ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.71 by root, Tue Nov 6 13:17:55 2007 UTC vs.
Revision 1.97 by root, Sun Nov 11 01:53:07 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
64#include <assert.h> 73#include <assert.h>
65#include <errno.h> 74#include <errno.h>
66#include <sys/types.h> 75#include <sys/types.h>
67#include <time.h> 76#include <time.h>
68 77
69#ifndef PERL
70# include <signal.h> 78#include <signal.h>
71#endif
72 79
73#ifndef WIN32 80#ifndef WIN32
74# include <unistd.h> 81# include <unistd.h>
75# include <sys/time.h> 82# include <sys/time.h>
76# include <sys/wait.h> 83# include <sys/wait.h>
128#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
129#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
130#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
131/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
132 139
140#ifdef EV_H
141# include EV_H
142#else
133#include "ev.h" 143# include "ev.h"
144#endif
134 145
135#if __GNUC__ >= 3 146#if __GNUC__ >= 3
136# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
137# define inline inline 148# define inline inline
138#else 149#else
150typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
151typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
152 163
153static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
154 165
155#if WIN32 166#include "ev_win32.c"
156/* note: the comment below could not be substantiated, but what would I care */
157/* MSDN says this is required to handle SIGFPE */
158volatile double SIGFPE_REQ = 0.0f;
159#endif
160 167
161/*****************************************************************************/ 168/*****************************************************************************/
162 169
163static void (*syserr_cb)(const char *msg); 170static void (*syserr_cb)(const char *msg);
164 171
221 int events; 228 int events;
222} ANPENDING; 229} ANPENDING;
223 230
224#if EV_MULTIPLICITY 231#if EV_MULTIPLICITY
225 232
226struct ev_loop 233 struct ev_loop
227{ 234 {
235 ev_tstamp ev_rt_now;
228# define VAR(name,decl) decl; 236 #define VAR(name,decl) decl;
229# include "ev_vars.h" 237 #include "ev_vars.h"
230};
231# undef VAR 238 #undef VAR
239 };
232# include "ev_wrap.h" 240 #include "ev_wrap.h"
241
242 struct ev_loop default_loop_struct;
243 static struct ev_loop *default_loop;
233 244
234#else 245#else
235 246
247 ev_tstamp ev_rt_now;
236# define VAR(name,decl) static decl; 248 #define VAR(name,decl) static decl;
237# include "ev_vars.h" 249 #include "ev_vars.h"
238# undef VAR 250 #undef VAR
251
252 static int default_loop;
239 253
240#endif 254#endif
241 255
242/*****************************************************************************/ 256/*****************************************************************************/
243 257
244inline ev_tstamp 258ev_tstamp
245ev_time (void) 259ev_time (void)
246{ 260{
247#if EV_USE_REALTIME 261#if EV_USE_REALTIME
248 struct timespec ts; 262 struct timespec ts;
249 clock_gettime (CLOCK_REALTIME, &ts); 263 clock_gettime (CLOCK_REALTIME, &ts);
268#endif 282#endif
269 283
270 return ev_time (); 284 return ev_time ();
271} 285}
272 286
287#if EV_MULTIPLICITY
273ev_tstamp 288ev_tstamp
274ev_now (EV_P) 289ev_now (EV_P)
275{ 290{
276 return rt_now; 291 return ev_rt_now;
277} 292}
293#endif
278 294
279#define array_roundsize(base,n) ((n) | 4 & ~3) 295#define array_roundsize(type,n) ((n) | 4 & ~3)
280 296
281#define array_needsize(base,cur,cnt,init) \ 297#define array_needsize(type,base,cur,cnt,init) \
282 if (expect_false ((cnt) > cur)) \ 298 if (expect_false ((cnt) > cur)) \
283 { \ 299 { \
284 int newcnt = cur; \ 300 int newcnt = cur; \
285 do \ 301 do \
286 { \ 302 { \
287 newcnt = array_roundsize (base, newcnt << 1); \ 303 newcnt = array_roundsize (type, newcnt << 1); \
288 } \ 304 } \
289 while ((cnt) > newcnt); \ 305 while ((cnt) > newcnt); \
290 \ 306 \
291 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 307 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
292 init (base + cur, newcnt - cur); \ 308 init (base + cur, newcnt - cur); \
293 cur = newcnt; \ 309 cur = newcnt; \
294 } 310 }
295 311
296#define array_slim(stem) \ 312#define array_slim(type,stem) \
297 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 313 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
298 { \ 314 { \
299 stem ## max = array_roundsize (stem ## cnt >> 1); \ 315 stem ## max = array_roundsize (stem ## cnt >> 1); \
300 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 316 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
301 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 317 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
302 } 318 }
303 319
304/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */ 320/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
305/* bringing us everlasting joy in form of stupid extra macros that are not required in C */ 321/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
322 338
323 ++base; 339 ++base;
324 } 340 }
325} 341}
326 342
327static void 343void
328event (EV_P_ W w, int events) 344ev_feed_event (EV_P_ void *w, int revents)
329{ 345{
346 W w_ = (W)w;
347
330 if (w->pending) 348 if (w_->pending)
331 { 349 {
332 pendings [ABSPRI (w)][w->pending - 1].events |= events; 350 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
333 return; 351 return;
334 } 352 }
335 353
336 w->pending = ++pendingcnt [ABSPRI (w)]; 354 w_->pending = ++pendingcnt [ABSPRI (w_)];
337 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 355 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
338 pendings [ABSPRI (w)][w->pending - 1].w = w; 356 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
339 pendings [ABSPRI (w)][w->pending - 1].events = events; 357 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
340} 358}
341 359
342static void 360static void
343queue_events (EV_P_ W *events, int eventcnt, int type) 361queue_events (EV_P_ W *events, int eventcnt, int type)
344{ 362{
345 int i; 363 int i;
346 364
347 for (i = 0; i < eventcnt; ++i) 365 for (i = 0; i < eventcnt; ++i)
348 event (EV_A_ events [i], type); 366 ev_feed_event (EV_A_ events [i], type);
349} 367}
350 368
351static void 369inline void
352fd_event (EV_P_ int fd, int events) 370fd_event (EV_P_ int fd, int revents)
353{ 371{
354 ANFD *anfd = anfds + fd; 372 ANFD *anfd = anfds + fd;
355 struct ev_io *w; 373 struct ev_io *w;
356 374
357 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
358 { 376 {
359 int ev = w->events & events; 377 int ev = w->events & revents;
360 378
361 if (ev) 379 if (ev)
362 event (EV_A_ (W)w, ev); 380 ev_feed_event (EV_A_ (W)w, ev);
363 } 381 }
382}
383
384void
385ev_feed_fd_event (EV_P_ int fd, int revents)
386{
387 fd_event (EV_A_ fd, revents);
364} 388}
365 389
366/*****************************************************************************/ 390/*****************************************************************************/
367 391
368static void 392static void
397 return; 421 return;
398 422
399 anfds [fd].reify = 1; 423 anfds [fd].reify = 1;
400 424
401 ++fdchangecnt; 425 ++fdchangecnt;
402 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 426 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
403 fdchanges [fdchangecnt - 1] = fd; 427 fdchanges [fdchangecnt - 1] = fd;
404} 428}
405 429
406static void 430static void
407fd_kill (EV_P_ int fd) 431fd_kill (EV_P_ int fd)
409 struct ev_io *w; 433 struct ev_io *w;
410 434
411 while ((w = (struct ev_io *)anfds [fd].head)) 435 while ((w = (struct ev_io *)anfds [fd].head))
412 { 436 {
413 ev_io_stop (EV_A_ w); 437 ev_io_stop (EV_A_ w);
414 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 438 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
415 } 439 }
416} 440}
417 441
418static int 442static int
419fd_valid (int fd) 443fd_valid (int fd)
507 531
508 heap [k] = w; 532 heap [k] = w;
509 ((W)heap [k])->active = k + 1; 533 ((W)heap [k])->active = k + 1;
510} 534}
511 535
536inline void
537adjustheap (WT *heap, int N, int k, ev_tstamp at)
538{
539 ev_tstamp old_at = heap [k]->at;
540 heap [k]->at = at;
541
542 if (old_at < at)
543 downheap (heap, N, k);
544 else
545 upheap (heap, k);
546}
547
512/*****************************************************************************/ 548/*****************************************************************************/
513 549
514typedef struct 550typedef struct
515{ 551{
516 WL head; 552 WL head;
547 583
548 if (!gotsig) 584 if (!gotsig)
549 { 585 {
550 int old_errno = errno; 586 int old_errno = errno;
551 gotsig = 1; 587 gotsig = 1;
588#ifdef WIN32
589 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
590#else
552 write (sigpipe [1], &signum, 1); 591 write (sigpipe [1], &signum, 1);
592#endif
553 errno = old_errno; 593 errno = old_errno;
554 } 594 }
555} 595}
556 596
597void
598ev_feed_signal_event (EV_P_ int signum)
599{
600 WL w;
601
602#if EV_MULTIPLICITY
603 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
604#endif
605
606 --signum;
607
608 if (signum < 0 || signum >= signalmax)
609 return;
610
611 signals [signum].gotsig = 0;
612
613 for (w = signals [signum].head; w; w = w->next)
614 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
615}
616
557static void 617static void
558sigcb (EV_P_ struct ev_io *iow, int revents) 618sigcb (EV_P_ struct ev_io *iow, int revents)
559{ 619{
560 WL w;
561 int signum; 620 int signum;
562 621
622#ifdef WIN32
623 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
624#else
563 read (sigpipe [0], &revents, 1); 625 read (sigpipe [0], &revents, 1);
626#endif
564 gotsig = 0; 627 gotsig = 0;
565 628
566 for (signum = signalmax; signum--; ) 629 for (signum = signalmax; signum--; )
567 if (signals [signum].gotsig) 630 if (signals [signum].gotsig)
568 { 631 ev_feed_signal_event (EV_A_ signum + 1);
569 signals [signum].gotsig = 0;
570
571 for (w = signals [signum].head; w; w = w->next)
572 event (EV_A_ (W)w, EV_SIGNAL);
573 }
574} 632}
575 633
576static void 634static void
577siginit (EV_P) 635siginit (EV_P)
578{ 636{
611 if (w->pid == pid || !w->pid) 669 if (w->pid == pid || !w->pid)
612 { 670 {
613 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 671 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
614 w->rpid = pid; 672 w->rpid = pid;
615 w->rstatus = status; 673 w->rstatus = status;
616 event (EV_A_ (W)w, EV_CHILD); 674 ev_feed_event (EV_A_ (W)w, EV_CHILD);
617 } 675 }
618} 676}
619 677
620static void 678static void
621childcb (EV_P_ struct ev_signal *sw, int revents) 679childcb (EV_P_ struct ev_signal *sw, int revents)
623 int pid, status; 681 int pid, status;
624 682
625 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 683 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
626 { 684 {
627 /* make sure we are called again until all childs have been reaped */ 685 /* make sure we are called again until all childs have been reaped */
628 event (EV_A_ (W)sw, EV_SIGNAL); 686 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
629 687
630 child_reap (EV_A_ sw, pid, pid, status); 688 child_reap (EV_A_ sw, pid, pid, status);
631 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 689 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
632 } 690 }
633} 691}
690 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 748 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
691 have_monotonic = 1; 749 have_monotonic = 1;
692 } 750 }
693#endif 751#endif
694 752
695 rt_now = ev_time (); 753 ev_rt_now = ev_time ();
696 mn_now = get_clock (); 754 mn_now = get_clock ();
697 now_floor = mn_now; 755 now_floor = mn_now;
698 rtmn_diff = rt_now - mn_now; 756 rtmn_diff = ev_rt_now - mn_now;
699 757
700 if (methods == EVMETHOD_AUTO) 758 if (methods == EVMETHOD_AUTO)
701 if (!enable_secure () && getenv ("LIBEV_METHODS")) 759 if (!enable_secure () && getenv ("LIBEV_METHODS"))
702 methods = atoi (getenv ("LIBEV_METHODS")); 760 methods = atoi (getenv ("LIBEV_METHODS"));
703 else 761 else
718#endif 776#endif
719#if EV_USE_SELECT 777#if EV_USE_SELECT
720 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 778 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
721#endif 779#endif
722 780
723 ev_watcher_init (&sigev, sigcb); 781 ev_init (&sigev, sigcb);
724 ev_set_priority (&sigev, EV_MAXPRI); 782 ev_set_priority (&sigev, EV_MAXPRI);
725 } 783 }
726} 784}
727 785
728void 786void
750 array_free (pending, [i]); 808 array_free (pending, [i]);
751 809
752 /* have to use the microsoft-never-gets-it-right macro */ 810 /* have to use the microsoft-never-gets-it-right macro */
753 array_free_microshit (fdchange); 811 array_free_microshit (fdchange);
754 array_free_microshit (timer); 812 array_free_microshit (timer);
813#if EV_PERIODICS
755 array_free_microshit (periodic); 814 array_free_microshit (periodic);
815#endif
756 array_free_microshit (idle); 816 array_free_microshit (idle);
757 array_free_microshit (prepare); 817 array_free_microshit (prepare);
758 array_free_microshit (check); 818 array_free_microshit (check);
759 819
760 method = 0; 820 method = 0;
818} 878}
819 879
820#endif 880#endif
821 881
822#if EV_MULTIPLICITY 882#if EV_MULTIPLICITY
823struct ev_loop default_loop_struct;
824static struct ev_loop *default_loop;
825
826struct ev_loop * 883struct ev_loop *
827#else 884#else
828static int default_loop;
829
830int 885int
831#endif 886#endif
832ev_default_loop (int methods) 887ev_default_loop (int methods)
833{ 888{
834 if (sigpipe [0] == sigpipe [1]) 889 if (sigpipe [0] == sigpipe [1])
895 postfork = 1; 950 postfork = 1;
896} 951}
897 952
898/*****************************************************************************/ 953/*****************************************************************************/
899 954
955static int
956any_pending (EV_P)
957{
958 int pri;
959
960 for (pri = NUMPRI; pri--; )
961 if (pendingcnt [pri])
962 return 1;
963
964 return 0;
965}
966
900static void 967static void
901call_pending (EV_P) 968call_pending (EV_P)
902{ 969{
903 int pri; 970 int pri;
904 971
908 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 975 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
909 976
910 if (p->w) 977 if (p->w)
911 { 978 {
912 p->w->pending = 0; 979 p->w->pending = 0;
913 p->w->cb (EV_A_ p->w, p->events); 980 EV_CB_INVOKE (p->w, p->events);
914 } 981 }
915 } 982 }
916} 983}
917 984
918static void 985static void
926 993
927 /* first reschedule or stop timer */ 994 /* first reschedule or stop timer */
928 if (w->repeat) 995 if (w->repeat)
929 { 996 {
930 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 997 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
998
931 ((WT)w)->at = mn_now + w->repeat; 999 ((WT)w)->at += w->repeat;
1000 if (((WT)w)->at < mn_now)
1001 ((WT)w)->at = mn_now;
1002
932 downheap ((WT *)timers, timercnt, 0); 1003 downheap ((WT *)timers, timercnt, 0);
933 } 1004 }
934 else 1005 else
935 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1006 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
936 1007
937 event (EV_A_ (W)w, EV_TIMEOUT); 1008 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
938 } 1009 }
939} 1010}
940 1011
1012#if EV_PERIODICS
941static void 1013static void
942periodics_reify (EV_P) 1014periodics_reify (EV_P)
943{ 1015{
944 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1016 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
945 { 1017 {
946 struct ev_periodic *w = periodics [0]; 1018 struct ev_periodic *w = periodics [0];
947 1019
948 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1020 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
949 1021
950 /* first reschedule or stop timer */ 1022 /* first reschedule or stop timer */
951 if (w->interval) 1023 if (w->reschedule_cb)
952 { 1024 {
1025 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1026
1027 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1028 downheap ((WT *)periodics, periodiccnt, 0);
1029 }
1030 else if (w->interval)
1031 {
953 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1032 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
954 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1033 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
955 downheap ((WT *)periodics, periodiccnt, 0); 1034 downheap ((WT *)periodics, periodiccnt, 0);
956 } 1035 }
957 else 1036 else
958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1037 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
959 1038
960 event (EV_A_ (W)w, EV_PERIODIC); 1039 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
961 } 1040 }
962} 1041}
963 1042
964static void 1043static void
965periodics_reschedule (EV_P) 1044periodics_reschedule (EV_P)
969 /* adjust periodics after time jump */ 1048 /* adjust periodics after time jump */
970 for (i = 0; i < periodiccnt; ++i) 1049 for (i = 0; i < periodiccnt; ++i)
971 { 1050 {
972 struct ev_periodic *w = periodics [i]; 1051 struct ev_periodic *w = periodics [i];
973 1052
1053 if (w->reschedule_cb)
1054 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
974 if (w->interval) 1055 else if (w->interval)
975 {
976 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1056 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
977
978 if (fabs (diff) >= 1e-4)
979 {
980 ev_periodic_stop (EV_A_ w);
981 ev_periodic_start (EV_A_ w);
982
983 i = 0; /* restart loop, inefficient, but time jumps should be rare */
984 }
985 }
986 } 1057 }
1058
1059 /* now rebuild the heap */
1060 for (i = periodiccnt >> 1; i--; )
1061 downheap ((WT *)periodics, periodiccnt, i);
987} 1062}
1063#endif
988 1064
989inline int 1065inline int
990time_update_monotonic (EV_P) 1066time_update_monotonic (EV_P)
991{ 1067{
992 mn_now = get_clock (); 1068 mn_now = get_clock ();
993 1069
994 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1070 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
995 { 1071 {
996 rt_now = rtmn_diff + mn_now; 1072 ev_rt_now = rtmn_diff + mn_now;
997 return 0; 1073 return 0;
998 } 1074 }
999 else 1075 else
1000 { 1076 {
1001 now_floor = mn_now; 1077 now_floor = mn_now;
1002 rt_now = ev_time (); 1078 ev_rt_now = ev_time ();
1003 return 1; 1079 return 1;
1004 } 1080 }
1005} 1081}
1006 1082
1007static void 1083static void
1016 { 1092 {
1017 ev_tstamp odiff = rtmn_diff; 1093 ev_tstamp odiff = rtmn_diff;
1018 1094
1019 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1095 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1020 { 1096 {
1021 rtmn_diff = rt_now - mn_now; 1097 rtmn_diff = ev_rt_now - mn_now;
1022 1098
1023 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1099 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1024 return; /* all is well */ 1100 return; /* all is well */
1025 1101
1026 rt_now = ev_time (); 1102 ev_rt_now = ev_time ();
1027 mn_now = get_clock (); 1103 mn_now = get_clock ();
1028 now_floor = mn_now; 1104 now_floor = mn_now;
1029 } 1105 }
1030 1106
1107# if EV_PERIODICS
1031 periodics_reschedule (EV_A); 1108 periodics_reschedule (EV_A);
1109# endif
1032 /* no timer adjustment, as the monotonic clock doesn't jump */ 1110 /* no timer adjustment, as the monotonic clock doesn't jump */
1033 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1111 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1034 } 1112 }
1035 } 1113 }
1036 else 1114 else
1037#endif 1115#endif
1038 { 1116 {
1039 rt_now = ev_time (); 1117 ev_rt_now = ev_time ();
1040 1118
1041 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1119 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1042 { 1120 {
1121#if EV_PERIODICS
1043 periodics_reschedule (EV_A); 1122 periodics_reschedule (EV_A);
1123#endif
1044 1124
1045 /* adjust timers. this is easy, as the offset is the same for all */ 1125 /* adjust timers. this is easy, as the offset is the same for all */
1046 for (i = 0; i < timercnt; ++i) 1126 for (i = 0; i < timercnt; ++i)
1047 ((WT)timers [i])->at += rt_now - mn_now; 1127 ((WT)timers [i])->at += ev_rt_now - mn_now;
1048 } 1128 }
1049 1129
1050 mn_now = rt_now; 1130 mn_now = ev_rt_now;
1051 } 1131 }
1052} 1132}
1053 1133
1054void 1134void
1055ev_ref (EV_P) 1135ev_ref (EV_P)
1087 /* update fd-related kernel structures */ 1167 /* update fd-related kernel structures */
1088 fd_reify (EV_A); 1168 fd_reify (EV_A);
1089 1169
1090 /* calculate blocking time */ 1170 /* calculate blocking time */
1091 1171
1092 /* we only need this for !monotonic clockor timers, but as we basically 1172 /* we only need this for !monotonic clock or timers, but as we basically
1093 always have timers, we just calculate it always */ 1173 always have timers, we just calculate it always */
1094#if EV_USE_MONOTONIC 1174#if EV_USE_MONOTONIC
1095 if (expect_true (have_monotonic)) 1175 if (expect_true (have_monotonic))
1096 time_update_monotonic (EV_A); 1176 time_update_monotonic (EV_A);
1097 else 1177 else
1098#endif 1178#endif
1099 { 1179 {
1100 rt_now = ev_time (); 1180 ev_rt_now = ev_time ();
1101 mn_now = rt_now; 1181 mn_now = ev_rt_now;
1102 } 1182 }
1103 1183
1104 if (flags & EVLOOP_NONBLOCK || idlecnt) 1184 if (flags & EVLOOP_NONBLOCK || idlecnt)
1105 block = 0.; 1185 block = 0.;
1106 else 1186 else
1111 { 1191 {
1112 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1192 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1113 if (block > to) block = to; 1193 if (block > to) block = to;
1114 } 1194 }
1115 1195
1196#if EV_PERIODICS
1116 if (periodiccnt) 1197 if (periodiccnt)
1117 { 1198 {
1118 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1199 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1119 if (block > to) block = to; 1200 if (block > to) block = to;
1120 } 1201 }
1202#endif
1121 1203
1122 if (block < 0.) block = 0.; 1204 if (block < 0.) block = 0.;
1123 } 1205 }
1124 1206
1125 method_poll (EV_A_ block); 1207 method_poll (EV_A_ block);
1126 1208
1127 /* update rt_now, do magic */ 1209 /* update ev_rt_now, do magic */
1128 time_update (EV_A); 1210 time_update (EV_A);
1129 1211
1130 /* queue pending timers and reschedule them */ 1212 /* queue pending timers and reschedule them */
1131 timers_reify (EV_A); /* relative timers called last */ 1213 timers_reify (EV_A); /* relative timers called last */
1214#if EV_PERIODICS
1132 periodics_reify (EV_A); /* absolute timers called first */ 1215 periodics_reify (EV_A); /* absolute timers called first */
1216#endif
1133 1217
1134 /* queue idle watchers unless io or timers are pending */ 1218 /* queue idle watchers unless io or timers are pending */
1135 if (!pendingcnt) 1219 if (idlecnt && !any_pending (EV_A))
1136 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1220 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1137 1221
1138 /* queue check watchers, to be executed first */ 1222 /* queue check watchers, to be executed first */
1139 if (checkcnt) 1223 if (checkcnt)
1140 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1224 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1215 return; 1299 return;
1216 1300
1217 assert (("ev_io_start called with negative fd", fd >= 0)); 1301 assert (("ev_io_start called with negative fd", fd >= 0));
1218 1302
1219 ev_start (EV_A_ (W)w, 1); 1303 ev_start (EV_A_ (W)w, 1);
1220 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1304 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1221 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1305 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1222 1306
1223 fd_change (EV_A_ fd); 1307 fd_change (EV_A_ fd);
1224} 1308}
1225 1309
1228{ 1312{
1229 ev_clear_pending (EV_A_ (W)w); 1313 ev_clear_pending (EV_A_ (W)w);
1230 if (!ev_is_active (w)) 1314 if (!ev_is_active (w))
1231 return; 1315 return;
1232 1316
1317 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1318
1233 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1319 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1234 ev_stop (EV_A_ (W)w); 1320 ev_stop (EV_A_ (W)w);
1235 1321
1236 fd_change (EV_A_ w->fd); 1322 fd_change (EV_A_ w->fd);
1237} 1323}
1245 ((WT)w)->at += mn_now; 1331 ((WT)w)->at += mn_now;
1246 1332
1247 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1333 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1248 1334
1249 ev_start (EV_A_ (W)w, ++timercnt); 1335 ev_start (EV_A_ (W)w, ++timercnt);
1250 array_needsize (timers, timermax, timercnt, (void)); 1336 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1251 timers [timercnt - 1] = w; 1337 timers [timercnt - 1] = w;
1252 upheap ((WT *)timers, timercnt - 1); 1338 upheap ((WT *)timers, timercnt - 1);
1253 1339
1254 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1340 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1255} 1341}
1267 { 1353 {
1268 timers [((W)w)->active - 1] = timers [timercnt]; 1354 timers [((W)w)->active - 1] = timers [timercnt];
1269 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1355 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1270 } 1356 }
1271 1357
1272 ((WT)w)->at = w->repeat; 1358 ((WT)w)->at -= mn_now;
1273 1359
1274 ev_stop (EV_A_ (W)w); 1360 ev_stop (EV_A_ (W)w);
1275} 1361}
1276 1362
1277void 1363void
1278ev_timer_again (EV_P_ struct ev_timer *w) 1364ev_timer_again (EV_P_ struct ev_timer *w)
1279{ 1365{
1280 if (ev_is_active (w)) 1366 if (ev_is_active (w))
1281 { 1367 {
1282 if (w->repeat) 1368 if (w->repeat)
1283 {
1284 ((WT)w)->at = mn_now + w->repeat;
1285 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1286 }
1287 else 1370 else
1288 ev_timer_stop (EV_A_ w); 1371 ev_timer_stop (EV_A_ w);
1289 } 1372 }
1290 else if (w->repeat) 1373 else if (w->repeat)
1291 ev_timer_start (EV_A_ w); 1374 ev_timer_start (EV_A_ w);
1292} 1375}
1293 1376
1377#if EV_PERIODICS
1294void 1378void
1295ev_periodic_start (EV_P_ struct ev_periodic *w) 1379ev_periodic_start (EV_P_ struct ev_periodic *w)
1296{ 1380{
1297 if (ev_is_active (w)) 1381 if (ev_is_active (w))
1298 return; 1382 return;
1299 1383
1384 if (w->reschedule_cb)
1385 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1386 else if (w->interval)
1387 {
1300 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1388 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1301
1302 /* this formula differs from the one in periodic_reify because we do not always round up */ 1389 /* this formula differs from the one in periodic_reify because we do not always round up */
1303 if (w->interval)
1304 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1390 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1391 }
1305 1392
1306 ev_start (EV_A_ (W)w, ++periodiccnt); 1393 ev_start (EV_A_ (W)w, ++periodiccnt);
1307 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1394 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1308 periodics [periodiccnt - 1] = w; 1395 periodics [periodiccnt - 1] = w;
1309 upheap ((WT *)periodics, periodiccnt - 1); 1396 upheap ((WT *)periodics, periodiccnt - 1);
1310 1397
1311 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1398 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1312} 1399}
1328 1415
1329 ev_stop (EV_A_ (W)w); 1416 ev_stop (EV_A_ (W)w);
1330} 1417}
1331 1418
1332void 1419void
1420ev_periodic_again (EV_P_ struct ev_periodic *w)
1421{
1422 /* TODO: use adjustheap and recalculation */
1423 ev_periodic_stop (EV_A_ w);
1424 ev_periodic_start (EV_A_ w);
1425}
1426#endif
1427
1428void
1333ev_idle_start (EV_P_ struct ev_idle *w) 1429ev_idle_start (EV_P_ struct ev_idle *w)
1334{ 1430{
1335 if (ev_is_active (w)) 1431 if (ev_is_active (w))
1336 return; 1432 return;
1337 1433
1338 ev_start (EV_A_ (W)w, ++idlecnt); 1434 ev_start (EV_A_ (W)w, ++idlecnt);
1339 array_needsize (idles, idlemax, idlecnt, (void)); 1435 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1340 idles [idlecnt - 1] = w; 1436 idles [idlecnt - 1] = w;
1341} 1437}
1342 1438
1343void 1439void
1344ev_idle_stop (EV_P_ struct ev_idle *w) 1440ev_idle_stop (EV_P_ struct ev_idle *w)
1356{ 1452{
1357 if (ev_is_active (w)) 1453 if (ev_is_active (w))
1358 return; 1454 return;
1359 1455
1360 ev_start (EV_A_ (W)w, ++preparecnt); 1456 ev_start (EV_A_ (W)w, ++preparecnt);
1361 array_needsize (prepares, preparemax, preparecnt, (void)); 1457 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1362 prepares [preparecnt - 1] = w; 1458 prepares [preparecnt - 1] = w;
1363} 1459}
1364 1460
1365void 1461void
1366ev_prepare_stop (EV_P_ struct ev_prepare *w) 1462ev_prepare_stop (EV_P_ struct ev_prepare *w)
1378{ 1474{
1379 if (ev_is_active (w)) 1475 if (ev_is_active (w))
1380 return; 1476 return;
1381 1477
1382 ev_start (EV_A_ (W)w, ++checkcnt); 1478 ev_start (EV_A_ (W)w, ++checkcnt);
1383 array_needsize (checks, checkmax, checkcnt, (void)); 1479 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1384 checks [checkcnt - 1] = w; 1480 checks [checkcnt - 1] = w;
1385} 1481}
1386 1482
1387void 1483void
1388ev_check_stop (EV_P_ struct ev_check *w) 1484ev_check_stop (EV_P_ struct ev_check *w)
1389{ 1485{
1390 ev_clear_pending (EV_A_ (W)w); 1486 ev_clear_pending (EV_A_ (W)w);
1391 if (ev_is_active (w)) 1487 if (!ev_is_active (w))
1392 return; 1488 return;
1393 1489
1394 checks [((W)w)->active - 1] = checks [--checkcnt]; 1490 checks [((W)w)->active - 1] = checks [--checkcnt];
1395 ev_stop (EV_A_ (W)w); 1491 ev_stop (EV_A_ (W)w);
1396} 1492}
1409 return; 1505 return;
1410 1506
1411 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1507 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1412 1508
1413 ev_start (EV_A_ (W)w, 1); 1509 ev_start (EV_A_ (W)w, 1);
1414 array_needsize (signals, signalmax, w->signum, signals_init); 1510 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1415 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1511 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1416 1512
1417 if (!((WL)w)->next) 1513 if (!((WL)w)->next)
1418 { 1514 {
1419#if WIN32 1515#if WIN32
1457 1553
1458void 1554void
1459ev_child_stop (EV_P_ struct ev_child *w) 1555ev_child_stop (EV_P_ struct ev_child *w)
1460{ 1556{
1461 ev_clear_pending (EV_A_ (W)w); 1557 ev_clear_pending (EV_A_ (W)w);
1462 if (ev_is_active (w)) 1558 if (!ev_is_active (w))
1463 return; 1559 return;
1464 1560
1465 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1561 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1466 ev_stop (EV_A_ (W)w); 1562 ev_stop (EV_A_ (W)w);
1467} 1563}
1502} 1598}
1503 1599
1504void 1600void
1505ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1601ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1506{ 1602{
1507 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1603 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1508 1604
1509 if (!once) 1605 if (!once)
1510 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1606 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1511 else 1607 else
1512 { 1608 {
1513 once->cb = cb; 1609 once->cb = cb;
1514 once->arg = arg; 1610 once->arg = arg;
1515 1611
1516 ev_watcher_init (&once->io, once_cb_io); 1612 ev_init (&once->io, once_cb_io);
1517 if (fd >= 0) 1613 if (fd >= 0)
1518 { 1614 {
1519 ev_io_set (&once->io, fd, events); 1615 ev_io_set (&once->io, fd, events);
1520 ev_io_start (EV_A_ &once->io); 1616 ev_io_start (EV_A_ &once->io);
1521 } 1617 }
1522 1618
1523 ev_watcher_init (&once->to, once_cb_to); 1619 ev_init (&once->to, once_cb_to);
1524 if (timeout >= 0.) 1620 if (timeout >= 0.)
1525 { 1621 {
1526 ev_timer_set (&once->to, timeout, 0.); 1622 ev_timer_set (&once->to, timeout, 0.);
1527 ev_timer_start (EV_A_ &once->to); 1623 ev_timer_start (EV_A_ &once->to);
1528 } 1624 }
1529 } 1625 }
1530} 1626}
1531 1627
1628#ifdef __cplusplus
1629}
1630#endif
1631

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines