ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.72 by root, Tue Nov 6 16:09:37 2007 UTC vs.
Revision 1.140 by root, Mon Nov 26 19:49:36 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
53# endif 97# endif
54 98
55#endif 99#endif
56 100
57#include <math.h> 101#include <math.h>
66#include <sys/types.h> 110#include <sys/types.h>
67#include <time.h> 111#include <time.h>
68 112
69#include <signal.h> 113#include <signal.h>
70 114
71#ifndef WIN32 115#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 116# include <sys/time.h>
74# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
75#endif 124# endif
125#endif
126
76/**/ 127/**/
77 128
78#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
80#endif 135#endif
81 136
82#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
84#endif 139#endif
85 140
86#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
88#endif 147#endif
89 148
90#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
92#endif 151#endif
93 152
94#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
96#endif 155#endif
97 156
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
109# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
110#endif 159#endif
111 160
112/**/ 161/**/
113 162
114#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
119#ifndef CLOCK_REALTIME 168#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 169# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 170# define EV_USE_REALTIME 0
122#endif 171#endif
123 172
173#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h>
175#endif
176
124/**/ 177/**/
125 178
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
130 183
184#ifdef EV_H
185# include EV_H
186#else
131#include "ev.h" 187# include "ev.h"
188#endif
132 189
133#if __GNUC__ >= 3 190#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
135# define inline inline 194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
136#else 200#else
137# define expect(expr,value) (expr) 201# define expect(expr,value) (expr)
138# define inline static 202# define inline_speed static
203# define inline_minimal static
204# define noinline
139#endif 205#endif
140 206
141#define expect_false(expr) expect ((expr) != 0, 0) 207#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 208#define expect_true(expr) expect ((expr) != 0, 1)
143 209
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 211#define ABSPRI(w) ((w)->priority - EV_MINPRI)
146 212
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */
215
147typedef struct ev_watcher *W; 216typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 217typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 218typedef ev_watcher_time *WT;
150 219
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 221
153#if WIN32 222#ifdef _WIN32
154/* note: the comment below could not be substantiated, but what would I care */ 223# include "ev_win32.c"
155/* MSDN says this is required to handle SIGFPE */
156volatile double SIGFPE_REQ = 0.0f;
157
158static int
159ev_socketpair_tcp (int filedes [2])
160{
161 struct sockaddr_in addr = { 0 };
162 int addr_size = sizeof (addr);
163 SOCKET listener;
164 SOCKET sock [2] = { -1, -1 };
165
166 if ((listener = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
167 return -1;
168
169 addr.sin_family = AF_INET;
170 addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
171 addr.sin_port = 0;
172
173 if (bind (listener, (struct sockaddr *)&addr, addr_size))
174 goto fail;
175
176 if (getsockname(listener, (struct sockaddr *)&addr, &addr_size))
177 goto fail;
178
179 if (listen (listener, 1))
180 goto fail;
181
182 if ((sock [0] = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
183 goto fail;
184
185 if (connect (sock[0], (struct sockaddr *)&addr, addr_size))
186 goto fail;
187
188 if ((sock[1] = accept (listener, 0, 0)) < 0)
189 goto fail;
190
191 closesocket (listener);
192
193 filedes [0] = sock [0];
194 filedes [1] = sock [1];
195
196 return 0;
197
198fail:
199 closesocket (listener);
200
201 if (sock [0] != INVALID_SOCKET) closesocket (sock [0]);
202 if (sock [1] != INVALID_SOCKET) closesocket (sock [1]);
203
204 return -1;
205}
206
207# define ev_pipe(filedes) ev_socketpair_tcp (filedes)
208#else
209# define ev_pipe(filedes) pipe (filedes)
210#endif 224#endif
211 225
212/*****************************************************************************/ 226/*****************************************************************************/
213 227
214static void (*syserr_cb)(const char *msg); 228static void (*syserr_cb)(const char *msg);
262typedef struct 276typedef struct
263{ 277{
264 WL head; 278 WL head;
265 unsigned char events; 279 unsigned char events;
266 unsigned char reify; 280 unsigned char reify;
281#if EV_SELECT_IS_WINSOCKET
282 SOCKET handle;
283#endif
267} ANFD; 284} ANFD;
268 285
269typedef struct 286typedef struct
270{ 287{
271 W w; 288 W w;
272 int events; 289 int events;
273} ANPENDING; 290} ANPENDING;
274 291
275#if EV_MULTIPLICITY 292#if EV_MULTIPLICITY
276 293
277struct ev_loop 294 struct ev_loop
278{ 295 {
296 ev_tstamp ev_rt_now;
297 #define ev_rt_now ((loop)->ev_rt_now)
279# define VAR(name,decl) decl; 298 #define VAR(name,decl) decl;
280# include "ev_vars.h" 299 #include "ev_vars.h"
281};
282# undef VAR 300 #undef VAR
301 };
283# include "ev_wrap.h" 302 #include "ev_wrap.h"
303
304 static struct ev_loop default_loop_struct;
305 struct ev_loop *ev_default_loop_ptr;
284 306
285#else 307#else
286 308
309 ev_tstamp ev_rt_now;
287# define VAR(name,decl) static decl; 310 #define VAR(name,decl) static decl;
288# include "ev_vars.h" 311 #include "ev_vars.h"
289# undef VAR 312 #undef VAR
313
314 static int ev_default_loop_ptr;
290 315
291#endif 316#endif
292 317
293/*****************************************************************************/ 318/*****************************************************************************/
294 319
295inline ev_tstamp 320ev_tstamp noinline
296ev_time (void) 321ev_time (void)
297{ 322{
298#if EV_USE_REALTIME 323#if EV_USE_REALTIME
299 struct timespec ts; 324 struct timespec ts;
300 clock_gettime (CLOCK_REALTIME, &ts); 325 clock_gettime (CLOCK_REALTIME, &ts);
304 gettimeofday (&tv, 0); 329 gettimeofday (&tv, 0);
305 return tv.tv_sec + tv.tv_usec * 1e-6; 330 return tv.tv_sec + tv.tv_usec * 1e-6;
306#endif 331#endif
307} 332}
308 333
309inline ev_tstamp 334ev_tstamp inline_size
310get_clock (void) 335get_clock (void)
311{ 336{
312#if EV_USE_MONOTONIC 337#if EV_USE_MONOTONIC
313 if (expect_true (have_monotonic)) 338 if (expect_true (have_monotonic))
314 { 339 {
319#endif 344#endif
320 345
321 return ev_time (); 346 return ev_time ();
322} 347}
323 348
349#if EV_MULTIPLICITY
324ev_tstamp 350ev_tstamp
325ev_now (EV_P) 351ev_now (EV_P)
326{ 352{
327 return rt_now; 353 return ev_rt_now;
328} 354}
355#endif
329 356
330#define array_roundsize(base,n) ((n) | 4 & ~3) 357#define array_roundsize(type,n) (((n) | 4) & ~3)
331 358
332#define array_needsize(base,cur,cnt,init) \ 359#define array_needsize(type,base,cur,cnt,init) \
333 if (expect_false ((cnt) > cur)) \ 360 if (expect_false ((cnt) > cur)) \
334 { \ 361 { \
335 int newcnt = cur; \ 362 int newcnt = cur; \
336 do \ 363 do \
337 { \ 364 { \
338 newcnt = array_roundsize (base, newcnt << 1); \ 365 newcnt = array_roundsize (type, newcnt << 1); \
339 } \ 366 } \
340 while ((cnt) > newcnt); \ 367 while ((cnt) > newcnt); \
341 \ 368 \
342 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 369 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
343 init (base + cur, newcnt - cur); \ 370 init (base + cur, newcnt - cur); \
344 cur = newcnt; \ 371 cur = newcnt; \
345 } 372 }
346 373
347#define array_slim(stem) \ 374#define array_slim(type,stem) \
348 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 375 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
349 { \ 376 { \
350 stem ## max = array_roundsize (stem ## cnt >> 1); \ 377 stem ## max = array_roundsize (stem ## cnt >> 1); \
351 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 378 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
352 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 379 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
353 } 380 }
354
355/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
356/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
357#define array_free_microshit(stem) \
358 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
359 381
360#define array_free(stem, idx) \ 382#define array_free(stem, idx) \
361 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 383 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
362 384
363/*****************************************************************************/ 385/*****************************************************************************/
364 386
365static void 387void inline_size
366anfds_init (ANFD *base, int count) 388anfds_init (ANFD *base, int count)
367{ 389{
368 while (count--) 390 while (count--)
369 { 391 {
370 base->head = 0; 392 base->head = 0;
373 395
374 ++base; 396 ++base;
375 } 397 }
376} 398}
377 399
378static void 400void noinline
379event (EV_P_ W w, int events) 401ev_feed_event (EV_P_ void *w, int revents)
380{ 402{
381 if (w->pending) 403 W w_ = (W)w;
404
405 if (expect_false (w_->pending))
382 { 406 {
383 pendings [ABSPRI (w)][w->pending - 1].events |= events; 407 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
384 return; 408 return;
385 } 409 }
386 410
387 w->pending = ++pendingcnt [ABSPRI (w)]; 411 w_->pending = ++pendingcnt [ABSPRI (w_)];
388 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 412 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
389 pendings [ABSPRI (w)][w->pending - 1].w = w; 413 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
390 pendings [ABSPRI (w)][w->pending - 1].events = events; 414 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
391} 415}
392 416
393static void 417static void
394queue_events (EV_P_ W *events, int eventcnt, int type) 418queue_events (EV_P_ W *events, int eventcnt, int type)
395{ 419{
396 int i; 420 int i;
397 421
398 for (i = 0; i < eventcnt; ++i) 422 for (i = 0; i < eventcnt; ++i)
399 event (EV_A_ events [i], type); 423 ev_feed_event (EV_A_ events [i], type);
400} 424}
401 425
402static void 426void inline_speed
403fd_event (EV_P_ int fd, int events) 427fd_event (EV_P_ int fd, int revents)
404{ 428{
405 ANFD *anfd = anfds + fd; 429 ANFD *anfd = anfds + fd;
406 struct ev_io *w; 430 ev_io *w;
407 431
408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 432 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
409 { 433 {
410 int ev = w->events & events; 434 int ev = w->events & revents;
411 435
412 if (ev) 436 if (ev)
413 event (EV_A_ (W)w, ev); 437 ev_feed_event (EV_A_ (W)w, ev);
414 } 438 }
439}
440
441void
442ev_feed_fd_event (EV_P_ int fd, int revents)
443{
444 fd_event (EV_A_ fd, revents);
415} 445}
416 446
417/*****************************************************************************/ 447/*****************************************************************************/
418 448
419static void 449void inline_size
420fd_reify (EV_P) 450fd_reify (EV_P)
421{ 451{
422 int i; 452 int i;
423 453
424 for (i = 0; i < fdchangecnt; ++i) 454 for (i = 0; i < fdchangecnt; ++i)
425 { 455 {
426 int fd = fdchanges [i]; 456 int fd = fdchanges [i];
427 ANFD *anfd = anfds + fd; 457 ANFD *anfd = anfds + fd;
428 struct ev_io *w; 458 ev_io *w;
429 459
430 int events = 0; 460 int events = 0;
431 461
432 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 462 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
433 events |= w->events; 463 events |= w->events;
434 464
465#if EV_SELECT_IS_WINSOCKET
466 if (events)
467 {
468 unsigned long argp;
469 anfd->handle = _get_osfhandle (fd);
470 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
471 }
472#endif
473
435 anfd->reify = 0; 474 anfd->reify = 0;
436 475
437 method_modify (EV_A_ fd, anfd->events, events); 476 backend_modify (EV_A_ fd, anfd->events, events);
438 anfd->events = events; 477 anfd->events = events;
439 } 478 }
440 479
441 fdchangecnt = 0; 480 fdchangecnt = 0;
442} 481}
443 482
444static void 483void inline_size
445fd_change (EV_P_ int fd) 484fd_change (EV_P_ int fd)
446{ 485{
447 if (anfds [fd].reify) 486 if (expect_false (anfds [fd].reify))
448 return; 487 return;
449 488
450 anfds [fd].reify = 1; 489 anfds [fd].reify = 1;
451 490
452 ++fdchangecnt; 491 ++fdchangecnt;
453 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 492 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
454 fdchanges [fdchangecnt - 1] = fd; 493 fdchanges [fdchangecnt - 1] = fd;
455} 494}
456 495
457static void 496void inline_speed
458fd_kill (EV_P_ int fd) 497fd_kill (EV_P_ int fd)
459{ 498{
460 struct ev_io *w; 499 ev_io *w;
461 500
462 while ((w = (struct ev_io *)anfds [fd].head)) 501 while ((w = (ev_io *)anfds [fd].head))
463 { 502 {
464 ev_io_stop (EV_A_ w); 503 ev_io_stop (EV_A_ w);
465 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 504 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
466 } 505 }
467} 506}
468 507
469static int 508int inline_size
470fd_valid (int fd) 509fd_valid (int fd)
471{ 510{
472#ifdef WIN32 511#ifdef _WIN32
473 return !!win32_get_osfhandle (fd); 512 return _get_osfhandle (fd) != -1;
474#else 513#else
475 return fcntl (fd, F_GETFD) != -1; 514 return fcntl (fd, F_GETFD) != -1;
476#endif 515#endif
477} 516}
478 517
479/* called on EBADF to verify fds */ 518/* called on EBADF to verify fds */
480static void 519static void noinline
481fd_ebadf (EV_P) 520fd_ebadf (EV_P)
482{ 521{
483 int fd; 522 int fd;
484 523
485 for (fd = 0; fd < anfdmax; ++fd) 524 for (fd = 0; fd < anfdmax; ++fd)
487 if (!fd_valid (fd) == -1 && errno == EBADF) 526 if (!fd_valid (fd) == -1 && errno == EBADF)
488 fd_kill (EV_A_ fd); 527 fd_kill (EV_A_ fd);
489} 528}
490 529
491/* called on ENOMEM in select/poll to kill some fds and retry */ 530/* called on ENOMEM in select/poll to kill some fds and retry */
492static void 531static void noinline
493fd_enomem (EV_P) 532fd_enomem (EV_P)
494{ 533{
495 int fd; 534 int fd;
496 535
497 for (fd = anfdmax; fd--; ) 536 for (fd = anfdmax; fd--; )
500 fd_kill (EV_A_ fd); 539 fd_kill (EV_A_ fd);
501 return; 540 return;
502 } 541 }
503} 542}
504 543
505/* usually called after fork if method needs to re-arm all fds from scratch */ 544/* usually called after fork if backend needs to re-arm all fds from scratch */
506static void 545static void noinline
507fd_rearm_all (EV_P) 546fd_rearm_all (EV_P)
508{ 547{
509 int fd; 548 int fd;
510 549
511 /* this should be highly optimised to not do anything but set a flag */ 550 /* this should be highly optimised to not do anything but set a flag */
517 } 556 }
518} 557}
519 558
520/*****************************************************************************/ 559/*****************************************************************************/
521 560
522static void 561void inline_speed
523upheap (WT *heap, int k) 562upheap (WT *heap, int k)
524{ 563{
525 WT w = heap [k]; 564 WT w = heap [k];
526 565
527 while (k && heap [k >> 1]->at > w->at) 566 while (k && heap [k >> 1]->at > w->at)
534 heap [k] = w; 573 heap [k] = w;
535 ((W)heap [k])->active = k + 1; 574 ((W)heap [k])->active = k + 1;
536 575
537} 576}
538 577
539static void 578void inline_speed
540downheap (WT *heap, int N, int k) 579downheap (WT *heap, int N, int k)
541{ 580{
542 WT w = heap [k]; 581 WT w = heap [k];
543 582
544 while (k < (N >> 1)) 583 while (k < (N >> 1))
558 597
559 heap [k] = w; 598 heap [k] = w;
560 ((W)heap [k])->active = k + 1; 599 ((W)heap [k])->active = k + 1;
561} 600}
562 601
602void inline_size
603adjustheap (WT *heap, int N, int k)
604{
605 upheap (heap, k);
606 downheap (heap, N, k);
607}
608
563/*****************************************************************************/ 609/*****************************************************************************/
564 610
565typedef struct 611typedef struct
566{ 612{
567 WL head; 613 WL head;
571static ANSIG *signals; 617static ANSIG *signals;
572static int signalmax; 618static int signalmax;
573 619
574static int sigpipe [2]; 620static int sigpipe [2];
575static sig_atomic_t volatile gotsig; 621static sig_atomic_t volatile gotsig;
576static struct ev_io sigev; 622static ev_io sigev;
577 623
578static void 624void inline_size
579signals_init (ANSIG *base, int count) 625signals_init (ANSIG *base, int count)
580{ 626{
581 while (count--) 627 while (count--)
582 { 628 {
583 base->head = 0; 629 base->head = 0;
588} 634}
589 635
590static void 636static void
591sighandler (int signum) 637sighandler (int signum)
592{ 638{
593#if WIN32 639#if _WIN32
594 signal (signum, sighandler); 640 signal (signum, sighandler);
595#endif 641#endif
596 642
597 signals [signum - 1].gotsig = 1; 643 signals [signum - 1].gotsig = 1;
598 644
603 write (sigpipe [1], &signum, 1); 649 write (sigpipe [1], &signum, 1);
604 errno = old_errno; 650 errno = old_errno;
605 } 651 }
606} 652}
607 653
654void noinline
655ev_feed_signal_event (EV_P_ int signum)
656{
657 WL w;
658
659#if EV_MULTIPLICITY
660 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
661#endif
662
663 --signum;
664
665 if (signum < 0 || signum >= signalmax)
666 return;
667
668 signals [signum].gotsig = 0;
669
670 for (w = signals [signum].head; w; w = w->next)
671 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
672}
673
608static void 674static void
609sigcb (EV_P_ struct ev_io *iow, int revents) 675sigcb (EV_P_ ev_io *iow, int revents)
610{ 676{
611 WL w;
612 int signum; 677 int signum;
613 678
614 read (sigpipe [0], &revents, 1); 679 read (sigpipe [0], &revents, 1);
615 gotsig = 0; 680 gotsig = 0;
616 681
617 for (signum = signalmax; signum--; ) 682 for (signum = signalmax; signum--; )
618 if (signals [signum].gotsig) 683 if (signals [signum].gotsig)
619 { 684 ev_feed_signal_event (EV_A_ signum + 1);
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 event (EV_A_ (W)w, EV_SIGNAL);
624 }
625} 685}
626 686
627static void 687void inline_size
688fd_intern (int fd)
689{
690#ifdef _WIN32
691 int arg = 1;
692 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
693#else
694 fcntl (fd, F_SETFD, FD_CLOEXEC);
695 fcntl (fd, F_SETFL, O_NONBLOCK);
696#endif
697}
698
699static void noinline
628siginit (EV_P) 700siginit (EV_P)
629{ 701{
630#ifndef WIN32 702 fd_intern (sigpipe [0]);
631 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 703 fd_intern (sigpipe [1]);
632 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
633
634 /* rather than sort out wether we really need nb, set it */
635 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
636 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
637#endif
638 704
639 ev_io_set (&sigev, sigpipe [0], EV_READ); 705 ev_io_set (&sigev, sigpipe [0], EV_READ);
640 ev_io_start (EV_A_ &sigev); 706 ev_io_start (EV_A_ &sigev);
641 ev_unref (EV_A); /* child watcher should not keep loop alive */ 707 ev_unref (EV_A); /* child watcher should not keep loop alive */
642} 708}
643 709
644/*****************************************************************************/ 710/*****************************************************************************/
645 711
646static struct ev_child *childs [PID_HASHSIZE]; 712static ev_child *childs [PID_HASHSIZE];
647 713
648#ifndef WIN32 714#ifndef _WIN32
649 715
650static struct ev_signal childev; 716static ev_signal childev;
651 717
652#ifndef WCONTINUED 718#ifndef WCONTINUED
653# define WCONTINUED 0 719# define WCONTINUED 0
654#endif 720#endif
655 721
656static void 722void inline_speed
657child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 723child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
658{ 724{
659 struct ev_child *w; 725 ev_child *w;
660 726
661 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 727 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
662 if (w->pid == pid || !w->pid) 728 if (w->pid == pid || !w->pid)
663 { 729 {
664 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 730 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
665 w->rpid = pid; 731 w->rpid = pid;
666 w->rstatus = status; 732 w->rstatus = status;
667 event (EV_A_ (W)w, EV_CHILD); 733 ev_feed_event (EV_A_ (W)w, EV_CHILD);
668 } 734 }
669} 735}
670 736
671static void 737static void
672childcb (EV_P_ struct ev_signal *sw, int revents) 738childcb (EV_P_ ev_signal *sw, int revents)
673{ 739{
674 int pid, status; 740 int pid, status;
675 741
676 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 742 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
677 { 743 {
678 /* make sure we are called again until all childs have been reaped */ 744 /* make sure we are called again until all childs have been reaped */
745 /* we need to do it this way so that the callback gets called before we continue */
679 event (EV_A_ (W)sw, EV_SIGNAL); 746 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
680 747
681 child_reap (EV_A_ sw, pid, pid, status); 748 child_reap (EV_A_ sw, pid, pid, status);
682 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 749 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
683 } 750 }
684} 751}
685 752
686#endif 753#endif
687 754
688/*****************************************************************************/ 755/*****************************************************************************/
689 756
757#if EV_USE_PORT
758# include "ev_port.c"
759#endif
690#if EV_USE_KQUEUE 760#if EV_USE_KQUEUE
691# include "ev_kqueue.c" 761# include "ev_kqueue.c"
692#endif 762#endif
693#if EV_USE_EPOLL 763#if EV_USE_EPOLL
694# include "ev_epoll.c" 764# include "ev_epoll.c"
711{ 781{
712 return EV_VERSION_MINOR; 782 return EV_VERSION_MINOR;
713} 783}
714 784
715/* return true if we are running with elevated privileges and should ignore env variables */ 785/* return true if we are running with elevated privileges and should ignore env variables */
716static int 786int inline_size
717enable_secure (void) 787enable_secure (void)
718{ 788{
719#ifdef WIN32 789#ifdef _WIN32
720 return 0; 790 return 0;
721#else 791#else
722 return getuid () != geteuid () 792 return getuid () != geteuid ()
723 || getgid () != getegid (); 793 || getgid () != getegid ();
724#endif 794#endif
725} 795}
726 796
727int 797unsigned int
728ev_method (EV_P) 798ev_supported_backends (void)
729{ 799{
730 return method; 800 unsigned int flags = 0;
801
802 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
803 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
804 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
805 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
806 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
807
808 return flags;
809}
810
811unsigned int
812ev_recommended_backends (void)
813{
814 unsigned int flags = ev_supported_backends ();
815
816#ifndef __NetBSD__
817 /* kqueue is borked on everything but netbsd apparently */
818 /* it usually doesn't work correctly on anything but sockets and pipes */
819 flags &= ~EVBACKEND_KQUEUE;
820#endif
821#ifdef __APPLE__
822 // flags &= ~EVBACKEND_KQUEUE; for documentation
823 flags &= ~EVBACKEND_POLL;
824#endif
825
826 return flags;
827}
828
829unsigned int
830ev_embeddable_backends (void)
831{
832 return EVBACKEND_EPOLL
833 | EVBACKEND_KQUEUE
834 | EVBACKEND_PORT;
835}
836
837unsigned int
838ev_backend (EV_P)
839{
840 return backend;
731} 841}
732 842
733static void 843static void
734loop_init (EV_P_ int methods) 844loop_init (EV_P_ unsigned int flags)
735{ 845{
736 if (!method) 846 if (!backend)
737 { 847 {
738#if EV_USE_MONOTONIC 848#if EV_USE_MONOTONIC
739 { 849 {
740 struct timespec ts; 850 struct timespec ts;
741 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 851 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
742 have_monotonic = 1; 852 have_monotonic = 1;
743 } 853 }
744#endif 854#endif
745 855
746 rt_now = ev_time (); 856 ev_rt_now = ev_time ();
747 mn_now = get_clock (); 857 mn_now = get_clock ();
748 now_floor = mn_now; 858 now_floor = mn_now;
749 rtmn_diff = rt_now - mn_now; 859 rtmn_diff = ev_rt_now - mn_now;
750 860
751 if (methods == EVMETHOD_AUTO) 861 if (!(flags & EVFLAG_NOENV)
752 if (!enable_secure () && getenv ("LIBEV_METHODS")) 862 && !enable_secure ()
863 && getenv ("LIBEV_FLAGS"))
753 methods = atoi (getenv ("LIBEV_METHODS")); 864 flags = atoi (getenv ("LIBEV_FLAGS"));
754 else
755 methods = EVMETHOD_ANY;
756 865
757 method = 0; 866 if (!(flags & 0x0000ffffUL))
758#if EV_USE_WIN32 867 flags |= ev_recommended_backends ();
759 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 868
869 backend = 0;
870#if EV_USE_PORT
871 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
760#endif 872#endif
761#if EV_USE_KQUEUE 873#if EV_USE_KQUEUE
762 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 874 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
763#endif 875#endif
764#if EV_USE_EPOLL 876#if EV_USE_EPOLL
765 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 877 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
766#endif 878#endif
767#if EV_USE_POLL 879#if EV_USE_POLL
768 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 880 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
769#endif 881#endif
770#if EV_USE_SELECT 882#if EV_USE_SELECT
771 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 883 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
772#endif 884#endif
773 885
774 ev_watcher_init (&sigev, sigcb); 886 ev_init (&sigev, sigcb);
775 ev_set_priority (&sigev, EV_MAXPRI); 887 ev_set_priority (&sigev, EV_MAXPRI);
776 } 888 }
777} 889}
778 890
779void 891static void
780loop_destroy (EV_P) 892loop_destroy (EV_P)
781{ 893{
782 int i; 894 int i;
783 895
784#if EV_USE_WIN32 896#if EV_USE_PORT
785 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 897 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
786#endif 898#endif
787#if EV_USE_KQUEUE 899#if EV_USE_KQUEUE
788 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 900 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
789#endif 901#endif
790#if EV_USE_EPOLL 902#if EV_USE_EPOLL
791 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 903 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
792#endif 904#endif
793#if EV_USE_POLL 905#if EV_USE_POLL
794 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 906 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
795#endif 907#endif
796#if EV_USE_SELECT 908#if EV_USE_SELECT
797 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 909 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
798#endif 910#endif
799 911
800 for (i = NUMPRI; i--; ) 912 for (i = NUMPRI; i--; )
801 array_free (pending, [i]); 913 array_free (pending, [i]);
802 914
803 /* have to use the microsoft-never-gets-it-right macro */ 915 /* have to use the microsoft-never-gets-it-right macro */
804 array_free_microshit (fdchange); 916 array_free (fdchange, EMPTY0);
805 array_free_microshit (timer); 917 array_free (timer, EMPTY0);
806 array_free_microshit (periodic); 918#if EV_PERIODIC_ENABLE
807 array_free_microshit (idle); 919 array_free (periodic, EMPTY0);
808 array_free_microshit (prepare); 920#endif
809 array_free_microshit (check); 921 array_free (idle, EMPTY0);
922 array_free (prepare, EMPTY0);
923 array_free (check, EMPTY0);
810 924
811 method = 0; 925 backend = 0;
812} 926}
813 927
814static void 928static void
815loop_fork (EV_P) 929loop_fork (EV_P)
816{ 930{
931#if EV_USE_PORT
932 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
933#endif
934#if EV_USE_KQUEUE
935 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
936#endif
817#if EV_USE_EPOLL 937#if EV_USE_EPOLL
818 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 938 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
819#endif
820#if EV_USE_KQUEUE
821 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
822#endif 939#endif
823 940
824 if (ev_is_active (&sigev)) 941 if (ev_is_active (&sigev))
825 { 942 {
826 /* default loop */ 943 /* default loop */
828 ev_ref (EV_A); 945 ev_ref (EV_A);
829 ev_io_stop (EV_A_ &sigev); 946 ev_io_stop (EV_A_ &sigev);
830 close (sigpipe [0]); 947 close (sigpipe [0]);
831 close (sigpipe [1]); 948 close (sigpipe [1]);
832 949
833 while (ev_pipe (sigpipe)) 950 while (pipe (sigpipe))
834 syserr ("(libev) error creating pipe"); 951 syserr ("(libev) error creating pipe");
835 952
836 siginit (EV_A); 953 siginit (EV_A);
837 } 954 }
838 955
839 postfork = 0; 956 postfork = 0;
840} 957}
841 958
842#if EV_MULTIPLICITY 959#if EV_MULTIPLICITY
843struct ev_loop * 960struct ev_loop *
844ev_loop_new (int methods) 961ev_loop_new (unsigned int flags)
845{ 962{
846 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 963 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
847 964
848 memset (loop, 0, sizeof (struct ev_loop)); 965 memset (loop, 0, sizeof (struct ev_loop));
849 966
850 loop_init (EV_A_ methods); 967 loop_init (EV_A_ flags);
851 968
852 if (ev_method (EV_A)) 969 if (ev_backend (EV_A))
853 return loop; 970 return loop;
854 971
855 return 0; 972 return 0;
856} 973}
857 974
869} 986}
870 987
871#endif 988#endif
872 989
873#if EV_MULTIPLICITY 990#if EV_MULTIPLICITY
874struct ev_loop default_loop_struct;
875static struct ev_loop *default_loop;
876
877struct ev_loop * 991struct ev_loop *
992ev_default_loop_init (unsigned int flags)
878#else 993#else
879static int default_loop;
880
881int 994int
995ev_default_loop (unsigned int flags)
882#endif 996#endif
883ev_default_loop (int methods)
884{ 997{
885 if (sigpipe [0] == sigpipe [1]) 998 if (sigpipe [0] == sigpipe [1])
886 if (ev_pipe (sigpipe)) 999 if (pipe (sigpipe))
887 return 0; 1000 return 0;
888 1001
889 if (!default_loop) 1002 if (!ev_default_loop_ptr)
890 { 1003 {
891#if EV_MULTIPLICITY 1004#if EV_MULTIPLICITY
892 struct ev_loop *loop = default_loop = &default_loop_struct; 1005 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
893#else 1006#else
894 default_loop = 1; 1007 ev_default_loop_ptr = 1;
895#endif 1008#endif
896 1009
897 loop_init (EV_A_ methods); 1010 loop_init (EV_A_ flags);
898 1011
899 if (ev_method (EV_A)) 1012 if (ev_backend (EV_A))
900 { 1013 {
901 siginit (EV_A); 1014 siginit (EV_A);
902 1015
903#ifndef WIN32 1016#ifndef _WIN32
904 ev_signal_init (&childev, childcb, SIGCHLD); 1017 ev_signal_init (&childev, childcb, SIGCHLD);
905 ev_set_priority (&childev, EV_MAXPRI); 1018 ev_set_priority (&childev, EV_MAXPRI);
906 ev_signal_start (EV_A_ &childev); 1019 ev_signal_start (EV_A_ &childev);
907 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1020 ev_unref (EV_A); /* child watcher should not keep loop alive */
908#endif 1021#endif
909 } 1022 }
910 else 1023 else
911 default_loop = 0; 1024 ev_default_loop_ptr = 0;
912 } 1025 }
913 1026
914 return default_loop; 1027 return ev_default_loop_ptr;
915} 1028}
916 1029
917void 1030void
918ev_default_destroy (void) 1031ev_default_destroy (void)
919{ 1032{
920#if EV_MULTIPLICITY 1033#if EV_MULTIPLICITY
921 struct ev_loop *loop = default_loop; 1034 struct ev_loop *loop = ev_default_loop_ptr;
922#endif 1035#endif
923 1036
924#ifndef WIN32 1037#ifndef _WIN32
925 ev_ref (EV_A); /* child watcher */ 1038 ev_ref (EV_A); /* child watcher */
926 ev_signal_stop (EV_A_ &childev); 1039 ev_signal_stop (EV_A_ &childev);
927#endif 1040#endif
928 1041
929 ev_ref (EV_A); /* signal watcher */ 1042 ev_ref (EV_A); /* signal watcher */
937 1050
938void 1051void
939ev_default_fork (void) 1052ev_default_fork (void)
940{ 1053{
941#if EV_MULTIPLICITY 1054#if EV_MULTIPLICITY
942 struct ev_loop *loop = default_loop; 1055 struct ev_loop *loop = ev_default_loop_ptr;
943#endif 1056#endif
944 1057
945 if (method) 1058 if (backend)
946 postfork = 1; 1059 postfork = 1;
947} 1060}
948 1061
949/*****************************************************************************/ 1062/*****************************************************************************/
950 1063
951static void 1064int inline_size
1065any_pending (EV_P)
1066{
1067 int pri;
1068
1069 for (pri = NUMPRI; pri--; )
1070 if (pendingcnt [pri])
1071 return 1;
1072
1073 return 0;
1074}
1075
1076void inline_speed
952call_pending (EV_P) 1077call_pending (EV_P)
953{ 1078{
954 int pri; 1079 int pri;
955 1080
956 for (pri = NUMPRI; pri--; ) 1081 for (pri = NUMPRI; pri--; )
957 while (pendingcnt [pri]) 1082 while (pendingcnt [pri])
958 { 1083 {
959 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1084 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
960 1085
961 if (p->w) 1086 if (expect_true (p->w))
962 { 1087 {
1088 assert (("non-pending watcher on pending list", p->w->pending));
1089
963 p->w->pending = 0; 1090 p->w->pending = 0;
964 p->w->cb (EV_A_ p->w, p->events); 1091 EV_CB_INVOKE (p->w, p->events);
965 } 1092 }
966 } 1093 }
967} 1094}
968 1095
969static void 1096void inline_size
970timers_reify (EV_P) 1097timers_reify (EV_P)
971{ 1098{
972 while (timercnt && ((WT)timers [0])->at <= mn_now) 1099 while (timercnt && ((WT)timers [0])->at <= mn_now)
973 { 1100 {
974 struct ev_timer *w = timers [0]; 1101 ev_timer *w = timers [0];
975 1102
976 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1103 assert (("inactive timer on timer heap detected", ev_is_active (w)));
977 1104
978 /* first reschedule or stop timer */ 1105 /* first reschedule or stop timer */
979 if (w->repeat) 1106 if (w->repeat)
980 { 1107 {
981 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1108 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1109
982 ((WT)w)->at = mn_now + w->repeat; 1110 ((WT)w)->at += w->repeat;
1111 if (((WT)w)->at < mn_now)
1112 ((WT)w)->at = mn_now;
1113
983 downheap ((WT *)timers, timercnt, 0); 1114 downheap ((WT *)timers, timercnt, 0);
984 } 1115 }
985 else 1116 else
986 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1117 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
987 1118
988 event (EV_A_ (W)w, EV_TIMEOUT); 1119 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
989 } 1120 }
990} 1121}
991 1122
992static void 1123#if EV_PERIODIC_ENABLE
1124void inline_size
993periodics_reify (EV_P) 1125periodics_reify (EV_P)
994{ 1126{
995 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1127 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
996 { 1128 {
997 struct ev_periodic *w = periodics [0]; 1129 ev_periodic *w = periodics [0];
998 1130
999 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1131 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1000 1132
1001 /* first reschedule or stop timer */ 1133 /* first reschedule or stop timer */
1002 if (w->interval) 1134 if (w->reschedule_cb)
1003 { 1135 {
1136 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1137 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1138 downheap ((WT *)periodics, periodiccnt, 0);
1139 }
1140 else if (w->interval)
1141 {
1004 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1142 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1005 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1143 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1006 downheap ((WT *)periodics, periodiccnt, 0); 1144 downheap ((WT *)periodics, periodiccnt, 0);
1007 } 1145 }
1008 else 1146 else
1009 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1147 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1010 1148
1011 event (EV_A_ (W)w, EV_PERIODIC); 1149 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1012 } 1150 }
1013} 1151}
1014 1152
1015static void 1153static void noinline
1016periodics_reschedule (EV_P) 1154periodics_reschedule (EV_P)
1017{ 1155{
1018 int i; 1156 int i;
1019 1157
1020 /* adjust periodics after time jump */ 1158 /* adjust periodics after time jump */
1021 for (i = 0; i < periodiccnt; ++i) 1159 for (i = 0; i < periodiccnt; ++i)
1022 { 1160 {
1023 struct ev_periodic *w = periodics [i]; 1161 ev_periodic *w = periodics [i];
1024 1162
1163 if (w->reschedule_cb)
1164 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1025 if (w->interval) 1165 else if (w->interval)
1026 {
1027 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1166 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1028
1029 if (fabs (diff) >= 1e-4)
1030 {
1031 ev_periodic_stop (EV_A_ w);
1032 ev_periodic_start (EV_A_ w);
1033
1034 i = 0; /* restart loop, inefficient, but time jumps should be rare */
1035 }
1036 }
1037 } 1167 }
1038}
1039 1168
1040inline int 1169 /* now rebuild the heap */
1170 for (i = periodiccnt >> 1; i--; )
1171 downheap ((WT *)periodics, periodiccnt, i);
1172}
1173#endif
1174
1175int inline_size
1041time_update_monotonic (EV_P) 1176time_update_monotonic (EV_P)
1042{ 1177{
1043 mn_now = get_clock (); 1178 mn_now = get_clock ();
1044 1179
1045 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1180 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1046 { 1181 {
1047 rt_now = rtmn_diff + mn_now; 1182 ev_rt_now = rtmn_diff + mn_now;
1048 return 0; 1183 return 0;
1049 } 1184 }
1050 else 1185 else
1051 { 1186 {
1052 now_floor = mn_now; 1187 now_floor = mn_now;
1053 rt_now = ev_time (); 1188 ev_rt_now = ev_time ();
1054 return 1; 1189 return 1;
1055 } 1190 }
1056} 1191}
1057 1192
1058static void 1193void inline_size
1059time_update (EV_P) 1194time_update (EV_P)
1060{ 1195{
1061 int i; 1196 int i;
1062 1197
1063#if EV_USE_MONOTONIC 1198#if EV_USE_MONOTONIC
1065 { 1200 {
1066 if (time_update_monotonic (EV_A)) 1201 if (time_update_monotonic (EV_A))
1067 { 1202 {
1068 ev_tstamp odiff = rtmn_diff; 1203 ev_tstamp odiff = rtmn_diff;
1069 1204
1070 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1205 /* loop a few times, before making important decisions.
1206 * on the choice of "4": one iteration isn't enough,
1207 * in case we get preempted during the calls to
1208 * ev_time and get_clock. a second call is almost guarenteed
1209 * to succeed in that case, though. and looping a few more times
1210 * doesn't hurt either as we only do this on time-jumps or
1211 * in the unlikely event of getting preempted here.
1212 */
1213 for (i = 4; --i; )
1071 { 1214 {
1072 rtmn_diff = rt_now - mn_now; 1215 rtmn_diff = ev_rt_now - mn_now;
1073 1216
1074 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1217 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1075 return; /* all is well */ 1218 return; /* all is well */
1076 1219
1077 rt_now = ev_time (); 1220 ev_rt_now = ev_time ();
1078 mn_now = get_clock (); 1221 mn_now = get_clock ();
1079 now_floor = mn_now; 1222 now_floor = mn_now;
1080 } 1223 }
1081 1224
1225# if EV_PERIODIC_ENABLE
1082 periodics_reschedule (EV_A); 1226 periodics_reschedule (EV_A);
1227# endif
1083 /* no timer adjustment, as the monotonic clock doesn't jump */ 1228 /* no timer adjustment, as the monotonic clock doesn't jump */
1084 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1229 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1085 } 1230 }
1086 } 1231 }
1087 else 1232 else
1088#endif 1233#endif
1089 { 1234 {
1090 rt_now = ev_time (); 1235 ev_rt_now = ev_time ();
1091 1236
1092 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1237 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1093 { 1238 {
1239#if EV_PERIODIC_ENABLE
1094 periodics_reschedule (EV_A); 1240 periodics_reschedule (EV_A);
1241#endif
1095 1242
1096 /* adjust timers. this is easy, as the offset is the same for all */ 1243 /* adjust timers. this is easy, as the offset is the same for all */
1097 for (i = 0; i < timercnt; ++i) 1244 for (i = 0; i < timercnt; ++i)
1098 ((WT)timers [i])->at += rt_now - mn_now; 1245 ((WT)timers [i])->at += ev_rt_now - mn_now;
1099 } 1246 }
1100 1247
1101 mn_now = rt_now; 1248 mn_now = ev_rt_now;
1102 } 1249 }
1103} 1250}
1104 1251
1105void 1252void
1106ev_ref (EV_P) 1253ev_ref (EV_P)
1117static int loop_done; 1264static int loop_done;
1118 1265
1119void 1266void
1120ev_loop (EV_P_ int flags) 1267ev_loop (EV_P_ int flags)
1121{ 1268{
1122 double block;
1123 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1269 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1270 ? EVUNLOOP_ONE
1271 : EVUNLOOP_CANCEL;
1124 1272
1125 do 1273 while (activecnt)
1126 { 1274 {
1127 /* queue check watchers (and execute them) */ 1275 /* queue check watchers (and execute them) */
1128 if (expect_false (preparecnt)) 1276 if (expect_false (preparecnt))
1129 { 1277 {
1130 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1278 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1137 1285
1138 /* update fd-related kernel structures */ 1286 /* update fd-related kernel structures */
1139 fd_reify (EV_A); 1287 fd_reify (EV_A);
1140 1288
1141 /* calculate blocking time */ 1289 /* calculate blocking time */
1290 {
1291 double block;
1142 1292
1143 /* we only need this for !monotonic clockor timers, but as we basically 1293 if (flags & EVLOOP_NONBLOCK || idlecnt)
1144 always have timers, we just calculate it always */ 1294 block = 0.; /* do not block at all */
1295 else
1296 {
1297 /* update time to cancel out callback processing overhead */
1145#if EV_USE_MONOTONIC 1298#if EV_USE_MONOTONIC
1146 if (expect_true (have_monotonic)) 1299 if (expect_true (have_monotonic))
1147 time_update_monotonic (EV_A); 1300 time_update_monotonic (EV_A);
1148 else 1301 else
1149#endif 1302#endif
1150 { 1303 {
1151 rt_now = ev_time (); 1304 ev_rt_now = ev_time ();
1152 mn_now = rt_now; 1305 mn_now = ev_rt_now;
1153 } 1306 }
1154 1307
1155 if (flags & EVLOOP_NONBLOCK || idlecnt)
1156 block = 0.;
1157 else
1158 {
1159 block = MAX_BLOCKTIME; 1308 block = MAX_BLOCKTIME;
1160 1309
1161 if (timercnt) 1310 if (timercnt)
1162 { 1311 {
1163 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1312 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1164 if (block > to) block = to; 1313 if (block > to) block = to;
1165 } 1314 }
1166 1315
1316#if EV_PERIODIC_ENABLE
1167 if (periodiccnt) 1317 if (periodiccnt)
1168 { 1318 {
1169 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1319 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1170 if (block > to) block = to; 1320 if (block > to) block = to;
1171 } 1321 }
1322#endif
1172 1323
1173 if (block < 0.) block = 0.; 1324 if (expect_false (block < 0.)) block = 0.;
1174 } 1325 }
1175 1326
1176 method_poll (EV_A_ block); 1327 backend_poll (EV_A_ block);
1328 }
1177 1329
1178 /* update rt_now, do magic */ 1330 /* update ev_rt_now, do magic */
1179 time_update (EV_A); 1331 time_update (EV_A);
1180 1332
1181 /* queue pending timers and reschedule them */ 1333 /* queue pending timers and reschedule them */
1182 timers_reify (EV_A); /* relative timers called last */ 1334 timers_reify (EV_A); /* relative timers called last */
1335#if EV_PERIODIC_ENABLE
1183 periodics_reify (EV_A); /* absolute timers called first */ 1336 periodics_reify (EV_A); /* absolute timers called first */
1337#endif
1184 1338
1185 /* queue idle watchers unless io or timers are pending */ 1339 /* queue idle watchers unless other events are pending */
1186 if (!pendingcnt) 1340 if (idlecnt && !any_pending (EV_A))
1187 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1341 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1188 1342
1189 /* queue check watchers, to be executed first */ 1343 /* queue check watchers, to be executed first */
1190 if (checkcnt) 1344 if (expect_false (checkcnt))
1191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1345 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1192 1346
1193 call_pending (EV_A); 1347 call_pending (EV_A);
1194 }
1195 while (activecnt && !loop_done);
1196 1348
1197 if (loop_done != 2) 1349 if (expect_false (loop_done))
1198 loop_done = 0; 1350 break;
1351 }
1352
1353 if (loop_done == EVUNLOOP_ONE)
1354 loop_done = EVUNLOOP_CANCEL;
1199} 1355}
1200 1356
1201void 1357void
1202ev_unloop (EV_P_ int how) 1358ev_unloop (EV_P_ int how)
1203{ 1359{
1204 loop_done = how; 1360 loop_done = how;
1205} 1361}
1206 1362
1207/*****************************************************************************/ 1363/*****************************************************************************/
1208 1364
1209inline void 1365void inline_size
1210wlist_add (WL *head, WL elem) 1366wlist_add (WL *head, WL elem)
1211{ 1367{
1212 elem->next = *head; 1368 elem->next = *head;
1213 *head = elem; 1369 *head = elem;
1214} 1370}
1215 1371
1216inline void 1372void inline_size
1217wlist_del (WL *head, WL elem) 1373wlist_del (WL *head, WL elem)
1218{ 1374{
1219 while (*head) 1375 while (*head)
1220 { 1376 {
1221 if (*head == elem) 1377 if (*head == elem)
1226 1382
1227 head = &(*head)->next; 1383 head = &(*head)->next;
1228 } 1384 }
1229} 1385}
1230 1386
1231inline void 1387void inline_speed
1232ev_clear_pending (EV_P_ W w) 1388ev_clear_pending (EV_P_ W w)
1233{ 1389{
1234 if (w->pending) 1390 if (w->pending)
1235 { 1391 {
1236 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1392 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1237 w->pending = 0; 1393 w->pending = 0;
1238 } 1394 }
1239} 1395}
1240 1396
1241inline void 1397void inline_speed
1242ev_start (EV_P_ W w, int active) 1398ev_start (EV_P_ W w, int active)
1243{ 1399{
1244 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1400 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1245 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1401 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1246 1402
1247 w->active = active; 1403 w->active = active;
1248 ev_ref (EV_A); 1404 ev_ref (EV_A);
1249} 1405}
1250 1406
1251inline void 1407void inline_size
1252ev_stop (EV_P_ W w) 1408ev_stop (EV_P_ W w)
1253{ 1409{
1254 ev_unref (EV_A); 1410 ev_unref (EV_A);
1255 w->active = 0; 1411 w->active = 0;
1256} 1412}
1257 1413
1258/*****************************************************************************/ 1414/*****************************************************************************/
1259 1415
1260void 1416void
1261ev_io_start (EV_P_ struct ev_io *w) 1417ev_io_start (EV_P_ ev_io *w)
1262{ 1418{
1263 int fd = w->fd; 1419 int fd = w->fd;
1264 1420
1265 if (ev_is_active (w)) 1421 if (expect_false (ev_is_active (w)))
1266 return; 1422 return;
1267 1423
1268 assert (("ev_io_start called with negative fd", fd >= 0)); 1424 assert (("ev_io_start called with negative fd", fd >= 0));
1269 1425
1270 ev_start (EV_A_ (W)w, 1); 1426 ev_start (EV_A_ (W)w, 1);
1271 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1427 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1272 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1428 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1273 1429
1274 fd_change (EV_A_ fd); 1430 fd_change (EV_A_ fd);
1275} 1431}
1276 1432
1277void 1433void
1278ev_io_stop (EV_P_ struct ev_io *w) 1434ev_io_stop (EV_P_ ev_io *w)
1279{ 1435{
1280 ev_clear_pending (EV_A_ (W)w); 1436 ev_clear_pending (EV_A_ (W)w);
1281 if (!ev_is_active (w)) 1437 if (expect_false (!ev_is_active (w)))
1282 return; 1438 return;
1439
1440 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1283 1441
1284 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1442 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1285 ev_stop (EV_A_ (W)w); 1443 ev_stop (EV_A_ (W)w);
1286 1444
1287 fd_change (EV_A_ w->fd); 1445 fd_change (EV_A_ w->fd);
1288} 1446}
1289 1447
1290void 1448void
1291ev_timer_start (EV_P_ struct ev_timer *w) 1449ev_timer_start (EV_P_ ev_timer *w)
1292{ 1450{
1293 if (ev_is_active (w)) 1451 if (expect_false (ev_is_active (w)))
1294 return; 1452 return;
1295 1453
1296 ((WT)w)->at += mn_now; 1454 ((WT)w)->at += mn_now;
1297 1455
1298 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1456 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1299 1457
1300 ev_start (EV_A_ (W)w, ++timercnt); 1458 ev_start (EV_A_ (W)w, ++timercnt);
1301 array_needsize (timers, timermax, timercnt, (void)); 1459 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1302 timers [timercnt - 1] = w; 1460 timers [timercnt - 1] = w;
1303 upheap ((WT *)timers, timercnt - 1); 1461 upheap ((WT *)timers, timercnt - 1);
1304 1462
1305 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1463 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1306} 1464}
1307 1465
1308void 1466void
1309ev_timer_stop (EV_P_ struct ev_timer *w) 1467ev_timer_stop (EV_P_ ev_timer *w)
1310{ 1468{
1311 ev_clear_pending (EV_A_ (W)w); 1469 ev_clear_pending (EV_A_ (W)w);
1312 if (!ev_is_active (w)) 1470 if (expect_false (!ev_is_active (w)))
1313 return; 1471 return;
1314 1472
1315 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1473 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1316 1474
1317 if (((W)w)->active < timercnt--) 1475 if (expect_true (((W)w)->active < timercnt--))
1318 { 1476 {
1319 timers [((W)w)->active - 1] = timers [timercnt]; 1477 timers [((W)w)->active - 1] = timers [timercnt];
1320 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1321 } 1479 }
1322 1480
1323 ((WT)w)->at = w->repeat; 1481 ((WT)w)->at -= mn_now;
1324 1482
1325 ev_stop (EV_A_ (W)w); 1483 ev_stop (EV_A_ (W)w);
1326} 1484}
1327 1485
1328void 1486void
1329ev_timer_again (EV_P_ struct ev_timer *w) 1487ev_timer_again (EV_P_ ev_timer *w)
1330{ 1488{
1331 if (ev_is_active (w)) 1489 if (ev_is_active (w))
1332 { 1490 {
1333 if (w->repeat) 1491 if (w->repeat)
1334 { 1492 {
1335 ((WT)w)->at = mn_now + w->repeat; 1493 ((WT)w)->at = mn_now + w->repeat;
1336 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1494 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1337 } 1495 }
1338 else 1496 else
1339 ev_timer_stop (EV_A_ w); 1497 ev_timer_stop (EV_A_ w);
1340 } 1498 }
1341 else if (w->repeat) 1499 else if (w->repeat)
1500 {
1501 w->at = w->repeat;
1342 ev_timer_start (EV_A_ w); 1502 ev_timer_start (EV_A_ w);
1503 }
1343} 1504}
1344 1505
1506#if EV_PERIODIC_ENABLE
1345void 1507void
1346ev_periodic_start (EV_P_ struct ev_periodic *w) 1508ev_periodic_start (EV_P_ ev_periodic *w)
1347{ 1509{
1348 if (ev_is_active (w)) 1510 if (expect_false (ev_is_active (w)))
1349 return; 1511 return;
1350 1512
1513 if (w->reschedule_cb)
1514 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1515 else if (w->interval)
1516 {
1351 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1517 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1352
1353 /* this formula differs from the one in periodic_reify because we do not always round up */ 1518 /* this formula differs from the one in periodic_reify because we do not always round up */
1354 if (w->interval)
1355 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1519 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1520 }
1356 1521
1357 ev_start (EV_A_ (W)w, ++periodiccnt); 1522 ev_start (EV_A_ (W)w, ++periodiccnt);
1358 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1523 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1359 periodics [periodiccnt - 1] = w; 1524 periodics [periodiccnt - 1] = w;
1360 upheap ((WT *)periodics, periodiccnt - 1); 1525 upheap ((WT *)periodics, periodiccnt - 1);
1361 1526
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1527 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1363} 1528}
1364 1529
1365void 1530void
1366ev_periodic_stop (EV_P_ struct ev_periodic *w) 1531ev_periodic_stop (EV_P_ ev_periodic *w)
1367{ 1532{
1368 ev_clear_pending (EV_A_ (W)w); 1533 ev_clear_pending (EV_A_ (W)w);
1369 if (!ev_is_active (w)) 1534 if (expect_false (!ev_is_active (w)))
1370 return; 1535 return;
1371 1536
1372 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1537 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1373 1538
1374 if (((W)w)->active < periodiccnt--) 1539 if (expect_true (((W)w)->active < periodiccnt--))
1375 { 1540 {
1376 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1541 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1377 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1542 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1378 } 1543 }
1379 1544
1380 ev_stop (EV_A_ (W)w); 1545 ev_stop (EV_A_ (W)w);
1381} 1546}
1382 1547
1383void 1548void
1549ev_periodic_again (EV_P_ ev_periodic *w)
1550{
1551 /* TODO: use adjustheap and recalculation */
1552 ev_periodic_stop (EV_A_ w);
1553 ev_periodic_start (EV_A_ w);
1554}
1555#endif
1556
1557void
1384ev_idle_start (EV_P_ struct ev_idle *w) 1558ev_idle_start (EV_P_ ev_idle *w)
1385{ 1559{
1386 if (ev_is_active (w)) 1560 if (expect_false (ev_is_active (w)))
1387 return; 1561 return;
1388 1562
1389 ev_start (EV_A_ (W)w, ++idlecnt); 1563 ev_start (EV_A_ (W)w, ++idlecnt);
1390 array_needsize (idles, idlemax, idlecnt, (void)); 1564 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1391 idles [idlecnt - 1] = w; 1565 idles [idlecnt - 1] = w;
1392} 1566}
1393 1567
1394void 1568void
1395ev_idle_stop (EV_P_ struct ev_idle *w) 1569ev_idle_stop (EV_P_ ev_idle *w)
1396{ 1570{
1397 ev_clear_pending (EV_A_ (W)w); 1571 ev_clear_pending (EV_A_ (W)w);
1398 if (ev_is_active (w)) 1572 if (expect_false (!ev_is_active (w)))
1399 return; 1573 return;
1400 1574
1575 {
1576 int active = ((W)w)->active;
1401 idles [((W)w)->active - 1] = idles [--idlecnt]; 1577 idles [active - 1] = idles [--idlecnt];
1578 ((W)idles [active - 1])->active = active;
1579 }
1580
1402 ev_stop (EV_A_ (W)w); 1581 ev_stop (EV_A_ (W)w);
1403} 1582}
1404 1583
1405void 1584void
1406ev_prepare_start (EV_P_ struct ev_prepare *w) 1585ev_prepare_start (EV_P_ ev_prepare *w)
1407{ 1586{
1408 if (ev_is_active (w)) 1587 if (expect_false (ev_is_active (w)))
1409 return; 1588 return;
1410 1589
1411 ev_start (EV_A_ (W)w, ++preparecnt); 1590 ev_start (EV_A_ (W)w, ++preparecnt);
1412 array_needsize (prepares, preparemax, preparecnt, (void)); 1591 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1413 prepares [preparecnt - 1] = w; 1592 prepares [preparecnt - 1] = w;
1414} 1593}
1415 1594
1416void 1595void
1417ev_prepare_stop (EV_P_ struct ev_prepare *w) 1596ev_prepare_stop (EV_P_ ev_prepare *w)
1418{ 1597{
1419 ev_clear_pending (EV_A_ (W)w); 1598 ev_clear_pending (EV_A_ (W)w);
1420 if (ev_is_active (w)) 1599 if (expect_false (!ev_is_active (w)))
1421 return; 1600 return;
1422 1601
1602 {
1603 int active = ((W)w)->active;
1423 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1604 prepares [active - 1] = prepares [--preparecnt];
1605 ((W)prepares [active - 1])->active = active;
1606 }
1607
1424 ev_stop (EV_A_ (W)w); 1608 ev_stop (EV_A_ (W)w);
1425} 1609}
1426 1610
1427void 1611void
1428ev_check_start (EV_P_ struct ev_check *w) 1612ev_check_start (EV_P_ ev_check *w)
1429{ 1613{
1430 if (ev_is_active (w)) 1614 if (expect_false (ev_is_active (w)))
1431 return; 1615 return;
1432 1616
1433 ev_start (EV_A_ (W)w, ++checkcnt); 1617 ev_start (EV_A_ (W)w, ++checkcnt);
1434 array_needsize (checks, checkmax, checkcnt, (void)); 1618 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1435 checks [checkcnt - 1] = w; 1619 checks [checkcnt - 1] = w;
1436} 1620}
1437 1621
1438void 1622void
1439ev_check_stop (EV_P_ struct ev_check *w) 1623ev_check_stop (EV_P_ ev_check *w)
1440{ 1624{
1441 ev_clear_pending (EV_A_ (W)w); 1625 ev_clear_pending (EV_A_ (W)w);
1442 if (ev_is_active (w)) 1626 if (expect_false (!ev_is_active (w)))
1443 return; 1627 return;
1444 1628
1629 {
1630 int active = ((W)w)->active;
1445 checks [((W)w)->active - 1] = checks [--checkcnt]; 1631 checks [active - 1] = checks [--checkcnt];
1632 ((W)checks [active - 1])->active = active;
1633 }
1634
1446 ev_stop (EV_A_ (W)w); 1635 ev_stop (EV_A_ (W)w);
1447} 1636}
1448 1637
1449#ifndef SA_RESTART 1638#ifndef SA_RESTART
1450# define SA_RESTART 0 1639# define SA_RESTART 0
1451#endif 1640#endif
1452 1641
1453void 1642void
1454ev_signal_start (EV_P_ struct ev_signal *w) 1643ev_signal_start (EV_P_ ev_signal *w)
1455{ 1644{
1456#if EV_MULTIPLICITY 1645#if EV_MULTIPLICITY
1457 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1646 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1458#endif 1647#endif
1459 if (ev_is_active (w)) 1648 if (expect_false (ev_is_active (w)))
1460 return; 1649 return;
1461 1650
1462 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1651 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1463 1652
1464 ev_start (EV_A_ (W)w, 1); 1653 ev_start (EV_A_ (W)w, 1);
1465 array_needsize (signals, signalmax, w->signum, signals_init); 1654 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1466 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1655 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1467 1656
1468 if (!((WL)w)->next) 1657 if (!((WL)w)->next)
1469 { 1658 {
1470#if WIN32 1659#if _WIN32
1471 signal (w->signum, sighandler); 1660 signal (w->signum, sighandler);
1472#else 1661#else
1473 struct sigaction sa; 1662 struct sigaction sa;
1474 sa.sa_handler = sighandler; 1663 sa.sa_handler = sighandler;
1475 sigfillset (&sa.sa_mask); 1664 sigfillset (&sa.sa_mask);
1478#endif 1667#endif
1479 } 1668 }
1480} 1669}
1481 1670
1482void 1671void
1483ev_signal_stop (EV_P_ struct ev_signal *w) 1672ev_signal_stop (EV_P_ ev_signal *w)
1484{ 1673{
1485 ev_clear_pending (EV_A_ (W)w); 1674 ev_clear_pending (EV_A_ (W)w);
1486 if (!ev_is_active (w)) 1675 if (expect_false (!ev_is_active (w)))
1487 return; 1676 return;
1488 1677
1489 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1678 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1490 ev_stop (EV_A_ (W)w); 1679 ev_stop (EV_A_ (W)w);
1491 1680
1492 if (!signals [w->signum - 1].head) 1681 if (!signals [w->signum - 1].head)
1493 signal (w->signum, SIG_DFL); 1682 signal (w->signum, SIG_DFL);
1494} 1683}
1495 1684
1496void 1685void
1497ev_child_start (EV_P_ struct ev_child *w) 1686ev_child_start (EV_P_ ev_child *w)
1498{ 1687{
1499#if EV_MULTIPLICITY 1688#if EV_MULTIPLICITY
1500 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1689 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1501#endif 1690#endif
1502 if (ev_is_active (w)) 1691 if (expect_false (ev_is_active (w)))
1503 return; 1692 return;
1504 1693
1505 ev_start (EV_A_ (W)w, 1); 1694 ev_start (EV_A_ (W)w, 1);
1506 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1695 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1507} 1696}
1508 1697
1509void 1698void
1510ev_child_stop (EV_P_ struct ev_child *w) 1699ev_child_stop (EV_P_ ev_child *w)
1511{ 1700{
1512 ev_clear_pending (EV_A_ (W)w); 1701 ev_clear_pending (EV_A_ (W)w);
1513 if (ev_is_active (w)) 1702 if (expect_false (!ev_is_active (w)))
1514 return; 1703 return;
1515 1704
1516 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1705 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1517 ev_stop (EV_A_ (W)w); 1706 ev_stop (EV_A_ (W)w);
1518} 1707}
1519 1708
1709#if EV_EMBED_ENABLE
1710void noinline
1711ev_embed_sweep (EV_P_ ev_embed *w)
1712{
1713 ev_loop (w->loop, EVLOOP_NONBLOCK);
1714}
1715
1716static void
1717embed_cb (EV_P_ ev_io *io, int revents)
1718{
1719 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1720
1721 if (ev_cb (w))
1722 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1723 else
1724 ev_embed_sweep (loop, w);
1725}
1726
1727void
1728ev_embed_start (EV_P_ ev_embed *w)
1729{
1730 if (expect_false (ev_is_active (w)))
1731 return;
1732
1733 {
1734 struct ev_loop *loop = w->loop;
1735 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1736 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1737 }
1738
1739 ev_set_priority (&w->io, ev_priority (w));
1740 ev_io_start (EV_A_ &w->io);
1741
1742 ev_start (EV_A_ (W)w, 1);
1743}
1744
1745void
1746ev_embed_stop (EV_P_ ev_embed *w)
1747{
1748 ev_clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w)))
1750 return;
1751
1752 ev_io_stop (EV_A_ &w->io);
1753
1754 ev_stop (EV_A_ (W)w);
1755}
1756#endif
1757
1758#if EV_STAT_ENABLE
1759
1760# ifdef _WIN32
1761# define lstat(a,b) stat(a,b)
1762# endif
1763
1764void
1765ev_stat_stat (EV_P_ ev_stat *w)
1766{
1767 if (lstat (w->path, &w->attr) < 0)
1768 w->attr.st_nlink = 0;
1769 else if (!w->attr.st_nlink)
1770 w->attr.st_nlink = 1;
1771}
1772
1773static void
1774stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1775{
1776 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1777
1778 /* we copy this here each the time so that */
1779 /* prev has the old value when the callback gets invoked */
1780 w->prev = w->attr;
1781 ev_stat_stat (EV_A_ w);
1782
1783 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1784 ev_feed_event (EV_A_ w, EV_STAT);
1785}
1786
1787void
1788ev_stat_start (EV_P_ ev_stat *w)
1789{
1790 if (expect_false (ev_is_active (w)))
1791 return;
1792
1793 /* since we use memcmp, we need to clear any padding data etc. */
1794 memset (&w->prev, 0, sizeof (ev_statdata));
1795 memset (&w->attr, 0, sizeof (ev_statdata));
1796
1797 ev_stat_stat (EV_A_ w);
1798
1799 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1800 ev_set_priority (&w->timer, ev_priority (w));
1801 ev_timer_start (EV_A_ &w->timer);
1802
1803 ev_start (EV_A_ (W)w, 1);
1804}
1805
1806void
1807ev_stat_stop (EV_P_ ev_stat *w)
1808{
1809 ev_clear_pending (EV_A_ (W)w);
1810 if (expect_false (!ev_is_active (w)))
1811 return;
1812
1813 ev_timer_stop (EV_A_ &w->timer);
1814
1815 ev_stop (EV_A_ (W)w);
1816}
1817#endif
1818
1520/*****************************************************************************/ 1819/*****************************************************************************/
1521 1820
1522struct ev_once 1821struct ev_once
1523{ 1822{
1524 struct ev_io io; 1823 ev_io io;
1525 struct ev_timer to; 1824 ev_timer to;
1526 void (*cb)(int revents, void *arg); 1825 void (*cb)(int revents, void *arg);
1527 void *arg; 1826 void *arg;
1528}; 1827};
1529 1828
1530static void 1829static void
1539 1838
1540 cb (revents, arg); 1839 cb (revents, arg);
1541} 1840}
1542 1841
1543static void 1842static void
1544once_cb_io (EV_P_ struct ev_io *w, int revents) 1843once_cb_io (EV_P_ ev_io *w, int revents)
1545{ 1844{
1546 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1845 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1547} 1846}
1548 1847
1549static void 1848static void
1550once_cb_to (EV_P_ struct ev_timer *w, int revents) 1849once_cb_to (EV_P_ ev_timer *w, int revents)
1551{ 1850{
1552 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1851 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1553} 1852}
1554 1853
1555void 1854void
1556ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1855ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1557{ 1856{
1558 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1857 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1559 1858
1560 if (!once) 1859 if (expect_false (!once))
1860 {
1561 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1861 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1562 else 1862 return;
1563 { 1863 }
1864
1564 once->cb = cb; 1865 once->cb = cb;
1565 once->arg = arg; 1866 once->arg = arg;
1566 1867
1567 ev_watcher_init (&once->io, once_cb_io); 1868 ev_init (&once->io, once_cb_io);
1568 if (fd >= 0) 1869 if (fd >= 0)
1569 { 1870 {
1570 ev_io_set (&once->io, fd, events); 1871 ev_io_set (&once->io, fd, events);
1571 ev_io_start (EV_A_ &once->io); 1872 ev_io_start (EV_A_ &once->io);
1572 } 1873 }
1573 1874
1574 ev_watcher_init (&once->to, once_cb_to); 1875 ev_init (&once->to, once_cb_to);
1575 if (timeout >= 0.) 1876 if (timeout >= 0.)
1576 { 1877 {
1577 ev_timer_set (&once->to, timeout, 0.); 1878 ev_timer_set (&once->to, timeout, 0.);
1578 ev_timer_start (EV_A_ &once->to); 1879 ev_timer_start (EV_A_ &once->to);
1579 }
1580 } 1880 }
1581} 1881}
1582 1882
1883#ifdef __cplusplus
1884}
1885#endif
1886

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines