ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.72 by root, Tue Nov 6 16:09:37 2007 UTC vs.
Revision 1.132 by root, Fri Nov 23 10:36:30 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
46# else
47# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0
49# endif
50# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0
52# endif
37# endif 53# endif
38 54
55# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 56# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 57# define EV_USE_SELECT 1
58# else
59# define EV_USE_SELECT 0
60# endif
41# endif 61# endif
42 62
63# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 64# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 65# define EV_USE_POLL 1
66# else
67# define EV_USE_POLL 0
68# endif
45# endif 69# endif
46 70
71# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 72# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 73# define EV_USE_EPOLL 1
74# else
75# define EV_USE_EPOLL 0
76# endif
49# endif 77# endif
50 78
79# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 81# define EV_USE_KQUEUE 1
82# else
83# define EV_USE_KQUEUE 0
84# endif
85# endif
86
87# ifndef EV_USE_PORT
88# if HAVE_PORT_H && HAVE_PORT_CREATE
89# define EV_USE_PORT 1
90# else
91# define EV_USE_PORT 0
92# endif
53# endif 93# endif
54 94
55#endif 95#endif
56 96
57#include <math.h> 97#include <math.h>
66#include <sys/types.h> 106#include <sys/types.h>
67#include <time.h> 107#include <time.h>
68 108
69#include <signal.h> 109#include <signal.h>
70 110
71#ifndef WIN32 111#ifndef _WIN32
72# include <unistd.h> 112# include <unistd.h>
73# include <sys/time.h> 113# include <sys/time.h>
74# include <sys/wait.h> 114# include <sys/wait.h>
115#else
116# define WIN32_LEAN_AND_MEAN
117# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1
75#endif 120# endif
121#endif
122
76/**/ 123/**/
77 124
78#ifndef EV_USE_MONOTONIC 125#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 126# define EV_USE_MONOTONIC 0
127#endif
128
129#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0
80#endif 131#endif
81 132
82#ifndef EV_USE_SELECT 133#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 134# define EV_USE_SELECT 1
84#endif 135#endif
85 136
86#ifndef EV_USE_POLL 137#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 138# ifdef _WIN32
139# define EV_USE_POLL 0
140# else
141# define EV_USE_POLL 1
142# endif
88#endif 143#endif
89 144
90#ifndef EV_USE_EPOLL 145#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0 146# define EV_USE_EPOLL 0
92#endif 147#endif
93 148
94#ifndef EV_USE_KQUEUE 149#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 150# define EV_USE_KQUEUE 0
96#endif 151#endif
97 152
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME 153#ifndef EV_USE_PORT
109# define EV_USE_REALTIME 1 154# define EV_USE_PORT 0
110#endif 155#endif
111 156
112/**/ 157/**/
113 158
114#ifndef CLOCK_MONOTONIC 159#ifndef CLOCK_MONOTONIC
119#ifndef CLOCK_REALTIME 164#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 165# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 166# define EV_USE_REALTIME 0
122#endif 167#endif
123 168
169#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h>
171#endif
172
124/**/ 173/**/
125 174
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
130 179
180#ifdef EV_H
181# include EV_H
182#else
131#include "ev.h" 183# include "ev.h"
184#endif
132 185
133#if __GNUC__ >= 3 186#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 187# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 188# define inline static inline
136#else 189#else
137# define expect(expr,value) (expr) 190# define expect(expr,value) (expr)
138# define inline static 191# define inline static
139#endif 192#endif
140 193
142#define expect_true(expr) expect ((expr) != 0, 1) 195#define expect_true(expr) expect ((expr) != 0, 1)
143 196
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 198#define ABSPRI(w) ((w)->priority - EV_MINPRI)
146 199
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */
202
147typedef struct ev_watcher *W; 203typedef struct ev_watcher *W;
148typedef struct ev_watcher_list *WL; 204typedef struct ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 205typedef struct ev_watcher_time *WT;
150 206
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 208
153#if WIN32 209#ifdef _WIN32
154/* note: the comment below could not be substantiated, but what would I care */ 210# include "ev_win32.c"
155/* MSDN says this is required to handle SIGFPE */
156volatile double SIGFPE_REQ = 0.0f;
157
158static int
159ev_socketpair_tcp (int filedes [2])
160{
161 struct sockaddr_in addr = { 0 };
162 int addr_size = sizeof (addr);
163 SOCKET listener;
164 SOCKET sock [2] = { -1, -1 };
165
166 if ((listener = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
167 return -1;
168
169 addr.sin_family = AF_INET;
170 addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
171 addr.sin_port = 0;
172
173 if (bind (listener, (struct sockaddr *)&addr, addr_size))
174 goto fail;
175
176 if (getsockname(listener, (struct sockaddr *)&addr, &addr_size))
177 goto fail;
178
179 if (listen (listener, 1))
180 goto fail;
181
182 if ((sock [0] = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
183 goto fail;
184
185 if (connect (sock[0], (struct sockaddr *)&addr, addr_size))
186 goto fail;
187
188 if ((sock[1] = accept (listener, 0, 0)) < 0)
189 goto fail;
190
191 closesocket (listener);
192
193 filedes [0] = sock [0];
194 filedes [1] = sock [1];
195
196 return 0;
197
198fail:
199 closesocket (listener);
200
201 if (sock [0] != INVALID_SOCKET) closesocket (sock [0]);
202 if (sock [1] != INVALID_SOCKET) closesocket (sock [1]);
203
204 return -1;
205}
206
207# define ev_pipe(filedes) ev_socketpair_tcp (filedes)
208#else
209# define ev_pipe(filedes) pipe (filedes)
210#endif 211#endif
211 212
212/*****************************************************************************/ 213/*****************************************************************************/
213 214
214static void (*syserr_cb)(const char *msg); 215static void (*syserr_cb)(const char *msg);
262typedef struct 263typedef struct
263{ 264{
264 WL head; 265 WL head;
265 unsigned char events; 266 unsigned char events;
266 unsigned char reify; 267 unsigned char reify;
268#if EV_SELECT_IS_WINSOCKET
269 SOCKET handle;
270#endif
267} ANFD; 271} ANFD;
268 272
269typedef struct 273typedef struct
270{ 274{
271 W w; 275 W w;
272 int events; 276 int events;
273} ANPENDING; 277} ANPENDING;
274 278
275#if EV_MULTIPLICITY 279#if EV_MULTIPLICITY
276 280
277struct ev_loop 281 struct ev_loop
278{ 282 {
283 ev_tstamp ev_rt_now;
284 #define ev_rt_now ((loop)->ev_rt_now)
279# define VAR(name,decl) decl; 285 #define VAR(name,decl) decl;
280# include "ev_vars.h" 286 #include "ev_vars.h"
281};
282# undef VAR 287 #undef VAR
288 };
283# include "ev_wrap.h" 289 #include "ev_wrap.h"
290
291 static struct ev_loop default_loop_struct;
292 struct ev_loop *ev_default_loop_ptr;
284 293
285#else 294#else
286 295
296 ev_tstamp ev_rt_now;
287# define VAR(name,decl) static decl; 297 #define VAR(name,decl) static decl;
288# include "ev_vars.h" 298 #include "ev_vars.h"
289# undef VAR 299 #undef VAR
300
301 static int ev_default_loop_ptr;
290 302
291#endif 303#endif
292 304
293/*****************************************************************************/ 305/*****************************************************************************/
294 306
295inline ev_tstamp 307ev_tstamp
296ev_time (void) 308ev_time (void)
297{ 309{
298#if EV_USE_REALTIME 310#if EV_USE_REALTIME
299 struct timespec ts; 311 struct timespec ts;
300 clock_gettime (CLOCK_REALTIME, &ts); 312 clock_gettime (CLOCK_REALTIME, &ts);
319#endif 331#endif
320 332
321 return ev_time (); 333 return ev_time ();
322} 334}
323 335
336#if EV_MULTIPLICITY
324ev_tstamp 337ev_tstamp
325ev_now (EV_P) 338ev_now (EV_P)
326{ 339{
327 return rt_now; 340 return ev_rt_now;
328} 341}
342#endif
329 343
330#define array_roundsize(base,n) ((n) | 4 & ~3) 344#define array_roundsize(type,n) (((n) | 4) & ~3)
331 345
332#define array_needsize(base,cur,cnt,init) \ 346#define array_needsize(type,base,cur,cnt,init) \
333 if (expect_false ((cnt) > cur)) \ 347 if (expect_false ((cnt) > cur)) \
334 { \ 348 { \
335 int newcnt = cur; \ 349 int newcnt = cur; \
336 do \ 350 do \
337 { \ 351 { \
338 newcnt = array_roundsize (base, newcnt << 1); \ 352 newcnt = array_roundsize (type, newcnt << 1); \
339 } \ 353 } \
340 while ((cnt) > newcnt); \ 354 while ((cnt) > newcnt); \
341 \ 355 \
342 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
343 init (base + cur, newcnt - cur); \ 357 init (base + cur, newcnt - cur); \
344 cur = newcnt; \ 358 cur = newcnt; \
345 } 359 }
346 360
347#define array_slim(stem) \ 361#define array_slim(type,stem) \
348 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
349 { \ 363 { \
350 stem ## max = array_roundsize (stem ## cnt >> 1); \ 364 stem ## max = array_roundsize (stem ## cnt >> 1); \
351 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
352 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
353 } 367 }
354
355/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
356/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
357#define array_free_microshit(stem) \
358 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
359 368
360#define array_free(stem, idx) \ 369#define array_free(stem, idx) \
361 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
362 371
363/*****************************************************************************/ 372/*****************************************************************************/
373 382
374 ++base; 383 ++base;
375 } 384 }
376} 385}
377 386
378static void 387void
379event (EV_P_ W w, int events) 388ev_feed_event (EV_P_ void *w, int revents)
380{ 389{
381 if (w->pending) 390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
382 { 393 {
383 pendings [ABSPRI (w)][w->pending - 1].events |= events; 394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
384 return; 395 return;
385 } 396 }
386 397
387 w->pending = ++pendingcnt [ABSPRI (w)]; 398 w_->pending = ++pendingcnt [ABSPRI (w_)];
388 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
389 pendings [ABSPRI (w)][w->pending - 1].w = w; 400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
390 pendings [ABSPRI (w)][w->pending - 1].events = events; 401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
391} 402}
392 403
393static void 404static void
394queue_events (EV_P_ W *events, int eventcnt, int type) 405queue_events (EV_P_ W *events, int eventcnt, int type)
395{ 406{
396 int i; 407 int i;
397 408
398 for (i = 0; i < eventcnt; ++i) 409 for (i = 0; i < eventcnt; ++i)
399 event (EV_A_ events [i], type); 410 ev_feed_event (EV_A_ events [i], type);
400} 411}
401 412
402static void 413inline void
403fd_event (EV_P_ int fd, int events) 414fd_event (EV_P_ int fd, int revents)
404{ 415{
405 ANFD *anfd = anfds + fd; 416 ANFD *anfd = anfds + fd;
406 struct ev_io *w; 417 struct ev_io *w;
407 418
408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
409 { 420 {
410 int ev = w->events & events; 421 int ev = w->events & revents;
411 422
412 if (ev) 423 if (ev)
413 event (EV_A_ (W)w, ev); 424 ev_feed_event (EV_A_ (W)w, ev);
414 } 425 }
426}
427
428void
429ev_feed_fd_event (EV_P_ int fd, int revents)
430{
431 fd_event (EV_A_ fd, revents);
415} 432}
416 433
417/*****************************************************************************/ 434/*****************************************************************************/
418 435
419static void 436inline void
420fd_reify (EV_P) 437fd_reify (EV_P)
421{ 438{
422 int i; 439 int i;
423 440
424 for (i = 0; i < fdchangecnt; ++i) 441 for (i = 0; i < fdchangecnt; ++i)
430 int events = 0; 447 int events = 0;
431 448
432 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
433 events |= w->events; 450 events |= w->events;
434 451
452#if EV_SELECT_IS_WINSOCKET
453 if (events)
454 {
455 unsigned long argp;
456 anfd->handle = _get_osfhandle (fd);
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
458 }
459#endif
460
435 anfd->reify = 0; 461 anfd->reify = 0;
436 462
437 method_modify (EV_A_ fd, anfd->events, events); 463 backend_modify (EV_A_ fd, anfd->events, events);
438 anfd->events = events; 464 anfd->events = events;
439 } 465 }
440 466
441 fdchangecnt = 0; 467 fdchangecnt = 0;
442} 468}
443 469
444static void 470static void
445fd_change (EV_P_ int fd) 471fd_change (EV_P_ int fd)
446{ 472{
447 if (anfds [fd].reify) 473 if (expect_false (anfds [fd].reify))
448 return; 474 return;
449 475
450 anfds [fd].reify = 1; 476 anfds [fd].reify = 1;
451 477
452 ++fdchangecnt; 478 ++fdchangecnt;
453 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
454 fdchanges [fdchangecnt - 1] = fd; 480 fdchanges [fdchangecnt - 1] = fd;
455} 481}
456 482
457static void 483static void
458fd_kill (EV_P_ int fd) 484fd_kill (EV_P_ int fd)
460 struct ev_io *w; 486 struct ev_io *w;
461 487
462 while ((w = (struct ev_io *)anfds [fd].head)) 488 while ((w = (struct ev_io *)anfds [fd].head))
463 { 489 {
464 ev_io_stop (EV_A_ w); 490 ev_io_stop (EV_A_ w);
465 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
466 } 492 }
467} 493}
468 494
469static int 495inline int
470fd_valid (int fd) 496fd_valid (int fd)
471{ 497{
472#ifdef WIN32 498#ifdef _WIN32
473 return !!win32_get_osfhandle (fd); 499 return _get_osfhandle (fd) != -1;
474#else 500#else
475 return fcntl (fd, F_GETFD) != -1; 501 return fcntl (fd, F_GETFD) != -1;
476#endif 502#endif
477} 503}
478 504
500 fd_kill (EV_A_ fd); 526 fd_kill (EV_A_ fd);
501 return; 527 return;
502 } 528 }
503} 529}
504 530
505/* usually called after fork if method needs to re-arm all fds from scratch */ 531/* usually called after fork if backend needs to re-arm all fds from scratch */
506static void 532static void
507fd_rearm_all (EV_P) 533fd_rearm_all (EV_P)
508{ 534{
509 int fd; 535 int fd;
510 536
558 584
559 heap [k] = w; 585 heap [k] = w;
560 ((W)heap [k])->active = k + 1; 586 ((W)heap [k])->active = k + 1;
561} 587}
562 588
589inline void
590adjustheap (WT *heap, int N, int k)
591{
592 upheap (heap, k);
593 downheap (heap, N, k);
594}
595
563/*****************************************************************************/ 596/*****************************************************************************/
564 597
565typedef struct 598typedef struct
566{ 599{
567 WL head; 600 WL head;
588} 621}
589 622
590static void 623static void
591sighandler (int signum) 624sighandler (int signum)
592{ 625{
593#if WIN32 626#if _WIN32
594 signal (signum, sighandler); 627 signal (signum, sighandler);
595#endif 628#endif
596 629
597 signals [signum - 1].gotsig = 1; 630 signals [signum - 1].gotsig = 1;
598 631
603 write (sigpipe [1], &signum, 1); 636 write (sigpipe [1], &signum, 1);
604 errno = old_errno; 637 errno = old_errno;
605 } 638 }
606} 639}
607 640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
608static void 661static void
609sigcb (EV_P_ struct ev_io *iow, int revents) 662sigcb (EV_P_ struct ev_io *iow, int revents)
610{ 663{
611 WL w;
612 int signum; 664 int signum;
613 665
614 read (sigpipe [0], &revents, 1); 666 read (sigpipe [0], &revents, 1);
615 gotsig = 0; 667 gotsig = 0;
616 668
617 for (signum = signalmax; signum--; ) 669 for (signum = signalmax; signum--; )
618 if (signals [signum].gotsig) 670 if (signals [signum].gotsig)
619 { 671 ev_feed_signal_event (EV_A_ signum + 1);
620 signals [signum].gotsig = 0; 672}
621 673
622 for (w = signals [signum].head; w; w = w->next) 674static void
623 event (EV_A_ (W)w, EV_SIGNAL); 675fd_intern (int fd)
624 } 676{
677#ifdef _WIN32
678 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
680#else
681 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif
625} 684}
626 685
627static void 686static void
628siginit (EV_P) 687siginit (EV_P)
629{ 688{
630#ifndef WIN32 689 fd_intern (sigpipe [0]);
631 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 690 fd_intern (sigpipe [1]);
632 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
633
634 /* rather than sort out wether we really need nb, set it */
635 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
636 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
637#endif
638 691
639 ev_io_set (&sigev, sigpipe [0], EV_READ); 692 ev_io_set (&sigev, sigpipe [0], EV_READ);
640 ev_io_start (EV_A_ &sigev); 693 ev_io_start (EV_A_ &sigev);
641 ev_unref (EV_A); /* child watcher should not keep loop alive */ 694 ev_unref (EV_A); /* child watcher should not keep loop alive */
642} 695}
643 696
644/*****************************************************************************/ 697/*****************************************************************************/
645 698
646static struct ev_child *childs [PID_HASHSIZE]; 699static struct ev_child *childs [PID_HASHSIZE];
647 700
648#ifndef WIN32 701#ifndef _WIN32
649 702
650static struct ev_signal childev; 703static struct ev_signal childev;
651 704
652#ifndef WCONTINUED 705#ifndef WCONTINUED
653# define WCONTINUED 0 706# define WCONTINUED 0
662 if (w->pid == pid || !w->pid) 715 if (w->pid == pid || !w->pid)
663 { 716 {
664 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
665 w->rpid = pid; 718 w->rpid = pid;
666 w->rstatus = status; 719 w->rstatus = status;
667 event (EV_A_ (W)w, EV_CHILD); 720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
668 } 721 }
669} 722}
670 723
671static void 724static void
672childcb (EV_P_ struct ev_signal *sw, int revents) 725childcb (EV_P_ struct ev_signal *sw, int revents)
674 int pid, status; 727 int pid, status;
675 728
676 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
677 { 730 {
678 /* make sure we are called again until all childs have been reaped */ 731 /* make sure we are called again until all childs have been reaped */
732 /* we need to do it this way so that the callback gets called before we continue */
679 event (EV_A_ (W)sw, EV_SIGNAL); 733 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
680 734
681 child_reap (EV_A_ sw, pid, pid, status); 735 child_reap (EV_A_ sw, pid, pid, status);
682 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 736 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
683 } 737 }
684} 738}
685 739
686#endif 740#endif
687 741
688/*****************************************************************************/ 742/*****************************************************************************/
689 743
744#if EV_USE_PORT
745# include "ev_port.c"
746#endif
690#if EV_USE_KQUEUE 747#if EV_USE_KQUEUE
691# include "ev_kqueue.c" 748# include "ev_kqueue.c"
692#endif 749#endif
693#if EV_USE_EPOLL 750#if EV_USE_EPOLL
694# include "ev_epoll.c" 751# include "ev_epoll.c"
714 771
715/* return true if we are running with elevated privileges and should ignore env variables */ 772/* return true if we are running with elevated privileges and should ignore env variables */
716static int 773static int
717enable_secure (void) 774enable_secure (void)
718{ 775{
719#ifdef WIN32 776#ifdef _WIN32
720 return 0; 777 return 0;
721#else 778#else
722 return getuid () != geteuid () 779 return getuid () != geteuid ()
723 || getgid () != getegid (); 780 || getgid () != getegid ();
724#endif 781#endif
725} 782}
726 783
727int 784unsigned int
728ev_method (EV_P) 785ev_supported_backends (void)
729{ 786{
730 return method; 787 unsigned int flags = 0;
731}
732 788
733static void 789 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
734loop_init (EV_P_ int methods) 790 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
791 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
792 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
793 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
794
795 return flags;
796}
797
798unsigned int
799ev_recommended_backends (void)
735{ 800{
736 if (!method) 801 unsigned int flags = ev_supported_backends ();
802
803#ifndef __NetBSD__
804 /* kqueue is borked on everything but netbsd apparently */
805 /* it usually doesn't work correctly on anything but sockets and pipes */
806 flags &= ~EVBACKEND_KQUEUE;
807#endif
808#ifdef __APPLE__
809 // flags &= ~EVBACKEND_KQUEUE; for documentation
810 flags &= ~EVBACKEND_POLL;
811#endif
812
813 return flags;
814}
815
816unsigned int
817ev_backend (EV_P)
818{
819 return backend;
820}
821
822static void
823loop_init (EV_P_ unsigned int flags)
824{
825 if (!backend)
737 { 826 {
738#if EV_USE_MONOTONIC 827#if EV_USE_MONOTONIC
739 { 828 {
740 struct timespec ts; 829 struct timespec ts;
741 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 830 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
742 have_monotonic = 1; 831 have_monotonic = 1;
743 } 832 }
744#endif 833#endif
745 834
746 rt_now = ev_time (); 835 ev_rt_now = ev_time ();
747 mn_now = get_clock (); 836 mn_now = get_clock ();
748 now_floor = mn_now; 837 now_floor = mn_now;
749 rtmn_diff = rt_now - mn_now; 838 rtmn_diff = ev_rt_now - mn_now;
750 839
751 if (methods == EVMETHOD_AUTO) 840 if (!(flags & EVFLAG_NOENV)
752 if (!enable_secure () && getenv ("LIBEV_METHODS")) 841 && !enable_secure ()
842 && getenv ("LIBEV_FLAGS"))
753 methods = atoi (getenv ("LIBEV_METHODS")); 843 flags = atoi (getenv ("LIBEV_FLAGS"));
754 else
755 methods = EVMETHOD_ANY;
756 844
757 method = 0; 845 if (!(flags & 0x0000ffffUL))
758#if EV_USE_WIN32 846 flags |= ev_recommended_backends ();
759 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 847
848 backend = 0;
849#if EV_USE_PORT
850 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
760#endif 851#endif
761#if EV_USE_KQUEUE 852#if EV_USE_KQUEUE
762 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 853 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
763#endif 854#endif
764#if EV_USE_EPOLL 855#if EV_USE_EPOLL
765 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 856 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
766#endif 857#endif
767#if EV_USE_POLL 858#if EV_USE_POLL
768 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 859 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
769#endif 860#endif
770#if EV_USE_SELECT 861#if EV_USE_SELECT
771 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 862 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
772#endif 863#endif
773 864
774 ev_watcher_init (&sigev, sigcb); 865 ev_init (&sigev, sigcb);
775 ev_set_priority (&sigev, EV_MAXPRI); 866 ev_set_priority (&sigev, EV_MAXPRI);
776 } 867 }
777} 868}
778 869
779void 870static void
780loop_destroy (EV_P) 871loop_destroy (EV_P)
781{ 872{
782 int i; 873 int i;
783 874
784#if EV_USE_WIN32 875#if EV_USE_PORT
785 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 876 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
786#endif 877#endif
787#if EV_USE_KQUEUE 878#if EV_USE_KQUEUE
788 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 879 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
789#endif 880#endif
790#if EV_USE_EPOLL 881#if EV_USE_EPOLL
791 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 882 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
792#endif 883#endif
793#if EV_USE_POLL 884#if EV_USE_POLL
794 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 885 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
795#endif 886#endif
796#if EV_USE_SELECT 887#if EV_USE_SELECT
797 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 888 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
798#endif 889#endif
799 890
800 for (i = NUMPRI; i--; ) 891 for (i = NUMPRI; i--; )
801 array_free (pending, [i]); 892 array_free (pending, [i]);
802 893
803 /* have to use the microsoft-never-gets-it-right macro */ 894 /* have to use the microsoft-never-gets-it-right macro */
804 array_free_microshit (fdchange); 895 array_free (fdchange, EMPTY0);
805 array_free_microshit (timer); 896 array_free (timer, EMPTY0);
806 array_free_microshit (periodic); 897#if EV_PERIODICS
807 array_free_microshit (idle); 898 array_free (periodic, EMPTY0);
808 array_free_microshit (prepare); 899#endif
809 array_free_microshit (check); 900 array_free (idle, EMPTY0);
901 array_free (prepare, EMPTY0);
902 array_free (check, EMPTY0);
810 903
811 method = 0; 904 backend = 0;
812} 905}
813 906
814static void 907static void
815loop_fork (EV_P) 908loop_fork (EV_P)
816{ 909{
910#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
912#endif
913#if EV_USE_KQUEUE
914 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
915#endif
817#if EV_USE_EPOLL 916#if EV_USE_EPOLL
818 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 917 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
819#endif
820#if EV_USE_KQUEUE
821 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
822#endif 918#endif
823 919
824 if (ev_is_active (&sigev)) 920 if (ev_is_active (&sigev))
825 { 921 {
826 /* default loop */ 922 /* default loop */
828 ev_ref (EV_A); 924 ev_ref (EV_A);
829 ev_io_stop (EV_A_ &sigev); 925 ev_io_stop (EV_A_ &sigev);
830 close (sigpipe [0]); 926 close (sigpipe [0]);
831 close (sigpipe [1]); 927 close (sigpipe [1]);
832 928
833 while (ev_pipe (sigpipe)) 929 while (pipe (sigpipe))
834 syserr ("(libev) error creating pipe"); 930 syserr ("(libev) error creating pipe");
835 931
836 siginit (EV_A); 932 siginit (EV_A);
837 } 933 }
838 934
839 postfork = 0; 935 postfork = 0;
840} 936}
841 937
842#if EV_MULTIPLICITY 938#if EV_MULTIPLICITY
843struct ev_loop * 939struct ev_loop *
844ev_loop_new (int methods) 940ev_loop_new (unsigned int flags)
845{ 941{
846 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 942 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
847 943
848 memset (loop, 0, sizeof (struct ev_loop)); 944 memset (loop, 0, sizeof (struct ev_loop));
849 945
850 loop_init (EV_A_ methods); 946 loop_init (EV_A_ flags);
851 947
852 if (ev_method (EV_A)) 948 if (ev_backend (EV_A))
853 return loop; 949 return loop;
854 950
855 return 0; 951 return 0;
856} 952}
857 953
869} 965}
870 966
871#endif 967#endif
872 968
873#if EV_MULTIPLICITY 969#if EV_MULTIPLICITY
874struct ev_loop default_loop_struct;
875static struct ev_loop *default_loop;
876
877struct ev_loop * 970struct ev_loop *
971ev_default_loop_init (unsigned int flags)
878#else 972#else
879static int default_loop;
880
881int 973int
974ev_default_loop (unsigned int flags)
882#endif 975#endif
883ev_default_loop (int methods)
884{ 976{
885 if (sigpipe [0] == sigpipe [1]) 977 if (sigpipe [0] == sigpipe [1])
886 if (ev_pipe (sigpipe)) 978 if (pipe (sigpipe))
887 return 0; 979 return 0;
888 980
889 if (!default_loop) 981 if (!ev_default_loop_ptr)
890 { 982 {
891#if EV_MULTIPLICITY 983#if EV_MULTIPLICITY
892 struct ev_loop *loop = default_loop = &default_loop_struct; 984 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
893#else 985#else
894 default_loop = 1; 986 ev_default_loop_ptr = 1;
895#endif 987#endif
896 988
897 loop_init (EV_A_ methods); 989 loop_init (EV_A_ flags);
898 990
899 if (ev_method (EV_A)) 991 if (ev_backend (EV_A))
900 { 992 {
901 siginit (EV_A); 993 siginit (EV_A);
902 994
903#ifndef WIN32 995#ifndef _WIN32
904 ev_signal_init (&childev, childcb, SIGCHLD); 996 ev_signal_init (&childev, childcb, SIGCHLD);
905 ev_set_priority (&childev, EV_MAXPRI); 997 ev_set_priority (&childev, EV_MAXPRI);
906 ev_signal_start (EV_A_ &childev); 998 ev_signal_start (EV_A_ &childev);
907 ev_unref (EV_A); /* child watcher should not keep loop alive */ 999 ev_unref (EV_A); /* child watcher should not keep loop alive */
908#endif 1000#endif
909 } 1001 }
910 else 1002 else
911 default_loop = 0; 1003 ev_default_loop_ptr = 0;
912 } 1004 }
913 1005
914 return default_loop; 1006 return ev_default_loop_ptr;
915} 1007}
916 1008
917void 1009void
918ev_default_destroy (void) 1010ev_default_destroy (void)
919{ 1011{
920#if EV_MULTIPLICITY 1012#if EV_MULTIPLICITY
921 struct ev_loop *loop = default_loop; 1013 struct ev_loop *loop = ev_default_loop_ptr;
922#endif 1014#endif
923 1015
924#ifndef WIN32 1016#ifndef _WIN32
925 ev_ref (EV_A); /* child watcher */ 1017 ev_ref (EV_A); /* child watcher */
926 ev_signal_stop (EV_A_ &childev); 1018 ev_signal_stop (EV_A_ &childev);
927#endif 1019#endif
928 1020
929 ev_ref (EV_A); /* signal watcher */ 1021 ev_ref (EV_A); /* signal watcher */
937 1029
938void 1030void
939ev_default_fork (void) 1031ev_default_fork (void)
940{ 1032{
941#if EV_MULTIPLICITY 1033#if EV_MULTIPLICITY
942 struct ev_loop *loop = default_loop; 1034 struct ev_loop *loop = ev_default_loop_ptr;
943#endif 1035#endif
944 1036
945 if (method) 1037 if (backend)
946 postfork = 1; 1038 postfork = 1;
947} 1039}
948 1040
949/*****************************************************************************/ 1041/*****************************************************************************/
950 1042
951static void 1043static int
1044any_pending (EV_P)
1045{
1046 int pri;
1047
1048 for (pri = NUMPRI; pri--; )
1049 if (pendingcnt [pri])
1050 return 1;
1051
1052 return 0;
1053}
1054
1055inline void
952call_pending (EV_P) 1056call_pending (EV_P)
953{ 1057{
954 int pri; 1058 int pri;
955 1059
956 for (pri = NUMPRI; pri--; ) 1060 for (pri = NUMPRI; pri--; )
957 while (pendingcnt [pri]) 1061 while (pendingcnt [pri])
958 { 1062 {
959 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1063 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
960 1064
961 if (p->w) 1065 if (expect_true (p->w))
962 { 1066 {
963 p->w->pending = 0; 1067 p->w->pending = 0;
964 p->w->cb (EV_A_ p->w, p->events); 1068 EV_CB_INVOKE (p->w, p->events);
965 } 1069 }
966 } 1070 }
967} 1071}
968 1072
969static void 1073inline void
970timers_reify (EV_P) 1074timers_reify (EV_P)
971{ 1075{
972 while (timercnt && ((WT)timers [0])->at <= mn_now) 1076 while (timercnt && ((WT)timers [0])->at <= mn_now)
973 { 1077 {
974 struct ev_timer *w = timers [0]; 1078 struct ev_timer *w = timers [0];
977 1081
978 /* first reschedule or stop timer */ 1082 /* first reschedule or stop timer */
979 if (w->repeat) 1083 if (w->repeat)
980 { 1084 {
981 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1085 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1086
982 ((WT)w)->at = mn_now + w->repeat; 1087 ((WT)w)->at += w->repeat;
1088 if (((WT)w)->at < mn_now)
1089 ((WT)w)->at = mn_now;
1090
983 downheap ((WT *)timers, timercnt, 0); 1091 downheap ((WT *)timers, timercnt, 0);
984 } 1092 }
985 else 1093 else
986 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1094 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
987 1095
988 event (EV_A_ (W)w, EV_TIMEOUT); 1096 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
989 } 1097 }
990} 1098}
991 1099
992static void 1100#if EV_PERIODICS
1101inline void
993periodics_reify (EV_P) 1102periodics_reify (EV_P)
994{ 1103{
995 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1104 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
996 { 1105 {
997 struct ev_periodic *w = periodics [0]; 1106 struct ev_periodic *w = periodics [0];
998 1107
999 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1108 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1000 1109
1001 /* first reschedule or stop timer */ 1110 /* first reschedule or stop timer */
1002 if (w->interval) 1111 if (w->reschedule_cb)
1003 { 1112 {
1113 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1114 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1115 downheap ((WT *)periodics, periodiccnt, 0);
1116 }
1117 else if (w->interval)
1118 {
1004 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1119 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1005 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1120 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1006 downheap ((WT *)periodics, periodiccnt, 0); 1121 downheap ((WT *)periodics, periodiccnt, 0);
1007 } 1122 }
1008 else 1123 else
1009 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1124 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1010 1125
1011 event (EV_A_ (W)w, EV_PERIODIC); 1126 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1012 } 1127 }
1013} 1128}
1014 1129
1015static void 1130static void
1016periodics_reschedule (EV_P) 1131periodics_reschedule (EV_P)
1020 /* adjust periodics after time jump */ 1135 /* adjust periodics after time jump */
1021 for (i = 0; i < periodiccnt; ++i) 1136 for (i = 0; i < periodiccnt; ++i)
1022 { 1137 {
1023 struct ev_periodic *w = periodics [i]; 1138 struct ev_periodic *w = periodics [i];
1024 1139
1140 if (w->reschedule_cb)
1141 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1025 if (w->interval) 1142 else if (w->interval)
1026 {
1027 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1143 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1028
1029 if (fabs (diff) >= 1e-4)
1030 {
1031 ev_periodic_stop (EV_A_ w);
1032 ev_periodic_start (EV_A_ w);
1033
1034 i = 0; /* restart loop, inefficient, but time jumps should be rare */
1035 }
1036 }
1037 } 1144 }
1145
1146 /* now rebuild the heap */
1147 for (i = periodiccnt >> 1; i--; )
1148 downheap ((WT *)periodics, periodiccnt, i);
1038} 1149}
1150#endif
1039 1151
1040inline int 1152inline int
1041time_update_monotonic (EV_P) 1153time_update_monotonic (EV_P)
1042{ 1154{
1043 mn_now = get_clock (); 1155 mn_now = get_clock ();
1044 1156
1045 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1157 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1046 { 1158 {
1047 rt_now = rtmn_diff + mn_now; 1159 ev_rt_now = rtmn_diff + mn_now;
1048 return 0; 1160 return 0;
1049 } 1161 }
1050 else 1162 else
1051 { 1163 {
1052 now_floor = mn_now; 1164 now_floor = mn_now;
1053 rt_now = ev_time (); 1165 ev_rt_now = ev_time ();
1054 return 1; 1166 return 1;
1055 } 1167 }
1056} 1168}
1057 1169
1058static void 1170inline void
1059time_update (EV_P) 1171time_update (EV_P)
1060{ 1172{
1061 int i; 1173 int i;
1062 1174
1063#if EV_USE_MONOTONIC 1175#if EV_USE_MONOTONIC
1067 { 1179 {
1068 ev_tstamp odiff = rtmn_diff; 1180 ev_tstamp odiff = rtmn_diff;
1069 1181
1070 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1182 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1071 { 1183 {
1072 rtmn_diff = rt_now - mn_now; 1184 rtmn_diff = ev_rt_now - mn_now;
1073 1185
1074 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1186 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1075 return; /* all is well */ 1187 return; /* all is well */
1076 1188
1077 rt_now = ev_time (); 1189 ev_rt_now = ev_time ();
1078 mn_now = get_clock (); 1190 mn_now = get_clock ();
1079 now_floor = mn_now; 1191 now_floor = mn_now;
1080 } 1192 }
1081 1193
1194# if EV_PERIODICS
1082 periodics_reschedule (EV_A); 1195 periodics_reschedule (EV_A);
1196# endif
1083 /* no timer adjustment, as the monotonic clock doesn't jump */ 1197 /* no timer adjustment, as the monotonic clock doesn't jump */
1084 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1198 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1085 } 1199 }
1086 } 1200 }
1087 else 1201 else
1088#endif 1202#endif
1089 { 1203 {
1090 rt_now = ev_time (); 1204 ev_rt_now = ev_time ();
1091 1205
1092 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1206 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1093 { 1207 {
1208#if EV_PERIODICS
1094 periodics_reschedule (EV_A); 1209 periodics_reschedule (EV_A);
1210#endif
1095 1211
1096 /* adjust timers. this is easy, as the offset is the same for all */ 1212 /* adjust timers. this is easy, as the offset is the same for all */
1097 for (i = 0; i < timercnt; ++i) 1213 for (i = 0; i < timercnt; ++i)
1098 ((WT)timers [i])->at += rt_now - mn_now; 1214 ((WT)timers [i])->at += ev_rt_now - mn_now;
1099 } 1215 }
1100 1216
1101 mn_now = rt_now; 1217 mn_now = ev_rt_now;
1102 } 1218 }
1103} 1219}
1104 1220
1105void 1221void
1106ev_ref (EV_P) 1222ev_ref (EV_P)
1120ev_loop (EV_P_ int flags) 1236ev_loop (EV_P_ int flags)
1121{ 1237{
1122 double block; 1238 double block;
1123 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1239 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1124 1240
1125 do 1241 while (activecnt)
1126 { 1242 {
1127 /* queue check watchers (and execute them) */ 1243 /* queue check watchers (and execute them) */
1128 if (expect_false (preparecnt)) 1244 if (expect_false (preparecnt))
1129 { 1245 {
1130 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1246 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1138 /* update fd-related kernel structures */ 1254 /* update fd-related kernel structures */
1139 fd_reify (EV_A); 1255 fd_reify (EV_A);
1140 1256
1141 /* calculate blocking time */ 1257 /* calculate blocking time */
1142 1258
1143 /* we only need this for !monotonic clockor timers, but as we basically 1259 /* we only need this for !monotonic clock or timers, but as we basically
1144 always have timers, we just calculate it always */ 1260 always have timers, we just calculate it always */
1145#if EV_USE_MONOTONIC 1261#if EV_USE_MONOTONIC
1146 if (expect_true (have_monotonic)) 1262 if (expect_true (have_monotonic))
1147 time_update_monotonic (EV_A); 1263 time_update_monotonic (EV_A);
1148 else 1264 else
1149#endif 1265#endif
1150 { 1266 {
1151 rt_now = ev_time (); 1267 ev_rt_now = ev_time ();
1152 mn_now = rt_now; 1268 mn_now = ev_rt_now;
1153 } 1269 }
1154 1270
1155 if (flags & EVLOOP_NONBLOCK || idlecnt) 1271 if (flags & EVLOOP_NONBLOCK || idlecnt)
1156 block = 0.; 1272 block = 0.;
1157 else 1273 else
1158 { 1274 {
1159 block = MAX_BLOCKTIME; 1275 block = MAX_BLOCKTIME;
1160 1276
1161 if (timercnt) 1277 if (timercnt)
1162 { 1278 {
1163 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1279 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1164 if (block > to) block = to; 1280 if (block > to) block = to;
1165 } 1281 }
1166 1282
1283#if EV_PERIODICS
1167 if (periodiccnt) 1284 if (periodiccnt)
1168 { 1285 {
1169 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1286 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1170 if (block > to) block = to; 1287 if (block > to) block = to;
1171 } 1288 }
1289#endif
1172 1290
1173 if (block < 0.) block = 0.; 1291 if (expect_false (block < 0.)) block = 0.;
1174 } 1292 }
1175 1293
1176 method_poll (EV_A_ block); 1294 backend_poll (EV_A_ block);
1177 1295
1178 /* update rt_now, do magic */ 1296 /* update ev_rt_now, do magic */
1179 time_update (EV_A); 1297 time_update (EV_A);
1180 1298
1181 /* queue pending timers and reschedule them */ 1299 /* queue pending timers and reschedule them */
1182 timers_reify (EV_A); /* relative timers called last */ 1300 timers_reify (EV_A); /* relative timers called last */
1301#if EV_PERIODICS
1183 periodics_reify (EV_A); /* absolute timers called first */ 1302 periodics_reify (EV_A); /* absolute timers called first */
1303#endif
1184 1304
1185 /* queue idle watchers unless io or timers are pending */ 1305 /* queue idle watchers unless io or timers are pending */
1186 if (!pendingcnt) 1306 if (idlecnt && !any_pending (EV_A))
1187 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1307 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1188 1308
1189 /* queue check watchers, to be executed first */ 1309 /* queue check watchers, to be executed first */
1190 if (checkcnt) 1310 if (expect_false (checkcnt))
1191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1311 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1192 1312
1193 call_pending (EV_A); 1313 call_pending (EV_A);
1314
1315 if (expect_false (loop_done))
1316 break;
1194 } 1317 }
1195 while (activecnt && !loop_done);
1196 1318
1197 if (loop_done != 2) 1319 if (loop_done != 2)
1198 loop_done = 0; 1320 loop_done = 0;
1199} 1321}
1200 1322
1260void 1382void
1261ev_io_start (EV_P_ struct ev_io *w) 1383ev_io_start (EV_P_ struct ev_io *w)
1262{ 1384{
1263 int fd = w->fd; 1385 int fd = w->fd;
1264 1386
1265 if (ev_is_active (w)) 1387 if (expect_false (ev_is_active (w)))
1266 return; 1388 return;
1267 1389
1268 assert (("ev_io_start called with negative fd", fd >= 0)); 1390 assert (("ev_io_start called with negative fd", fd >= 0));
1269 1391
1270 ev_start (EV_A_ (W)w, 1); 1392 ev_start (EV_A_ (W)w, 1);
1271 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1393 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1272 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1394 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1273 1395
1274 fd_change (EV_A_ fd); 1396 fd_change (EV_A_ fd);
1275} 1397}
1276 1398
1277void 1399void
1278ev_io_stop (EV_P_ struct ev_io *w) 1400ev_io_stop (EV_P_ struct ev_io *w)
1279{ 1401{
1280 ev_clear_pending (EV_A_ (W)w); 1402 ev_clear_pending (EV_A_ (W)w);
1281 if (!ev_is_active (w)) 1403 if (expect_false (!ev_is_active (w)))
1282 return; 1404 return;
1405
1406 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1283 1407
1284 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1408 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1285 ev_stop (EV_A_ (W)w); 1409 ev_stop (EV_A_ (W)w);
1286 1410
1287 fd_change (EV_A_ w->fd); 1411 fd_change (EV_A_ w->fd);
1288} 1412}
1289 1413
1290void 1414void
1291ev_timer_start (EV_P_ struct ev_timer *w) 1415ev_timer_start (EV_P_ struct ev_timer *w)
1292{ 1416{
1293 if (ev_is_active (w)) 1417 if (expect_false (ev_is_active (w)))
1294 return; 1418 return;
1295 1419
1296 ((WT)w)->at += mn_now; 1420 ((WT)w)->at += mn_now;
1297 1421
1298 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1422 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1299 1423
1300 ev_start (EV_A_ (W)w, ++timercnt); 1424 ev_start (EV_A_ (W)w, ++timercnt);
1301 array_needsize (timers, timermax, timercnt, (void)); 1425 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1302 timers [timercnt - 1] = w; 1426 timers [timercnt - 1] = w;
1303 upheap ((WT *)timers, timercnt - 1); 1427 upheap ((WT *)timers, timercnt - 1);
1304 1428
1305 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1429 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1306} 1430}
1307 1431
1308void 1432void
1309ev_timer_stop (EV_P_ struct ev_timer *w) 1433ev_timer_stop (EV_P_ struct ev_timer *w)
1310{ 1434{
1311 ev_clear_pending (EV_A_ (W)w); 1435 ev_clear_pending (EV_A_ (W)w);
1312 if (!ev_is_active (w)) 1436 if (expect_false (!ev_is_active (w)))
1313 return; 1437 return;
1314 1438
1315 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1439 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1316 1440
1317 if (((W)w)->active < timercnt--) 1441 if (expect_true (((W)w)->active < timercnt--))
1318 { 1442 {
1319 timers [((W)w)->active - 1] = timers [timercnt]; 1443 timers [((W)w)->active - 1] = timers [timercnt];
1320 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1444 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1321 } 1445 }
1322 1446
1323 ((WT)w)->at = w->repeat; 1447 ((WT)w)->at -= mn_now;
1324 1448
1325 ev_stop (EV_A_ (W)w); 1449 ev_stop (EV_A_ (W)w);
1326} 1450}
1327 1451
1328void 1452void
1331 if (ev_is_active (w)) 1455 if (ev_is_active (w))
1332 { 1456 {
1333 if (w->repeat) 1457 if (w->repeat)
1334 { 1458 {
1335 ((WT)w)->at = mn_now + w->repeat; 1459 ((WT)w)->at = mn_now + w->repeat;
1336 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1460 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1337 } 1461 }
1338 else 1462 else
1339 ev_timer_stop (EV_A_ w); 1463 ev_timer_stop (EV_A_ w);
1340 } 1464 }
1341 else if (w->repeat) 1465 else if (w->repeat)
1466 {
1467 w->at = w->repeat;
1342 ev_timer_start (EV_A_ w); 1468 ev_timer_start (EV_A_ w);
1469 }
1343} 1470}
1344 1471
1472#if EV_PERIODICS
1345void 1473void
1346ev_periodic_start (EV_P_ struct ev_periodic *w) 1474ev_periodic_start (EV_P_ struct ev_periodic *w)
1347{ 1475{
1348 if (ev_is_active (w)) 1476 if (expect_false (ev_is_active (w)))
1349 return; 1477 return;
1350 1478
1479 if (w->reschedule_cb)
1480 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1481 else if (w->interval)
1482 {
1351 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1483 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1352
1353 /* this formula differs from the one in periodic_reify because we do not always round up */ 1484 /* this formula differs from the one in periodic_reify because we do not always round up */
1354 if (w->interval)
1355 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1485 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1486 }
1356 1487
1357 ev_start (EV_A_ (W)w, ++periodiccnt); 1488 ev_start (EV_A_ (W)w, ++periodiccnt);
1358 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1489 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1359 periodics [periodiccnt - 1] = w; 1490 periodics [periodiccnt - 1] = w;
1360 upheap ((WT *)periodics, periodiccnt - 1); 1491 upheap ((WT *)periodics, periodiccnt - 1);
1361 1492
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1493 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1363} 1494}
1364 1495
1365void 1496void
1366ev_periodic_stop (EV_P_ struct ev_periodic *w) 1497ev_periodic_stop (EV_P_ struct ev_periodic *w)
1367{ 1498{
1368 ev_clear_pending (EV_A_ (W)w); 1499 ev_clear_pending (EV_A_ (W)w);
1369 if (!ev_is_active (w)) 1500 if (expect_false (!ev_is_active (w)))
1370 return; 1501 return;
1371 1502
1372 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1503 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1373 1504
1374 if (((W)w)->active < periodiccnt--) 1505 if (expect_true (((W)w)->active < periodiccnt--))
1375 { 1506 {
1376 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1507 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1377 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1508 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1378 } 1509 }
1379 1510
1380 ev_stop (EV_A_ (W)w); 1511 ev_stop (EV_A_ (W)w);
1381} 1512}
1382 1513
1383void 1514void
1515ev_periodic_again (EV_P_ struct ev_periodic *w)
1516{
1517 /* TODO: use adjustheap and recalculation */
1518 ev_periodic_stop (EV_A_ w);
1519 ev_periodic_start (EV_A_ w);
1520}
1521#endif
1522
1523void
1384ev_idle_start (EV_P_ struct ev_idle *w) 1524ev_idle_start (EV_P_ struct ev_idle *w)
1385{ 1525{
1386 if (ev_is_active (w)) 1526 if (expect_false (ev_is_active (w)))
1387 return; 1527 return;
1388 1528
1389 ev_start (EV_A_ (W)w, ++idlecnt); 1529 ev_start (EV_A_ (W)w, ++idlecnt);
1390 array_needsize (idles, idlemax, idlecnt, (void)); 1530 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1391 idles [idlecnt - 1] = w; 1531 idles [idlecnt - 1] = w;
1392} 1532}
1393 1533
1394void 1534void
1395ev_idle_stop (EV_P_ struct ev_idle *w) 1535ev_idle_stop (EV_P_ struct ev_idle *w)
1396{ 1536{
1397 ev_clear_pending (EV_A_ (W)w); 1537 ev_clear_pending (EV_A_ (W)w);
1398 if (ev_is_active (w)) 1538 if (expect_false (!ev_is_active (w)))
1399 return; 1539 return;
1400 1540
1401 idles [((W)w)->active - 1] = idles [--idlecnt]; 1541 idles [((W)w)->active - 1] = idles [--idlecnt];
1402 ev_stop (EV_A_ (W)w); 1542 ev_stop (EV_A_ (W)w);
1403} 1543}
1404 1544
1405void 1545void
1406ev_prepare_start (EV_P_ struct ev_prepare *w) 1546ev_prepare_start (EV_P_ struct ev_prepare *w)
1407{ 1547{
1408 if (ev_is_active (w)) 1548 if (expect_false (ev_is_active (w)))
1409 return; 1549 return;
1410 1550
1411 ev_start (EV_A_ (W)w, ++preparecnt); 1551 ev_start (EV_A_ (W)w, ++preparecnt);
1412 array_needsize (prepares, preparemax, preparecnt, (void)); 1552 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1413 prepares [preparecnt - 1] = w; 1553 prepares [preparecnt - 1] = w;
1414} 1554}
1415 1555
1416void 1556void
1417ev_prepare_stop (EV_P_ struct ev_prepare *w) 1557ev_prepare_stop (EV_P_ struct ev_prepare *w)
1418{ 1558{
1419 ev_clear_pending (EV_A_ (W)w); 1559 ev_clear_pending (EV_A_ (W)w);
1420 if (ev_is_active (w)) 1560 if (expect_false (!ev_is_active (w)))
1421 return; 1561 return;
1422 1562
1423 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1563 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1424 ev_stop (EV_A_ (W)w); 1564 ev_stop (EV_A_ (W)w);
1425} 1565}
1426 1566
1427void 1567void
1428ev_check_start (EV_P_ struct ev_check *w) 1568ev_check_start (EV_P_ struct ev_check *w)
1429{ 1569{
1430 if (ev_is_active (w)) 1570 if (expect_false (ev_is_active (w)))
1431 return; 1571 return;
1432 1572
1433 ev_start (EV_A_ (W)w, ++checkcnt); 1573 ev_start (EV_A_ (W)w, ++checkcnt);
1434 array_needsize (checks, checkmax, checkcnt, (void)); 1574 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1435 checks [checkcnt - 1] = w; 1575 checks [checkcnt - 1] = w;
1436} 1576}
1437 1577
1438void 1578void
1439ev_check_stop (EV_P_ struct ev_check *w) 1579ev_check_stop (EV_P_ struct ev_check *w)
1440{ 1580{
1441 ev_clear_pending (EV_A_ (W)w); 1581 ev_clear_pending (EV_A_ (W)w);
1442 if (ev_is_active (w)) 1582 if (expect_false (!ev_is_active (w)))
1443 return; 1583 return;
1444 1584
1445 checks [((W)w)->active - 1] = checks [--checkcnt]; 1585 checks [((W)w)->active - 1] = checks [--checkcnt];
1446 ev_stop (EV_A_ (W)w); 1586 ev_stop (EV_A_ (W)w);
1447} 1587}
1452 1592
1453void 1593void
1454ev_signal_start (EV_P_ struct ev_signal *w) 1594ev_signal_start (EV_P_ struct ev_signal *w)
1455{ 1595{
1456#if EV_MULTIPLICITY 1596#if EV_MULTIPLICITY
1457 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1597 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1458#endif 1598#endif
1459 if (ev_is_active (w)) 1599 if (expect_false (ev_is_active (w)))
1460 return; 1600 return;
1461 1601
1462 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1602 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1463 1603
1464 ev_start (EV_A_ (W)w, 1); 1604 ev_start (EV_A_ (W)w, 1);
1465 array_needsize (signals, signalmax, w->signum, signals_init); 1605 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1466 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1606 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1467 1607
1468 if (!((WL)w)->next) 1608 if (!((WL)w)->next)
1469 { 1609 {
1470#if WIN32 1610#if _WIN32
1471 signal (w->signum, sighandler); 1611 signal (w->signum, sighandler);
1472#else 1612#else
1473 struct sigaction sa; 1613 struct sigaction sa;
1474 sa.sa_handler = sighandler; 1614 sa.sa_handler = sighandler;
1475 sigfillset (&sa.sa_mask); 1615 sigfillset (&sa.sa_mask);
1481 1621
1482void 1622void
1483ev_signal_stop (EV_P_ struct ev_signal *w) 1623ev_signal_stop (EV_P_ struct ev_signal *w)
1484{ 1624{
1485 ev_clear_pending (EV_A_ (W)w); 1625 ev_clear_pending (EV_A_ (W)w);
1486 if (!ev_is_active (w)) 1626 if (expect_false (!ev_is_active (w)))
1487 return; 1627 return;
1488 1628
1489 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1629 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1490 ev_stop (EV_A_ (W)w); 1630 ev_stop (EV_A_ (W)w);
1491 1631
1495 1635
1496void 1636void
1497ev_child_start (EV_P_ struct ev_child *w) 1637ev_child_start (EV_P_ struct ev_child *w)
1498{ 1638{
1499#if EV_MULTIPLICITY 1639#if EV_MULTIPLICITY
1500 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1640 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1501#endif 1641#endif
1502 if (ev_is_active (w)) 1642 if (expect_false (ev_is_active (w)))
1503 return; 1643 return;
1504 1644
1505 ev_start (EV_A_ (W)w, 1); 1645 ev_start (EV_A_ (W)w, 1);
1506 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1646 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1507} 1647}
1508 1648
1509void 1649void
1510ev_child_stop (EV_P_ struct ev_child *w) 1650ev_child_stop (EV_P_ struct ev_child *w)
1511{ 1651{
1512 ev_clear_pending (EV_A_ (W)w); 1652 ev_clear_pending (EV_A_ (W)w);
1513 if (ev_is_active (w)) 1653 if (expect_false (!ev_is_active (w)))
1514 return; 1654 return;
1515 1655
1516 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1656 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1517 ev_stop (EV_A_ (W)w); 1657 ev_stop (EV_A_ (W)w);
1518} 1658}
1553} 1693}
1554 1694
1555void 1695void
1556ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1696ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1557{ 1697{
1558 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1698 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1559 1699
1560 if (!once) 1700 if (expect_false (!once))
1701 {
1561 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1702 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1562 else 1703 return;
1563 { 1704 }
1705
1564 once->cb = cb; 1706 once->cb = cb;
1565 once->arg = arg; 1707 once->arg = arg;
1566 1708
1567 ev_watcher_init (&once->io, once_cb_io); 1709 ev_init (&once->io, once_cb_io);
1568 if (fd >= 0) 1710 if (fd >= 0)
1569 { 1711 {
1570 ev_io_set (&once->io, fd, events); 1712 ev_io_set (&once->io, fd, events);
1571 ev_io_start (EV_A_ &once->io); 1713 ev_io_start (EV_A_ &once->io);
1572 } 1714 }
1573 1715
1574 ev_watcher_init (&once->to, once_cb_to); 1716 ev_init (&once->to, once_cb_to);
1575 if (timeout >= 0.) 1717 if (timeout >= 0.)
1576 { 1718 {
1577 ev_timer_set (&once->to, timeout, 0.); 1719 ev_timer_set (&once->to, timeout, 0.);
1578 ev_timer_start (EV_A_ &once->to); 1720 ev_timer_start (EV_A_ &once->to);
1579 }
1580 } 1721 }
1581} 1722}
1582 1723
1724#ifdef __cplusplus
1725}
1726#endif
1727

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines