ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.71 by root, Tue Nov 6 13:17:55 2007 UTC vs.
Revision 1.98 by root, Sun Nov 11 02:05:20 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
64#include <assert.h> 73#include <assert.h>
65#include <errno.h> 74#include <errno.h>
66#include <sys/types.h> 75#include <sys/types.h>
67#include <time.h> 76#include <time.h>
68 77
69#ifndef PERL
70# include <signal.h> 78#include <signal.h>
71#endif
72 79
73#ifndef WIN32 80#ifndef WIN32
74# include <unistd.h> 81# include <unistd.h>
75# include <sys/time.h> 82# include <sys/time.h>
76# include <sys/wait.h> 83# include <sys/wait.h>
128#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
129#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
130#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
131/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
132 139
140#ifdef EV_H
141# include EV_H
142#else
133#include "ev.h" 143# include "ev.h"
144#endif
134 145
135#if __GNUC__ >= 3 146#if __GNUC__ >= 3
136# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
137# define inline inline 148# define inline inline
138#else 149#else
150typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
151typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
152 163
153static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
154 165
155#if WIN32 166#ifdef WIN32
156/* note: the comment below could not be substantiated, but what would I care */ 167# include "ev_win32.c"
157/* MSDN says this is required to handle SIGFPE */
158volatile double SIGFPE_REQ = 0.0f;
159#endif 168#endif
160 169
161/*****************************************************************************/ 170/*****************************************************************************/
162 171
163static void (*syserr_cb)(const char *msg); 172static void (*syserr_cb)(const char *msg);
221 int events; 230 int events;
222} ANPENDING; 231} ANPENDING;
223 232
224#if EV_MULTIPLICITY 233#if EV_MULTIPLICITY
225 234
226struct ev_loop 235 struct ev_loop
227{ 236 {
237 ev_tstamp ev_rt_now;
228# define VAR(name,decl) decl; 238 #define VAR(name,decl) decl;
229# include "ev_vars.h" 239 #include "ev_vars.h"
230};
231# undef VAR 240 #undef VAR
241 };
232# include "ev_wrap.h" 242 #include "ev_wrap.h"
243
244 struct ev_loop default_loop_struct;
245 static struct ev_loop *default_loop;
233 246
234#else 247#else
235 248
249 ev_tstamp ev_rt_now;
236# define VAR(name,decl) static decl; 250 #define VAR(name,decl) static decl;
237# include "ev_vars.h" 251 #include "ev_vars.h"
238# undef VAR 252 #undef VAR
253
254 static int default_loop;
239 255
240#endif 256#endif
241 257
242/*****************************************************************************/ 258/*****************************************************************************/
243 259
244inline ev_tstamp 260ev_tstamp
245ev_time (void) 261ev_time (void)
246{ 262{
247#if EV_USE_REALTIME 263#if EV_USE_REALTIME
248 struct timespec ts; 264 struct timespec ts;
249 clock_gettime (CLOCK_REALTIME, &ts); 265 clock_gettime (CLOCK_REALTIME, &ts);
268#endif 284#endif
269 285
270 return ev_time (); 286 return ev_time ();
271} 287}
272 288
289#if EV_MULTIPLICITY
273ev_tstamp 290ev_tstamp
274ev_now (EV_P) 291ev_now (EV_P)
275{ 292{
276 return rt_now; 293 return ev_rt_now;
277} 294}
295#endif
278 296
279#define array_roundsize(base,n) ((n) | 4 & ~3) 297#define array_roundsize(type,n) ((n) | 4 & ~3)
280 298
281#define array_needsize(base,cur,cnt,init) \ 299#define array_needsize(type,base,cur,cnt,init) \
282 if (expect_false ((cnt) > cur)) \ 300 if (expect_false ((cnt) > cur)) \
283 { \ 301 { \
284 int newcnt = cur; \ 302 int newcnt = cur; \
285 do \ 303 do \
286 { \ 304 { \
287 newcnt = array_roundsize (base, newcnt << 1); \ 305 newcnt = array_roundsize (type, newcnt << 1); \
288 } \ 306 } \
289 while ((cnt) > newcnt); \ 307 while ((cnt) > newcnt); \
290 \ 308 \
291 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 309 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
292 init (base + cur, newcnt - cur); \ 310 init (base + cur, newcnt - cur); \
293 cur = newcnt; \ 311 cur = newcnt; \
294 } 312 }
295 313
296#define array_slim(stem) \ 314#define array_slim(type,stem) \
297 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 315 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
298 { \ 316 { \
299 stem ## max = array_roundsize (stem ## cnt >> 1); \ 317 stem ## max = array_roundsize (stem ## cnt >> 1); \
300 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 318 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
301 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 319 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
302 } 320 }
303 321
304/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */ 322/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
305/* bringing us everlasting joy in form of stupid extra macros that are not required in C */ 323/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
322 340
323 ++base; 341 ++base;
324 } 342 }
325} 343}
326 344
327static void 345void
328event (EV_P_ W w, int events) 346ev_feed_event (EV_P_ void *w, int revents)
329{ 347{
348 W w_ = (W)w;
349
330 if (w->pending) 350 if (w_->pending)
331 { 351 {
332 pendings [ABSPRI (w)][w->pending - 1].events |= events; 352 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
333 return; 353 return;
334 } 354 }
335 355
336 w->pending = ++pendingcnt [ABSPRI (w)]; 356 w_->pending = ++pendingcnt [ABSPRI (w_)];
337 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 357 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
338 pendings [ABSPRI (w)][w->pending - 1].w = w; 358 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
339 pendings [ABSPRI (w)][w->pending - 1].events = events; 359 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
340} 360}
341 361
342static void 362static void
343queue_events (EV_P_ W *events, int eventcnt, int type) 363queue_events (EV_P_ W *events, int eventcnt, int type)
344{ 364{
345 int i; 365 int i;
346 366
347 for (i = 0; i < eventcnt; ++i) 367 for (i = 0; i < eventcnt; ++i)
348 event (EV_A_ events [i], type); 368 ev_feed_event (EV_A_ events [i], type);
349} 369}
350 370
351static void 371inline void
352fd_event (EV_P_ int fd, int events) 372fd_event (EV_P_ int fd, int revents)
353{ 373{
354 ANFD *anfd = anfds + fd; 374 ANFD *anfd = anfds + fd;
355 struct ev_io *w; 375 struct ev_io *w;
356 376
357 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 377 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
358 { 378 {
359 int ev = w->events & events; 379 int ev = w->events & revents;
360 380
361 if (ev) 381 if (ev)
362 event (EV_A_ (W)w, ev); 382 ev_feed_event (EV_A_ (W)w, ev);
363 } 383 }
384}
385
386void
387ev_feed_fd_event (EV_P_ int fd, int revents)
388{
389 fd_event (EV_A_ fd, revents);
364} 390}
365 391
366/*****************************************************************************/ 392/*****************************************************************************/
367 393
368static void 394static void
397 return; 423 return;
398 424
399 anfds [fd].reify = 1; 425 anfds [fd].reify = 1;
400 426
401 ++fdchangecnt; 427 ++fdchangecnt;
402 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 428 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
403 fdchanges [fdchangecnt - 1] = fd; 429 fdchanges [fdchangecnt - 1] = fd;
404} 430}
405 431
406static void 432static void
407fd_kill (EV_P_ int fd) 433fd_kill (EV_P_ int fd)
409 struct ev_io *w; 435 struct ev_io *w;
410 436
411 while ((w = (struct ev_io *)anfds [fd].head)) 437 while ((w = (struct ev_io *)anfds [fd].head))
412 { 438 {
413 ev_io_stop (EV_A_ w); 439 ev_io_stop (EV_A_ w);
414 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 440 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
415 } 441 }
416} 442}
417 443
418static int 444static int
419fd_valid (int fd) 445fd_valid (int fd)
507 533
508 heap [k] = w; 534 heap [k] = w;
509 ((W)heap [k])->active = k + 1; 535 ((W)heap [k])->active = k + 1;
510} 536}
511 537
538inline void
539adjustheap (WT *heap, int N, int k, ev_tstamp at)
540{
541 ev_tstamp old_at = heap [k]->at;
542 heap [k]->at = at;
543
544 if (old_at < at)
545 downheap (heap, N, k);
546 else
547 upheap (heap, k);
548}
549
512/*****************************************************************************/ 550/*****************************************************************************/
513 551
514typedef struct 552typedef struct
515{ 553{
516 WL head; 554 WL head;
547 585
548 if (!gotsig) 586 if (!gotsig)
549 { 587 {
550 int old_errno = errno; 588 int old_errno = errno;
551 gotsig = 1; 589 gotsig = 1;
590#ifdef WIN32
591 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
592#else
552 write (sigpipe [1], &signum, 1); 593 write (sigpipe [1], &signum, 1);
594#endif
553 errno = old_errno; 595 errno = old_errno;
554 } 596 }
555} 597}
556 598
599void
600ev_feed_signal_event (EV_P_ int signum)
601{
602 WL w;
603
604#if EV_MULTIPLICITY
605 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
606#endif
607
608 --signum;
609
610 if (signum < 0 || signum >= signalmax)
611 return;
612
613 signals [signum].gotsig = 0;
614
615 for (w = signals [signum].head; w; w = w->next)
616 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
617}
618
557static void 619static void
558sigcb (EV_P_ struct ev_io *iow, int revents) 620sigcb (EV_P_ struct ev_io *iow, int revents)
559{ 621{
560 WL w;
561 int signum; 622 int signum;
562 623
624#ifdef WIN32
625 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
626#else
563 read (sigpipe [0], &revents, 1); 627 read (sigpipe [0], &revents, 1);
628#endif
564 gotsig = 0; 629 gotsig = 0;
565 630
566 for (signum = signalmax; signum--; ) 631 for (signum = signalmax; signum--; )
567 if (signals [signum].gotsig) 632 if (signals [signum].gotsig)
568 { 633 ev_feed_signal_event (EV_A_ signum + 1);
569 signals [signum].gotsig = 0;
570
571 for (w = signals [signum].head; w; w = w->next)
572 event (EV_A_ (W)w, EV_SIGNAL);
573 }
574} 634}
575 635
576static void 636static void
577siginit (EV_P) 637siginit (EV_P)
578{ 638{
611 if (w->pid == pid || !w->pid) 671 if (w->pid == pid || !w->pid)
612 { 672 {
613 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 673 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
614 w->rpid = pid; 674 w->rpid = pid;
615 w->rstatus = status; 675 w->rstatus = status;
616 event (EV_A_ (W)w, EV_CHILD); 676 ev_feed_event (EV_A_ (W)w, EV_CHILD);
617 } 677 }
618} 678}
619 679
620static void 680static void
621childcb (EV_P_ struct ev_signal *sw, int revents) 681childcb (EV_P_ struct ev_signal *sw, int revents)
623 int pid, status; 683 int pid, status;
624 684
625 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 685 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
626 { 686 {
627 /* make sure we are called again until all childs have been reaped */ 687 /* make sure we are called again until all childs have been reaped */
628 event (EV_A_ (W)sw, EV_SIGNAL); 688 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
629 689
630 child_reap (EV_A_ sw, pid, pid, status); 690 child_reap (EV_A_ sw, pid, pid, status);
631 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 691 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
632 } 692 }
633} 693}
690 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 750 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
691 have_monotonic = 1; 751 have_monotonic = 1;
692 } 752 }
693#endif 753#endif
694 754
695 rt_now = ev_time (); 755 ev_rt_now = ev_time ();
696 mn_now = get_clock (); 756 mn_now = get_clock ();
697 now_floor = mn_now; 757 now_floor = mn_now;
698 rtmn_diff = rt_now - mn_now; 758 rtmn_diff = ev_rt_now - mn_now;
699 759
700 if (methods == EVMETHOD_AUTO) 760 if (methods == EVMETHOD_AUTO)
701 if (!enable_secure () && getenv ("LIBEV_METHODS")) 761 if (!enable_secure () && getenv ("LIBEV_METHODS"))
702 methods = atoi (getenv ("LIBEV_METHODS")); 762 methods = atoi (getenv ("LIBEV_METHODS"));
703 else 763 else
718#endif 778#endif
719#if EV_USE_SELECT 779#if EV_USE_SELECT
720 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 780 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
721#endif 781#endif
722 782
723 ev_watcher_init (&sigev, sigcb); 783 ev_init (&sigev, sigcb);
724 ev_set_priority (&sigev, EV_MAXPRI); 784 ev_set_priority (&sigev, EV_MAXPRI);
725 } 785 }
726} 786}
727 787
728void 788void
750 array_free (pending, [i]); 810 array_free (pending, [i]);
751 811
752 /* have to use the microsoft-never-gets-it-right macro */ 812 /* have to use the microsoft-never-gets-it-right macro */
753 array_free_microshit (fdchange); 813 array_free_microshit (fdchange);
754 array_free_microshit (timer); 814 array_free_microshit (timer);
815#if EV_PERIODICS
755 array_free_microshit (periodic); 816 array_free_microshit (periodic);
817#endif
756 array_free_microshit (idle); 818 array_free_microshit (idle);
757 array_free_microshit (prepare); 819 array_free_microshit (prepare);
758 array_free_microshit (check); 820 array_free_microshit (check);
759 821
760 method = 0; 822 method = 0;
818} 880}
819 881
820#endif 882#endif
821 883
822#if EV_MULTIPLICITY 884#if EV_MULTIPLICITY
823struct ev_loop default_loop_struct;
824static struct ev_loop *default_loop;
825
826struct ev_loop * 885struct ev_loop *
827#else 886#else
828static int default_loop;
829
830int 887int
831#endif 888#endif
832ev_default_loop (int methods) 889ev_default_loop (int methods)
833{ 890{
834 if (sigpipe [0] == sigpipe [1]) 891 if (sigpipe [0] == sigpipe [1])
895 postfork = 1; 952 postfork = 1;
896} 953}
897 954
898/*****************************************************************************/ 955/*****************************************************************************/
899 956
957static int
958any_pending (EV_P)
959{
960 int pri;
961
962 for (pri = NUMPRI; pri--; )
963 if (pendingcnt [pri])
964 return 1;
965
966 return 0;
967}
968
900static void 969static void
901call_pending (EV_P) 970call_pending (EV_P)
902{ 971{
903 int pri; 972 int pri;
904 973
908 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 977 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
909 978
910 if (p->w) 979 if (p->w)
911 { 980 {
912 p->w->pending = 0; 981 p->w->pending = 0;
913 p->w->cb (EV_A_ p->w, p->events); 982 EV_CB_INVOKE (p->w, p->events);
914 } 983 }
915 } 984 }
916} 985}
917 986
918static void 987static void
926 995
927 /* first reschedule or stop timer */ 996 /* first reschedule or stop timer */
928 if (w->repeat) 997 if (w->repeat)
929 { 998 {
930 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 999 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1000
931 ((WT)w)->at = mn_now + w->repeat; 1001 ((WT)w)->at += w->repeat;
1002 if (((WT)w)->at < mn_now)
1003 ((WT)w)->at = mn_now;
1004
932 downheap ((WT *)timers, timercnt, 0); 1005 downheap ((WT *)timers, timercnt, 0);
933 } 1006 }
934 else 1007 else
935 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1008 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
936 1009
937 event (EV_A_ (W)w, EV_TIMEOUT); 1010 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
938 } 1011 }
939} 1012}
940 1013
1014#if EV_PERIODICS
941static void 1015static void
942periodics_reify (EV_P) 1016periodics_reify (EV_P)
943{ 1017{
944 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1018 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
945 { 1019 {
946 struct ev_periodic *w = periodics [0]; 1020 struct ev_periodic *w = periodics [0];
947 1021
948 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1022 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
949 1023
950 /* first reschedule or stop timer */ 1024 /* first reschedule or stop timer */
951 if (w->interval) 1025 if (w->reschedule_cb)
952 { 1026 {
1027 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1028
1029 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1030 downheap ((WT *)periodics, periodiccnt, 0);
1031 }
1032 else if (w->interval)
1033 {
953 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1034 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
954 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1035 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
955 downheap ((WT *)periodics, periodiccnt, 0); 1036 downheap ((WT *)periodics, periodiccnt, 0);
956 } 1037 }
957 else 1038 else
958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1039 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
959 1040
960 event (EV_A_ (W)w, EV_PERIODIC); 1041 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
961 } 1042 }
962} 1043}
963 1044
964static void 1045static void
965periodics_reschedule (EV_P) 1046periodics_reschedule (EV_P)
969 /* adjust periodics after time jump */ 1050 /* adjust periodics after time jump */
970 for (i = 0; i < periodiccnt; ++i) 1051 for (i = 0; i < periodiccnt; ++i)
971 { 1052 {
972 struct ev_periodic *w = periodics [i]; 1053 struct ev_periodic *w = periodics [i];
973 1054
1055 if (w->reschedule_cb)
1056 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
974 if (w->interval) 1057 else if (w->interval)
975 {
976 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1058 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
977
978 if (fabs (diff) >= 1e-4)
979 {
980 ev_periodic_stop (EV_A_ w);
981 ev_periodic_start (EV_A_ w);
982
983 i = 0; /* restart loop, inefficient, but time jumps should be rare */
984 }
985 }
986 } 1059 }
1060
1061 /* now rebuild the heap */
1062 for (i = periodiccnt >> 1; i--; )
1063 downheap ((WT *)periodics, periodiccnt, i);
987} 1064}
1065#endif
988 1066
989inline int 1067inline int
990time_update_monotonic (EV_P) 1068time_update_monotonic (EV_P)
991{ 1069{
992 mn_now = get_clock (); 1070 mn_now = get_clock ();
993 1071
994 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1072 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
995 { 1073 {
996 rt_now = rtmn_diff + mn_now; 1074 ev_rt_now = rtmn_diff + mn_now;
997 return 0; 1075 return 0;
998 } 1076 }
999 else 1077 else
1000 { 1078 {
1001 now_floor = mn_now; 1079 now_floor = mn_now;
1002 rt_now = ev_time (); 1080 ev_rt_now = ev_time ();
1003 return 1; 1081 return 1;
1004 } 1082 }
1005} 1083}
1006 1084
1007static void 1085static void
1016 { 1094 {
1017 ev_tstamp odiff = rtmn_diff; 1095 ev_tstamp odiff = rtmn_diff;
1018 1096
1019 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1097 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1020 { 1098 {
1021 rtmn_diff = rt_now - mn_now; 1099 rtmn_diff = ev_rt_now - mn_now;
1022 1100
1023 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1101 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1024 return; /* all is well */ 1102 return; /* all is well */
1025 1103
1026 rt_now = ev_time (); 1104 ev_rt_now = ev_time ();
1027 mn_now = get_clock (); 1105 mn_now = get_clock ();
1028 now_floor = mn_now; 1106 now_floor = mn_now;
1029 } 1107 }
1030 1108
1109# if EV_PERIODICS
1031 periodics_reschedule (EV_A); 1110 periodics_reschedule (EV_A);
1111# endif
1032 /* no timer adjustment, as the monotonic clock doesn't jump */ 1112 /* no timer adjustment, as the monotonic clock doesn't jump */
1033 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1113 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1034 } 1114 }
1035 } 1115 }
1036 else 1116 else
1037#endif 1117#endif
1038 { 1118 {
1039 rt_now = ev_time (); 1119 ev_rt_now = ev_time ();
1040 1120
1041 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1121 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1042 { 1122 {
1123#if EV_PERIODICS
1043 periodics_reschedule (EV_A); 1124 periodics_reschedule (EV_A);
1125#endif
1044 1126
1045 /* adjust timers. this is easy, as the offset is the same for all */ 1127 /* adjust timers. this is easy, as the offset is the same for all */
1046 for (i = 0; i < timercnt; ++i) 1128 for (i = 0; i < timercnt; ++i)
1047 ((WT)timers [i])->at += rt_now - mn_now; 1129 ((WT)timers [i])->at += ev_rt_now - mn_now;
1048 } 1130 }
1049 1131
1050 mn_now = rt_now; 1132 mn_now = ev_rt_now;
1051 } 1133 }
1052} 1134}
1053 1135
1054void 1136void
1055ev_ref (EV_P) 1137ev_ref (EV_P)
1087 /* update fd-related kernel structures */ 1169 /* update fd-related kernel structures */
1088 fd_reify (EV_A); 1170 fd_reify (EV_A);
1089 1171
1090 /* calculate blocking time */ 1172 /* calculate blocking time */
1091 1173
1092 /* we only need this for !monotonic clockor timers, but as we basically 1174 /* we only need this for !monotonic clock or timers, but as we basically
1093 always have timers, we just calculate it always */ 1175 always have timers, we just calculate it always */
1094#if EV_USE_MONOTONIC 1176#if EV_USE_MONOTONIC
1095 if (expect_true (have_monotonic)) 1177 if (expect_true (have_monotonic))
1096 time_update_monotonic (EV_A); 1178 time_update_monotonic (EV_A);
1097 else 1179 else
1098#endif 1180#endif
1099 { 1181 {
1100 rt_now = ev_time (); 1182 ev_rt_now = ev_time ();
1101 mn_now = rt_now; 1183 mn_now = ev_rt_now;
1102 } 1184 }
1103 1185
1104 if (flags & EVLOOP_NONBLOCK || idlecnt) 1186 if (flags & EVLOOP_NONBLOCK || idlecnt)
1105 block = 0.; 1187 block = 0.;
1106 else 1188 else
1111 { 1193 {
1112 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1194 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1113 if (block > to) block = to; 1195 if (block > to) block = to;
1114 } 1196 }
1115 1197
1198#if EV_PERIODICS
1116 if (periodiccnt) 1199 if (periodiccnt)
1117 { 1200 {
1118 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1201 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1119 if (block > to) block = to; 1202 if (block > to) block = to;
1120 } 1203 }
1204#endif
1121 1205
1122 if (block < 0.) block = 0.; 1206 if (block < 0.) block = 0.;
1123 } 1207 }
1124 1208
1125 method_poll (EV_A_ block); 1209 method_poll (EV_A_ block);
1126 1210
1127 /* update rt_now, do magic */ 1211 /* update ev_rt_now, do magic */
1128 time_update (EV_A); 1212 time_update (EV_A);
1129 1213
1130 /* queue pending timers and reschedule them */ 1214 /* queue pending timers and reschedule them */
1131 timers_reify (EV_A); /* relative timers called last */ 1215 timers_reify (EV_A); /* relative timers called last */
1216#if EV_PERIODICS
1132 periodics_reify (EV_A); /* absolute timers called first */ 1217 periodics_reify (EV_A); /* absolute timers called first */
1218#endif
1133 1219
1134 /* queue idle watchers unless io or timers are pending */ 1220 /* queue idle watchers unless io or timers are pending */
1135 if (!pendingcnt) 1221 if (idlecnt && !any_pending (EV_A))
1136 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1222 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1137 1223
1138 /* queue check watchers, to be executed first */ 1224 /* queue check watchers, to be executed first */
1139 if (checkcnt) 1225 if (checkcnt)
1140 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1226 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1215 return; 1301 return;
1216 1302
1217 assert (("ev_io_start called with negative fd", fd >= 0)); 1303 assert (("ev_io_start called with negative fd", fd >= 0));
1218 1304
1219 ev_start (EV_A_ (W)w, 1); 1305 ev_start (EV_A_ (W)w, 1);
1220 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1306 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1221 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1307 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1222 1308
1223 fd_change (EV_A_ fd); 1309 fd_change (EV_A_ fd);
1224} 1310}
1225 1311
1228{ 1314{
1229 ev_clear_pending (EV_A_ (W)w); 1315 ev_clear_pending (EV_A_ (W)w);
1230 if (!ev_is_active (w)) 1316 if (!ev_is_active (w))
1231 return; 1317 return;
1232 1318
1319 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1320
1233 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1321 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1234 ev_stop (EV_A_ (W)w); 1322 ev_stop (EV_A_ (W)w);
1235 1323
1236 fd_change (EV_A_ w->fd); 1324 fd_change (EV_A_ w->fd);
1237} 1325}
1245 ((WT)w)->at += mn_now; 1333 ((WT)w)->at += mn_now;
1246 1334
1247 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1335 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1248 1336
1249 ev_start (EV_A_ (W)w, ++timercnt); 1337 ev_start (EV_A_ (W)w, ++timercnt);
1250 array_needsize (timers, timermax, timercnt, (void)); 1338 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1251 timers [timercnt - 1] = w; 1339 timers [timercnt - 1] = w;
1252 upheap ((WT *)timers, timercnt - 1); 1340 upheap ((WT *)timers, timercnt - 1);
1253 1341
1254 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1342 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1255} 1343}
1267 { 1355 {
1268 timers [((W)w)->active - 1] = timers [timercnt]; 1356 timers [((W)w)->active - 1] = timers [timercnt];
1269 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1357 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1270 } 1358 }
1271 1359
1272 ((WT)w)->at = w->repeat; 1360 ((WT)w)->at -= mn_now;
1273 1361
1274 ev_stop (EV_A_ (W)w); 1362 ev_stop (EV_A_ (W)w);
1275} 1363}
1276 1364
1277void 1365void
1278ev_timer_again (EV_P_ struct ev_timer *w) 1366ev_timer_again (EV_P_ struct ev_timer *w)
1279{ 1367{
1280 if (ev_is_active (w)) 1368 if (ev_is_active (w))
1281 { 1369 {
1282 if (w->repeat) 1370 if (w->repeat)
1283 {
1284 ((WT)w)->at = mn_now + w->repeat;
1285 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1371 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1286 }
1287 else 1372 else
1288 ev_timer_stop (EV_A_ w); 1373 ev_timer_stop (EV_A_ w);
1289 } 1374 }
1290 else if (w->repeat) 1375 else if (w->repeat)
1291 ev_timer_start (EV_A_ w); 1376 ev_timer_start (EV_A_ w);
1292} 1377}
1293 1378
1379#if EV_PERIODICS
1294void 1380void
1295ev_periodic_start (EV_P_ struct ev_periodic *w) 1381ev_periodic_start (EV_P_ struct ev_periodic *w)
1296{ 1382{
1297 if (ev_is_active (w)) 1383 if (ev_is_active (w))
1298 return; 1384 return;
1299 1385
1386 if (w->reschedule_cb)
1387 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1388 else if (w->interval)
1389 {
1300 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1390 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1301
1302 /* this formula differs from the one in periodic_reify because we do not always round up */ 1391 /* this formula differs from the one in periodic_reify because we do not always round up */
1303 if (w->interval)
1304 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1392 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1393 }
1305 1394
1306 ev_start (EV_A_ (W)w, ++periodiccnt); 1395 ev_start (EV_A_ (W)w, ++periodiccnt);
1307 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1396 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1308 periodics [periodiccnt - 1] = w; 1397 periodics [periodiccnt - 1] = w;
1309 upheap ((WT *)periodics, periodiccnt - 1); 1398 upheap ((WT *)periodics, periodiccnt - 1);
1310 1399
1311 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1400 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1312} 1401}
1328 1417
1329 ev_stop (EV_A_ (W)w); 1418 ev_stop (EV_A_ (W)w);
1330} 1419}
1331 1420
1332void 1421void
1422ev_periodic_again (EV_P_ struct ev_periodic *w)
1423{
1424 /* TODO: use adjustheap and recalculation */
1425 ev_periodic_stop (EV_A_ w);
1426 ev_periodic_start (EV_A_ w);
1427}
1428#endif
1429
1430void
1333ev_idle_start (EV_P_ struct ev_idle *w) 1431ev_idle_start (EV_P_ struct ev_idle *w)
1334{ 1432{
1335 if (ev_is_active (w)) 1433 if (ev_is_active (w))
1336 return; 1434 return;
1337 1435
1338 ev_start (EV_A_ (W)w, ++idlecnt); 1436 ev_start (EV_A_ (W)w, ++idlecnt);
1339 array_needsize (idles, idlemax, idlecnt, (void)); 1437 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1340 idles [idlecnt - 1] = w; 1438 idles [idlecnt - 1] = w;
1341} 1439}
1342 1440
1343void 1441void
1344ev_idle_stop (EV_P_ struct ev_idle *w) 1442ev_idle_stop (EV_P_ struct ev_idle *w)
1356{ 1454{
1357 if (ev_is_active (w)) 1455 if (ev_is_active (w))
1358 return; 1456 return;
1359 1457
1360 ev_start (EV_A_ (W)w, ++preparecnt); 1458 ev_start (EV_A_ (W)w, ++preparecnt);
1361 array_needsize (prepares, preparemax, preparecnt, (void)); 1459 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1362 prepares [preparecnt - 1] = w; 1460 prepares [preparecnt - 1] = w;
1363} 1461}
1364 1462
1365void 1463void
1366ev_prepare_stop (EV_P_ struct ev_prepare *w) 1464ev_prepare_stop (EV_P_ struct ev_prepare *w)
1378{ 1476{
1379 if (ev_is_active (w)) 1477 if (ev_is_active (w))
1380 return; 1478 return;
1381 1479
1382 ev_start (EV_A_ (W)w, ++checkcnt); 1480 ev_start (EV_A_ (W)w, ++checkcnt);
1383 array_needsize (checks, checkmax, checkcnt, (void)); 1481 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1384 checks [checkcnt - 1] = w; 1482 checks [checkcnt - 1] = w;
1385} 1483}
1386 1484
1387void 1485void
1388ev_check_stop (EV_P_ struct ev_check *w) 1486ev_check_stop (EV_P_ struct ev_check *w)
1389{ 1487{
1390 ev_clear_pending (EV_A_ (W)w); 1488 ev_clear_pending (EV_A_ (W)w);
1391 if (ev_is_active (w)) 1489 if (!ev_is_active (w))
1392 return; 1490 return;
1393 1491
1394 checks [((W)w)->active - 1] = checks [--checkcnt]; 1492 checks [((W)w)->active - 1] = checks [--checkcnt];
1395 ev_stop (EV_A_ (W)w); 1493 ev_stop (EV_A_ (W)w);
1396} 1494}
1409 return; 1507 return;
1410 1508
1411 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1509 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1412 1510
1413 ev_start (EV_A_ (W)w, 1); 1511 ev_start (EV_A_ (W)w, 1);
1414 array_needsize (signals, signalmax, w->signum, signals_init); 1512 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1415 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1513 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1416 1514
1417 if (!((WL)w)->next) 1515 if (!((WL)w)->next)
1418 { 1516 {
1419#if WIN32 1517#if WIN32
1457 1555
1458void 1556void
1459ev_child_stop (EV_P_ struct ev_child *w) 1557ev_child_stop (EV_P_ struct ev_child *w)
1460{ 1558{
1461 ev_clear_pending (EV_A_ (W)w); 1559 ev_clear_pending (EV_A_ (W)w);
1462 if (ev_is_active (w)) 1560 if (!ev_is_active (w))
1463 return; 1561 return;
1464 1562
1465 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1563 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1466 ev_stop (EV_A_ (W)w); 1564 ev_stop (EV_A_ (W)w);
1467} 1565}
1502} 1600}
1503 1601
1504void 1602void
1505ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1603ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1506{ 1604{
1507 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1605 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1508 1606
1509 if (!once) 1607 if (!once)
1510 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1608 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1511 else 1609 else
1512 { 1610 {
1513 once->cb = cb; 1611 once->cb = cb;
1514 once->arg = arg; 1612 once->arg = arg;
1515 1613
1516 ev_watcher_init (&once->io, once_cb_io); 1614 ev_init (&once->io, once_cb_io);
1517 if (fd >= 0) 1615 if (fd >= 0)
1518 { 1616 {
1519 ev_io_set (&once->io, fd, events); 1617 ev_io_set (&once->io, fd, events);
1520 ev_io_start (EV_A_ &once->io); 1618 ev_io_start (EV_A_ &once->io);
1521 } 1619 }
1522 1620
1523 ev_watcher_init (&once->to, once_cb_to); 1621 ev_init (&once->to, once_cb_to);
1524 if (timeout >= 0.) 1622 if (timeout >= 0.)
1525 { 1623 {
1526 ev_timer_set (&once->to, timeout, 0.); 1624 ev_timer_set (&once->to, timeout, 0.);
1527 ev_timer_start (EV_A_ &once->to); 1625 ev_timer_start (EV_A_ &once->to);
1528 } 1626 }
1529 } 1627 }
1530} 1628}
1531 1629
1630#ifdef __cplusplus
1631}
1632#endif
1633

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines