ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.72 by root, Tue Nov 6 16:09:37 2007 UTC vs.
Revision 1.141 by root, Mon Nov 26 20:33:58 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
53# endif 97# endif
54 98
55#endif 99#endif
56 100
57#include <math.h> 101#include <math.h>
66#include <sys/types.h> 110#include <sys/types.h>
67#include <time.h> 111#include <time.h>
68 112
69#include <signal.h> 113#include <signal.h>
70 114
71#ifndef WIN32 115#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 116# include <sys/time.h>
74# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
75#endif 124# endif
125#endif
126
76/**/ 127/**/
77 128
78#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
80#endif 135#endif
81 136
82#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
84#endif 139#endif
85 140
86#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
88#endif 147#endif
89 148
90#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
92#endif 151#endif
93 152
94#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
96#endif 155#endif
97 156
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
109# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
110#endif 159#endif
111 160
112/**/ 161/**/
113 162
114#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
119#ifndef CLOCK_REALTIME 168#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 169# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 170# define EV_USE_REALTIME 0
122#endif 171#endif
123 172
173#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h>
175#endif
176
124/**/ 177/**/
125 178
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
130 183
184#ifdef EV_H
185# include EV_H
186#else
131#include "ev.h" 187# include "ev.h"
188#endif
132 189
133#if __GNUC__ >= 3 190#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
135# define inline inline 194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
136#else 200#else
137# define expect(expr,value) (expr) 201# define expect(expr,value) (expr)
138# define inline static 202# define inline_speed static
203# define inline_minimal static
204# define noinline
139#endif 205#endif
140 206
141#define expect_false(expr) expect ((expr) != 0, 0) 207#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 208#define expect_true(expr) expect ((expr) != 0, 1)
143 209
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 211#define ABSPRI(w) ((w)->priority - EV_MINPRI)
146 212
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */
215
147typedef struct ev_watcher *W; 216typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 217typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 218typedef ev_watcher_time *WT;
150 219
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 221
153#if WIN32 222#ifdef _WIN32
154/* note: the comment below could not be substantiated, but what would I care */ 223# include "ev_win32.c"
155/* MSDN says this is required to handle SIGFPE */
156volatile double SIGFPE_REQ = 0.0f;
157
158static int
159ev_socketpair_tcp (int filedes [2])
160{
161 struct sockaddr_in addr = { 0 };
162 int addr_size = sizeof (addr);
163 SOCKET listener;
164 SOCKET sock [2] = { -1, -1 };
165
166 if ((listener = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
167 return -1;
168
169 addr.sin_family = AF_INET;
170 addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
171 addr.sin_port = 0;
172
173 if (bind (listener, (struct sockaddr *)&addr, addr_size))
174 goto fail;
175
176 if (getsockname(listener, (struct sockaddr *)&addr, &addr_size))
177 goto fail;
178
179 if (listen (listener, 1))
180 goto fail;
181
182 if ((sock [0] = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
183 goto fail;
184
185 if (connect (sock[0], (struct sockaddr *)&addr, addr_size))
186 goto fail;
187
188 if ((sock[1] = accept (listener, 0, 0)) < 0)
189 goto fail;
190
191 closesocket (listener);
192
193 filedes [0] = sock [0];
194 filedes [1] = sock [1];
195
196 return 0;
197
198fail:
199 closesocket (listener);
200
201 if (sock [0] != INVALID_SOCKET) closesocket (sock [0]);
202 if (sock [1] != INVALID_SOCKET) closesocket (sock [1]);
203
204 return -1;
205}
206
207# define ev_pipe(filedes) ev_socketpair_tcp (filedes)
208#else
209# define ev_pipe(filedes) pipe (filedes)
210#endif 224#endif
211 225
212/*****************************************************************************/ 226/*****************************************************************************/
213 227
214static void (*syserr_cb)(const char *msg); 228static void (*syserr_cb)(const char *msg);
215 229
230void
216void ev_set_syserr_cb (void (*cb)(const char *msg)) 231ev_set_syserr_cb (void (*cb)(const char *msg))
217{ 232{
218 syserr_cb = cb; 233 syserr_cb = cb;
219} 234}
220 235
221static void 236static void noinline
222syserr (const char *msg) 237syserr (const char *msg)
223{ 238{
224 if (!msg) 239 if (!msg)
225 msg = "(libev) system error"; 240 msg = "(libev) system error";
226 241
233 } 248 }
234} 249}
235 250
236static void *(*alloc)(void *ptr, long size); 251static void *(*alloc)(void *ptr, long size);
237 252
253void
238void ev_set_allocator (void *(*cb)(void *ptr, long size)) 254ev_set_allocator (void *(*cb)(void *ptr, long size))
239{ 255{
240 alloc = cb; 256 alloc = cb;
241} 257}
242 258
243static void * 259static void *
262typedef struct 278typedef struct
263{ 279{
264 WL head; 280 WL head;
265 unsigned char events; 281 unsigned char events;
266 unsigned char reify; 282 unsigned char reify;
283#if EV_SELECT_IS_WINSOCKET
284 SOCKET handle;
285#endif
267} ANFD; 286} ANFD;
268 287
269typedef struct 288typedef struct
270{ 289{
271 W w; 290 W w;
272 int events; 291 int events;
273} ANPENDING; 292} ANPENDING;
274 293
275#if EV_MULTIPLICITY 294#if EV_MULTIPLICITY
276 295
277struct ev_loop 296 struct ev_loop
278{ 297 {
298 ev_tstamp ev_rt_now;
299 #define ev_rt_now ((loop)->ev_rt_now)
279# define VAR(name,decl) decl; 300 #define VAR(name,decl) decl;
280# include "ev_vars.h" 301 #include "ev_vars.h"
281};
282# undef VAR 302 #undef VAR
303 };
283# include "ev_wrap.h" 304 #include "ev_wrap.h"
305
306 static struct ev_loop default_loop_struct;
307 struct ev_loop *ev_default_loop_ptr;
284 308
285#else 309#else
286 310
311 ev_tstamp ev_rt_now;
287# define VAR(name,decl) static decl; 312 #define VAR(name,decl) static decl;
288# include "ev_vars.h" 313 #include "ev_vars.h"
289# undef VAR 314 #undef VAR
315
316 static int ev_default_loop_ptr;
290 317
291#endif 318#endif
292 319
293/*****************************************************************************/ 320/*****************************************************************************/
294 321
295inline ev_tstamp 322ev_tstamp
296ev_time (void) 323ev_time (void)
297{ 324{
298#if EV_USE_REALTIME 325#if EV_USE_REALTIME
299 struct timespec ts; 326 struct timespec ts;
300 clock_gettime (CLOCK_REALTIME, &ts); 327 clock_gettime (CLOCK_REALTIME, &ts);
304 gettimeofday (&tv, 0); 331 gettimeofday (&tv, 0);
305 return tv.tv_sec + tv.tv_usec * 1e-6; 332 return tv.tv_sec + tv.tv_usec * 1e-6;
306#endif 333#endif
307} 334}
308 335
309inline ev_tstamp 336ev_tstamp inline_size
310get_clock (void) 337get_clock (void)
311{ 338{
312#if EV_USE_MONOTONIC 339#if EV_USE_MONOTONIC
313 if (expect_true (have_monotonic)) 340 if (expect_true (have_monotonic))
314 { 341 {
319#endif 346#endif
320 347
321 return ev_time (); 348 return ev_time ();
322} 349}
323 350
351#if EV_MULTIPLICITY
324ev_tstamp 352ev_tstamp
325ev_now (EV_P) 353ev_now (EV_P)
326{ 354{
327 return rt_now; 355 return ev_rt_now;
328} 356}
357#endif
329 358
330#define array_roundsize(base,n) ((n) | 4 & ~3) 359#define array_roundsize(type,n) (((n) | 4) & ~3)
331 360
332#define array_needsize(base,cur,cnt,init) \ 361#define array_needsize(type,base,cur,cnt,init) \
333 if (expect_false ((cnt) > cur)) \ 362 if (expect_false ((cnt) > cur)) \
334 { \ 363 { \
335 int newcnt = cur; \ 364 int newcnt = cur; \
336 do \ 365 do \
337 { \ 366 { \
338 newcnt = array_roundsize (base, newcnt << 1); \ 367 newcnt = array_roundsize (type, newcnt << 1); \
339 } \ 368 } \
340 while ((cnt) > newcnt); \ 369 while ((cnt) > newcnt); \
341 \ 370 \
342 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 371 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
343 init (base + cur, newcnt - cur); \ 372 init (base + cur, newcnt - cur); \
344 cur = newcnt; \ 373 cur = newcnt; \
345 } 374 }
346 375
347#define array_slim(stem) \ 376#define array_slim(type,stem) \
348 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 377 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
349 { \ 378 { \
350 stem ## max = array_roundsize (stem ## cnt >> 1); \ 379 stem ## max = array_roundsize (stem ## cnt >> 1); \
351 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
352 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
353 } 382 }
354
355/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
356/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
357#define array_free_microshit(stem) \
358 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
359 383
360#define array_free(stem, idx) \ 384#define array_free(stem, idx) \
361 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
362 386
363/*****************************************************************************/ 387/*****************************************************************************/
364 388
365static void 389void noinline
390ev_feed_event (EV_P_ void *w, int revents)
391{
392 W w_ = (W)w;
393
394 if (expect_false (w_->pending))
395 {
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
397 return;
398 }
399
400 w_->pending = ++pendingcnt [ABSPRI (w_)];
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404}
405
406void inline_size
407queue_events (EV_P_ W *events, int eventcnt, int type)
408{
409 int i;
410
411 for (i = 0; i < eventcnt; ++i)
412 ev_feed_event (EV_A_ events [i], type);
413}
414
415/*****************************************************************************/
416
417void inline_size
366anfds_init (ANFD *base, int count) 418anfds_init (ANFD *base, int count)
367{ 419{
368 while (count--) 420 while (count--)
369 { 421 {
370 base->head = 0; 422 base->head = 0;
373 425
374 ++base; 426 ++base;
375 } 427 }
376} 428}
377 429
378static void 430void inline_speed
379event (EV_P_ W w, int events)
380{
381 if (w->pending)
382 {
383 pendings [ABSPRI (w)][w->pending - 1].events |= events;
384 return;
385 }
386
387 w->pending = ++pendingcnt [ABSPRI (w)];
388 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
389 pendings [ABSPRI (w)][w->pending - 1].w = w;
390 pendings [ABSPRI (w)][w->pending - 1].events = events;
391}
392
393static void
394queue_events (EV_P_ W *events, int eventcnt, int type)
395{
396 int i;
397
398 for (i = 0; i < eventcnt; ++i)
399 event (EV_A_ events [i], type);
400}
401
402static void
403fd_event (EV_P_ int fd, int events) 431fd_event (EV_P_ int fd, int revents)
404{ 432{
405 ANFD *anfd = anfds + fd; 433 ANFD *anfd = anfds + fd;
406 struct ev_io *w; 434 ev_io *w;
407 435
408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 436 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
409 { 437 {
410 int ev = w->events & events; 438 int ev = w->events & revents;
411 439
412 if (ev) 440 if (ev)
413 event (EV_A_ (W)w, ev); 441 ev_feed_event (EV_A_ (W)w, ev);
414 } 442 }
415} 443}
416 444
417/*****************************************************************************/ 445void
446ev_feed_fd_event (EV_P_ int fd, int revents)
447{
448 fd_event (EV_A_ fd, revents);
449}
418 450
419static void 451void inline_size
420fd_reify (EV_P) 452fd_reify (EV_P)
421{ 453{
422 int i; 454 int i;
423 455
424 for (i = 0; i < fdchangecnt; ++i) 456 for (i = 0; i < fdchangecnt; ++i)
425 { 457 {
426 int fd = fdchanges [i]; 458 int fd = fdchanges [i];
427 ANFD *anfd = anfds + fd; 459 ANFD *anfd = anfds + fd;
428 struct ev_io *w; 460 ev_io *w;
429 461
430 int events = 0; 462 int events = 0;
431 463
432 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
433 events |= w->events; 465 events |= w->events;
434 466
467#if EV_SELECT_IS_WINSOCKET
468 if (events)
469 {
470 unsigned long argp;
471 anfd->handle = _get_osfhandle (fd);
472 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
473 }
474#endif
475
435 anfd->reify = 0; 476 anfd->reify = 0;
436 477
437 method_modify (EV_A_ fd, anfd->events, events); 478 backend_modify (EV_A_ fd, anfd->events, events);
438 anfd->events = events; 479 anfd->events = events;
439 } 480 }
440 481
441 fdchangecnt = 0; 482 fdchangecnt = 0;
442} 483}
443 484
444static void 485void inline_size
445fd_change (EV_P_ int fd) 486fd_change (EV_P_ int fd)
446{ 487{
447 if (anfds [fd].reify) 488 if (expect_false (anfds [fd].reify))
448 return; 489 return;
449 490
450 anfds [fd].reify = 1; 491 anfds [fd].reify = 1;
451 492
452 ++fdchangecnt; 493 ++fdchangecnt;
453 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
454 fdchanges [fdchangecnt - 1] = fd; 495 fdchanges [fdchangecnt - 1] = fd;
455} 496}
456 497
457static void 498void inline_speed
458fd_kill (EV_P_ int fd) 499fd_kill (EV_P_ int fd)
459{ 500{
460 struct ev_io *w; 501 ev_io *w;
461 502
462 while ((w = (struct ev_io *)anfds [fd].head)) 503 while ((w = (ev_io *)anfds [fd].head))
463 { 504 {
464 ev_io_stop (EV_A_ w); 505 ev_io_stop (EV_A_ w);
465 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 506 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
466 } 507 }
467} 508}
468 509
469static int 510int inline_size
470fd_valid (int fd) 511fd_valid (int fd)
471{ 512{
472#ifdef WIN32 513#ifdef _WIN32
473 return !!win32_get_osfhandle (fd); 514 return _get_osfhandle (fd) != -1;
474#else 515#else
475 return fcntl (fd, F_GETFD) != -1; 516 return fcntl (fd, F_GETFD) != -1;
476#endif 517#endif
477} 518}
478 519
479/* called on EBADF to verify fds */ 520/* called on EBADF to verify fds */
480static void 521static void noinline
481fd_ebadf (EV_P) 522fd_ebadf (EV_P)
482{ 523{
483 int fd; 524 int fd;
484 525
485 for (fd = 0; fd < anfdmax; ++fd) 526 for (fd = 0; fd < anfdmax; ++fd)
487 if (!fd_valid (fd) == -1 && errno == EBADF) 528 if (!fd_valid (fd) == -1 && errno == EBADF)
488 fd_kill (EV_A_ fd); 529 fd_kill (EV_A_ fd);
489} 530}
490 531
491/* called on ENOMEM in select/poll to kill some fds and retry */ 532/* called on ENOMEM in select/poll to kill some fds and retry */
492static void 533static void noinline
493fd_enomem (EV_P) 534fd_enomem (EV_P)
494{ 535{
495 int fd; 536 int fd;
496 537
497 for (fd = anfdmax; fd--; ) 538 for (fd = anfdmax; fd--; )
500 fd_kill (EV_A_ fd); 541 fd_kill (EV_A_ fd);
501 return; 542 return;
502 } 543 }
503} 544}
504 545
505/* usually called after fork if method needs to re-arm all fds from scratch */ 546/* usually called after fork if backend needs to re-arm all fds from scratch */
506static void 547static void noinline
507fd_rearm_all (EV_P) 548fd_rearm_all (EV_P)
508{ 549{
509 int fd; 550 int fd;
510 551
511 /* this should be highly optimised to not do anything but set a flag */ 552 /* this should be highly optimised to not do anything but set a flag */
517 } 558 }
518} 559}
519 560
520/*****************************************************************************/ 561/*****************************************************************************/
521 562
522static void 563void inline_speed
523upheap (WT *heap, int k) 564upheap (WT *heap, int k)
524{ 565{
525 WT w = heap [k]; 566 WT w = heap [k];
526 567
527 while (k && heap [k >> 1]->at > w->at) 568 while (k && heap [k >> 1]->at > w->at)
534 heap [k] = w; 575 heap [k] = w;
535 ((W)heap [k])->active = k + 1; 576 ((W)heap [k])->active = k + 1;
536 577
537} 578}
538 579
539static void 580void inline_speed
540downheap (WT *heap, int N, int k) 581downheap (WT *heap, int N, int k)
541{ 582{
542 WT w = heap [k]; 583 WT w = heap [k];
543 584
544 while (k < (N >> 1)) 585 while (k < (N >> 1))
558 599
559 heap [k] = w; 600 heap [k] = w;
560 ((W)heap [k])->active = k + 1; 601 ((W)heap [k])->active = k + 1;
561} 602}
562 603
604void inline_size
605adjustheap (WT *heap, int N, int k)
606{
607 upheap (heap, k);
608 downheap (heap, N, k);
609}
610
563/*****************************************************************************/ 611/*****************************************************************************/
564 612
565typedef struct 613typedef struct
566{ 614{
567 WL head; 615 WL head;
571static ANSIG *signals; 619static ANSIG *signals;
572static int signalmax; 620static int signalmax;
573 621
574static int sigpipe [2]; 622static int sigpipe [2];
575static sig_atomic_t volatile gotsig; 623static sig_atomic_t volatile gotsig;
576static struct ev_io sigev; 624static ev_io sigev;
577 625
578static void 626void inline_size
579signals_init (ANSIG *base, int count) 627signals_init (ANSIG *base, int count)
580{ 628{
581 while (count--) 629 while (count--)
582 { 630 {
583 base->head = 0; 631 base->head = 0;
588} 636}
589 637
590static void 638static void
591sighandler (int signum) 639sighandler (int signum)
592{ 640{
593#if WIN32 641#if _WIN32
594 signal (signum, sighandler); 642 signal (signum, sighandler);
595#endif 643#endif
596 644
597 signals [signum - 1].gotsig = 1; 645 signals [signum - 1].gotsig = 1;
598 646
603 write (sigpipe [1], &signum, 1); 651 write (sigpipe [1], &signum, 1);
604 errno = old_errno; 652 errno = old_errno;
605 } 653 }
606} 654}
607 655
656void noinline
657ev_feed_signal_event (EV_P_ int signum)
658{
659 WL w;
660
661#if EV_MULTIPLICITY
662 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
663#endif
664
665 --signum;
666
667 if (signum < 0 || signum >= signalmax)
668 return;
669
670 signals [signum].gotsig = 0;
671
672 for (w = signals [signum].head; w; w = w->next)
673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
674}
675
608static void 676static void
609sigcb (EV_P_ struct ev_io *iow, int revents) 677sigcb (EV_P_ ev_io *iow, int revents)
610{ 678{
611 WL w;
612 int signum; 679 int signum;
613 680
614 read (sigpipe [0], &revents, 1); 681 read (sigpipe [0], &revents, 1);
615 gotsig = 0; 682 gotsig = 0;
616 683
617 for (signum = signalmax; signum--; ) 684 for (signum = signalmax; signum--; )
618 if (signals [signum].gotsig) 685 if (signals [signum].gotsig)
619 { 686 ev_feed_signal_event (EV_A_ signum + 1);
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 event (EV_A_ (W)w, EV_SIGNAL);
624 }
625} 687}
626 688
627static void 689void inline_size
690fd_intern (int fd)
691{
692#ifdef _WIN32
693 int arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
695#else
696 fcntl (fd, F_SETFD, FD_CLOEXEC);
697 fcntl (fd, F_SETFL, O_NONBLOCK);
698#endif
699}
700
701static void noinline
628siginit (EV_P) 702siginit (EV_P)
629{ 703{
630#ifndef WIN32 704 fd_intern (sigpipe [0]);
631 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 705 fd_intern (sigpipe [1]);
632 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
633
634 /* rather than sort out wether we really need nb, set it */
635 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
636 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
637#endif
638 706
639 ev_io_set (&sigev, sigpipe [0], EV_READ); 707 ev_io_set (&sigev, sigpipe [0], EV_READ);
640 ev_io_start (EV_A_ &sigev); 708 ev_io_start (EV_A_ &sigev);
641 ev_unref (EV_A); /* child watcher should not keep loop alive */ 709 ev_unref (EV_A); /* child watcher should not keep loop alive */
642} 710}
643 711
644/*****************************************************************************/ 712/*****************************************************************************/
645 713
646static struct ev_child *childs [PID_HASHSIZE]; 714static ev_child *childs [PID_HASHSIZE];
647 715
648#ifndef WIN32 716#ifndef _WIN32
649 717
650static struct ev_signal childev; 718static ev_signal childev;
651 719
652#ifndef WCONTINUED 720#ifndef WCONTINUED
653# define WCONTINUED 0 721# define WCONTINUED 0
654#endif 722#endif
655 723
656static void 724void inline_speed
657child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 725child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
658{ 726{
659 struct ev_child *w; 727 ev_child *w;
660 728
661 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 729 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
662 if (w->pid == pid || !w->pid) 730 if (w->pid == pid || !w->pid)
663 { 731 {
664 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 732 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
665 w->rpid = pid; 733 w->rpid = pid;
666 w->rstatus = status; 734 w->rstatus = status;
667 event (EV_A_ (W)w, EV_CHILD); 735 ev_feed_event (EV_A_ (W)w, EV_CHILD);
668 } 736 }
669} 737}
670 738
671static void 739static void
672childcb (EV_P_ struct ev_signal *sw, int revents) 740childcb (EV_P_ ev_signal *sw, int revents)
673{ 741{
674 int pid, status; 742 int pid, status;
675 743
676 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 744 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
677 { 745 {
678 /* make sure we are called again until all childs have been reaped */ 746 /* make sure we are called again until all childs have been reaped */
747 /* we need to do it this way so that the callback gets called before we continue */
679 event (EV_A_ (W)sw, EV_SIGNAL); 748 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
680 749
681 child_reap (EV_A_ sw, pid, pid, status); 750 child_reap (EV_A_ sw, pid, pid, status);
682 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 751 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
683 } 752 }
684} 753}
685 754
686#endif 755#endif
687 756
688/*****************************************************************************/ 757/*****************************************************************************/
689 758
759#if EV_USE_PORT
760# include "ev_port.c"
761#endif
690#if EV_USE_KQUEUE 762#if EV_USE_KQUEUE
691# include "ev_kqueue.c" 763# include "ev_kqueue.c"
692#endif 764#endif
693#if EV_USE_EPOLL 765#if EV_USE_EPOLL
694# include "ev_epoll.c" 766# include "ev_epoll.c"
711{ 783{
712 return EV_VERSION_MINOR; 784 return EV_VERSION_MINOR;
713} 785}
714 786
715/* return true if we are running with elevated privileges and should ignore env variables */ 787/* return true if we are running with elevated privileges and should ignore env variables */
716static int 788int inline_size
717enable_secure (void) 789enable_secure (void)
718{ 790{
719#ifdef WIN32 791#ifdef _WIN32
720 return 0; 792 return 0;
721#else 793#else
722 return getuid () != geteuid () 794 return getuid () != geteuid ()
723 || getgid () != getegid (); 795 || getgid () != getegid ();
724#endif 796#endif
725} 797}
726 798
727int 799unsigned int
728ev_method (EV_P) 800ev_supported_backends (void)
729{ 801{
730 return method; 802 unsigned int flags = 0;
803
804 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
805 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
806 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
807 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
808 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
809
810 return flags;
811}
812
813unsigned int
814ev_recommended_backends (void)
815{
816 unsigned int flags = ev_supported_backends ();
817
818#ifndef __NetBSD__
819 /* kqueue is borked on everything but netbsd apparently */
820 /* it usually doesn't work correctly on anything but sockets and pipes */
821 flags &= ~EVBACKEND_KQUEUE;
822#endif
823#ifdef __APPLE__
824 // flags &= ~EVBACKEND_KQUEUE; for documentation
825 flags &= ~EVBACKEND_POLL;
826#endif
827
828 return flags;
829}
830
831unsigned int
832ev_embeddable_backends (void)
833{
834 return EVBACKEND_EPOLL
835 | EVBACKEND_KQUEUE
836 | EVBACKEND_PORT;
837}
838
839unsigned int
840ev_backend (EV_P)
841{
842 return backend;
731} 843}
732 844
733static void 845static void
734loop_init (EV_P_ int methods) 846loop_init (EV_P_ unsigned int flags)
735{ 847{
736 if (!method) 848 if (!backend)
737 { 849 {
738#if EV_USE_MONOTONIC 850#if EV_USE_MONOTONIC
739 { 851 {
740 struct timespec ts; 852 struct timespec ts;
741 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 853 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
742 have_monotonic = 1; 854 have_monotonic = 1;
743 } 855 }
744#endif 856#endif
745 857
746 rt_now = ev_time (); 858 ev_rt_now = ev_time ();
747 mn_now = get_clock (); 859 mn_now = get_clock ();
748 now_floor = mn_now; 860 now_floor = mn_now;
749 rtmn_diff = rt_now - mn_now; 861 rtmn_diff = ev_rt_now - mn_now;
750 862
751 if (methods == EVMETHOD_AUTO) 863 if (!(flags & EVFLAG_NOENV)
752 if (!enable_secure () && getenv ("LIBEV_METHODS")) 864 && !enable_secure ()
865 && getenv ("LIBEV_FLAGS"))
753 methods = atoi (getenv ("LIBEV_METHODS")); 866 flags = atoi (getenv ("LIBEV_FLAGS"));
754 else
755 methods = EVMETHOD_ANY;
756 867
757 method = 0; 868 if (!(flags & 0x0000ffffUL))
758#if EV_USE_WIN32 869 flags |= ev_recommended_backends ();
759 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 870
871 backend = 0;
872#if EV_USE_PORT
873 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
760#endif 874#endif
761#if EV_USE_KQUEUE 875#if EV_USE_KQUEUE
762 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 876 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
763#endif 877#endif
764#if EV_USE_EPOLL 878#if EV_USE_EPOLL
765 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 879 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
766#endif 880#endif
767#if EV_USE_POLL 881#if EV_USE_POLL
768 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 882 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
769#endif 883#endif
770#if EV_USE_SELECT 884#if EV_USE_SELECT
771 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 885 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
772#endif 886#endif
773 887
774 ev_watcher_init (&sigev, sigcb); 888 ev_init (&sigev, sigcb);
775 ev_set_priority (&sigev, EV_MAXPRI); 889 ev_set_priority (&sigev, EV_MAXPRI);
776 } 890 }
777} 891}
778 892
779void 893static void
780loop_destroy (EV_P) 894loop_destroy (EV_P)
781{ 895{
782 int i; 896 int i;
783 897
784#if EV_USE_WIN32 898#if EV_USE_PORT
785 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 899 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
786#endif 900#endif
787#if EV_USE_KQUEUE 901#if EV_USE_KQUEUE
788 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 902 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
789#endif 903#endif
790#if EV_USE_EPOLL 904#if EV_USE_EPOLL
791 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 905 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
792#endif 906#endif
793#if EV_USE_POLL 907#if EV_USE_POLL
794 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 908 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
795#endif 909#endif
796#if EV_USE_SELECT 910#if EV_USE_SELECT
797 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 911 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
798#endif 912#endif
799 913
800 for (i = NUMPRI; i--; ) 914 for (i = NUMPRI; i--; )
801 array_free (pending, [i]); 915 array_free (pending, [i]);
802 916
803 /* have to use the microsoft-never-gets-it-right macro */ 917 /* have to use the microsoft-never-gets-it-right macro */
804 array_free_microshit (fdchange); 918 array_free (fdchange, EMPTY0);
805 array_free_microshit (timer); 919 array_free (timer, EMPTY0);
806 array_free_microshit (periodic); 920#if EV_PERIODIC_ENABLE
807 array_free_microshit (idle); 921 array_free (periodic, EMPTY0);
808 array_free_microshit (prepare); 922#endif
809 array_free_microshit (check); 923 array_free (idle, EMPTY0);
924 array_free (prepare, EMPTY0);
925 array_free (check, EMPTY0);
810 926
811 method = 0; 927 backend = 0;
812} 928}
813 929
814static void 930static void
815loop_fork (EV_P) 931loop_fork (EV_P)
816{ 932{
933#if EV_USE_PORT
934 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
935#endif
936#if EV_USE_KQUEUE
937 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
938#endif
817#if EV_USE_EPOLL 939#if EV_USE_EPOLL
818 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 940 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
819#endif
820#if EV_USE_KQUEUE
821 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
822#endif 941#endif
823 942
824 if (ev_is_active (&sigev)) 943 if (ev_is_active (&sigev))
825 { 944 {
826 /* default loop */ 945 /* default loop */
828 ev_ref (EV_A); 947 ev_ref (EV_A);
829 ev_io_stop (EV_A_ &sigev); 948 ev_io_stop (EV_A_ &sigev);
830 close (sigpipe [0]); 949 close (sigpipe [0]);
831 close (sigpipe [1]); 950 close (sigpipe [1]);
832 951
833 while (ev_pipe (sigpipe)) 952 while (pipe (sigpipe))
834 syserr ("(libev) error creating pipe"); 953 syserr ("(libev) error creating pipe");
835 954
836 siginit (EV_A); 955 siginit (EV_A);
837 } 956 }
838 957
839 postfork = 0; 958 postfork = 0;
840} 959}
841 960
842#if EV_MULTIPLICITY 961#if EV_MULTIPLICITY
843struct ev_loop * 962struct ev_loop *
844ev_loop_new (int methods) 963ev_loop_new (unsigned int flags)
845{ 964{
846 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 965 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
847 966
848 memset (loop, 0, sizeof (struct ev_loop)); 967 memset (loop, 0, sizeof (struct ev_loop));
849 968
850 loop_init (EV_A_ methods); 969 loop_init (EV_A_ flags);
851 970
852 if (ev_method (EV_A)) 971 if (ev_backend (EV_A))
853 return loop; 972 return loop;
854 973
855 return 0; 974 return 0;
856} 975}
857 976
869} 988}
870 989
871#endif 990#endif
872 991
873#if EV_MULTIPLICITY 992#if EV_MULTIPLICITY
874struct ev_loop default_loop_struct;
875static struct ev_loop *default_loop;
876
877struct ev_loop * 993struct ev_loop *
994ev_default_loop_init (unsigned int flags)
878#else 995#else
879static int default_loop;
880
881int 996int
997ev_default_loop (unsigned int flags)
882#endif 998#endif
883ev_default_loop (int methods)
884{ 999{
885 if (sigpipe [0] == sigpipe [1]) 1000 if (sigpipe [0] == sigpipe [1])
886 if (ev_pipe (sigpipe)) 1001 if (pipe (sigpipe))
887 return 0; 1002 return 0;
888 1003
889 if (!default_loop) 1004 if (!ev_default_loop_ptr)
890 { 1005 {
891#if EV_MULTIPLICITY 1006#if EV_MULTIPLICITY
892 struct ev_loop *loop = default_loop = &default_loop_struct; 1007 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
893#else 1008#else
894 default_loop = 1; 1009 ev_default_loop_ptr = 1;
895#endif 1010#endif
896 1011
897 loop_init (EV_A_ methods); 1012 loop_init (EV_A_ flags);
898 1013
899 if (ev_method (EV_A)) 1014 if (ev_backend (EV_A))
900 { 1015 {
901 siginit (EV_A); 1016 siginit (EV_A);
902 1017
903#ifndef WIN32 1018#ifndef _WIN32
904 ev_signal_init (&childev, childcb, SIGCHLD); 1019 ev_signal_init (&childev, childcb, SIGCHLD);
905 ev_set_priority (&childev, EV_MAXPRI); 1020 ev_set_priority (&childev, EV_MAXPRI);
906 ev_signal_start (EV_A_ &childev); 1021 ev_signal_start (EV_A_ &childev);
907 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1022 ev_unref (EV_A); /* child watcher should not keep loop alive */
908#endif 1023#endif
909 } 1024 }
910 else 1025 else
911 default_loop = 0; 1026 ev_default_loop_ptr = 0;
912 } 1027 }
913 1028
914 return default_loop; 1029 return ev_default_loop_ptr;
915} 1030}
916 1031
917void 1032void
918ev_default_destroy (void) 1033ev_default_destroy (void)
919{ 1034{
920#if EV_MULTIPLICITY 1035#if EV_MULTIPLICITY
921 struct ev_loop *loop = default_loop; 1036 struct ev_loop *loop = ev_default_loop_ptr;
922#endif 1037#endif
923 1038
924#ifndef WIN32 1039#ifndef _WIN32
925 ev_ref (EV_A); /* child watcher */ 1040 ev_ref (EV_A); /* child watcher */
926 ev_signal_stop (EV_A_ &childev); 1041 ev_signal_stop (EV_A_ &childev);
927#endif 1042#endif
928 1043
929 ev_ref (EV_A); /* signal watcher */ 1044 ev_ref (EV_A); /* signal watcher */
937 1052
938void 1053void
939ev_default_fork (void) 1054ev_default_fork (void)
940{ 1055{
941#if EV_MULTIPLICITY 1056#if EV_MULTIPLICITY
942 struct ev_loop *loop = default_loop; 1057 struct ev_loop *loop = ev_default_loop_ptr;
943#endif 1058#endif
944 1059
945 if (method) 1060 if (backend)
946 postfork = 1; 1061 postfork = 1;
947} 1062}
948 1063
949/*****************************************************************************/ 1064/*****************************************************************************/
950 1065
951static void 1066int inline_size
1067any_pending (EV_P)
1068{
1069 int pri;
1070
1071 for (pri = NUMPRI; pri--; )
1072 if (pendingcnt [pri])
1073 return 1;
1074
1075 return 0;
1076}
1077
1078void inline_speed
952call_pending (EV_P) 1079call_pending (EV_P)
953{ 1080{
954 int pri; 1081 int pri;
955 1082
956 for (pri = NUMPRI; pri--; ) 1083 for (pri = NUMPRI; pri--; )
957 while (pendingcnt [pri]) 1084 while (pendingcnt [pri])
958 { 1085 {
959 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1086 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
960 1087
961 if (p->w) 1088 if (expect_true (p->w))
962 { 1089 {
1090 assert (("non-pending watcher on pending list", p->w->pending));
1091
963 p->w->pending = 0; 1092 p->w->pending = 0;
964 p->w->cb (EV_A_ p->w, p->events); 1093 EV_CB_INVOKE (p->w, p->events);
965 } 1094 }
966 } 1095 }
967} 1096}
968 1097
969static void 1098void inline_size
970timers_reify (EV_P) 1099timers_reify (EV_P)
971{ 1100{
972 while (timercnt && ((WT)timers [0])->at <= mn_now) 1101 while (timercnt && ((WT)timers [0])->at <= mn_now)
973 { 1102 {
974 struct ev_timer *w = timers [0]; 1103 ev_timer *w = timers [0];
975 1104
976 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1105 assert (("inactive timer on timer heap detected", ev_is_active (w)));
977 1106
978 /* first reschedule or stop timer */ 1107 /* first reschedule or stop timer */
979 if (w->repeat) 1108 if (w->repeat)
980 { 1109 {
981 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1110 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1111
982 ((WT)w)->at = mn_now + w->repeat; 1112 ((WT)w)->at += w->repeat;
1113 if (((WT)w)->at < mn_now)
1114 ((WT)w)->at = mn_now;
1115
983 downheap ((WT *)timers, timercnt, 0); 1116 downheap ((WT *)timers, timercnt, 0);
984 } 1117 }
985 else 1118 else
986 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1119 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
987 1120
988 event (EV_A_ (W)w, EV_TIMEOUT); 1121 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
989 } 1122 }
990} 1123}
991 1124
992static void 1125#if EV_PERIODIC_ENABLE
1126void inline_size
993periodics_reify (EV_P) 1127periodics_reify (EV_P)
994{ 1128{
995 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1129 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
996 { 1130 {
997 struct ev_periodic *w = periodics [0]; 1131 ev_periodic *w = periodics [0];
998 1132
999 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1133 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1000 1134
1001 /* first reschedule or stop timer */ 1135 /* first reschedule or stop timer */
1002 if (w->interval) 1136 if (w->reschedule_cb)
1003 { 1137 {
1138 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1139 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1140 downheap ((WT *)periodics, periodiccnt, 0);
1141 }
1142 else if (w->interval)
1143 {
1004 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1144 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1005 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1145 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1006 downheap ((WT *)periodics, periodiccnt, 0); 1146 downheap ((WT *)periodics, periodiccnt, 0);
1007 } 1147 }
1008 else 1148 else
1009 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1149 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1010 1150
1011 event (EV_A_ (W)w, EV_PERIODIC); 1151 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1012 } 1152 }
1013} 1153}
1014 1154
1015static void 1155static void noinline
1016periodics_reschedule (EV_P) 1156periodics_reschedule (EV_P)
1017{ 1157{
1018 int i; 1158 int i;
1019 1159
1020 /* adjust periodics after time jump */ 1160 /* adjust periodics after time jump */
1021 for (i = 0; i < periodiccnt; ++i) 1161 for (i = 0; i < periodiccnt; ++i)
1022 { 1162 {
1023 struct ev_periodic *w = periodics [i]; 1163 ev_periodic *w = periodics [i];
1024 1164
1165 if (w->reschedule_cb)
1166 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1025 if (w->interval) 1167 else if (w->interval)
1026 {
1027 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1168 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1028
1029 if (fabs (diff) >= 1e-4)
1030 {
1031 ev_periodic_stop (EV_A_ w);
1032 ev_periodic_start (EV_A_ w);
1033
1034 i = 0; /* restart loop, inefficient, but time jumps should be rare */
1035 }
1036 }
1037 } 1169 }
1038}
1039 1170
1040inline int 1171 /* now rebuild the heap */
1172 for (i = periodiccnt >> 1; i--; )
1173 downheap ((WT *)periodics, periodiccnt, i);
1174}
1175#endif
1176
1177int inline_size
1041time_update_monotonic (EV_P) 1178time_update_monotonic (EV_P)
1042{ 1179{
1043 mn_now = get_clock (); 1180 mn_now = get_clock ();
1044 1181
1045 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1182 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1046 { 1183 {
1047 rt_now = rtmn_diff + mn_now; 1184 ev_rt_now = rtmn_diff + mn_now;
1048 return 0; 1185 return 0;
1049 } 1186 }
1050 else 1187 else
1051 { 1188 {
1052 now_floor = mn_now; 1189 now_floor = mn_now;
1053 rt_now = ev_time (); 1190 ev_rt_now = ev_time ();
1054 return 1; 1191 return 1;
1055 } 1192 }
1056} 1193}
1057 1194
1058static void 1195void inline_size
1059time_update (EV_P) 1196time_update (EV_P)
1060{ 1197{
1061 int i; 1198 int i;
1062 1199
1063#if EV_USE_MONOTONIC 1200#if EV_USE_MONOTONIC
1065 { 1202 {
1066 if (time_update_monotonic (EV_A)) 1203 if (time_update_monotonic (EV_A))
1067 { 1204 {
1068 ev_tstamp odiff = rtmn_diff; 1205 ev_tstamp odiff = rtmn_diff;
1069 1206
1070 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1207 /* loop a few times, before making important decisions.
1208 * on the choice of "4": one iteration isn't enough,
1209 * in case we get preempted during the calls to
1210 * ev_time and get_clock. a second call is almost guarenteed
1211 * to succeed in that case, though. and looping a few more times
1212 * doesn't hurt either as we only do this on time-jumps or
1213 * in the unlikely event of getting preempted here.
1214 */
1215 for (i = 4; --i; )
1071 { 1216 {
1072 rtmn_diff = rt_now - mn_now; 1217 rtmn_diff = ev_rt_now - mn_now;
1073 1218
1074 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1219 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1075 return; /* all is well */ 1220 return; /* all is well */
1076 1221
1077 rt_now = ev_time (); 1222 ev_rt_now = ev_time ();
1078 mn_now = get_clock (); 1223 mn_now = get_clock ();
1079 now_floor = mn_now; 1224 now_floor = mn_now;
1080 } 1225 }
1081 1226
1227# if EV_PERIODIC_ENABLE
1082 periodics_reschedule (EV_A); 1228 periodics_reschedule (EV_A);
1229# endif
1083 /* no timer adjustment, as the monotonic clock doesn't jump */ 1230 /* no timer adjustment, as the monotonic clock doesn't jump */
1084 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1231 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1085 } 1232 }
1086 } 1233 }
1087 else 1234 else
1088#endif 1235#endif
1089 { 1236 {
1090 rt_now = ev_time (); 1237 ev_rt_now = ev_time ();
1091 1238
1092 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1239 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1093 { 1240 {
1241#if EV_PERIODIC_ENABLE
1094 periodics_reschedule (EV_A); 1242 periodics_reschedule (EV_A);
1243#endif
1095 1244
1096 /* adjust timers. this is easy, as the offset is the same for all */ 1245 /* adjust timers. this is easy, as the offset is the same for all */
1097 for (i = 0; i < timercnt; ++i) 1246 for (i = 0; i < timercnt; ++i)
1098 ((WT)timers [i])->at += rt_now - mn_now; 1247 ((WT)timers [i])->at += ev_rt_now - mn_now;
1099 } 1248 }
1100 1249
1101 mn_now = rt_now; 1250 mn_now = ev_rt_now;
1102 } 1251 }
1103} 1252}
1104 1253
1105void 1254void
1106ev_ref (EV_P) 1255ev_ref (EV_P)
1117static int loop_done; 1266static int loop_done;
1118 1267
1119void 1268void
1120ev_loop (EV_P_ int flags) 1269ev_loop (EV_P_ int flags)
1121{ 1270{
1122 double block;
1123 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1271 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1272 ? EVUNLOOP_ONE
1273 : EVUNLOOP_CANCEL;
1124 1274
1125 do 1275 while (activecnt)
1126 { 1276 {
1127 /* queue check watchers (and execute them) */ 1277 /* queue check watchers (and execute them) */
1128 if (expect_false (preparecnt)) 1278 if (expect_false (preparecnt))
1129 { 1279 {
1130 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1280 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1137 1287
1138 /* update fd-related kernel structures */ 1288 /* update fd-related kernel structures */
1139 fd_reify (EV_A); 1289 fd_reify (EV_A);
1140 1290
1141 /* calculate blocking time */ 1291 /* calculate blocking time */
1292 {
1293 double block;
1142 1294
1143 /* we only need this for !monotonic clockor timers, but as we basically 1295 if (flags & EVLOOP_NONBLOCK || idlecnt)
1144 always have timers, we just calculate it always */ 1296 block = 0.; /* do not block at all */
1297 else
1298 {
1299 /* update time to cancel out callback processing overhead */
1145#if EV_USE_MONOTONIC 1300#if EV_USE_MONOTONIC
1146 if (expect_true (have_monotonic)) 1301 if (expect_true (have_monotonic))
1147 time_update_monotonic (EV_A); 1302 time_update_monotonic (EV_A);
1148 else 1303 else
1149#endif 1304#endif
1150 { 1305 {
1151 rt_now = ev_time (); 1306 ev_rt_now = ev_time ();
1152 mn_now = rt_now; 1307 mn_now = ev_rt_now;
1153 } 1308 }
1154 1309
1155 if (flags & EVLOOP_NONBLOCK || idlecnt)
1156 block = 0.;
1157 else
1158 {
1159 block = MAX_BLOCKTIME; 1310 block = MAX_BLOCKTIME;
1160 1311
1161 if (timercnt) 1312 if (timercnt)
1162 { 1313 {
1163 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1314 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1164 if (block > to) block = to; 1315 if (block > to) block = to;
1165 } 1316 }
1166 1317
1318#if EV_PERIODIC_ENABLE
1167 if (periodiccnt) 1319 if (periodiccnt)
1168 { 1320 {
1169 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1321 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1170 if (block > to) block = to; 1322 if (block > to) block = to;
1171 } 1323 }
1324#endif
1172 1325
1173 if (block < 0.) block = 0.; 1326 if (expect_false (block < 0.)) block = 0.;
1174 } 1327 }
1175 1328
1176 method_poll (EV_A_ block); 1329 backend_poll (EV_A_ block);
1330 }
1177 1331
1178 /* update rt_now, do magic */ 1332 /* update ev_rt_now, do magic */
1179 time_update (EV_A); 1333 time_update (EV_A);
1180 1334
1181 /* queue pending timers and reschedule them */ 1335 /* queue pending timers and reschedule them */
1182 timers_reify (EV_A); /* relative timers called last */ 1336 timers_reify (EV_A); /* relative timers called last */
1337#if EV_PERIODIC_ENABLE
1183 periodics_reify (EV_A); /* absolute timers called first */ 1338 periodics_reify (EV_A); /* absolute timers called first */
1339#endif
1184 1340
1185 /* queue idle watchers unless io or timers are pending */ 1341 /* queue idle watchers unless other events are pending */
1186 if (!pendingcnt) 1342 if (idlecnt && !any_pending (EV_A))
1187 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1343 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1188 1344
1189 /* queue check watchers, to be executed first */ 1345 /* queue check watchers, to be executed first */
1190 if (checkcnt) 1346 if (expect_false (checkcnt))
1191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1347 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1192 1348
1193 call_pending (EV_A); 1349 call_pending (EV_A);
1194 }
1195 while (activecnt && !loop_done);
1196 1350
1197 if (loop_done != 2) 1351 if (expect_false (loop_done))
1198 loop_done = 0; 1352 break;
1353 }
1354
1355 if (loop_done == EVUNLOOP_ONE)
1356 loop_done = EVUNLOOP_CANCEL;
1199} 1357}
1200 1358
1201void 1359void
1202ev_unloop (EV_P_ int how) 1360ev_unloop (EV_P_ int how)
1203{ 1361{
1204 loop_done = how; 1362 loop_done = how;
1205} 1363}
1206 1364
1207/*****************************************************************************/ 1365/*****************************************************************************/
1208 1366
1209inline void 1367void inline_size
1210wlist_add (WL *head, WL elem) 1368wlist_add (WL *head, WL elem)
1211{ 1369{
1212 elem->next = *head; 1370 elem->next = *head;
1213 *head = elem; 1371 *head = elem;
1214} 1372}
1215 1373
1216inline void 1374void inline_size
1217wlist_del (WL *head, WL elem) 1375wlist_del (WL *head, WL elem)
1218{ 1376{
1219 while (*head) 1377 while (*head)
1220 { 1378 {
1221 if (*head == elem) 1379 if (*head == elem)
1226 1384
1227 head = &(*head)->next; 1385 head = &(*head)->next;
1228 } 1386 }
1229} 1387}
1230 1388
1231inline void 1389void inline_speed
1232ev_clear_pending (EV_P_ W w) 1390ev_clear_pending (EV_P_ W w)
1233{ 1391{
1234 if (w->pending) 1392 if (w->pending)
1235 { 1393 {
1236 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1394 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1237 w->pending = 0; 1395 w->pending = 0;
1238 } 1396 }
1239} 1397}
1240 1398
1241inline void 1399void inline_speed
1242ev_start (EV_P_ W w, int active) 1400ev_start (EV_P_ W w, int active)
1243{ 1401{
1244 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1402 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1245 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1403 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1246 1404
1247 w->active = active; 1405 w->active = active;
1248 ev_ref (EV_A); 1406 ev_ref (EV_A);
1249} 1407}
1250 1408
1251inline void 1409void inline_size
1252ev_stop (EV_P_ W w) 1410ev_stop (EV_P_ W w)
1253{ 1411{
1254 ev_unref (EV_A); 1412 ev_unref (EV_A);
1255 w->active = 0; 1413 w->active = 0;
1256} 1414}
1257 1415
1258/*****************************************************************************/ 1416/*****************************************************************************/
1259 1417
1260void 1418void
1261ev_io_start (EV_P_ struct ev_io *w) 1419ev_io_start (EV_P_ ev_io *w)
1262{ 1420{
1263 int fd = w->fd; 1421 int fd = w->fd;
1264 1422
1265 if (ev_is_active (w)) 1423 if (expect_false (ev_is_active (w)))
1266 return; 1424 return;
1267 1425
1268 assert (("ev_io_start called with negative fd", fd >= 0)); 1426 assert (("ev_io_start called with negative fd", fd >= 0));
1269 1427
1270 ev_start (EV_A_ (W)w, 1); 1428 ev_start (EV_A_ (W)w, 1);
1271 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1429 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1272 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1430 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1273 1431
1274 fd_change (EV_A_ fd); 1432 fd_change (EV_A_ fd);
1275} 1433}
1276 1434
1277void 1435void
1278ev_io_stop (EV_P_ struct ev_io *w) 1436ev_io_stop (EV_P_ ev_io *w)
1279{ 1437{
1280 ev_clear_pending (EV_A_ (W)w); 1438 ev_clear_pending (EV_A_ (W)w);
1281 if (!ev_is_active (w)) 1439 if (expect_false (!ev_is_active (w)))
1282 return; 1440 return;
1441
1442 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1283 1443
1284 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1444 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1285 ev_stop (EV_A_ (W)w); 1445 ev_stop (EV_A_ (W)w);
1286 1446
1287 fd_change (EV_A_ w->fd); 1447 fd_change (EV_A_ w->fd);
1288} 1448}
1289 1449
1290void 1450void
1291ev_timer_start (EV_P_ struct ev_timer *w) 1451ev_timer_start (EV_P_ ev_timer *w)
1292{ 1452{
1293 if (ev_is_active (w)) 1453 if (expect_false (ev_is_active (w)))
1294 return; 1454 return;
1295 1455
1296 ((WT)w)->at += mn_now; 1456 ((WT)w)->at += mn_now;
1297 1457
1298 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1458 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1299 1459
1300 ev_start (EV_A_ (W)w, ++timercnt); 1460 ev_start (EV_A_ (W)w, ++timercnt);
1301 array_needsize (timers, timermax, timercnt, (void)); 1461 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1302 timers [timercnt - 1] = w; 1462 timers [timercnt - 1] = w;
1303 upheap ((WT *)timers, timercnt - 1); 1463 upheap ((WT *)timers, timercnt - 1);
1304 1464
1305 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1465 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1306} 1466}
1307 1467
1308void 1468void
1309ev_timer_stop (EV_P_ struct ev_timer *w) 1469ev_timer_stop (EV_P_ ev_timer *w)
1310{ 1470{
1311 ev_clear_pending (EV_A_ (W)w); 1471 ev_clear_pending (EV_A_ (W)w);
1312 if (!ev_is_active (w)) 1472 if (expect_false (!ev_is_active (w)))
1313 return; 1473 return;
1314 1474
1315 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1475 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1316 1476
1317 if (((W)w)->active < timercnt--) 1477 if (expect_true (((W)w)->active < timercnt--))
1318 { 1478 {
1319 timers [((W)w)->active - 1] = timers [timercnt]; 1479 timers [((W)w)->active - 1] = timers [timercnt];
1320 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1480 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1321 } 1481 }
1322 1482
1323 ((WT)w)->at = w->repeat; 1483 ((WT)w)->at -= mn_now;
1324 1484
1325 ev_stop (EV_A_ (W)w); 1485 ev_stop (EV_A_ (W)w);
1326} 1486}
1327 1487
1328void 1488void
1329ev_timer_again (EV_P_ struct ev_timer *w) 1489ev_timer_again (EV_P_ ev_timer *w)
1330{ 1490{
1331 if (ev_is_active (w)) 1491 if (ev_is_active (w))
1332 { 1492 {
1333 if (w->repeat) 1493 if (w->repeat)
1334 { 1494 {
1335 ((WT)w)->at = mn_now + w->repeat; 1495 ((WT)w)->at = mn_now + w->repeat;
1336 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1496 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1337 } 1497 }
1338 else 1498 else
1339 ev_timer_stop (EV_A_ w); 1499 ev_timer_stop (EV_A_ w);
1340 } 1500 }
1341 else if (w->repeat) 1501 else if (w->repeat)
1502 {
1503 w->at = w->repeat;
1342 ev_timer_start (EV_A_ w); 1504 ev_timer_start (EV_A_ w);
1505 }
1343} 1506}
1344 1507
1508#if EV_PERIODIC_ENABLE
1345void 1509void
1346ev_periodic_start (EV_P_ struct ev_periodic *w) 1510ev_periodic_start (EV_P_ ev_periodic *w)
1347{ 1511{
1348 if (ev_is_active (w)) 1512 if (expect_false (ev_is_active (w)))
1349 return; 1513 return;
1350 1514
1515 if (w->reschedule_cb)
1516 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1517 else if (w->interval)
1518 {
1351 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1519 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1352
1353 /* this formula differs from the one in periodic_reify because we do not always round up */ 1520 /* this formula differs from the one in periodic_reify because we do not always round up */
1354 if (w->interval)
1355 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1521 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1522 }
1356 1523
1357 ev_start (EV_A_ (W)w, ++periodiccnt); 1524 ev_start (EV_A_ (W)w, ++periodiccnt);
1358 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1525 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1359 periodics [periodiccnt - 1] = w; 1526 periodics [periodiccnt - 1] = w;
1360 upheap ((WT *)periodics, periodiccnt - 1); 1527 upheap ((WT *)periodics, periodiccnt - 1);
1361 1528
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1529 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1363} 1530}
1364 1531
1365void 1532void
1366ev_periodic_stop (EV_P_ struct ev_periodic *w) 1533ev_periodic_stop (EV_P_ ev_periodic *w)
1367{ 1534{
1368 ev_clear_pending (EV_A_ (W)w); 1535 ev_clear_pending (EV_A_ (W)w);
1369 if (!ev_is_active (w)) 1536 if (expect_false (!ev_is_active (w)))
1370 return; 1537 return;
1371 1538
1372 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1539 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1373 1540
1374 if (((W)w)->active < periodiccnt--) 1541 if (expect_true (((W)w)->active < periodiccnt--))
1375 { 1542 {
1376 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1543 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1377 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1544 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1378 } 1545 }
1379 1546
1380 ev_stop (EV_A_ (W)w); 1547 ev_stop (EV_A_ (W)w);
1381} 1548}
1382 1549
1383void 1550void
1551ev_periodic_again (EV_P_ ev_periodic *w)
1552{
1553 /* TODO: use adjustheap and recalculation */
1554 ev_periodic_stop (EV_A_ w);
1555 ev_periodic_start (EV_A_ w);
1556}
1557#endif
1558
1559void
1384ev_idle_start (EV_P_ struct ev_idle *w) 1560ev_idle_start (EV_P_ ev_idle *w)
1385{ 1561{
1386 if (ev_is_active (w)) 1562 if (expect_false (ev_is_active (w)))
1387 return; 1563 return;
1388 1564
1389 ev_start (EV_A_ (W)w, ++idlecnt); 1565 ev_start (EV_A_ (W)w, ++idlecnt);
1390 array_needsize (idles, idlemax, idlecnt, (void)); 1566 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1391 idles [idlecnt - 1] = w; 1567 idles [idlecnt - 1] = w;
1392} 1568}
1393 1569
1394void 1570void
1395ev_idle_stop (EV_P_ struct ev_idle *w) 1571ev_idle_stop (EV_P_ ev_idle *w)
1396{ 1572{
1397 ev_clear_pending (EV_A_ (W)w); 1573 ev_clear_pending (EV_A_ (W)w);
1398 if (ev_is_active (w)) 1574 if (expect_false (!ev_is_active (w)))
1399 return; 1575 return;
1400 1576
1577 {
1578 int active = ((W)w)->active;
1401 idles [((W)w)->active - 1] = idles [--idlecnt]; 1579 idles [active - 1] = idles [--idlecnt];
1580 ((W)idles [active - 1])->active = active;
1581 }
1582
1402 ev_stop (EV_A_ (W)w); 1583 ev_stop (EV_A_ (W)w);
1403} 1584}
1404 1585
1405void 1586void
1406ev_prepare_start (EV_P_ struct ev_prepare *w) 1587ev_prepare_start (EV_P_ ev_prepare *w)
1407{ 1588{
1408 if (ev_is_active (w)) 1589 if (expect_false (ev_is_active (w)))
1409 return; 1590 return;
1410 1591
1411 ev_start (EV_A_ (W)w, ++preparecnt); 1592 ev_start (EV_A_ (W)w, ++preparecnt);
1412 array_needsize (prepares, preparemax, preparecnt, (void)); 1593 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1413 prepares [preparecnt - 1] = w; 1594 prepares [preparecnt - 1] = w;
1414} 1595}
1415 1596
1416void 1597void
1417ev_prepare_stop (EV_P_ struct ev_prepare *w) 1598ev_prepare_stop (EV_P_ ev_prepare *w)
1418{ 1599{
1419 ev_clear_pending (EV_A_ (W)w); 1600 ev_clear_pending (EV_A_ (W)w);
1420 if (ev_is_active (w)) 1601 if (expect_false (!ev_is_active (w)))
1421 return; 1602 return;
1422 1603
1604 {
1605 int active = ((W)w)->active;
1423 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1606 prepares [active - 1] = prepares [--preparecnt];
1607 ((W)prepares [active - 1])->active = active;
1608 }
1609
1424 ev_stop (EV_A_ (W)w); 1610 ev_stop (EV_A_ (W)w);
1425} 1611}
1426 1612
1427void 1613void
1428ev_check_start (EV_P_ struct ev_check *w) 1614ev_check_start (EV_P_ ev_check *w)
1429{ 1615{
1430 if (ev_is_active (w)) 1616 if (expect_false (ev_is_active (w)))
1431 return; 1617 return;
1432 1618
1433 ev_start (EV_A_ (W)w, ++checkcnt); 1619 ev_start (EV_A_ (W)w, ++checkcnt);
1434 array_needsize (checks, checkmax, checkcnt, (void)); 1620 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1435 checks [checkcnt - 1] = w; 1621 checks [checkcnt - 1] = w;
1436} 1622}
1437 1623
1438void 1624void
1439ev_check_stop (EV_P_ struct ev_check *w) 1625ev_check_stop (EV_P_ ev_check *w)
1440{ 1626{
1441 ev_clear_pending (EV_A_ (W)w); 1627 ev_clear_pending (EV_A_ (W)w);
1442 if (ev_is_active (w)) 1628 if (expect_false (!ev_is_active (w)))
1443 return; 1629 return;
1444 1630
1631 {
1632 int active = ((W)w)->active;
1445 checks [((W)w)->active - 1] = checks [--checkcnt]; 1633 checks [active - 1] = checks [--checkcnt];
1634 ((W)checks [active - 1])->active = active;
1635 }
1636
1446 ev_stop (EV_A_ (W)w); 1637 ev_stop (EV_A_ (W)w);
1447} 1638}
1448 1639
1449#ifndef SA_RESTART 1640#ifndef SA_RESTART
1450# define SA_RESTART 0 1641# define SA_RESTART 0
1451#endif 1642#endif
1452 1643
1453void 1644void
1454ev_signal_start (EV_P_ struct ev_signal *w) 1645ev_signal_start (EV_P_ ev_signal *w)
1455{ 1646{
1456#if EV_MULTIPLICITY 1647#if EV_MULTIPLICITY
1457 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1648 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1458#endif 1649#endif
1459 if (ev_is_active (w)) 1650 if (expect_false (ev_is_active (w)))
1460 return; 1651 return;
1461 1652
1462 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1653 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1463 1654
1464 ev_start (EV_A_ (W)w, 1); 1655 ev_start (EV_A_ (W)w, 1);
1465 array_needsize (signals, signalmax, w->signum, signals_init); 1656 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1466 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1657 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1467 1658
1468 if (!((WL)w)->next) 1659 if (!((WL)w)->next)
1469 { 1660 {
1470#if WIN32 1661#if _WIN32
1471 signal (w->signum, sighandler); 1662 signal (w->signum, sighandler);
1472#else 1663#else
1473 struct sigaction sa; 1664 struct sigaction sa;
1474 sa.sa_handler = sighandler; 1665 sa.sa_handler = sighandler;
1475 sigfillset (&sa.sa_mask); 1666 sigfillset (&sa.sa_mask);
1478#endif 1669#endif
1479 } 1670 }
1480} 1671}
1481 1672
1482void 1673void
1483ev_signal_stop (EV_P_ struct ev_signal *w) 1674ev_signal_stop (EV_P_ ev_signal *w)
1484{ 1675{
1485 ev_clear_pending (EV_A_ (W)w); 1676 ev_clear_pending (EV_A_ (W)w);
1486 if (!ev_is_active (w)) 1677 if (expect_false (!ev_is_active (w)))
1487 return; 1678 return;
1488 1679
1489 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1680 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1490 ev_stop (EV_A_ (W)w); 1681 ev_stop (EV_A_ (W)w);
1491 1682
1492 if (!signals [w->signum - 1].head) 1683 if (!signals [w->signum - 1].head)
1493 signal (w->signum, SIG_DFL); 1684 signal (w->signum, SIG_DFL);
1494} 1685}
1495 1686
1496void 1687void
1497ev_child_start (EV_P_ struct ev_child *w) 1688ev_child_start (EV_P_ ev_child *w)
1498{ 1689{
1499#if EV_MULTIPLICITY 1690#if EV_MULTIPLICITY
1500 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1691 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1501#endif 1692#endif
1502 if (ev_is_active (w)) 1693 if (expect_false (ev_is_active (w)))
1503 return; 1694 return;
1504 1695
1505 ev_start (EV_A_ (W)w, 1); 1696 ev_start (EV_A_ (W)w, 1);
1506 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1697 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1507} 1698}
1508 1699
1509void 1700void
1510ev_child_stop (EV_P_ struct ev_child *w) 1701ev_child_stop (EV_P_ ev_child *w)
1511{ 1702{
1512 ev_clear_pending (EV_A_ (W)w); 1703 ev_clear_pending (EV_A_ (W)w);
1513 if (ev_is_active (w)) 1704 if (expect_false (!ev_is_active (w)))
1514 return; 1705 return;
1515 1706
1516 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1707 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1517 ev_stop (EV_A_ (W)w); 1708 ev_stop (EV_A_ (W)w);
1518} 1709}
1519 1710
1711#if EV_EMBED_ENABLE
1712void noinline
1713ev_embed_sweep (EV_P_ ev_embed *w)
1714{
1715 ev_loop (w->loop, EVLOOP_NONBLOCK);
1716}
1717
1718static void
1719embed_cb (EV_P_ ev_io *io, int revents)
1720{
1721 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1722
1723 if (ev_cb (w))
1724 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1725 else
1726 ev_embed_sweep (loop, w);
1727}
1728
1729void
1730ev_embed_start (EV_P_ ev_embed *w)
1731{
1732 if (expect_false (ev_is_active (w)))
1733 return;
1734
1735 {
1736 struct ev_loop *loop = w->loop;
1737 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1738 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1739 }
1740
1741 ev_set_priority (&w->io, ev_priority (w));
1742 ev_io_start (EV_A_ &w->io);
1743
1744 ev_start (EV_A_ (W)w, 1);
1745}
1746
1747void
1748ev_embed_stop (EV_P_ ev_embed *w)
1749{
1750 ev_clear_pending (EV_A_ (W)w);
1751 if (expect_false (!ev_is_active (w)))
1752 return;
1753
1754 ev_io_stop (EV_A_ &w->io);
1755
1756 ev_stop (EV_A_ (W)w);
1757}
1758#endif
1759
1760#if EV_STAT_ENABLE
1761
1762# ifdef _WIN32
1763# define lstat(a,b) stat(a,b)
1764# endif
1765
1766void
1767ev_stat_stat (EV_P_ ev_stat *w)
1768{
1769 if (lstat (w->path, &w->attr) < 0)
1770 w->attr.st_nlink = 0;
1771 else if (!w->attr.st_nlink)
1772 w->attr.st_nlink = 1;
1773}
1774
1775static void
1776stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1777{
1778 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1779
1780 /* we copy this here each the time so that */
1781 /* prev has the old value when the callback gets invoked */
1782 w->prev = w->attr;
1783 ev_stat_stat (EV_A_ w);
1784
1785 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1786 ev_feed_event (EV_A_ w, EV_STAT);
1787}
1788
1789void
1790ev_stat_start (EV_P_ ev_stat *w)
1791{
1792 if (expect_false (ev_is_active (w)))
1793 return;
1794
1795 /* since we use memcmp, we need to clear any padding data etc. */
1796 memset (&w->prev, 0, sizeof (ev_statdata));
1797 memset (&w->attr, 0, sizeof (ev_statdata));
1798
1799 ev_stat_stat (EV_A_ w);
1800
1801 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1802 ev_set_priority (&w->timer, ev_priority (w));
1803 ev_timer_start (EV_A_ &w->timer);
1804
1805 ev_start (EV_A_ (W)w, 1);
1806}
1807
1808void
1809ev_stat_stop (EV_P_ ev_stat *w)
1810{
1811 ev_clear_pending (EV_A_ (W)w);
1812 if (expect_false (!ev_is_active (w)))
1813 return;
1814
1815 ev_timer_stop (EV_A_ &w->timer);
1816
1817 ev_stop (EV_A_ (W)w);
1818}
1819#endif
1820
1520/*****************************************************************************/ 1821/*****************************************************************************/
1521 1822
1522struct ev_once 1823struct ev_once
1523{ 1824{
1524 struct ev_io io; 1825 ev_io io;
1525 struct ev_timer to; 1826 ev_timer to;
1526 void (*cb)(int revents, void *arg); 1827 void (*cb)(int revents, void *arg);
1527 void *arg; 1828 void *arg;
1528}; 1829};
1529 1830
1530static void 1831static void
1539 1840
1540 cb (revents, arg); 1841 cb (revents, arg);
1541} 1842}
1542 1843
1543static void 1844static void
1544once_cb_io (EV_P_ struct ev_io *w, int revents) 1845once_cb_io (EV_P_ ev_io *w, int revents)
1545{ 1846{
1546 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1847 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1547} 1848}
1548 1849
1549static void 1850static void
1550once_cb_to (EV_P_ struct ev_timer *w, int revents) 1851once_cb_to (EV_P_ ev_timer *w, int revents)
1551{ 1852{
1552 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1853 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1553} 1854}
1554 1855
1555void 1856void
1556ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1857ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1557{ 1858{
1558 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1859 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1559 1860
1560 if (!once) 1861 if (expect_false (!once))
1862 {
1561 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1863 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1562 else 1864 return;
1563 { 1865 }
1866
1564 once->cb = cb; 1867 once->cb = cb;
1565 once->arg = arg; 1868 once->arg = arg;
1566 1869
1567 ev_watcher_init (&once->io, once_cb_io); 1870 ev_init (&once->io, once_cb_io);
1568 if (fd >= 0) 1871 if (fd >= 0)
1569 { 1872 {
1570 ev_io_set (&once->io, fd, events); 1873 ev_io_set (&once->io, fd, events);
1571 ev_io_start (EV_A_ &once->io); 1874 ev_io_start (EV_A_ &once->io);
1572 } 1875 }
1573 1876
1574 ev_watcher_init (&once->to, once_cb_to); 1877 ev_init (&once->to, once_cb_to);
1575 if (timeout >= 0.) 1878 if (timeout >= 0.)
1576 { 1879 {
1577 ev_timer_set (&once->to, timeout, 0.); 1880 ev_timer_set (&once->to, timeout, 0.);
1578 ev_timer_start (EV_A_ &once->to); 1881 ev_timer_start (EV_A_ &once->to);
1579 }
1580 } 1882 }
1581} 1883}
1582 1884
1885#ifdef __cplusplus
1886}
1887#endif
1888

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines