
1302 /* this formula differs from the one in periodic_reify because we do not always round up */ 1324 /* this formula differs from the one in periodic_reify because we do not always round up */
1303 if (w->interval)
1304 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1325 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1326 }
1305 1327
1306 ev_start (EV_A_ (W)w, ++periodiccnt); 1328 ev_start (EV_A_ (W)w, ++periodiccnt);
1307 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1329 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1308 periodics [periodiccnt - 1] = w; 1330 periodics [periodiccnt - 1] = w;
1309 upheap ((WT *)periodics, periodiccnt - 1); 1331 upheap ((WT *)periodics, periodiccnt - 1);
1310 1332
1311 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1333 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1312} 1334}
1328 1350
1329 ev_stop (EV_A_ (W)w); 1351 ev_stop (EV_A_ (W)w);
1330} 1352}
1331 1353
1332void 1354void
1355ev_periodic_again (EV_P_ struct ev_periodic *w)
1356{
1357 ev_periodic_stop (EV_A_ w);
1358 ev_periodic_start (EV_A_ w);
1359}
1360
1361void
1333ev_idle_start (EV_P_ struct ev_idle *w) 1362ev_idle_start (EV_P_ struct ev_idle *w)
1334{ 1363{
1335 if (ev_is_active (w)) 1364 if (ev_is_active (w))
1336 return; 1365 return;
1337 1366
1338 ev_start (EV_A_ (W)w, ++idlecnt); 1367 ev_start (EV_A_ (W)w, ++idlecnt);
1339 array_needsize (idles, idlemax, idlecnt, (void)); 1368 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1340 idles [idlecnt - 1] = w; 1369 idles [idlecnt - 1] = w;
1341} 1370}
1342 1371
1343void 1372void
1344ev_idle_stop (EV_P_ struct ev_idle *w) 1373ev_idle_stop (EV_P_ struct ev_idle *w)
1356{ 1385{
1357 if (ev_is_active (w)) 1386 if (ev_is_active (w))
1358 return; 1387 return;
1359 1388
1360 ev_start (EV_A_ (W)w, ++preparecnt); 1389 ev_start (EV_A_ (W)w, ++preparecnt);
1361 array_needsize (prepares, preparemax, preparecnt, (void)); 1390 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1362 prepares [preparecnt - 1] = w; 1391 prepares [preparecnt - 1] = w;
1363} 1392}
1364 1393
1365void 1394void
1366ev_prepare_stop (EV_P_ struct ev_prepare *w) 1395ev_prepare_stop (EV_P_ struct ev_prepare *w)
1378{ 1407{
1379 if (ev_is_active (w)) 1408 if (ev_is_active (w))
1380 return; 1409 return;
1381 1410
1382 ev_start (EV_A_ (W)w, ++checkcnt); 1411 ev_start (EV_A_ (W)w, ++checkcnt);
1383 array_needsize (checks, checkmax, checkcnt, (void)); 1412 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1384 checks [checkcnt - 1] = w; 1413 checks [checkcnt - 1] = w;
1385} 1414}
1386 1415
1387void 1416void
1388ev_check_stop (EV_P_ struct ev_check *w) 1417ev_check_stop (EV_P_ struct ev_check *w)
1409 return; 1438 return;
1410 1439
1411 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1440 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1412 1441
1413 ev_start (EV_A_ (W)w, 1); 1442 ev_start (EV_A_ (W)w, 1);
1414 array_needsize (signals, signalmax, w->signum, signals_init); 1443 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1415 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1444 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1416 1445
1417 if (!((WL)w)->next) 1446 if (!((WL)w)->next)
1418 { 1447 {
1419#if WIN32 1448#if WIN32
1502} 1531}
1503 1532
1504void 1533void
1505ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1534ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1506{ 1535{
1507 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1536 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1508 1537
1509 if (!once) 1538 if (!once)
1510 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1539 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1511 else 1540 else
1512 { 1541 {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines