ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.71 by root, Tue Nov 6 13:17:55 2007 UTC vs.
Revision 1.86 by root, Sat Nov 10 03:19:21 2007 UTC

64#include <assert.h> 64#include <assert.h>
65#include <errno.h> 65#include <errno.h>
66#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h> 67#include <time.h>
68 68
69#ifndef PERL
70# include <signal.h> 69#include <signal.h>
71#endif
72 70
73#ifndef WIN32 71#ifndef WIN32
74# include <unistd.h> 72# include <unistd.h>
75# include <sys/time.h> 73# include <sys/time.h>
76# include <sys/wait.h> 74# include <sys/wait.h>
128#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
129#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
130#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
131/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
132 130
131#ifdef EV_H
132# include EV_H
133#else
133#include "ev.h" 134# include "ev.h"
135#endif
134 136
135#if __GNUC__ >= 3 137#if __GNUC__ >= 3
136# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
137# define inline inline 139# define inline inline
138#else 140#else
150typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
151typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
152 154
153static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
154 156
155#if WIN32 157#include "ev_win32.c"
156/* note: the comment below could not be substantiated, but what would I care */
157/* MSDN says this is required to handle SIGFPE */
158volatile double SIGFPE_REQ = 0.0f;
159#endif
160 158
161/*****************************************************************************/ 159/*****************************************************************************/
162 160
163static void (*syserr_cb)(const char *msg); 161static void (*syserr_cb)(const char *msg);
164 162
221 int events; 219 int events;
222} ANPENDING; 220} ANPENDING;
223 221
224#if EV_MULTIPLICITY 222#if EV_MULTIPLICITY
225 223
226struct ev_loop 224 struct ev_loop
227{ 225 {
226 ev_tstamp ev_rt_now;
228# define VAR(name,decl) decl; 227 #define VAR(name,decl) decl;
229# include "ev_vars.h" 228 #include "ev_vars.h"
230};
231# undef VAR 229 #undef VAR
230 };
232# include "ev_wrap.h" 231 #include "ev_wrap.h"
232
233 struct ev_loop default_loop_struct;
234 static struct ev_loop *default_loop;
233 235
234#else 236#else
235 237
238 ev_tstamp ev_rt_now;
236# define VAR(name,decl) static decl; 239 #define VAR(name,decl) static decl;
237# include "ev_vars.h" 240 #include "ev_vars.h"
238# undef VAR 241 #undef VAR
242
243 static int default_loop;
239 244
240#endif 245#endif
241 246
242/*****************************************************************************/ 247/*****************************************************************************/
243 248
268#endif 273#endif
269 274
270 return ev_time (); 275 return ev_time ();
271} 276}
272 277
278#if EV_MULTIPLICITY
273ev_tstamp 279ev_tstamp
274ev_now (EV_P) 280ev_now (EV_P)
275{ 281{
276 return rt_now; 282 return ev_rt_now;
277} 283}
284#endif
278 285
279#define array_roundsize(base,n) ((n) | 4 & ~3) 286#define array_roundsize(type,n) ((n) | 4 & ~3)
280 287
281#define array_needsize(base,cur,cnt,init) \ 288#define array_needsize(type,base,cur,cnt,init) \
282 if (expect_false ((cnt) > cur)) \ 289 if (expect_false ((cnt) > cur)) \
283 { \ 290 { \
284 int newcnt = cur; \ 291 int newcnt = cur; \
285 do \ 292 do \
286 { \ 293 { \
287 newcnt = array_roundsize (base, newcnt << 1); \ 294 newcnt = array_roundsize (type, newcnt << 1); \
288 } \ 295 } \
289 while ((cnt) > newcnt); \ 296 while ((cnt) > newcnt); \
290 \ 297 \
291 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 298 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
292 init (base + cur, newcnt - cur); \ 299 init (base + cur, newcnt - cur); \
293 cur = newcnt; \ 300 cur = newcnt; \
294 } 301 }
295 302
296#define array_slim(stem) \ 303#define array_slim(type,stem) \
297 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 304 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
298 { \ 305 { \
299 stem ## max = array_roundsize (stem ## cnt >> 1); \ 306 stem ## max = array_roundsize (stem ## cnt >> 1); \
300 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 307 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
301 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 308 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
302 } 309 }
303 310
304/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */ 311/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
305/* bringing us everlasting joy in form of stupid extra macros that are not required in C */ 312/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
322 329
323 ++base; 330 ++base;
324 } 331 }
325} 332}
326 333
327static void 334void
328event (EV_P_ W w, int events) 335ev_feed_event (EV_P_ void *w, int revents)
329{ 336{
337 W w_ = (W)w;
338
330 if (w->pending) 339 if (w_->pending)
331 { 340 {
332 pendings [ABSPRI (w)][w->pending - 1].events |= events; 341 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
333 return; 342 return;
334 } 343 }
335 344
336 w->pending = ++pendingcnt [ABSPRI (w)]; 345 w_->pending = ++pendingcnt [ABSPRI (w_)];
337 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 346 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
338 pendings [ABSPRI (w)][w->pending - 1].w = w; 347 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
339 pendings [ABSPRI (w)][w->pending - 1].events = events; 348 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
340} 349}
341 350
342static void 351static void
343queue_events (EV_P_ W *events, int eventcnt, int type) 352queue_events (EV_P_ W *events, int eventcnt, int type)
344{ 353{
345 int i; 354 int i;
346 355
347 for (i = 0; i < eventcnt; ++i) 356 for (i = 0; i < eventcnt; ++i)
348 event (EV_A_ events [i], type); 357 ev_feed_event (EV_A_ events [i], type);
349} 358}
350 359
351static void 360inline void
352fd_event (EV_P_ int fd, int events) 361fd_event (EV_P_ int fd, int revents)
353{ 362{
354 ANFD *anfd = anfds + fd; 363 ANFD *anfd = anfds + fd;
355 struct ev_io *w; 364 struct ev_io *w;
356 365
357 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 366 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
358 { 367 {
359 int ev = w->events & events; 368 int ev = w->events & revents;
360 369
361 if (ev) 370 if (ev)
362 event (EV_A_ (W)w, ev); 371 ev_feed_event (EV_A_ (W)w, ev);
363 } 372 }
373}
374
375void
376ev_feed_fd_event (EV_P_ int fd, int revents)
377{
378 fd_event (EV_A_ fd, revents);
364} 379}
365 380
366/*****************************************************************************/ 381/*****************************************************************************/
367 382
368static void 383static void
397 return; 412 return;
398 413
399 anfds [fd].reify = 1; 414 anfds [fd].reify = 1;
400 415
401 ++fdchangecnt; 416 ++fdchangecnt;
402 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 417 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
403 fdchanges [fdchangecnt - 1] = fd; 418 fdchanges [fdchangecnt - 1] = fd;
404} 419}
405 420
406static void 421static void
407fd_kill (EV_P_ int fd) 422fd_kill (EV_P_ int fd)
409 struct ev_io *w; 424 struct ev_io *w;
410 425
411 while ((w = (struct ev_io *)anfds [fd].head)) 426 while ((w = (struct ev_io *)anfds [fd].head))
412 { 427 {
413 ev_io_stop (EV_A_ w); 428 ev_io_stop (EV_A_ w);
414 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 429 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
415 } 430 }
416} 431}
417 432
418static int 433static int
419fd_valid (int fd) 434fd_valid (int fd)
507 522
508 heap [k] = w; 523 heap [k] = w;
509 ((W)heap [k])->active = k + 1; 524 ((W)heap [k])->active = k + 1;
510} 525}
511 526
527inline void
528adjustheap (WT *heap, int N, int k, ev_tstamp at)
529{
530 ev_tstamp old_at = heap [k]->at;
531 heap [k]->at = at;
532
533 if (old_at < at)
534 downheap (heap, N, k);
535 else
536 upheap (heap, k);
537}
538
512/*****************************************************************************/ 539/*****************************************************************************/
513 540
514typedef struct 541typedef struct
515{ 542{
516 WL head; 543 WL head;
547 574
548 if (!gotsig) 575 if (!gotsig)
549 { 576 {
550 int old_errno = errno; 577 int old_errno = errno;
551 gotsig = 1; 578 gotsig = 1;
579#ifdef WIN32
580 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
581#else
552 write (sigpipe [1], &signum, 1); 582 write (sigpipe [1], &signum, 1);
583#endif
553 errno = old_errno; 584 errno = old_errno;
554 } 585 }
555} 586}
556 587
588void
589ev_feed_signal_event (EV_P_ int signum)
590{
591 WL w;
592
593#if EV_MULTIPLICITY
594 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
595#endif
596
597 --signum;
598
599 if (signum < 0 || signum >= signalmax)
600 return;
601
602 signals [signum].gotsig = 0;
603
604 for (w = signals [signum].head; w; w = w->next)
605 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
606}
607
557static void 608static void
558sigcb (EV_P_ struct ev_io *iow, int revents) 609sigcb (EV_P_ struct ev_io *iow, int revents)
559{ 610{
560 WL w;
561 int signum; 611 int signum;
562 612
613#ifdef WIN32
614 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
615#else
563 read (sigpipe [0], &revents, 1); 616 read (sigpipe [0], &revents, 1);
617#endif
564 gotsig = 0; 618 gotsig = 0;
565 619
566 for (signum = signalmax; signum--; ) 620 for (signum = signalmax; signum--; )
567 if (signals [signum].gotsig) 621 if (signals [signum].gotsig)
568 { 622 ev_feed_signal_event (EV_A_ signum + 1);
569 signals [signum].gotsig = 0;
570
571 for (w = signals [signum].head; w; w = w->next)
572 event (EV_A_ (W)w, EV_SIGNAL);
573 }
574} 623}
575 624
576static void 625static void
577siginit (EV_P) 626siginit (EV_P)
578{ 627{
611 if (w->pid == pid || !w->pid) 660 if (w->pid == pid || !w->pid)
612 { 661 {
613 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 662 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
614 w->rpid = pid; 663 w->rpid = pid;
615 w->rstatus = status; 664 w->rstatus = status;
616 event (EV_A_ (W)w, EV_CHILD); 665 ev_feed_event (EV_A_ (W)w, EV_CHILD);
617 } 666 }
618} 667}
619 668
620static void 669static void
621childcb (EV_P_ struct ev_signal *sw, int revents) 670childcb (EV_P_ struct ev_signal *sw, int revents)
623 int pid, status; 672 int pid, status;
624 673
625 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 674 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
626 { 675 {
627 /* make sure we are called again until all childs have been reaped */ 676 /* make sure we are called again until all childs have been reaped */
628 event (EV_A_ (W)sw, EV_SIGNAL); 677 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
629 678
630 child_reap (EV_A_ sw, pid, pid, status); 679 child_reap (EV_A_ sw, pid, pid, status);
631 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 680 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
632 } 681 }
633} 682}
690 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 739 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
691 have_monotonic = 1; 740 have_monotonic = 1;
692 } 741 }
693#endif 742#endif
694 743
695 rt_now = ev_time (); 744 ev_rt_now = ev_time ();
696 mn_now = get_clock (); 745 mn_now = get_clock ();
697 now_floor = mn_now; 746 now_floor = mn_now;
698 rtmn_diff = rt_now - mn_now; 747 rtmn_diff = ev_rt_now - mn_now;
699 748
700 if (methods == EVMETHOD_AUTO) 749 if (methods == EVMETHOD_AUTO)
701 if (!enable_secure () && getenv ("LIBEV_METHODS")) 750 if (!enable_secure () && getenv ("LIBEV_METHODS"))
702 methods = atoi (getenv ("LIBEV_METHODS")); 751 methods = atoi (getenv ("LIBEV_METHODS"));
703 else 752 else
718#endif 767#endif
719#if EV_USE_SELECT 768#if EV_USE_SELECT
720 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 769 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
721#endif 770#endif
722 771
723 ev_watcher_init (&sigev, sigcb); 772 ev_init (&sigev, sigcb);
724 ev_set_priority (&sigev, EV_MAXPRI); 773 ev_set_priority (&sigev, EV_MAXPRI);
725 } 774 }
726} 775}
727 776
728void 777void
818} 867}
819 868
820#endif 869#endif
821 870
822#if EV_MULTIPLICITY 871#if EV_MULTIPLICITY
823struct ev_loop default_loop_struct;
824static struct ev_loop *default_loop;
825
826struct ev_loop * 872struct ev_loop *
827#else 873#else
828static int default_loop;
829
830int 874int
831#endif 875#endif
832ev_default_loop (int methods) 876ev_default_loop (int methods)
833{ 877{
834 if (sigpipe [0] == sigpipe [1]) 878 if (sigpipe [0] == sigpipe [1])
895 postfork = 1; 939 postfork = 1;
896} 940}
897 941
898/*****************************************************************************/ 942/*****************************************************************************/
899 943
944static int
945any_pending (EV_P)
946{
947 int pri;
948
949 for (pri = NUMPRI; pri--; )
950 if (pendingcnt [pri])
951 return 1;
952
953 return 0;
954}
955
900static void 956static void
901call_pending (EV_P) 957call_pending (EV_P)
902{ 958{
903 int pri; 959 int pri;
904 960
908 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 964 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
909 965
910 if (p->w) 966 if (p->w)
911 { 967 {
912 p->w->pending = 0; 968 p->w->pending = 0;
913 p->w->cb (EV_A_ p->w, p->events); 969 EV_CB_INVOKE (p->w, p->events);
914 } 970 }
915 } 971 }
916} 972}
917 973
918static void 974static void
932 downheap ((WT *)timers, timercnt, 0); 988 downheap ((WT *)timers, timercnt, 0);
933 } 989 }
934 else 990 else
935 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 991 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
936 992
937 event (EV_A_ (W)w, EV_TIMEOUT); 993 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
938 } 994 }
939} 995}
940 996
941static void 997static void
942periodics_reify (EV_P) 998periodics_reify (EV_P)
943{ 999{
944 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1000 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
945 { 1001 {
946 struct ev_periodic *w = periodics [0]; 1002 struct ev_periodic *w = periodics [0];
947 1003
948 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1004 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
949 1005
950 /* first reschedule or stop timer */ 1006 /* first reschedule or stop timer */
951 if (w->interval) 1007 if (w->reschedule_cb)
952 { 1008 {
1009 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1010
1011 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1012 downheap ((WT *)periodics, periodiccnt, 0);
1013 }
1014 else if (w->interval)
1015 {
953 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1016 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
954 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1017 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
955 downheap ((WT *)periodics, periodiccnt, 0); 1018 downheap ((WT *)periodics, periodiccnt, 0);
956 } 1019 }
957 else 1020 else
958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1021 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
959 1022
960 event (EV_A_ (W)w, EV_PERIODIC); 1023 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
961 } 1024 }
962} 1025}
963 1026
964static void 1027static void
965periodics_reschedule (EV_P) 1028periodics_reschedule (EV_P)
969 /* adjust periodics after time jump */ 1032 /* adjust periodics after time jump */
970 for (i = 0; i < periodiccnt; ++i) 1033 for (i = 0; i < periodiccnt; ++i)
971 { 1034 {
972 struct ev_periodic *w = periodics [i]; 1035 struct ev_periodic *w = periodics [i];
973 1036
1037 if (w->reschedule_cb)
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
974 if (w->interval) 1039 else if (w->interval)
975 {
976 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1040 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
977
978 if (fabs (diff) >= 1e-4)
979 {
980 ev_periodic_stop (EV_A_ w);
981 ev_periodic_start (EV_A_ w);
982
983 i = 0; /* restart loop, inefficient, but time jumps should be rare */
984 }
985 }
986 } 1041 }
1042
1043 /* now rebuild the heap */
1044 for (i = periodiccnt >> 1; i--; )
1045 downheap ((WT *)periodics, periodiccnt, i);
987} 1046}
988 1047
989inline int 1048inline int
990time_update_monotonic (EV_P) 1049time_update_monotonic (EV_P)
991{ 1050{
992 mn_now = get_clock (); 1051 mn_now = get_clock ();
993 1052
994 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1053 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
995 { 1054 {
996 rt_now = rtmn_diff + mn_now; 1055 ev_rt_now = rtmn_diff + mn_now;
997 return 0; 1056 return 0;
998 } 1057 }
999 else 1058 else
1000 { 1059 {
1001 now_floor = mn_now; 1060 now_floor = mn_now;
1002 rt_now = ev_time (); 1061 ev_rt_now = ev_time ();
1003 return 1; 1062 return 1;
1004 } 1063 }
1005} 1064}
1006 1065
1007static void 1066static void
1016 { 1075 {
1017 ev_tstamp odiff = rtmn_diff; 1076 ev_tstamp odiff = rtmn_diff;
1018 1077
1019 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1078 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1020 { 1079 {
1021 rtmn_diff = rt_now - mn_now; 1080 rtmn_diff = ev_rt_now - mn_now;
1022 1081
1023 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1082 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1024 return; /* all is well */ 1083 return; /* all is well */
1025 1084
1026 rt_now = ev_time (); 1085 ev_rt_now = ev_time ();
1027 mn_now = get_clock (); 1086 mn_now = get_clock ();
1028 now_floor = mn_now; 1087 now_floor = mn_now;
1029 } 1088 }
1030 1089
1031 periodics_reschedule (EV_A); 1090 periodics_reschedule (EV_A);
1034 } 1093 }
1035 } 1094 }
1036 else 1095 else
1037#endif 1096#endif
1038 { 1097 {
1039 rt_now = ev_time (); 1098 ev_rt_now = ev_time ();
1040 1099
1041 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1100 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1042 { 1101 {
1043 periodics_reschedule (EV_A); 1102 periodics_reschedule (EV_A);
1044 1103
1045 /* adjust timers. this is easy, as the offset is the same for all */ 1104 /* adjust timers. this is easy, as the offset is the same for all */
1046 for (i = 0; i < timercnt; ++i) 1105 for (i = 0; i < timercnt; ++i)
1047 ((WT)timers [i])->at += rt_now - mn_now; 1106 ((WT)timers [i])->at += ev_rt_now - mn_now;
1048 } 1107 }
1049 1108
1050 mn_now = rt_now; 1109 mn_now = ev_rt_now;
1051 } 1110 }
1052} 1111}
1053 1112
1054void 1113void
1055ev_ref (EV_P) 1114ev_ref (EV_P)
1087 /* update fd-related kernel structures */ 1146 /* update fd-related kernel structures */
1088 fd_reify (EV_A); 1147 fd_reify (EV_A);
1089 1148
1090 /* calculate blocking time */ 1149 /* calculate blocking time */
1091 1150
1092 /* we only need this for !monotonic clockor timers, but as we basically 1151 /* we only need this for !monotonic clock or timers, but as we basically
1093 always have timers, we just calculate it always */ 1152 always have timers, we just calculate it always */
1094#if EV_USE_MONOTONIC 1153#if EV_USE_MONOTONIC
1095 if (expect_true (have_monotonic)) 1154 if (expect_true (have_monotonic))
1096 time_update_monotonic (EV_A); 1155 time_update_monotonic (EV_A);
1097 else 1156 else
1098#endif 1157#endif
1099 { 1158 {
1100 rt_now = ev_time (); 1159 ev_rt_now = ev_time ();
1101 mn_now = rt_now; 1160 mn_now = ev_rt_now;
1102 } 1161 }
1103 1162
1104 if (flags & EVLOOP_NONBLOCK || idlecnt) 1163 if (flags & EVLOOP_NONBLOCK || idlecnt)
1105 block = 0.; 1164 block = 0.;
1106 else 1165 else
1113 if (block > to) block = to; 1172 if (block > to) block = to;
1114 } 1173 }
1115 1174
1116 if (periodiccnt) 1175 if (periodiccnt)
1117 { 1176 {
1118 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1177 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1119 if (block > to) block = to; 1178 if (block > to) block = to;
1120 } 1179 }
1121 1180
1122 if (block < 0.) block = 0.; 1181 if (block < 0.) block = 0.;
1123 } 1182 }
1124 1183
1125 method_poll (EV_A_ block); 1184 method_poll (EV_A_ block);
1126 1185
1127 /* update rt_now, do magic */ 1186 /* update ev_rt_now, do magic */
1128 time_update (EV_A); 1187 time_update (EV_A);
1129 1188
1130 /* queue pending timers and reschedule them */ 1189 /* queue pending timers and reschedule them */
1131 timers_reify (EV_A); /* relative timers called last */ 1190 timers_reify (EV_A); /* relative timers called last */
1132 periodics_reify (EV_A); /* absolute timers called first */ 1191 periodics_reify (EV_A); /* absolute timers called first */
1133 1192
1134 /* queue idle watchers unless io or timers are pending */ 1193 /* queue idle watchers unless io or timers are pending */
1135 if (!pendingcnt) 1194 if (idlecnt && !any_pending (EV_A))
1136 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1195 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1137 1196
1138 /* queue check watchers, to be executed first */ 1197 /* queue check watchers, to be executed first */
1139 if (checkcnt) 1198 if (checkcnt)
1140 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1199 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1215 return; 1274 return;
1216 1275
1217 assert (("ev_io_start called with negative fd", fd >= 0)); 1276 assert (("ev_io_start called with negative fd", fd >= 0));
1218 1277
1219 ev_start (EV_A_ (W)w, 1); 1278 ev_start (EV_A_ (W)w, 1);
1220 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1279 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1221 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1280 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1222 1281
1223 fd_change (EV_A_ fd); 1282 fd_change (EV_A_ fd);
1224} 1283}
1225 1284
1245 ((WT)w)->at += mn_now; 1304 ((WT)w)->at += mn_now;
1246 1305
1247 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1306 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1248 1307
1249 ev_start (EV_A_ (W)w, ++timercnt); 1308 ev_start (EV_A_ (W)w, ++timercnt);
1250 array_needsize (timers, timermax, timercnt, (void)); 1309 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1251 timers [timercnt - 1] = w; 1310 timers [timercnt - 1] = w;
1252 upheap ((WT *)timers, timercnt - 1); 1311 upheap ((WT *)timers, timercnt - 1);
1253 1312
1254 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1313 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1255} 1314}
1278ev_timer_again (EV_P_ struct ev_timer *w) 1337ev_timer_again (EV_P_ struct ev_timer *w)
1279{ 1338{
1280 if (ev_is_active (w)) 1339 if (ev_is_active (w))
1281 { 1340 {
1282 if (w->repeat) 1341 if (w->repeat)
1283 {
1284 ((WT)w)->at = mn_now + w->repeat;
1285 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1342 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1286 }
1287 else 1343 else
1288 ev_timer_stop (EV_A_ w); 1344 ev_timer_stop (EV_A_ w);
1289 } 1345 }
1290 else if (w->repeat) 1346 else if (w->repeat)
1291 ev_timer_start (EV_A_ w); 1347 ev_timer_start (EV_A_ w);
1295ev_periodic_start (EV_P_ struct ev_periodic *w) 1351ev_periodic_start (EV_P_ struct ev_periodic *w)
1296{ 1352{
1297 if (ev_is_active (w)) 1353 if (ev_is_active (w))
1298 return; 1354 return;
1299 1355
1356 if (w->reschedule_cb)
1357 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1358 else if (w->interval)
1359 {
1300 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1360 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1301
1302 /* this formula differs from the one in periodic_reify because we do not always round up */ 1361 /* this formula differs from the one in periodic_reify because we do not always round up */
1303 if (w->interval)
1304 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1362 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1363 }
1305 1364
1306 ev_start (EV_A_ (W)w, ++periodiccnt); 1365 ev_start (EV_A_ (W)w, ++periodiccnt);
1307 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1366 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1308 periodics [periodiccnt - 1] = w; 1367 periodics [periodiccnt - 1] = w;
1309 upheap ((WT *)periodics, periodiccnt - 1); 1368 upheap ((WT *)periodics, periodiccnt - 1);
1310 1369
1311 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1370 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1312} 1371}
1328 1387
1329 ev_stop (EV_A_ (W)w); 1388 ev_stop (EV_A_ (W)w);
1330} 1389}
1331 1390
1332void 1391void
1392ev_periodic_again (EV_P_ struct ev_periodic *w)
1393{
1394 /* TODO: use adjustheap and recalculation */
1395 ev_periodic_stop (EV_A_ w);
1396 ev_periodic_start (EV_A_ w);
1397}
1398
1399void
1333ev_idle_start (EV_P_ struct ev_idle *w) 1400ev_idle_start (EV_P_ struct ev_idle *w)
1334{ 1401{
1335 if (ev_is_active (w)) 1402 if (ev_is_active (w))
1336 return; 1403 return;
1337 1404
1338 ev_start (EV_A_ (W)w, ++idlecnt); 1405 ev_start (EV_A_ (W)w, ++idlecnt);
1339 array_needsize (idles, idlemax, idlecnt, (void)); 1406 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1340 idles [idlecnt - 1] = w; 1407 idles [idlecnt - 1] = w;
1341} 1408}
1342 1409
1343void 1410void
1344ev_idle_stop (EV_P_ struct ev_idle *w) 1411ev_idle_stop (EV_P_ struct ev_idle *w)
1356{ 1423{
1357 if (ev_is_active (w)) 1424 if (ev_is_active (w))
1358 return; 1425 return;
1359 1426
1360 ev_start (EV_A_ (W)w, ++preparecnt); 1427 ev_start (EV_A_ (W)w, ++preparecnt);
1361 array_needsize (prepares, preparemax, preparecnt, (void)); 1428 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1362 prepares [preparecnt - 1] = w; 1429 prepares [preparecnt - 1] = w;
1363} 1430}
1364 1431
1365void 1432void
1366ev_prepare_stop (EV_P_ struct ev_prepare *w) 1433ev_prepare_stop (EV_P_ struct ev_prepare *w)
1378{ 1445{
1379 if (ev_is_active (w)) 1446 if (ev_is_active (w))
1380 return; 1447 return;
1381 1448
1382 ev_start (EV_A_ (W)w, ++checkcnt); 1449 ev_start (EV_A_ (W)w, ++checkcnt);
1383 array_needsize (checks, checkmax, checkcnt, (void)); 1450 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1384 checks [checkcnt - 1] = w; 1451 checks [checkcnt - 1] = w;
1385} 1452}
1386 1453
1387void 1454void
1388ev_check_stop (EV_P_ struct ev_check *w) 1455ev_check_stop (EV_P_ struct ev_check *w)
1409 return; 1476 return;
1410 1477
1411 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1478 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1412 1479
1413 ev_start (EV_A_ (W)w, 1); 1480 ev_start (EV_A_ (W)w, 1);
1414 array_needsize (signals, signalmax, w->signum, signals_init); 1481 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1415 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1482 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1416 1483
1417 if (!((WL)w)->next) 1484 if (!((WL)w)->next)
1418 { 1485 {
1419#if WIN32 1486#if WIN32
1502} 1569}
1503 1570
1504void 1571void
1505ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1572ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1506{ 1573{
1507 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1574 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1508 1575
1509 if (!once) 1576 if (!once)
1510 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1577 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1511 else 1578 else
1512 { 1579 {
1513 once->cb = cb; 1580 once->cb = cb;
1514 once->arg = arg; 1581 once->arg = arg;
1515 1582
1516 ev_watcher_init (&once->io, once_cb_io); 1583 ev_init (&once->io, once_cb_io);
1517 if (fd >= 0) 1584 if (fd >= 0)
1518 { 1585 {
1519 ev_io_set (&once->io, fd, events); 1586 ev_io_set (&once->io, fd, events);
1520 ev_io_start (EV_A_ &once->io); 1587 ev_io_start (EV_A_ &once->io);
1521 } 1588 }
1522 1589
1523 ev_watcher_init (&once->to, once_cb_to); 1590 ev_init (&once->to, once_cb_to);
1524 if (timeout >= 0.) 1591 if (timeout >= 0.)
1525 { 1592 {
1526 ev_timer_set (&once->to, timeout, 0.); 1593 ev_timer_set (&once->to, timeout, 0.);
1527 ev_timer_start (EV_A_ &once->to); 1594 ev_timer_start (EV_A_ &once->to);
1528 } 1595 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines