ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.72 by root, Tue Nov 6 16:09:37 2007 UTC vs.
Revision 1.102 by root, Sun Nov 11 17:56:11 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 139
140#ifdef EV_H
141# include EV_H
142#else
131#include "ev.h" 143# include "ev.h"
144#endif
132 145
133#if __GNUC__ >= 3 146#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 148# define inline inline
136#else 149#else
148typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
150 163
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 165
153#if WIN32 166#ifdef WIN32
154/* note: the comment below could not be substantiated, but what would I care */ 167# include "ev_win32.c"
155/* MSDN says this is required to handle SIGFPE */
156volatile double SIGFPE_REQ = 0.0f;
157
158static int
159ev_socketpair_tcp (int filedes [2])
160{
161 struct sockaddr_in addr = { 0 };
162 int addr_size = sizeof (addr);
163 SOCKET listener;
164 SOCKET sock [2] = { -1, -1 };
165
166 if ((listener = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
167 return -1;
168
169 addr.sin_family = AF_INET;
170 addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
171 addr.sin_port = 0;
172
173 if (bind (listener, (struct sockaddr *)&addr, addr_size))
174 goto fail;
175
176 if (getsockname(listener, (struct sockaddr *)&addr, &addr_size))
177 goto fail;
178
179 if (listen (listener, 1))
180 goto fail;
181
182 if ((sock [0] = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
183 goto fail;
184
185 if (connect (sock[0], (struct sockaddr *)&addr, addr_size))
186 goto fail;
187
188 if ((sock[1] = accept (listener, 0, 0)) < 0)
189 goto fail;
190
191 closesocket (listener);
192
193 filedes [0] = sock [0];
194 filedes [1] = sock [1];
195
196 return 0;
197
198fail:
199 closesocket (listener);
200
201 if (sock [0] != INVALID_SOCKET) closesocket (sock [0]);
202 if (sock [1] != INVALID_SOCKET) closesocket (sock [1]);
203
204 return -1;
205}
206
207# define ev_pipe(filedes) ev_socketpair_tcp (filedes)
208#else
209# define ev_pipe(filedes) pipe (filedes)
210#endif 168#endif
211 169
212/*****************************************************************************/ 170/*****************************************************************************/
213 171
214static void (*syserr_cb)(const char *msg); 172static void (*syserr_cb)(const char *msg);
272 int events; 230 int events;
273} ANPENDING; 231} ANPENDING;
274 232
275#if EV_MULTIPLICITY 233#if EV_MULTIPLICITY
276 234
277struct ev_loop 235 struct ev_loop
278{ 236 {
237 ev_tstamp ev_rt_now;
238 #define ev_rt_now ((loop)->ev_rt_now)
279# define VAR(name,decl) decl; 239 #define VAR(name,decl) decl;
280# include "ev_vars.h" 240 #include "ev_vars.h"
281};
282# undef VAR 241 #undef VAR
242 };
283# include "ev_wrap.h" 243 #include "ev_wrap.h"
244
245 struct ev_loop default_loop_struct;
246 static struct ev_loop *default_loop;
284 247
285#else 248#else
286 249
250 ev_tstamp ev_rt_now;
287# define VAR(name,decl) static decl; 251 #define VAR(name,decl) static decl;
288# include "ev_vars.h" 252 #include "ev_vars.h"
289# undef VAR 253 #undef VAR
254
255 static int default_loop;
290 256
291#endif 257#endif
292 258
293/*****************************************************************************/ 259/*****************************************************************************/
294 260
295inline ev_tstamp 261ev_tstamp
296ev_time (void) 262ev_time (void)
297{ 263{
298#if EV_USE_REALTIME 264#if EV_USE_REALTIME
299 struct timespec ts; 265 struct timespec ts;
300 clock_gettime (CLOCK_REALTIME, &ts); 266 clock_gettime (CLOCK_REALTIME, &ts);
319#endif 285#endif
320 286
321 return ev_time (); 287 return ev_time ();
322} 288}
323 289
290#if EV_MULTIPLICITY
324ev_tstamp 291ev_tstamp
325ev_now (EV_P) 292ev_now (EV_P)
326{ 293{
327 return rt_now; 294 return ev_rt_now;
328} 295}
296#endif
329 297
330#define array_roundsize(base,n) ((n) | 4 & ~3) 298#define array_roundsize(type,n) ((n) | 4 & ~3)
331 299
332#define array_needsize(base,cur,cnt,init) \ 300#define array_needsize(type,base,cur,cnt,init) \
333 if (expect_false ((cnt) > cur)) \ 301 if (expect_false ((cnt) > cur)) \
334 { \ 302 { \
335 int newcnt = cur; \ 303 int newcnt = cur; \
336 do \ 304 do \
337 { \ 305 { \
338 newcnt = array_roundsize (base, newcnt << 1); \ 306 newcnt = array_roundsize (type, newcnt << 1); \
339 } \ 307 } \
340 while ((cnt) > newcnt); \ 308 while ((cnt) > newcnt); \
341 \ 309 \
342 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 310 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
343 init (base + cur, newcnt - cur); \ 311 init (base + cur, newcnt - cur); \
344 cur = newcnt; \ 312 cur = newcnt; \
345 } 313 }
346 314
347#define array_slim(stem) \ 315#define array_slim(type,stem) \
348 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 316 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
349 { \ 317 { \
350 stem ## max = array_roundsize (stem ## cnt >> 1); \ 318 stem ## max = array_roundsize (stem ## cnt >> 1); \
351 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 319 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
352 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 320 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
353 } 321 }
354 322
355/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */ 323/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
356/* bringing us everlasting joy in form of stupid extra macros that are not required in C */ 324/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
373 341
374 ++base; 342 ++base;
375 } 343 }
376} 344}
377 345
378static void 346void
379event (EV_P_ W w, int events) 347ev_feed_event (EV_P_ void *w, int revents)
380{ 348{
349 W w_ = (W)w;
350
381 if (w->pending) 351 if (w_->pending)
382 { 352 {
383 pendings [ABSPRI (w)][w->pending - 1].events |= events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
384 return; 354 return;
385 } 355 }
386 356
387 w->pending = ++pendingcnt [ABSPRI (w)]; 357 w_->pending = ++pendingcnt [ABSPRI (w_)];
388 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 358 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
389 pendings [ABSPRI (w)][w->pending - 1].w = w; 359 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
390 pendings [ABSPRI (w)][w->pending - 1].events = events; 360 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
391} 361}
392 362
393static void 363static void
394queue_events (EV_P_ W *events, int eventcnt, int type) 364queue_events (EV_P_ W *events, int eventcnt, int type)
395{ 365{
396 int i; 366 int i;
397 367
398 for (i = 0; i < eventcnt; ++i) 368 for (i = 0; i < eventcnt; ++i)
399 event (EV_A_ events [i], type); 369 ev_feed_event (EV_A_ events [i], type);
400} 370}
401 371
402static void 372inline void
403fd_event (EV_P_ int fd, int events) 373fd_event (EV_P_ int fd, int revents)
404{ 374{
405 ANFD *anfd = anfds + fd; 375 ANFD *anfd = anfds + fd;
406 struct ev_io *w; 376 struct ev_io *w;
407 377
408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 378 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
409 { 379 {
410 int ev = w->events & events; 380 int ev = w->events & revents;
411 381
412 if (ev) 382 if (ev)
413 event (EV_A_ (W)w, ev); 383 ev_feed_event (EV_A_ (W)w, ev);
414 } 384 }
385}
386
387void
388ev_feed_fd_event (EV_P_ int fd, int revents)
389{
390 fd_event (EV_A_ fd, revents);
415} 391}
416 392
417/*****************************************************************************/ 393/*****************************************************************************/
418 394
419static void 395static void
448 return; 424 return;
449 425
450 anfds [fd].reify = 1; 426 anfds [fd].reify = 1;
451 427
452 ++fdchangecnt; 428 ++fdchangecnt;
453 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 429 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
454 fdchanges [fdchangecnt - 1] = fd; 430 fdchanges [fdchangecnt - 1] = fd;
455} 431}
456 432
457static void 433static void
458fd_kill (EV_P_ int fd) 434fd_kill (EV_P_ int fd)
460 struct ev_io *w; 436 struct ev_io *w;
461 437
462 while ((w = (struct ev_io *)anfds [fd].head)) 438 while ((w = (struct ev_io *)anfds [fd].head))
463 { 439 {
464 ev_io_stop (EV_A_ w); 440 ev_io_stop (EV_A_ w);
465 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 441 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
466 } 442 }
467} 443}
468 444
469static int 445static int
470fd_valid (int fd) 446fd_valid (int fd)
558 534
559 heap [k] = w; 535 heap [k] = w;
560 ((W)heap [k])->active = k + 1; 536 ((W)heap [k])->active = k + 1;
561} 537}
562 538
539inline void
540adjustheap (WT *heap, int N, int k)
541{
542 upheap (heap, k);
543 downheap (heap, N, k);
544}
545
563/*****************************************************************************/ 546/*****************************************************************************/
564 547
565typedef struct 548typedef struct
566{ 549{
567 WL head; 550 WL head;
598 581
599 if (!gotsig) 582 if (!gotsig)
600 { 583 {
601 int old_errno = errno; 584 int old_errno = errno;
602 gotsig = 1; 585 gotsig = 1;
586#ifdef WIN32
587 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
588#else
603 write (sigpipe [1], &signum, 1); 589 write (sigpipe [1], &signum, 1);
590#endif
604 errno = old_errno; 591 errno = old_errno;
605 } 592 }
606} 593}
607 594
595void
596ev_feed_signal_event (EV_P_ int signum)
597{
598 WL w;
599
600#if EV_MULTIPLICITY
601 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
602#endif
603
604 --signum;
605
606 if (signum < 0 || signum >= signalmax)
607 return;
608
609 signals [signum].gotsig = 0;
610
611 for (w = signals [signum].head; w; w = w->next)
612 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
613}
614
608static void 615static void
609sigcb (EV_P_ struct ev_io *iow, int revents) 616sigcb (EV_P_ struct ev_io *iow, int revents)
610{ 617{
611 WL w;
612 int signum; 618 int signum;
613 619
620#ifdef WIN32
621 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
622#else
614 read (sigpipe [0], &revents, 1); 623 read (sigpipe [0], &revents, 1);
624#endif
615 gotsig = 0; 625 gotsig = 0;
616 626
617 for (signum = signalmax; signum--; ) 627 for (signum = signalmax; signum--; )
618 if (signals [signum].gotsig) 628 if (signals [signum].gotsig)
619 { 629 ev_feed_signal_event (EV_A_ signum + 1);
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 event (EV_A_ (W)w, EV_SIGNAL);
624 }
625} 630}
626 631
627static void 632static void
628siginit (EV_P) 633siginit (EV_P)
629{ 634{
662 if (w->pid == pid || !w->pid) 667 if (w->pid == pid || !w->pid)
663 { 668 {
664 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 669 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
665 w->rpid = pid; 670 w->rpid = pid;
666 w->rstatus = status; 671 w->rstatus = status;
667 event (EV_A_ (W)w, EV_CHILD); 672 ev_feed_event (EV_A_ (W)w, EV_CHILD);
668 } 673 }
669} 674}
670 675
671static void 676static void
672childcb (EV_P_ struct ev_signal *sw, int revents) 677childcb (EV_P_ struct ev_signal *sw, int revents)
674 int pid, status; 679 int pid, status;
675 680
676 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 681 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
677 { 682 {
678 /* make sure we are called again until all childs have been reaped */ 683 /* make sure we are called again until all childs have been reaped */
679 event (EV_A_ (W)sw, EV_SIGNAL); 684 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
680 685
681 child_reap (EV_A_ sw, pid, pid, status); 686 child_reap (EV_A_ sw, pid, pid, status);
682 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 687 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
683 } 688 }
684} 689}
741 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 746 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
742 have_monotonic = 1; 747 have_monotonic = 1;
743 } 748 }
744#endif 749#endif
745 750
746 rt_now = ev_time (); 751 ev_rt_now = ev_time ();
747 mn_now = get_clock (); 752 mn_now = get_clock ();
748 now_floor = mn_now; 753 now_floor = mn_now;
749 rtmn_diff = rt_now - mn_now; 754 rtmn_diff = ev_rt_now - mn_now;
750 755
751 if (methods == EVMETHOD_AUTO) 756 if (methods == EVMETHOD_AUTO)
752 if (!enable_secure () && getenv ("LIBEV_METHODS")) 757 if (!enable_secure () && getenv ("LIBEV_METHODS"))
753 methods = atoi (getenv ("LIBEV_METHODS")); 758 methods = atoi (getenv ("LIBEV_METHODS"));
754 else 759 else
769#endif 774#endif
770#if EV_USE_SELECT 775#if EV_USE_SELECT
771 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 776 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
772#endif 777#endif
773 778
774 ev_watcher_init (&sigev, sigcb); 779 ev_init (&sigev, sigcb);
775 ev_set_priority (&sigev, EV_MAXPRI); 780 ev_set_priority (&sigev, EV_MAXPRI);
776 } 781 }
777} 782}
778 783
779void 784void
801 array_free (pending, [i]); 806 array_free (pending, [i]);
802 807
803 /* have to use the microsoft-never-gets-it-right macro */ 808 /* have to use the microsoft-never-gets-it-right macro */
804 array_free_microshit (fdchange); 809 array_free_microshit (fdchange);
805 array_free_microshit (timer); 810 array_free_microshit (timer);
811#if EV_PERIODICS
806 array_free_microshit (periodic); 812 array_free_microshit (periodic);
813#endif
807 array_free_microshit (idle); 814 array_free_microshit (idle);
808 array_free_microshit (prepare); 815 array_free_microshit (prepare);
809 array_free_microshit (check); 816 array_free_microshit (check);
810 817
811 method = 0; 818 method = 0;
828 ev_ref (EV_A); 835 ev_ref (EV_A);
829 ev_io_stop (EV_A_ &sigev); 836 ev_io_stop (EV_A_ &sigev);
830 close (sigpipe [0]); 837 close (sigpipe [0]);
831 close (sigpipe [1]); 838 close (sigpipe [1]);
832 839
833 while (ev_pipe (sigpipe)) 840 while (pipe (sigpipe))
834 syserr ("(libev) error creating pipe"); 841 syserr ("(libev) error creating pipe");
835 842
836 siginit (EV_A); 843 siginit (EV_A);
837 } 844 }
838 845
869} 876}
870 877
871#endif 878#endif
872 879
873#if EV_MULTIPLICITY 880#if EV_MULTIPLICITY
874struct ev_loop default_loop_struct;
875static struct ev_loop *default_loop;
876
877struct ev_loop * 881struct ev_loop *
878#else 882#else
879static int default_loop;
880
881int 883int
882#endif 884#endif
883ev_default_loop (int methods) 885ev_default_loop (int methods)
884{ 886{
885 if (sigpipe [0] == sigpipe [1]) 887 if (sigpipe [0] == sigpipe [1])
886 if (ev_pipe (sigpipe)) 888 if (pipe (sigpipe))
887 return 0; 889 return 0;
888 890
889 if (!default_loop) 891 if (!default_loop)
890 { 892 {
891#if EV_MULTIPLICITY 893#if EV_MULTIPLICITY
946 postfork = 1; 948 postfork = 1;
947} 949}
948 950
949/*****************************************************************************/ 951/*****************************************************************************/
950 952
953static int
954any_pending (EV_P)
955{
956 int pri;
957
958 for (pri = NUMPRI; pri--; )
959 if (pendingcnt [pri])
960 return 1;
961
962 return 0;
963}
964
951static void 965static void
952call_pending (EV_P) 966call_pending (EV_P)
953{ 967{
954 int pri; 968 int pri;
955 969
959 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 973 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
960 974
961 if (p->w) 975 if (p->w)
962 { 976 {
963 p->w->pending = 0; 977 p->w->pending = 0;
964 p->w->cb (EV_A_ p->w, p->events); 978 EV_CB_INVOKE (p->w, p->events);
965 } 979 }
966 } 980 }
967} 981}
968 982
969static void 983static void
977 991
978 /* first reschedule or stop timer */ 992 /* first reschedule or stop timer */
979 if (w->repeat) 993 if (w->repeat)
980 { 994 {
981 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 995 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
996
982 ((WT)w)->at = mn_now + w->repeat; 997 ((WT)w)->at += w->repeat;
998 if (((WT)w)->at < mn_now)
999 ((WT)w)->at = mn_now;
1000
983 downheap ((WT *)timers, timercnt, 0); 1001 downheap ((WT *)timers, timercnt, 0);
984 } 1002 }
985 else 1003 else
986 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1004 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
987 1005
988 event (EV_A_ (W)w, EV_TIMEOUT); 1006 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
989 } 1007 }
990} 1008}
991 1009
1010#if EV_PERIODICS
992static void 1011static void
993periodics_reify (EV_P) 1012periodics_reify (EV_P)
994{ 1013{
995 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1014 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
996 { 1015 {
997 struct ev_periodic *w = periodics [0]; 1016 struct ev_periodic *w = periodics [0];
998 1017
999 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1018 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1000 1019
1001 /* first reschedule or stop timer */ 1020 /* first reschedule or stop timer */
1002 if (w->interval) 1021 if (w->reschedule_cb)
1003 { 1022 {
1023 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1024
1025 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1026 downheap ((WT *)periodics, periodiccnt, 0);
1027 }
1028 else if (w->interval)
1029 {
1004 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1030 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1005 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1031 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1006 downheap ((WT *)periodics, periodiccnt, 0); 1032 downheap ((WT *)periodics, periodiccnt, 0);
1007 } 1033 }
1008 else 1034 else
1009 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1035 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1010 1036
1011 event (EV_A_ (W)w, EV_PERIODIC); 1037 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1012 } 1038 }
1013} 1039}
1014 1040
1015static void 1041static void
1016periodics_reschedule (EV_P) 1042periodics_reschedule (EV_P)
1020 /* adjust periodics after time jump */ 1046 /* adjust periodics after time jump */
1021 for (i = 0; i < periodiccnt; ++i) 1047 for (i = 0; i < periodiccnt; ++i)
1022 { 1048 {
1023 struct ev_periodic *w = periodics [i]; 1049 struct ev_periodic *w = periodics [i];
1024 1050
1051 if (w->reschedule_cb)
1052 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1025 if (w->interval) 1053 else if (w->interval)
1026 {
1027 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1054 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1028
1029 if (fabs (diff) >= 1e-4)
1030 {
1031 ev_periodic_stop (EV_A_ w);
1032 ev_periodic_start (EV_A_ w);
1033
1034 i = 0; /* restart loop, inefficient, but time jumps should be rare */
1035 }
1036 }
1037 } 1055 }
1056
1057 /* now rebuild the heap */
1058 for (i = periodiccnt >> 1; i--; )
1059 downheap ((WT *)periodics, periodiccnt, i);
1038} 1060}
1061#endif
1039 1062
1040inline int 1063inline int
1041time_update_monotonic (EV_P) 1064time_update_monotonic (EV_P)
1042{ 1065{
1043 mn_now = get_clock (); 1066 mn_now = get_clock ();
1044 1067
1045 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1068 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1046 { 1069 {
1047 rt_now = rtmn_diff + mn_now; 1070 ev_rt_now = rtmn_diff + mn_now;
1048 return 0; 1071 return 0;
1049 } 1072 }
1050 else 1073 else
1051 { 1074 {
1052 now_floor = mn_now; 1075 now_floor = mn_now;
1053 rt_now = ev_time (); 1076 ev_rt_now = ev_time ();
1054 return 1; 1077 return 1;
1055 } 1078 }
1056} 1079}
1057 1080
1058static void 1081static void
1067 { 1090 {
1068 ev_tstamp odiff = rtmn_diff; 1091 ev_tstamp odiff = rtmn_diff;
1069 1092
1070 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1093 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1071 { 1094 {
1072 rtmn_diff = rt_now - mn_now; 1095 rtmn_diff = ev_rt_now - mn_now;
1073 1096
1074 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1097 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1075 return; /* all is well */ 1098 return; /* all is well */
1076 1099
1077 rt_now = ev_time (); 1100 ev_rt_now = ev_time ();
1078 mn_now = get_clock (); 1101 mn_now = get_clock ();
1079 now_floor = mn_now; 1102 now_floor = mn_now;
1080 } 1103 }
1081 1104
1105# if EV_PERIODICS
1082 periodics_reschedule (EV_A); 1106 periodics_reschedule (EV_A);
1107# endif
1083 /* no timer adjustment, as the monotonic clock doesn't jump */ 1108 /* no timer adjustment, as the monotonic clock doesn't jump */
1084 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1109 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1085 } 1110 }
1086 } 1111 }
1087 else 1112 else
1088#endif 1113#endif
1089 { 1114 {
1090 rt_now = ev_time (); 1115 ev_rt_now = ev_time ();
1091 1116
1092 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1117 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1093 { 1118 {
1119#if EV_PERIODICS
1094 periodics_reschedule (EV_A); 1120 periodics_reschedule (EV_A);
1121#endif
1095 1122
1096 /* adjust timers. this is easy, as the offset is the same for all */ 1123 /* adjust timers. this is easy, as the offset is the same for all */
1097 for (i = 0; i < timercnt; ++i) 1124 for (i = 0; i < timercnt; ++i)
1098 ((WT)timers [i])->at += rt_now - mn_now; 1125 ((WT)timers [i])->at += ev_rt_now - mn_now;
1099 } 1126 }
1100 1127
1101 mn_now = rt_now; 1128 mn_now = ev_rt_now;
1102 } 1129 }
1103} 1130}
1104 1131
1105void 1132void
1106ev_ref (EV_P) 1133ev_ref (EV_P)
1138 /* update fd-related kernel structures */ 1165 /* update fd-related kernel structures */
1139 fd_reify (EV_A); 1166 fd_reify (EV_A);
1140 1167
1141 /* calculate blocking time */ 1168 /* calculate blocking time */
1142 1169
1143 /* we only need this for !monotonic clockor timers, but as we basically 1170 /* we only need this for !monotonic clock or timers, but as we basically
1144 always have timers, we just calculate it always */ 1171 always have timers, we just calculate it always */
1145#if EV_USE_MONOTONIC 1172#if EV_USE_MONOTONIC
1146 if (expect_true (have_monotonic)) 1173 if (expect_true (have_monotonic))
1147 time_update_monotonic (EV_A); 1174 time_update_monotonic (EV_A);
1148 else 1175 else
1149#endif 1176#endif
1150 { 1177 {
1151 rt_now = ev_time (); 1178 ev_rt_now = ev_time ();
1152 mn_now = rt_now; 1179 mn_now = ev_rt_now;
1153 } 1180 }
1154 1181
1155 if (flags & EVLOOP_NONBLOCK || idlecnt) 1182 if (flags & EVLOOP_NONBLOCK || idlecnt)
1156 block = 0.; 1183 block = 0.;
1157 else 1184 else
1162 { 1189 {
1163 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1190 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1164 if (block > to) block = to; 1191 if (block > to) block = to;
1165 } 1192 }
1166 1193
1194#if EV_PERIODICS
1167 if (periodiccnt) 1195 if (periodiccnt)
1168 { 1196 {
1169 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1197 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1170 if (block > to) block = to; 1198 if (block > to) block = to;
1171 } 1199 }
1200#endif
1172 1201
1173 if (block < 0.) block = 0.; 1202 if (block < 0.) block = 0.;
1174 } 1203 }
1175 1204
1176 method_poll (EV_A_ block); 1205 method_poll (EV_A_ block);
1177 1206
1178 /* update rt_now, do magic */ 1207 /* update ev_rt_now, do magic */
1179 time_update (EV_A); 1208 time_update (EV_A);
1180 1209
1181 /* queue pending timers and reschedule them */ 1210 /* queue pending timers and reschedule them */
1182 timers_reify (EV_A); /* relative timers called last */ 1211 timers_reify (EV_A); /* relative timers called last */
1212#if EV_PERIODICS
1183 periodics_reify (EV_A); /* absolute timers called first */ 1213 periodics_reify (EV_A); /* absolute timers called first */
1214#endif
1184 1215
1185 /* queue idle watchers unless io or timers are pending */ 1216 /* queue idle watchers unless io or timers are pending */
1186 if (!pendingcnt) 1217 if (idlecnt && !any_pending (EV_A))
1187 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1218 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1188 1219
1189 /* queue check watchers, to be executed first */ 1220 /* queue check watchers, to be executed first */
1190 if (checkcnt) 1221 if (checkcnt)
1191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1222 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1266 return; 1297 return;
1267 1298
1268 assert (("ev_io_start called with negative fd", fd >= 0)); 1299 assert (("ev_io_start called with negative fd", fd >= 0));
1269 1300
1270 ev_start (EV_A_ (W)w, 1); 1301 ev_start (EV_A_ (W)w, 1);
1271 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1302 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1272 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1303 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1273 1304
1274 fd_change (EV_A_ fd); 1305 fd_change (EV_A_ fd);
1275} 1306}
1276 1307
1279{ 1310{
1280 ev_clear_pending (EV_A_ (W)w); 1311 ev_clear_pending (EV_A_ (W)w);
1281 if (!ev_is_active (w)) 1312 if (!ev_is_active (w))
1282 return; 1313 return;
1283 1314
1315 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1316
1284 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1317 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1285 ev_stop (EV_A_ (W)w); 1318 ev_stop (EV_A_ (W)w);
1286 1319
1287 fd_change (EV_A_ w->fd); 1320 fd_change (EV_A_ w->fd);
1288} 1321}
1296 ((WT)w)->at += mn_now; 1329 ((WT)w)->at += mn_now;
1297 1330
1298 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1331 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1299 1332
1300 ev_start (EV_A_ (W)w, ++timercnt); 1333 ev_start (EV_A_ (W)w, ++timercnt);
1301 array_needsize (timers, timermax, timercnt, (void)); 1334 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1302 timers [timercnt - 1] = w; 1335 timers [timercnt - 1] = w;
1303 upheap ((WT *)timers, timercnt - 1); 1336 upheap ((WT *)timers, timercnt - 1);
1304 1337
1305 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1338 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1306} 1339}
1315 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1348 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1316 1349
1317 if (((W)w)->active < timercnt--) 1350 if (((W)w)->active < timercnt--)
1318 { 1351 {
1319 timers [((W)w)->active - 1] = timers [timercnt]; 1352 timers [((W)w)->active - 1] = timers [timercnt];
1320 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1321 } 1354 }
1322 1355
1323 ((WT)w)->at = w->repeat; 1356 ((WT)w)->at -= mn_now;
1324 1357
1325 ev_stop (EV_A_ (W)w); 1358 ev_stop (EV_A_ (W)w);
1326} 1359}
1327 1360
1328void 1361void
1331 if (ev_is_active (w)) 1364 if (ev_is_active (w))
1332 { 1365 {
1333 if (w->repeat) 1366 if (w->repeat)
1334 { 1367 {
1335 ((WT)w)->at = mn_now + w->repeat; 1368 ((WT)w)->at = mn_now + w->repeat;
1336 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1337 } 1370 }
1338 else 1371 else
1339 ev_timer_stop (EV_A_ w); 1372 ev_timer_stop (EV_A_ w);
1340 } 1373 }
1341 else if (w->repeat) 1374 else if (w->repeat)
1342 ev_timer_start (EV_A_ w); 1375 ev_timer_start (EV_A_ w);
1343} 1376}
1344 1377
1378#if EV_PERIODICS
1345void 1379void
1346ev_periodic_start (EV_P_ struct ev_periodic *w) 1380ev_periodic_start (EV_P_ struct ev_periodic *w)
1347{ 1381{
1348 if (ev_is_active (w)) 1382 if (ev_is_active (w))
1349 return; 1383 return;
1350 1384
1385 if (w->reschedule_cb)
1386 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1387 else if (w->interval)
1388 {
1351 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1389 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1352
1353 /* this formula differs from the one in periodic_reify because we do not always round up */ 1390 /* this formula differs from the one in periodic_reify because we do not always round up */
1354 if (w->interval)
1355 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1391 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1392 }
1356 1393
1357 ev_start (EV_A_ (W)w, ++periodiccnt); 1394 ev_start (EV_A_ (W)w, ++periodiccnt);
1358 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1395 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1359 periodics [periodiccnt - 1] = w; 1396 periodics [periodiccnt - 1] = w;
1360 upheap ((WT *)periodics, periodiccnt - 1); 1397 upheap ((WT *)periodics, periodiccnt - 1);
1361 1398
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1399 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1363} 1400}
1372 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1409 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1373 1410
1374 if (((W)w)->active < periodiccnt--) 1411 if (((W)w)->active < periodiccnt--)
1375 { 1412 {
1376 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1413 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1377 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1414 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1378 } 1415 }
1379 1416
1380 ev_stop (EV_A_ (W)w); 1417 ev_stop (EV_A_ (W)w);
1381} 1418}
1382 1419
1383void 1420void
1421ev_periodic_again (EV_P_ struct ev_periodic *w)
1422{
1423 /* TODO: use adjustheap and recalculation */
1424 ev_periodic_stop (EV_A_ w);
1425 ev_periodic_start (EV_A_ w);
1426}
1427#endif
1428
1429void
1384ev_idle_start (EV_P_ struct ev_idle *w) 1430ev_idle_start (EV_P_ struct ev_idle *w)
1385{ 1431{
1386 if (ev_is_active (w)) 1432 if (ev_is_active (w))
1387 return; 1433 return;
1388 1434
1389 ev_start (EV_A_ (W)w, ++idlecnt); 1435 ev_start (EV_A_ (W)w, ++idlecnt);
1390 array_needsize (idles, idlemax, idlecnt, (void)); 1436 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1391 idles [idlecnt - 1] = w; 1437 idles [idlecnt - 1] = w;
1392} 1438}
1393 1439
1394void 1440void
1395ev_idle_stop (EV_P_ struct ev_idle *w) 1441ev_idle_stop (EV_P_ struct ev_idle *w)
1396{ 1442{
1397 ev_clear_pending (EV_A_ (W)w); 1443 ev_clear_pending (EV_A_ (W)w);
1398 if (ev_is_active (w)) 1444 if (!ev_is_active (w))
1399 return; 1445 return;
1400 1446
1401 idles [((W)w)->active - 1] = idles [--idlecnt]; 1447 idles [((W)w)->active - 1] = idles [--idlecnt];
1402 ev_stop (EV_A_ (W)w); 1448 ev_stop (EV_A_ (W)w);
1403} 1449}
1407{ 1453{
1408 if (ev_is_active (w)) 1454 if (ev_is_active (w))
1409 return; 1455 return;
1410 1456
1411 ev_start (EV_A_ (W)w, ++preparecnt); 1457 ev_start (EV_A_ (W)w, ++preparecnt);
1412 array_needsize (prepares, preparemax, preparecnt, (void)); 1458 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1413 prepares [preparecnt - 1] = w; 1459 prepares [preparecnt - 1] = w;
1414} 1460}
1415 1461
1416void 1462void
1417ev_prepare_stop (EV_P_ struct ev_prepare *w) 1463ev_prepare_stop (EV_P_ struct ev_prepare *w)
1418{ 1464{
1419 ev_clear_pending (EV_A_ (W)w); 1465 ev_clear_pending (EV_A_ (W)w);
1420 if (ev_is_active (w)) 1466 if (!ev_is_active (w))
1421 return; 1467 return;
1422 1468
1423 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1469 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1424 ev_stop (EV_A_ (W)w); 1470 ev_stop (EV_A_ (W)w);
1425} 1471}
1429{ 1475{
1430 if (ev_is_active (w)) 1476 if (ev_is_active (w))
1431 return; 1477 return;
1432 1478
1433 ev_start (EV_A_ (W)w, ++checkcnt); 1479 ev_start (EV_A_ (W)w, ++checkcnt);
1434 array_needsize (checks, checkmax, checkcnt, (void)); 1480 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1435 checks [checkcnt - 1] = w; 1481 checks [checkcnt - 1] = w;
1436} 1482}
1437 1483
1438void 1484void
1439ev_check_stop (EV_P_ struct ev_check *w) 1485ev_check_stop (EV_P_ struct ev_check *w)
1440{ 1486{
1441 ev_clear_pending (EV_A_ (W)w); 1487 ev_clear_pending (EV_A_ (W)w);
1442 if (ev_is_active (w)) 1488 if (!ev_is_active (w))
1443 return; 1489 return;
1444 1490
1445 checks [((W)w)->active - 1] = checks [--checkcnt]; 1491 checks [((W)w)->active - 1] = checks [--checkcnt];
1446 ev_stop (EV_A_ (W)w); 1492 ev_stop (EV_A_ (W)w);
1447} 1493}
1460 return; 1506 return;
1461 1507
1462 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1508 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1463 1509
1464 ev_start (EV_A_ (W)w, 1); 1510 ev_start (EV_A_ (W)w, 1);
1465 array_needsize (signals, signalmax, w->signum, signals_init); 1511 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1466 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1512 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1467 1513
1468 if (!((WL)w)->next) 1514 if (!((WL)w)->next)
1469 { 1515 {
1470#if WIN32 1516#if WIN32
1508 1554
1509void 1555void
1510ev_child_stop (EV_P_ struct ev_child *w) 1556ev_child_stop (EV_P_ struct ev_child *w)
1511{ 1557{
1512 ev_clear_pending (EV_A_ (W)w); 1558 ev_clear_pending (EV_A_ (W)w);
1513 if (ev_is_active (w)) 1559 if (!ev_is_active (w))
1514 return; 1560 return;
1515 1561
1516 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1562 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1517 ev_stop (EV_A_ (W)w); 1563 ev_stop (EV_A_ (W)w);
1518} 1564}
1553} 1599}
1554 1600
1555void 1601void
1556ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1602ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1557{ 1603{
1558 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1604 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1559 1605
1560 if (!once) 1606 if (!once)
1561 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1607 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1562 else 1608 else
1563 { 1609 {
1564 once->cb = cb; 1610 once->cb = cb;
1565 once->arg = arg; 1611 once->arg = arg;
1566 1612
1567 ev_watcher_init (&once->io, once_cb_io); 1613 ev_init (&once->io, once_cb_io);
1568 if (fd >= 0) 1614 if (fd >= 0)
1569 { 1615 {
1570 ev_io_set (&once->io, fd, events); 1616 ev_io_set (&once->io, fd, events);
1571 ev_io_start (EV_A_ &once->io); 1617 ev_io_start (EV_A_ &once->io);
1572 } 1618 }
1573 1619
1574 ev_watcher_init (&once->to, once_cb_to); 1620 ev_init (&once->to, once_cb_to);
1575 if (timeout >= 0.) 1621 if (timeout >= 0.)
1576 { 1622 {
1577 ev_timer_set (&once->to, timeout, 0.); 1623 ev_timer_set (&once->to, timeout, 0.);
1578 ev_timer_start (EV_A_ &once->to); 1624 ev_timer_start (EV_A_ &once->to);
1579 } 1625 }
1580 } 1626 }
1581} 1627}
1582 1628
1629#ifdef __cplusplus
1630}
1631#endif
1632

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines