ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.72 by root, Tue Nov 6 16:09:37 2007 UTC vs.
Revision 1.150 by root, Tue Nov 27 19:41:52 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
53# endif 97# endif
54 98
55#endif 99#endif
56 100
57#include <math.h> 101#include <math.h>
66#include <sys/types.h> 110#include <sys/types.h>
67#include <time.h> 111#include <time.h>
68 112
69#include <signal.h> 113#include <signal.h>
70 114
71#ifndef WIN32 115#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 116# include <sys/time.h>
74# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
75#endif 124# endif
125#endif
126
76/**/ 127/**/
77 128
78#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
80#endif 135#endif
81 136
82#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
84#endif 139#endif
85 140
86#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
88#endif 147#endif
89 148
90#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
92#endif 151#endif
93 152
94#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
96#endif 155#endif
97 156
98#ifndef EV_USE_WIN32 157#ifndef EV_USE_PORT
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1 158# define EV_USE_PORT 0
159#endif
160
161#ifndef EV_PID_HASHSIZE
162# if EV_MINIMAL
163# define EV_PID_HASHSIZE 1
103# else 164# else
104# define EV_USE_WIN32 0 165# define EV_PID_HASHSIZE 16
105# endif 166# endif
106#endif
107
108#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1
110#endif 167#endif
111 168
112/**/ 169/**/
113 170
114#ifndef CLOCK_MONOTONIC 171#ifndef CLOCK_MONOTONIC
119#ifndef CLOCK_REALTIME 176#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 177# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
122#endif 179#endif
123 180
181#if EV_SELECT_IS_WINSOCKET
182# include <winsock.h>
183#endif
184
124/**/ 185/**/
125 186
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 187#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 188#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 189/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
130 190
191#ifdef EV_H
192# include EV_H
193#else
131#include "ev.h" 194# include "ev.h"
195#endif
132 196
133#if __GNUC__ >= 3 197#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 198# define expect(expr,value) __builtin_expect ((expr),(value))
199# define inline_size static inline /* inline for codesize */
200# if EV_MINIMAL
135# define inline inline 201# define noinline __attribute__ ((noinline))
202# define inline_speed static noinline
203# else
204# define noinline
205# define inline_speed static inline
206# endif
136#else 207#else
137# define expect(expr,value) (expr) 208# define expect(expr,value) (expr)
209# define inline_speed static
138# define inline static 210# define inline_size static
211# define noinline
139#endif 212#endif
140 213
141#define expect_false(expr) expect ((expr) != 0, 0) 214#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 215#define expect_true(expr) expect ((expr) != 0, 1)
143 216
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 217#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 218#define ABSPRI(w) ((w)->priority - EV_MINPRI)
146 219
220#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
221#define EMPTY2(a,b) /* used to suppress some warnings */
222
147typedef struct ev_watcher *W; 223typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 224typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 225typedef ev_watcher_time *WT;
150 226
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 227static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 228
153#if WIN32 229#ifdef _WIN32
154/* note: the comment below could not be substantiated, but what would I care */ 230# include "ev_win32.c"
155/* MSDN says this is required to handle SIGFPE */
156volatile double SIGFPE_REQ = 0.0f;
157
158static int
159ev_socketpair_tcp (int filedes [2])
160{
161 struct sockaddr_in addr = { 0 };
162 int addr_size = sizeof (addr);
163 SOCKET listener;
164 SOCKET sock [2] = { -1, -1 };
165
166 if ((listener = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
167 return -1;
168
169 addr.sin_family = AF_INET;
170 addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
171 addr.sin_port = 0;
172
173 if (bind (listener, (struct sockaddr *)&addr, addr_size))
174 goto fail;
175
176 if (getsockname(listener, (struct sockaddr *)&addr, &addr_size))
177 goto fail;
178
179 if (listen (listener, 1))
180 goto fail;
181
182 if ((sock [0] = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
183 goto fail;
184
185 if (connect (sock[0], (struct sockaddr *)&addr, addr_size))
186 goto fail;
187
188 if ((sock[1] = accept (listener, 0, 0)) < 0)
189 goto fail;
190
191 closesocket (listener);
192
193 filedes [0] = sock [0];
194 filedes [1] = sock [1];
195
196 return 0;
197
198fail:
199 closesocket (listener);
200
201 if (sock [0] != INVALID_SOCKET) closesocket (sock [0]);
202 if (sock [1] != INVALID_SOCKET) closesocket (sock [1]);
203
204 return -1;
205}
206
207# define ev_pipe(filedes) ev_socketpair_tcp (filedes)
208#else
209# define ev_pipe(filedes) pipe (filedes)
210#endif 231#endif
211 232
212/*****************************************************************************/ 233/*****************************************************************************/
213 234
214static void (*syserr_cb)(const char *msg); 235static void (*syserr_cb)(const char *msg);
215 236
237void
216void ev_set_syserr_cb (void (*cb)(const char *msg)) 238ev_set_syserr_cb (void (*cb)(const char *msg))
217{ 239{
218 syserr_cb = cb; 240 syserr_cb = cb;
219} 241}
220 242
221static void 243static void noinline
222syserr (const char *msg) 244syserr (const char *msg)
223{ 245{
224 if (!msg) 246 if (!msg)
225 msg = "(libev) system error"; 247 msg = "(libev) system error";
226 248
231 perror (msg); 253 perror (msg);
232 abort (); 254 abort ();
233 } 255 }
234} 256}
235 257
236static void *(*alloc)(void *ptr, long size); 258static void *(*alloc)(void *ptr, size_t size) = realloc;
237 259
260void
238void ev_set_allocator (void *(*cb)(void *ptr, long size)) 261ev_set_allocator (void *(*cb)(void *ptr, size_t size))
239{ 262{
240 alloc = cb; 263 alloc = cb;
241} 264}
242 265
243static void * 266inline_speed void *
244ev_realloc (void *ptr, long size) 267ev_realloc (void *ptr, size_t size)
245{ 268{
246 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 269 ptr = alloc (ptr, size);
247 270
248 if (!ptr && size) 271 if (!ptr && size)
249 { 272 {
250 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 273 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size);
251 abort (); 274 abort ();
252 } 275 }
253 276
254 return ptr; 277 return ptr;
255} 278}
262typedef struct 285typedef struct
263{ 286{
264 WL head; 287 WL head;
265 unsigned char events; 288 unsigned char events;
266 unsigned char reify; 289 unsigned char reify;
290#if EV_SELECT_IS_WINSOCKET
291 SOCKET handle;
292#endif
267} ANFD; 293} ANFD;
268 294
269typedef struct 295typedef struct
270{ 296{
271 W w; 297 W w;
272 int events; 298 int events;
273} ANPENDING; 299} ANPENDING;
274 300
275#if EV_MULTIPLICITY 301#if EV_MULTIPLICITY
276 302
277struct ev_loop 303 struct ev_loop
278{ 304 {
305 ev_tstamp ev_rt_now;
306 #define ev_rt_now ((loop)->ev_rt_now)
279# define VAR(name,decl) decl; 307 #define VAR(name,decl) decl;
280# include "ev_vars.h" 308 #include "ev_vars.h"
281};
282# undef VAR 309 #undef VAR
310 };
283# include "ev_wrap.h" 311 #include "ev_wrap.h"
312
313 static struct ev_loop default_loop_struct;
314 struct ev_loop *ev_default_loop_ptr;
284 315
285#else 316#else
286 317
318 ev_tstamp ev_rt_now;
287# define VAR(name,decl) static decl; 319 #define VAR(name,decl) static decl;
288# include "ev_vars.h" 320 #include "ev_vars.h"
289# undef VAR 321 #undef VAR
322
323 static int ev_default_loop_ptr;
290 324
291#endif 325#endif
292 326
293/*****************************************************************************/ 327/*****************************************************************************/
294 328
295inline ev_tstamp 329ev_tstamp
296ev_time (void) 330ev_time (void)
297{ 331{
298#if EV_USE_REALTIME 332#if EV_USE_REALTIME
299 struct timespec ts; 333 struct timespec ts;
300 clock_gettime (CLOCK_REALTIME, &ts); 334 clock_gettime (CLOCK_REALTIME, &ts);
304 gettimeofday (&tv, 0); 338 gettimeofday (&tv, 0);
305 return tv.tv_sec + tv.tv_usec * 1e-6; 339 return tv.tv_sec + tv.tv_usec * 1e-6;
306#endif 340#endif
307} 341}
308 342
309inline ev_tstamp 343ev_tstamp inline_size
310get_clock (void) 344get_clock (void)
311{ 345{
312#if EV_USE_MONOTONIC 346#if EV_USE_MONOTONIC
313 if (expect_true (have_monotonic)) 347 if (expect_true (have_monotonic))
314 { 348 {
319#endif 353#endif
320 354
321 return ev_time (); 355 return ev_time ();
322} 356}
323 357
358#if EV_MULTIPLICITY
324ev_tstamp 359ev_tstamp
325ev_now (EV_P) 360ev_now (EV_P)
326{ 361{
327 return rt_now; 362 return ev_rt_now;
328} 363}
364#endif
329 365
330#define array_roundsize(base,n) ((n) | 4 & ~3) 366#define array_roundsize(type,n) (((n) | 4) & ~3)
331 367
332#define array_needsize(base,cur,cnt,init) \ 368#define array_needsize(type,base,cur,cnt,init) \
333 if (expect_false ((cnt) > cur)) \ 369 if (expect_false ((cnt) > cur)) \
334 { \ 370 { \
335 int newcnt = cur; \ 371 int newcnt = cur; \
336 do \ 372 do \
337 { \ 373 { \
338 newcnt = array_roundsize (base, newcnt << 1); \ 374 newcnt = array_roundsize (type, newcnt << 1); \
339 } \ 375 } \
340 while ((cnt) > newcnt); \ 376 while ((cnt) > newcnt); \
341 \ 377 \
342 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 378 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
343 init (base + cur, newcnt - cur); \ 379 init (base + cur, newcnt - cur); \
344 cur = newcnt; \ 380 cur = newcnt; \
345 } 381 }
346 382
347#define array_slim(stem) \ 383#define array_slim(type,stem) \
348 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 384 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
349 { \ 385 { \
350 stem ## max = array_roundsize (stem ## cnt >> 1); \ 386 stem ## max = array_roundsize (stem ## cnt >> 1); \
351 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 387 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
352 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 388 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
353 } 389 }
354
355/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
356/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
357#define array_free_microshit(stem) \
358 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
359 390
360#define array_free(stem, idx) \ 391#define array_free(stem, idx) \
361 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 392 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
362 393
363/*****************************************************************************/ 394/*****************************************************************************/
364 395
365static void 396void noinline
397ev_feed_event (EV_P_ void *w, int revents)
398{
399 W w_ = (W)w;
400
401 if (expect_false (w_->pending))
402 {
403 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
404 return;
405 }
406
407 w_->pending = ++pendingcnt [ABSPRI (w_)];
408 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
409 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
410 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
411}
412
413void inline_size
414queue_events (EV_P_ W *events, int eventcnt, int type)
415{
416 int i;
417
418 for (i = 0; i < eventcnt; ++i)
419 ev_feed_event (EV_A_ events [i], type);
420}
421
422/*****************************************************************************/
423
424void inline_size
366anfds_init (ANFD *base, int count) 425anfds_init (ANFD *base, int count)
367{ 426{
368 while (count--) 427 while (count--)
369 { 428 {
370 base->head = 0; 429 base->head = 0;
373 432
374 ++base; 433 ++base;
375 } 434 }
376} 435}
377 436
378static void 437void inline_speed
379event (EV_P_ W w, int events)
380{
381 if (w->pending)
382 {
383 pendings [ABSPRI (w)][w->pending - 1].events |= events;
384 return;
385 }
386
387 w->pending = ++pendingcnt [ABSPRI (w)];
388 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
389 pendings [ABSPRI (w)][w->pending - 1].w = w;
390 pendings [ABSPRI (w)][w->pending - 1].events = events;
391}
392
393static void
394queue_events (EV_P_ W *events, int eventcnt, int type)
395{
396 int i;
397
398 for (i = 0; i < eventcnt; ++i)
399 event (EV_A_ events [i], type);
400}
401
402static void
403fd_event (EV_P_ int fd, int events) 438fd_event (EV_P_ int fd, int revents)
404{ 439{
405 ANFD *anfd = anfds + fd; 440 ANFD *anfd = anfds + fd;
406 struct ev_io *w; 441 ev_io *w;
407 442
408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 443 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
409 { 444 {
410 int ev = w->events & events; 445 int ev = w->events & revents;
411 446
412 if (ev) 447 if (ev)
413 event (EV_A_ (W)w, ev); 448 ev_feed_event (EV_A_ (W)w, ev);
414 } 449 }
415} 450}
416 451
417/*****************************************************************************/ 452void
453ev_feed_fd_event (EV_P_ int fd, int revents)
454{
455 fd_event (EV_A_ fd, revents);
456}
418 457
419static void 458void inline_size
420fd_reify (EV_P) 459fd_reify (EV_P)
421{ 460{
422 int i; 461 int i;
423 462
424 for (i = 0; i < fdchangecnt; ++i) 463 for (i = 0; i < fdchangecnt; ++i)
425 { 464 {
426 int fd = fdchanges [i]; 465 int fd = fdchanges [i];
427 ANFD *anfd = anfds + fd; 466 ANFD *anfd = anfds + fd;
428 struct ev_io *w; 467 ev_io *w;
429 468
430 int events = 0; 469 int events = 0;
431 470
432 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
433 events |= w->events; 472 events |= w->events;
434 473
474#if EV_SELECT_IS_WINSOCKET
475 if (events)
476 {
477 unsigned long argp;
478 anfd->handle = _get_osfhandle (fd);
479 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
480 }
481#endif
482
435 anfd->reify = 0; 483 anfd->reify = 0;
436 484
437 method_modify (EV_A_ fd, anfd->events, events); 485 backend_modify (EV_A_ fd, anfd->events, events);
438 anfd->events = events; 486 anfd->events = events;
439 } 487 }
440 488
441 fdchangecnt = 0; 489 fdchangecnt = 0;
442} 490}
443 491
444static void 492void inline_size
445fd_change (EV_P_ int fd) 493fd_change (EV_P_ int fd)
446{ 494{
447 if (anfds [fd].reify) 495 if (expect_false (anfds [fd].reify))
448 return; 496 return;
449 497
450 anfds [fd].reify = 1; 498 anfds [fd].reify = 1;
451 499
452 ++fdchangecnt; 500 ++fdchangecnt;
453 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 501 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
454 fdchanges [fdchangecnt - 1] = fd; 502 fdchanges [fdchangecnt - 1] = fd;
455} 503}
456 504
457static void 505void inline_speed
458fd_kill (EV_P_ int fd) 506fd_kill (EV_P_ int fd)
459{ 507{
460 struct ev_io *w; 508 ev_io *w;
461 509
462 while ((w = (struct ev_io *)anfds [fd].head)) 510 while ((w = (ev_io *)anfds [fd].head))
463 { 511 {
464 ev_io_stop (EV_A_ w); 512 ev_io_stop (EV_A_ w);
465 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 513 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
466 } 514 }
467} 515}
468 516
469static int 517int inline_size
470fd_valid (int fd) 518fd_valid (int fd)
471{ 519{
472#ifdef WIN32 520#ifdef _WIN32
473 return !!win32_get_osfhandle (fd); 521 return _get_osfhandle (fd) != -1;
474#else 522#else
475 return fcntl (fd, F_GETFD) != -1; 523 return fcntl (fd, F_GETFD) != -1;
476#endif 524#endif
477} 525}
478 526
479/* called on EBADF to verify fds */ 527/* called on EBADF to verify fds */
480static void 528static void noinline
481fd_ebadf (EV_P) 529fd_ebadf (EV_P)
482{ 530{
483 int fd; 531 int fd;
484 532
485 for (fd = 0; fd < anfdmax; ++fd) 533 for (fd = 0; fd < anfdmax; ++fd)
487 if (!fd_valid (fd) == -1 && errno == EBADF) 535 if (!fd_valid (fd) == -1 && errno == EBADF)
488 fd_kill (EV_A_ fd); 536 fd_kill (EV_A_ fd);
489} 537}
490 538
491/* called on ENOMEM in select/poll to kill some fds and retry */ 539/* called on ENOMEM in select/poll to kill some fds and retry */
492static void 540static void noinline
493fd_enomem (EV_P) 541fd_enomem (EV_P)
494{ 542{
495 int fd; 543 int fd;
496 544
497 for (fd = anfdmax; fd--; ) 545 for (fd = anfdmax; fd--; )
500 fd_kill (EV_A_ fd); 548 fd_kill (EV_A_ fd);
501 return; 549 return;
502 } 550 }
503} 551}
504 552
505/* usually called after fork if method needs to re-arm all fds from scratch */ 553/* usually called after fork if backend needs to re-arm all fds from scratch */
506static void 554static void noinline
507fd_rearm_all (EV_P) 555fd_rearm_all (EV_P)
508{ 556{
509 int fd; 557 int fd;
510 558
511 /* this should be highly optimised to not do anything but set a flag */ 559 /* this should be highly optimised to not do anything but set a flag */
517 } 565 }
518} 566}
519 567
520/*****************************************************************************/ 568/*****************************************************************************/
521 569
522static void 570void inline_speed
523upheap (WT *heap, int k) 571upheap (WT *heap, int k)
524{ 572{
525 WT w = heap [k]; 573 WT w = heap [k];
526 574
527 while (k && heap [k >> 1]->at > w->at) 575 while (k && heap [k >> 1]->at > w->at)
534 heap [k] = w; 582 heap [k] = w;
535 ((W)heap [k])->active = k + 1; 583 ((W)heap [k])->active = k + 1;
536 584
537} 585}
538 586
539static void 587void inline_speed
540downheap (WT *heap, int N, int k) 588downheap (WT *heap, int N, int k)
541{ 589{
542 WT w = heap [k]; 590 WT w = heap [k];
543 591
544 while (k < (N >> 1)) 592 while (k < (N >> 1))
558 606
559 heap [k] = w; 607 heap [k] = w;
560 ((W)heap [k])->active = k + 1; 608 ((W)heap [k])->active = k + 1;
561} 609}
562 610
611void inline_size
612adjustheap (WT *heap, int N, int k)
613{
614 upheap (heap, k);
615 downheap (heap, N, k);
616}
617
563/*****************************************************************************/ 618/*****************************************************************************/
564 619
565typedef struct 620typedef struct
566{ 621{
567 WL head; 622 WL head;
571static ANSIG *signals; 626static ANSIG *signals;
572static int signalmax; 627static int signalmax;
573 628
574static int sigpipe [2]; 629static int sigpipe [2];
575static sig_atomic_t volatile gotsig; 630static sig_atomic_t volatile gotsig;
576static struct ev_io sigev; 631static ev_io sigev;
577 632
578static void 633void inline_size
579signals_init (ANSIG *base, int count) 634signals_init (ANSIG *base, int count)
580{ 635{
581 while (count--) 636 while (count--)
582 { 637 {
583 base->head = 0; 638 base->head = 0;
588} 643}
589 644
590static void 645static void
591sighandler (int signum) 646sighandler (int signum)
592{ 647{
593#if WIN32 648#if _WIN32
594 signal (signum, sighandler); 649 signal (signum, sighandler);
595#endif 650#endif
596 651
597 signals [signum - 1].gotsig = 1; 652 signals [signum - 1].gotsig = 1;
598 653
603 write (sigpipe [1], &signum, 1); 658 write (sigpipe [1], &signum, 1);
604 errno = old_errno; 659 errno = old_errno;
605 } 660 }
606} 661}
607 662
663void noinline
664ev_feed_signal_event (EV_P_ int signum)
665{
666 WL w;
667
668#if EV_MULTIPLICITY
669 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
670#endif
671
672 --signum;
673
674 if (signum < 0 || signum >= signalmax)
675 return;
676
677 signals [signum].gotsig = 0;
678
679 for (w = signals [signum].head; w; w = w->next)
680 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
681}
682
608static void 683static void
609sigcb (EV_P_ struct ev_io *iow, int revents) 684sigcb (EV_P_ ev_io *iow, int revents)
610{ 685{
611 WL w;
612 int signum; 686 int signum;
613 687
614 read (sigpipe [0], &revents, 1); 688 read (sigpipe [0], &revents, 1);
615 gotsig = 0; 689 gotsig = 0;
616 690
617 for (signum = signalmax; signum--; ) 691 for (signum = signalmax; signum--; )
618 if (signals [signum].gotsig) 692 if (signals [signum].gotsig)
619 { 693 ev_feed_signal_event (EV_A_ signum + 1);
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 event (EV_A_ (W)w, EV_SIGNAL);
624 }
625} 694}
626 695
627static void 696void inline_size
697fd_intern (int fd)
698{
699#ifdef _WIN32
700 int arg = 1;
701 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
702#else
703 fcntl (fd, F_SETFD, FD_CLOEXEC);
704 fcntl (fd, F_SETFL, O_NONBLOCK);
705#endif
706}
707
708static void noinline
628siginit (EV_P) 709siginit (EV_P)
629{ 710{
630#ifndef WIN32 711 fd_intern (sigpipe [0]);
631 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 712 fd_intern (sigpipe [1]);
632 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
633
634 /* rather than sort out wether we really need nb, set it */
635 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
636 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
637#endif
638 713
639 ev_io_set (&sigev, sigpipe [0], EV_READ); 714 ev_io_set (&sigev, sigpipe [0], EV_READ);
640 ev_io_start (EV_A_ &sigev); 715 ev_io_start (EV_A_ &sigev);
641 ev_unref (EV_A); /* child watcher should not keep loop alive */ 716 ev_unref (EV_A); /* child watcher should not keep loop alive */
642} 717}
643 718
644/*****************************************************************************/ 719/*****************************************************************************/
645 720
646static struct ev_child *childs [PID_HASHSIZE]; 721static ev_child *childs [EV_PID_HASHSIZE];
647 722
648#ifndef WIN32 723#ifndef _WIN32
649 724
650static struct ev_signal childev; 725static ev_signal childev;
651 726
652#ifndef WCONTINUED 727void inline_speed
653# define WCONTINUED 0
654#endif
655
656static void
657child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 728child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
658{ 729{
659 struct ev_child *w; 730 ev_child *w;
660 731
661 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 732 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
662 if (w->pid == pid || !w->pid) 733 if (w->pid == pid || !w->pid)
663 { 734 {
664 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 735 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
665 w->rpid = pid; 736 w->rpid = pid;
666 w->rstatus = status; 737 w->rstatus = status;
667 event (EV_A_ (W)w, EV_CHILD); 738 ev_feed_event (EV_A_ (W)w, EV_CHILD);
668 } 739 }
669} 740}
670 741
742#ifndef WCONTINUED
743# define WCONTINUED 0
744#endif
745
671static void 746static void
672childcb (EV_P_ struct ev_signal *sw, int revents) 747childcb (EV_P_ ev_signal *sw, int revents)
673{ 748{
674 int pid, status; 749 int pid, status;
675 750
751 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
676 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 752 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
677 { 753 if (!WCONTINUED
754 || errno != EINVAL
755 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
756 return;
757
678 /* make sure we are called again until all childs have been reaped */ 758 /* make sure we are called again until all childs have been reaped */
759 /* we need to do it this way so that the callback gets called before we continue */
679 event (EV_A_ (W)sw, EV_SIGNAL); 760 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
680 761
681 child_reap (EV_A_ sw, pid, pid, status); 762 child_reap (EV_A_ sw, pid, pid, status);
763 if (EV_PID_HASHSIZE > 1)
682 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 764 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
683 }
684} 765}
685 766
686#endif 767#endif
687 768
688/*****************************************************************************/ 769/*****************************************************************************/
689 770
771#if EV_USE_PORT
772# include "ev_port.c"
773#endif
690#if EV_USE_KQUEUE 774#if EV_USE_KQUEUE
691# include "ev_kqueue.c" 775# include "ev_kqueue.c"
692#endif 776#endif
693#if EV_USE_EPOLL 777#if EV_USE_EPOLL
694# include "ev_epoll.c" 778# include "ev_epoll.c"
711{ 795{
712 return EV_VERSION_MINOR; 796 return EV_VERSION_MINOR;
713} 797}
714 798
715/* return true if we are running with elevated privileges and should ignore env variables */ 799/* return true if we are running with elevated privileges and should ignore env variables */
716static int 800int inline_size
717enable_secure (void) 801enable_secure (void)
718{ 802{
719#ifdef WIN32 803#ifdef _WIN32
720 return 0; 804 return 0;
721#else 805#else
722 return getuid () != geteuid () 806 return getuid () != geteuid ()
723 || getgid () != getegid (); 807 || getgid () != getegid ();
724#endif 808#endif
725} 809}
726 810
727int 811unsigned int
728ev_method (EV_P) 812ev_supported_backends (void)
729{ 813{
730 return method; 814 unsigned int flags = 0;
815
816 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
817 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
818 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
819 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
820 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
821
822 return flags;
823}
824
825unsigned int
826ev_recommended_backends (void)
827{
828 unsigned int flags = ev_supported_backends ();
829
830#ifndef __NetBSD__
831 /* kqueue is borked on everything but netbsd apparently */
832 /* it usually doesn't work correctly on anything but sockets and pipes */
833 flags &= ~EVBACKEND_KQUEUE;
834#endif
835#ifdef __APPLE__
836 // flags &= ~EVBACKEND_KQUEUE; for documentation
837 flags &= ~EVBACKEND_POLL;
838#endif
839
840 return flags;
841}
842
843unsigned int
844ev_embeddable_backends (void)
845{
846 return EVBACKEND_EPOLL
847 | EVBACKEND_KQUEUE
848 | EVBACKEND_PORT;
849}
850
851unsigned int
852ev_backend (EV_P)
853{
854 return backend;
731} 855}
732 856
733static void 857static void
734loop_init (EV_P_ int methods) 858loop_init (EV_P_ unsigned int flags)
735{ 859{
736 if (!method) 860 if (!backend)
737 { 861 {
738#if EV_USE_MONOTONIC 862#if EV_USE_MONOTONIC
739 { 863 {
740 struct timespec ts; 864 struct timespec ts;
741 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 865 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
742 have_monotonic = 1; 866 have_monotonic = 1;
743 } 867 }
744#endif 868#endif
745 869
746 rt_now = ev_time (); 870 ev_rt_now = ev_time ();
747 mn_now = get_clock (); 871 mn_now = get_clock ();
748 now_floor = mn_now; 872 now_floor = mn_now;
749 rtmn_diff = rt_now - mn_now; 873 rtmn_diff = ev_rt_now - mn_now;
750 874
751 if (methods == EVMETHOD_AUTO) 875 if (!(flags & EVFLAG_NOENV)
752 if (!enable_secure () && getenv ("LIBEV_METHODS")) 876 && !enable_secure ()
877 && getenv ("LIBEV_FLAGS"))
753 methods = atoi (getenv ("LIBEV_METHODS")); 878 flags = atoi (getenv ("LIBEV_FLAGS"));
754 else
755 methods = EVMETHOD_ANY;
756 879
757 method = 0; 880 if (!(flags & 0x0000ffffUL))
758#if EV_USE_WIN32 881 flags |= ev_recommended_backends ();
759 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 882
883 backend = 0;
884#if EV_USE_PORT
885 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
760#endif 886#endif
761#if EV_USE_KQUEUE 887#if EV_USE_KQUEUE
762 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 888 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
763#endif 889#endif
764#if EV_USE_EPOLL 890#if EV_USE_EPOLL
765 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 891 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
766#endif 892#endif
767#if EV_USE_POLL 893#if EV_USE_POLL
768 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 894 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
769#endif 895#endif
770#if EV_USE_SELECT 896#if EV_USE_SELECT
771 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 897 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
772#endif 898#endif
773 899
774 ev_watcher_init (&sigev, sigcb); 900 ev_init (&sigev, sigcb);
775 ev_set_priority (&sigev, EV_MAXPRI); 901 ev_set_priority (&sigev, EV_MAXPRI);
776 } 902 }
777} 903}
778 904
779void 905static void
780loop_destroy (EV_P) 906loop_destroy (EV_P)
781{ 907{
782 int i; 908 int i;
783 909
784#if EV_USE_WIN32 910#if EV_USE_PORT
785 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 911 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
786#endif 912#endif
787#if EV_USE_KQUEUE 913#if EV_USE_KQUEUE
788 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 914 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
789#endif 915#endif
790#if EV_USE_EPOLL 916#if EV_USE_EPOLL
791 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 917 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
792#endif 918#endif
793#if EV_USE_POLL 919#if EV_USE_POLL
794 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 920 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
795#endif 921#endif
796#if EV_USE_SELECT 922#if EV_USE_SELECT
797 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 923 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
798#endif 924#endif
799 925
800 for (i = NUMPRI; i--; ) 926 for (i = NUMPRI; i--; )
801 array_free (pending, [i]); 927 array_free (pending, [i]);
802 928
803 /* have to use the microsoft-never-gets-it-right macro */ 929 /* have to use the microsoft-never-gets-it-right macro */
804 array_free_microshit (fdchange); 930 array_free (fdchange, EMPTY0);
805 array_free_microshit (timer); 931 array_free (timer, EMPTY0);
806 array_free_microshit (periodic); 932#if EV_PERIODIC_ENABLE
807 array_free_microshit (idle); 933 array_free (periodic, EMPTY0);
808 array_free_microshit (prepare); 934#endif
809 array_free_microshit (check); 935 array_free (idle, EMPTY0);
936 array_free (prepare, EMPTY0);
937 array_free (check, EMPTY0);
810 938
811 method = 0; 939 backend = 0;
812} 940}
813 941
814static void 942static void
815loop_fork (EV_P) 943loop_fork (EV_P)
816{ 944{
945#if EV_USE_PORT
946 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
947#endif
948#if EV_USE_KQUEUE
949 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
950#endif
817#if EV_USE_EPOLL 951#if EV_USE_EPOLL
818 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 952 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
819#endif
820#if EV_USE_KQUEUE
821 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
822#endif 953#endif
823 954
824 if (ev_is_active (&sigev)) 955 if (ev_is_active (&sigev))
825 { 956 {
826 /* default loop */ 957 /* default loop */
828 ev_ref (EV_A); 959 ev_ref (EV_A);
829 ev_io_stop (EV_A_ &sigev); 960 ev_io_stop (EV_A_ &sigev);
830 close (sigpipe [0]); 961 close (sigpipe [0]);
831 close (sigpipe [1]); 962 close (sigpipe [1]);
832 963
833 while (ev_pipe (sigpipe)) 964 while (pipe (sigpipe))
834 syserr ("(libev) error creating pipe"); 965 syserr ("(libev) error creating pipe");
835 966
836 siginit (EV_A); 967 siginit (EV_A);
837 } 968 }
838 969
839 postfork = 0; 970 postfork = 0;
840} 971}
841 972
842#if EV_MULTIPLICITY 973#if EV_MULTIPLICITY
843struct ev_loop * 974struct ev_loop *
844ev_loop_new (int methods) 975ev_loop_new (unsigned int flags)
845{ 976{
846 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 977 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
847 978
848 memset (loop, 0, sizeof (struct ev_loop)); 979 memset (loop, 0, sizeof (struct ev_loop));
849 980
850 loop_init (EV_A_ methods); 981 loop_init (EV_A_ flags);
851 982
852 if (ev_method (EV_A)) 983 if (ev_backend (EV_A))
853 return loop; 984 return loop;
854 985
855 return 0; 986 return 0;
856} 987}
857 988
869} 1000}
870 1001
871#endif 1002#endif
872 1003
873#if EV_MULTIPLICITY 1004#if EV_MULTIPLICITY
874struct ev_loop default_loop_struct;
875static struct ev_loop *default_loop;
876
877struct ev_loop * 1005struct ev_loop *
1006ev_default_loop_init (unsigned int flags)
878#else 1007#else
879static int default_loop;
880
881int 1008int
1009ev_default_loop (unsigned int flags)
882#endif 1010#endif
883ev_default_loop (int methods)
884{ 1011{
885 if (sigpipe [0] == sigpipe [1]) 1012 if (sigpipe [0] == sigpipe [1])
886 if (ev_pipe (sigpipe)) 1013 if (pipe (sigpipe))
887 return 0; 1014 return 0;
888 1015
889 if (!default_loop) 1016 if (!ev_default_loop_ptr)
890 { 1017 {
891#if EV_MULTIPLICITY 1018#if EV_MULTIPLICITY
892 struct ev_loop *loop = default_loop = &default_loop_struct; 1019 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
893#else 1020#else
894 default_loop = 1; 1021 ev_default_loop_ptr = 1;
895#endif 1022#endif
896 1023
897 loop_init (EV_A_ methods); 1024 loop_init (EV_A_ flags);
898 1025
899 if (ev_method (EV_A)) 1026 if (ev_backend (EV_A))
900 { 1027 {
901 siginit (EV_A); 1028 siginit (EV_A);
902 1029
903#ifndef WIN32 1030#ifndef _WIN32
904 ev_signal_init (&childev, childcb, SIGCHLD); 1031 ev_signal_init (&childev, childcb, SIGCHLD);
905 ev_set_priority (&childev, EV_MAXPRI); 1032 ev_set_priority (&childev, EV_MAXPRI);
906 ev_signal_start (EV_A_ &childev); 1033 ev_signal_start (EV_A_ &childev);
907 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1034 ev_unref (EV_A); /* child watcher should not keep loop alive */
908#endif 1035#endif
909 } 1036 }
910 else 1037 else
911 default_loop = 0; 1038 ev_default_loop_ptr = 0;
912 } 1039 }
913 1040
914 return default_loop; 1041 return ev_default_loop_ptr;
915} 1042}
916 1043
917void 1044void
918ev_default_destroy (void) 1045ev_default_destroy (void)
919{ 1046{
920#if EV_MULTIPLICITY 1047#if EV_MULTIPLICITY
921 struct ev_loop *loop = default_loop; 1048 struct ev_loop *loop = ev_default_loop_ptr;
922#endif 1049#endif
923 1050
924#ifndef WIN32 1051#ifndef _WIN32
925 ev_ref (EV_A); /* child watcher */ 1052 ev_ref (EV_A); /* child watcher */
926 ev_signal_stop (EV_A_ &childev); 1053 ev_signal_stop (EV_A_ &childev);
927#endif 1054#endif
928 1055
929 ev_ref (EV_A); /* signal watcher */ 1056 ev_ref (EV_A); /* signal watcher */
937 1064
938void 1065void
939ev_default_fork (void) 1066ev_default_fork (void)
940{ 1067{
941#if EV_MULTIPLICITY 1068#if EV_MULTIPLICITY
942 struct ev_loop *loop = default_loop; 1069 struct ev_loop *loop = ev_default_loop_ptr;
943#endif 1070#endif
944 1071
945 if (method) 1072 if (backend)
946 postfork = 1; 1073 postfork = 1;
947} 1074}
948 1075
949/*****************************************************************************/ 1076/*****************************************************************************/
950 1077
951static void 1078int inline_size
1079any_pending (EV_P)
1080{
1081 int pri;
1082
1083 for (pri = NUMPRI; pri--; )
1084 if (pendingcnt [pri])
1085 return 1;
1086
1087 return 0;
1088}
1089
1090void inline_speed
952call_pending (EV_P) 1091call_pending (EV_P)
953{ 1092{
954 int pri; 1093 int pri;
955 1094
956 for (pri = NUMPRI; pri--; ) 1095 for (pri = NUMPRI; pri--; )
957 while (pendingcnt [pri]) 1096 while (pendingcnt [pri])
958 { 1097 {
959 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1098 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
960 1099
961 if (p->w) 1100 if (expect_true (p->w))
962 { 1101 {
1102 assert (("non-pending watcher on pending list", p->w->pending));
1103
963 p->w->pending = 0; 1104 p->w->pending = 0;
964 p->w->cb (EV_A_ p->w, p->events); 1105 EV_CB_INVOKE (p->w, p->events);
965 } 1106 }
966 } 1107 }
967} 1108}
968 1109
969static void 1110void inline_size
970timers_reify (EV_P) 1111timers_reify (EV_P)
971{ 1112{
972 while (timercnt && ((WT)timers [0])->at <= mn_now) 1113 while (timercnt && ((WT)timers [0])->at <= mn_now)
973 { 1114 {
974 struct ev_timer *w = timers [0]; 1115 ev_timer *w = timers [0];
975 1116
976 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1117 assert (("inactive timer on timer heap detected", ev_is_active (w)));
977 1118
978 /* first reschedule or stop timer */ 1119 /* first reschedule or stop timer */
979 if (w->repeat) 1120 if (w->repeat)
980 { 1121 {
981 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1122 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1123
982 ((WT)w)->at = mn_now + w->repeat; 1124 ((WT)w)->at += w->repeat;
1125 if (((WT)w)->at < mn_now)
1126 ((WT)w)->at = mn_now;
1127
983 downheap ((WT *)timers, timercnt, 0); 1128 downheap ((WT *)timers, timercnt, 0);
984 } 1129 }
985 else 1130 else
986 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1131 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
987 1132
988 event (EV_A_ (W)w, EV_TIMEOUT); 1133 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
989 } 1134 }
990} 1135}
991 1136
992static void 1137#if EV_PERIODIC_ENABLE
1138void inline_size
993periodics_reify (EV_P) 1139periodics_reify (EV_P)
994{ 1140{
995 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1141 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
996 { 1142 {
997 struct ev_periodic *w = periodics [0]; 1143 ev_periodic *w = periodics [0];
998 1144
999 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1145 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1000 1146
1001 /* first reschedule or stop timer */ 1147 /* first reschedule or stop timer */
1002 if (w->interval) 1148 if (w->reschedule_cb)
1003 { 1149 {
1150 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1151 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1152 downheap ((WT *)periodics, periodiccnt, 0);
1153 }
1154 else if (w->interval)
1155 {
1004 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1156 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1005 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1157 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1006 downheap ((WT *)periodics, periodiccnt, 0); 1158 downheap ((WT *)periodics, periodiccnt, 0);
1007 } 1159 }
1008 else 1160 else
1009 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1161 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1010 1162
1011 event (EV_A_ (W)w, EV_PERIODIC); 1163 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1012 } 1164 }
1013} 1165}
1014 1166
1015static void 1167static void noinline
1016periodics_reschedule (EV_P) 1168periodics_reschedule (EV_P)
1017{ 1169{
1018 int i; 1170 int i;
1019 1171
1020 /* adjust periodics after time jump */ 1172 /* adjust periodics after time jump */
1021 for (i = 0; i < periodiccnt; ++i) 1173 for (i = 0; i < periodiccnt; ++i)
1022 { 1174 {
1023 struct ev_periodic *w = periodics [i]; 1175 ev_periodic *w = periodics [i];
1024 1176
1177 if (w->reschedule_cb)
1178 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1025 if (w->interval) 1179 else if (w->interval)
1026 {
1027 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1180 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1028
1029 if (fabs (diff) >= 1e-4)
1030 {
1031 ev_periodic_stop (EV_A_ w);
1032 ev_periodic_start (EV_A_ w);
1033
1034 i = 0; /* restart loop, inefficient, but time jumps should be rare */
1035 }
1036 }
1037 } 1181 }
1038}
1039 1182
1040inline int 1183 /* now rebuild the heap */
1184 for (i = periodiccnt >> 1; i--; )
1185 downheap ((WT *)periodics, periodiccnt, i);
1186}
1187#endif
1188
1189int inline_size
1041time_update_monotonic (EV_P) 1190time_update_monotonic (EV_P)
1042{ 1191{
1043 mn_now = get_clock (); 1192 mn_now = get_clock ();
1044 1193
1045 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1194 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1046 { 1195 {
1047 rt_now = rtmn_diff + mn_now; 1196 ev_rt_now = rtmn_diff + mn_now;
1048 return 0; 1197 return 0;
1049 } 1198 }
1050 else 1199 else
1051 { 1200 {
1052 now_floor = mn_now; 1201 now_floor = mn_now;
1053 rt_now = ev_time (); 1202 ev_rt_now = ev_time ();
1054 return 1; 1203 return 1;
1055 } 1204 }
1056} 1205}
1057 1206
1058static void 1207void inline_size
1059time_update (EV_P) 1208time_update (EV_P)
1060{ 1209{
1061 int i; 1210 int i;
1062 1211
1063#if EV_USE_MONOTONIC 1212#if EV_USE_MONOTONIC
1065 { 1214 {
1066 if (time_update_monotonic (EV_A)) 1215 if (time_update_monotonic (EV_A))
1067 { 1216 {
1068 ev_tstamp odiff = rtmn_diff; 1217 ev_tstamp odiff = rtmn_diff;
1069 1218
1070 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1219 /* loop a few times, before making important decisions.
1220 * on the choice of "4": one iteration isn't enough,
1221 * in case we get preempted during the calls to
1222 * ev_time and get_clock. a second call is almost guarenteed
1223 * to succeed in that case, though. and looping a few more times
1224 * doesn't hurt either as we only do this on time-jumps or
1225 * in the unlikely event of getting preempted here.
1226 */
1227 for (i = 4; --i; )
1071 { 1228 {
1072 rtmn_diff = rt_now - mn_now; 1229 rtmn_diff = ev_rt_now - mn_now;
1073 1230
1074 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1231 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1075 return; /* all is well */ 1232 return; /* all is well */
1076 1233
1077 rt_now = ev_time (); 1234 ev_rt_now = ev_time ();
1078 mn_now = get_clock (); 1235 mn_now = get_clock ();
1079 now_floor = mn_now; 1236 now_floor = mn_now;
1080 } 1237 }
1081 1238
1239# if EV_PERIODIC_ENABLE
1082 periodics_reschedule (EV_A); 1240 periodics_reschedule (EV_A);
1241# endif
1083 /* no timer adjustment, as the monotonic clock doesn't jump */ 1242 /* no timer adjustment, as the monotonic clock doesn't jump */
1084 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1243 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1085 } 1244 }
1086 } 1245 }
1087 else 1246 else
1088#endif 1247#endif
1089 { 1248 {
1090 rt_now = ev_time (); 1249 ev_rt_now = ev_time ();
1091 1250
1092 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1251 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1093 { 1252 {
1253#if EV_PERIODIC_ENABLE
1094 periodics_reschedule (EV_A); 1254 periodics_reschedule (EV_A);
1255#endif
1095 1256
1096 /* adjust timers. this is easy, as the offset is the same for all */ 1257 /* adjust timers. this is easy, as the offset is the same for all */
1097 for (i = 0; i < timercnt; ++i) 1258 for (i = 0; i < timercnt; ++i)
1098 ((WT)timers [i])->at += rt_now - mn_now; 1259 ((WT)timers [i])->at += ev_rt_now - mn_now;
1099 } 1260 }
1100 1261
1101 mn_now = rt_now; 1262 mn_now = ev_rt_now;
1102 } 1263 }
1103} 1264}
1104 1265
1105void 1266void
1106ev_ref (EV_P) 1267ev_ref (EV_P)
1117static int loop_done; 1278static int loop_done;
1118 1279
1119void 1280void
1120ev_loop (EV_P_ int flags) 1281ev_loop (EV_P_ int flags)
1121{ 1282{
1122 double block;
1123 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1283 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1284 ? EVUNLOOP_ONE
1285 : EVUNLOOP_CANCEL;
1124 1286
1125 do 1287 while (activecnt)
1126 { 1288 {
1289 /* we might have forked, so reify kernel state if necessary */
1290 #if EV_FORK_ENABLE
1291 if (expect_false (postfork))
1292 if (forkcnt)
1293 {
1294 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1295 call_pending (EV_A);
1296 }
1297 #endif
1298
1127 /* queue check watchers (and execute them) */ 1299 /* queue check watchers (and execute them) */
1128 if (expect_false (preparecnt)) 1300 if (expect_false (preparecnt))
1129 { 1301 {
1130 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1302 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1131 call_pending (EV_A); 1303 call_pending (EV_A);
1137 1309
1138 /* update fd-related kernel structures */ 1310 /* update fd-related kernel structures */
1139 fd_reify (EV_A); 1311 fd_reify (EV_A);
1140 1312
1141 /* calculate blocking time */ 1313 /* calculate blocking time */
1314 {
1315 double block;
1142 1316
1143 /* we only need this for !monotonic clockor timers, but as we basically 1317 if (flags & EVLOOP_NONBLOCK || idlecnt)
1144 always have timers, we just calculate it always */ 1318 block = 0.; /* do not block at all */
1319 else
1320 {
1321 /* update time to cancel out callback processing overhead */
1145#if EV_USE_MONOTONIC 1322#if EV_USE_MONOTONIC
1146 if (expect_true (have_monotonic)) 1323 if (expect_true (have_monotonic))
1147 time_update_monotonic (EV_A); 1324 time_update_monotonic (EV_A);
1148 else 1325 else
1149#endif 1326#endif
1150 { 1327 {
1151 rt_now = ev_time (); 1328 ev_rt_now = ev_time ();
1152 mn_now = rt_now; 1329 mn_now = ev_rt_now;
1153 } 1330 }
1154 1331
1155 if (flags & EVLOOP_NONBLOCK || idlecnt)
1156 block = 0.;
1157 else
1158 {
1159 block = MAX_BLOCKTIME; 1332 block = MAX_BLOCKTIME;
1160 1333
1161 if (timercnt) 1334 if (timercnt)
1162 { 1335 {
1163 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1336 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1164 if (block > to) block = to; 1337 if (block > to) block = to;
1165 } 1338 }
1166 1339
1340#if EV_PERIODIC_ENABLE
1167 if (periodiccnt) 1341 if (periodiccnt)
1168 { 1342 {
1169 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1343 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1170 if (block > to) block = to; 1344 if (block > to) block = to;
1171 } 1345 }
1346#endif
1172 1347
1173 if (block < 0.) block = 0.; 1348 if (expect_false (block < 0.)) block = 0.;
1174 } 1349 }
1175 1350
1176 method_poll (EV_A_ block); 1351 backend_poll (EV_A_ block);
1352 }
1177 1353
1178 /* update rt_now, do magic */ 1354 /* update ev_rt_now, do magic */
1179 time_update (EV_A); 1355 time_update (EV_A);
1180 1356
1181 /* queue pending timers and reschedule them */ 1357 /* queue pending timers and reschedule them */
1182 timers_reify (EV_A); /* relative timers called last */ 1358 timers_reify (EV_A); /* relative timers called last */
1359#if EV_PERIODIC_ENABLE
1183 periodics_reify (EV_A); /* absolute timers called first */ 1360 periodics_reify (EV_A); /* absolute timers called first */
1361#endif
1184 1362
1185 /* queue idle watchers unless io or timers are pending */ 1363 /* queue idle watchers unless other events are pending */
1186 if (!pendingcnt) 1364 if (idlecnt && !any_pending (EV_A))
1187 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1365 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1188 1366
1189 /* queue check watchers, to be executed first */ 1367 /* queue check watchers, to be executed first */
1190 if (checkcnt) 1368 if (expect_false (checkcnt))
1191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1369 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1192 1370
1193 call_pending (EV_A); 1371 call_pending (EV_A);
1194 }
1195 while (activecnt && !loop_done);
1196 1372
1197 if (loop_done != 2) 1373 if (expect_false (loop_done))
1198 loop_done = 0; 1374 break;
1375 }
1376
1377 if (loop_done == EVUNLOOP_ONE)
1378 loop_done = EVUNLOOP_CANCEL;
1199} 1379}
1200 1380
1201void 1381void
1202ev_unloop (EV_P_ int how) 1382ev_unloop (EV_P_ int how)
1203{ 1383{
1204 loop_done = how; 1384 loop_done = how;
1205} 1385}
1206 1386
1207/*****************************************************************************/ 1387/*****************************************************************************/
1208 1388
1209inline void 1389void inline_size
1210wlist_add (WL *head, WL elem) 1390wlist_add (WL *head, WL elem)
1211{ 1391{
1212 elem->next = *head; 1392 elem->next = *head;
1213 *head = elem; 1393 *head = elem;
1214} 1394}
1215 1395
1216inline void 1396void inline_size
1217wlist_del (WL *head, WL elem) 1397wlist_del (WL *head, WL elem)
1218{ 1398{
1219 while (*head) 1399 while (*head)
1220 { 1400 {
1221 if (*head == elem) 1401 if (*head == elem)
1226 1406
1227 head = &(*head)->next; 1407 head = &(*head)->next;
1228 } 1408 }
1229} 1409}
1230 1410
1231inline void 1411void inline_speed
1232ev_clear_pending (EV_P_ W w) 1412ev_clear_pending (EV_P_ W w)
1233{ 1413{
1234 if (w->pending) 1414 if (w->pending)
1235 { 1415 {
1236 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1416 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1237 w->pending = 0; 1417 w->pending = 0;
1238 } 1418 }
1239} 1419}
1240 1420
1241inline void 1421void inline_speed
1242ev_start (EV_P_ W w, int active) 1422ev_start (EV_P_ W w, int active)
1243{ 1423{
1244 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1424 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1245 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1425 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1246 1426
1247 w->active = active; 1427 w->active = active;
1248 ev_ref (EV_A); 1428 ev_ref (EV_A);
1249} 1429}
1250 1430
1251inline void 1431void inline_size
1252ev_stop (EV_P_ W w) 1432ev_stop (EV_P_ W w)
1253{ 1433{
1254 ev_unref (EV_A); 1434 ev_unref (EV_A);
1255 w->active = 0; 1435 w->active = 0;
1256} 1436}
1257 1437
1258/*****************************************************************************/ 1438/*****************************************************************************/
1259 1439
1260void 1440void
1261ev_io_start (EV_P_ struct ev_io *w) 1441ev_io_start (EV_P_ ev_io *w)
1262{ 1442{
1263 int fd = w->fd; 1443 int fd = w->fd;
1264 1444
1265 if (ev_is_active (w)) 1445 if (expect_false (ev_is_active (w)))
1266 return; 1446 return;
1267 1447
1268 assert (("ev_io_start called with negative fd", fd >= 0)); 1448 assert (("ev_io_start called with negative fd", fd >= 0));
1269 1449
1270 ev_start (EV_A_ (W)w, 1); 1450 ev_start (EV_A_ (W)w, 1);
1271 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1451 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1272 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1452 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1273 1453
1274 fd_change (EV_A_ fd); 1454 fd_change (EV_A_ fd);
1275} 1455}
1276 1456
1277void 1457void
1278ev_io_stop (EV_P_ struct ev_io *w) 1458ev_io_stop (EV_P_ ev_io *w)
1279{ 1459{
1280 ev_clear_pending (EV_A_ (W)w); 1460 ev_clear_pending (EV_A_ (W)w);
1281 if (!ev_is_active (w)) 1461 if (expect_false (!ev_is_active (w)))
1282 return; 1462 return;
1463
1464 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1283 1465
1284 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1466 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1285 ev_stop (EV_A_ (W)w); 1467 ev_stop (EV_A_ (W)w);
1286 1468
1287 fd_change (EV_A_ w->fd); 1469 fd_change (EV_A_ w->fd);
1288} 1470}
1289 1471
1290void 1472void
1291ev_timer_start (EV_P_ struct ev_timer *w) 1473ev_timer_start (EV_P_ ev_timer *w)
1292{ 1474{
1293 if (ev_is_active (w)) 1475 if (expect_false (ev_is_active (w)))
1294 return; 1476 return;
1295 1477
1296 ((WT)w)->at += mn_now; 1478 ((WT)w)->at += mn_now;
1297 1479
1298 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1480 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1299 1481
1300 ev_start (EV_A_ (W)w, ++timercnt); 1482 ev_start (EV_A_ (W)w, ++timercnt);
1301 array_needsize (timers, timermax, timercnt, (void)); 1483 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1302 timers [timercnt - 1] = w; 1484 timers [timercnt - 1] = w;
1303 upheap ((WT *)timers, timercnt - 1); 1485 upheap ((WT *)timers, timercnt - 1);
1304 1486
1305 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1487 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1306} 1488}
1307 1489
1308void 1490void
1309ev_timer_stop (EV_P_ struct ev_timer *w) 1491ev_timer_stop (EV_P_ ev_timer *w)
1310{ 1492{
1311 ev_clear_pending (EV_A_ (W)w); 1493 ev_clear_pending (EV_A_ (W)w);
1312 if (!ev_is_active (w)) 1494 if (expect_false (!ev_is_active (w)))
1313 return; 1495 return;
1314 1496
1315 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1497 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1316 1498
1317 if (((W)w)->active < timercnt--) 1499 if (expect_true (((W)w)->active < timercnt--))
1318 { 1500 {
1319 timers [((W)w)->active - 1] = timers [timercnt]; 1501 timers [((W)w)->active - 1] = timers [timercnt];
1320 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1502 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1321 } 1503 }
1322 1504
1323 ((WT)w)->at = w->repeat; 1505 ((WT)w)->at -= mn_now;
1324 1506
1325 ev_stop (EV_A_ (W)w); 1507 ev_stop (EV_A_ (W)w);
1326} 1508}
1327 1509
1328void 1510void
1329ev_timer_again (EV_P_ struct ev_timer *w) 1511ev_timer_again (EV_P_ ev_timer *w)
1330{ 1512{
1331 if (ev_is_active (w)) 1513 if (ev_is_active (w))
1332 { 1514 {
1333 if (w->repeat) 1515 if (w->repeat)
1334 { 1516 {
1335 ((WT)w)->at = mn_now + w->repeat; 1517 ((WT)w)->at = mn_now + w->repeat;
1336 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1518 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1337 } 1519 }
1338 else 1520 else
1339 ev_timer_stop (EV_A_ w); 1521 ev_timer_stop (EV_A_ w);
1340 } 1522 }
1341 else if (w->repeat) 1523 else if (w->repeat)
1524 {
1525 w->at = w->repeat;
1342 ev_timer_start (EV_A_ w); 1526 ev_timer_start (EV_A_ w);
1527 }
1343} 1528}
1344 1529
1530#if EV_PERIODIC_ENABLE
1345void 1531void
1346ev_periodic_start (EV_P_ struct ev_periodic *w) 1532ev_periodic_start (EV_P_ ev_periodic *w)
1347{ 1533{
1348 if (ev_is_active (w)) 1534 if (expect_false (ev_is_active (w)))
1349 return; 1535 return;
1350 1536
1537 if (w->reschedule_cb)
1538 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1539 else if (w->interval)
1540 {
1351 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1541 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1352
1353 /* this formula differs from the one in periodic_reify because we do not always round up */ 1542 /* this formula differs from the one in periodic_reify because we do not always round up */
1354 if (w->interval)
1355 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1543 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1544 }
1356 1545
1357 ev_start (EV_A_ (W)w, ++periodiccnt); 1546 ev_start (EV_A_ (W)w, ++periodiccnt);
1358 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1547 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1359 periodics [periodiccnt - 1] = w; 1548 periodics [periodiccnt - 1] = w;
1360 upheap ((WT *)periodics, periodiccnt - 1); 1549 upheap ((WT *)periodics, periodiccnt - 1);
1361 1550
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1551 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1363} 1552}
1364 1553
1365void 1554void
1366ev_periodic_stop (EV_P_ struct ev_periodic *w) 1555ev_periodic_stop (EV_P_ ev_periodic *w)
1367{ 1556{
1368 ev_clear_pending (EV_A_ (W)w); 1557 ev_clear_pending (EV_A_ (W)w);
1369 if (!ev_is_active (w)) 1558 if (expect_false (!ev_is_active (w)))
1370 return; 1559 return;
1371 1560
1372 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1561 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1373 1562
1374 if (((W)w)->active < periodiccnt--) 1563 if (expect_true (((W)w)->active < periodiccnt--))
1375 { 1564 {
1376 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1565 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1377 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1566 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1378 } 1567 }
1379 1568
1380 ev_stop (EV_A_ (W)w); 1569 ev_stop (EV_A_ (W)w);
1381} 1570}
1382 1571
1383void 1572void
1384ev_idle_start (EV_P_ struct ev_idle *w) 1573ev_periodic_again (EV_P_ ev_periodic *w)
1385{ 1574{
1386 if (ev_is_active (w)) 1575 /* TODO: use adjustheap and recalculation */
1387 return;
1388
1389 ev_start (EV_A_ (W)w, ++idlecnt);
1390 array_needsize (idles, idlemax, idlecnt, (void));
1391 idles [idlecnt - 1] = w;
1392}
1393
1394void
1395ev_idle_stop (EV_P_ struct ev_idle *w)
1396{
1397 ev_clear_pending (EV_A_ (W)w);
1398 if (ev_is_active (w))
1399 return;
1400
1401 idles [((W)w)->active - 1] = idles [--idlecnt];
1402 ev_stop (EV_A_ (W)w); 1576 ev_periodic_stop (EV_A_ w);
1577 ev_periodic_start (EV_A_ w);
1403} 1578}
1404 1579#endif
1405void
1406ev_prepare_start (EV_P_ struct ev_prepare *w)
1407{
1408 if (ev_is_active (w))
1409 return;
1410
1411 ev_start (EV_A_ (W)w, ++preparecnt);
1412 array_needsize (prepares, preparemax, preparecnt, (void));
1413 prepares [preparecnt - 1] = w;
1414}
1415
1416void
1417ev_prepare_stop (EV_P_ struct ev_prepare *w)
1418{
1419 ev_clear_pending (EV_A_ (W)w);
1420 if (ev_is_active (w))
1421 return;
1422
1423 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1424 ev_stop (EV_A_ (W)w);
1425}
1426
1427void
1428ev_check_start (EV_P_ struct ev_check *w)
1429{
1430 if (ev_is_active (w))
1431 return;
1432
1433 ev_start (EV_A_ (W)w, ++checkcnt);
1434 array_needsize (checks, checkmax, checkcnt, (void));
1435 checks [checkcnt - 1] = w;
1436}
1437
1438void
1439ev_check_stop (EV_P_ struct ev_check *w)
1440{
1441 ev_clear_pending (EV_A_ (W)w);
1442 if (ev_is_active (w))
1443 return;
1444
1445 checks [((W)w)->active - 1] = checks [--checkcnt];
1446 ev_stop (EV_A_ (W)w);
1447}
1448 1580
1449#ifndef SA_RESTART 1581#ifndef SA_RESTART
1450# define SA_RESTART 0 1582# define SA_RESTART 0
1451#endif 1583#endif
1452 1584
1453void 1585void
1454ev_signal_start (EV_P_ struct ev_signal *w) 1586ev_signal_start (EV_P_ ev_signal *w)
1455{ 1587{
1456#if EV_MULTIPLICITY 1588#if EV_MULTIPLICITY
1457 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1589 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1458#endif 1590#endif
1459 if (ev_is_active (w)) 1591 if (expect_false (ev_is_active (w)))
1460 return; 1592 return;
1461 1593
1462 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1594 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1463 1595
1464 ev_start (EV_A_ (W)w, 1); 1596 ev_start (EV_A_ (W)w, 1);
1465 array_needsize (signals, signalmax, w->signum, signals_init); 1597 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1466 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1598 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1467 1599
1468 if (!((WL)w)->next) 1600 if (!((WL)w)->next)
1469 { 1601 {
1470#if WIN32 1602#if _WIN32
1471 signal (w->signum, sighandler); 1603 signal (w->signum, sighandler);
1472#else 1604#else
1473 struct sigaction sa; 1605 struct sigaction sa;
1474 sa.sa_handler = sighandler; 1606 sa.sa_handler = sighandler;
1475 sigfillset (&sa.sa_mask); 1607 sigfillset (&sa.sa_mask);
1478#endif 1610#endif
1479 } 1611 }
1480} 1612}
1481 1613
1482void 1614void
1483ev_signal_stop (EV_P_ struct ev_signal *w) 1615ev_signal_stop (EV_P_ ev_signal *w)
1484{ 1616{
1485 ev_clear_pending (EV_A_ (W)w); 1617 ev_clear_pending (EV_A_ (W)w);
1486 if (!ev_is_active (w)) 1618 if (expect_false (!ev_is_active (w)))
1487 return; 1619 return;
1488 1620
1489 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1621 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1490 ev_stop (EV_A_ (W)w); 1622 ev_stop (EV_A_ (W)w);
1491 1623
1492 if (!signals [w->signum - 1].head) 1624 if (!signals [w->signum - 1].head)
1493 signal (w->signum, SIG_DFL); 1625 signal (w->signum, SIG_DFL);
1494} 1626}
1495 1627
1496void 1628void
1497ev_child_start (EV_P_ struct ev_child *w) 1629ev_child_start (EV_P_ ev_child *w)
1498{ 1630{
1499#if EV_MULTIPLICITY 1631#if EV_MULTIPLICITY
1500 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1632 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1501#endif 1633#endif
1502 if (ev_is_active (w)) 1634 if (expect_false (ev_is_active (w)))
1503 return; 1635 return;
1504 1636
1505 ev_start (EV_A_ (W)w, 1); 1637 ev_start (EV_A_ (W)w, 1);
1506 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1638 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1507} 1639}
1508 1640
1509void 1641void
1510ev_child_stop (EV_P_ struct ev_child *w) 1642ev_child_stop (EV_P_ ev_child *w)
1511{ 1643{
1512 ev_clear_pending (EV_A_ (W)w); 1644 ev_clear_pending (EV_A_ (W)w);
1513 if (ev_is_active (w)) 1645 if (expect_false (!ev_is_active (w)))
1514 return; 1646 return;
1515 1647
1516 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1648 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1517 ev_stop (EV_A_ (W)w); 1649 ev_stop (EV_A_ (W)w);
1518} 1650}
1519 1651
1652#if EV_STAT_ENABLE
1653
1654# ifdef _WIN32
1655# undef lstat
1656# define lstat(a,b) _stati64 (a,b)
1657# endif
1658
1659#define DEF_STAT_INTERVAL 5.0074891
1660#define MIN_STAT_INTERVAL 0.1074891
1661
1662void
1663ev_stat_stat (EV_P_ ev_stat *w)
1664{
1665 if (lstat (w->path, &w->attr) < 0)
1666 w->attr.st_nlink = 0;
1667 else if (!w->attr.st_nlink)
1668 w->attr.st_nlink = 1;
1669}
1670
1671static void
1672stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1673{
1674 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1675
1676 /* we copy this here each the time so that */
1677 /* prev has the old value when the callback gets invoked */
1678 w->prev = w->attr;
1679 ev_stat_stat (EV_A_ w);
1680
1681 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1682 ev_feed_event (EV_A_ w, EV_STAT);
1683}
1684
1685void
1686ev_stat_start (EV_P_ ev_stat *w)
1687{
1688 if (expect_false (ev_is_active (w)))
1689 return;
1690
1691 /* since we use memcmp, we need to clear any padding data etc. */
1692 memset (&w->prev, 0, sizeof (ev_statdata));
1693 memset (&w->attr, 0, sizeof (ev_statdata));
1694
1695 ev_stat_stat (EV_A_ w);
1696
1697 if (w->interval < MIN_STAT_INTERVAL)
1698 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1699
1700 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1701 ev_set_priority (&w->timer, ev_priority (w));
1702 ev_timer_start (EV_A_ &w->timer);
1703
1704 ev_start (EV_A_ (W)w, 1);
1705}
1706
1707void
1708ev_stat_stop (EV_P_ ev_stat *w)
1709{
1710 ev_clear_pending (EV_A_ (W)w);
1711 if (expect_false (!ev_is_active (w)))
1712 return;
1713
1714 ev_timer_stop (EV_A_ &w->timer);
1715
1716 ev_stop (EV_A_ (W)w);
1717}
1718#endif
1719
1720void
1721ev_idle_start (EV_P_ ev_idle *w)
1722{
1723 if (expect_false (ev_is_active (w)))
1724 return;
1725
1726 ev_start (EV_A_ (W)w, ++idlecnt);
1727 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1728 idles [idlecnt - 1] = w;
1729}
1730
1731void
1732ev_idle_stop (EV_P_ ev_idle *w)
1733{
1734 ev_clear_pending (EV_A_ (W)w);
1735 if (expect_false (!ev_is_active (w)))
1736 return;
1737
1738 {
1739 int active = ((W)w)->active;
1740 idles [active - 1] = idles [--idlecnt];
1741 ((W)idles [active - 1])->active = active;
1742 }
1743
1744 ev_stop (EV_A_ (W)w);
1745}
1746
1747void
1748ev_prepare_start (EV_P_ ev_prepare *w)
1749{
1750 if (expect_false (ev_is_active (w)))
1751 return;
1752
1753 ev_start (EV_A_ (W)w, ++preparecnt);
1754 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1755 prepares [preparecnt - 1] = w;
1756}
1757
1758void
1759ev_prepare_stop (EV_P_ ev_prepare *w)
1760{
1761 ev_clear_pending (EV_A_ (W)w);
1762 if (expect_false (!ev_is_active (w)))
1763 return;
1764
1765 {
1766 int active = ((W)w)->active;
1767 prepares [active - 1] = prepares [--preparecnt];
1768 ((W)prepares [active - 1])->active = active;
1769 }
1770
1771 ev_stop (EV_A_ (W)w);
1772}
1773
1774void
1775ev_check_start (EV_P_ ev_check *w)
1776{
1777 if (expect_false (ev_is_active (w)))
1778 return;
1779
1780 ev_start (EV_A_ (W)w, ++checkcnt);
1781 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1782 checks [checkcnt - 1] = w;
1783}
1784
1785void
1786ev_check_stop (EV_P_ ev_check *w)
1787{
1788 ev_clear_pending (EV_A_ (W)w);
1789 if (expect_false (!ev_is_active (w)))
1790 return;
1791
1792 {
1793 int active = ((W)w)->active;
1794 checks [active - 1] = checks [--checkcnt];
1795 ((W)checks [active - 1])->active = active;
1796 }
1797
1798 ev_stop (EV_A_ (W)w);
1799}
1800
1801#if EV_EMBED_ENABLE
1802void noinline
1803ev_embed_sweep (EV_P_ ev_embed *w)
1804{
1805 ev_loop (w->loop, EVLOOP_NONBLOCK);
1806}
1807
1808static void
1809embed_cb (EV_P_ ev_io *io, int revents)
1810{
1811 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1812
1813 if (ev_cb (w))
1814 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1815 else
1816 ev_embed_sweep (loop, w);
1817}
1818
1819void
1820ev_embed_start (EV_P_ ev_embed *w)
1821{
1822 if (expect_false (ev_is_active (w)))
1823 return;
1824
1825 {
1826 struct ev_loop *loop = w->loop;
1827 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1828 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1829 }
1830
1831 ev_set_priority (&w->io, ev_priority (w));
1832 ev_io_start (EV_A_ &w->io);
1833
1834 ev_start (EV_A_ (W)w, 1);
1835}
1836
1837void
1838ev_embed_stop (EV_P_ ev_embed *w)
1839{
1840 ev_clear_pending (EV_A_ (W)w);
1841 if (expect_false (!ev_is_active (w)))
1842 return;
1843
1844 ev_io_stop (EV_A_ &w->io);
1845
1846 ev_stop (EV_A_ (W)w);
1847}
1848#endif
1849
1850#if EV_FORK_ENABLE
1851void
1852ev_fork_start (EV_P_ ev_fork *w)
1853{
1854 if (expect_false (ev_is_active (w)))
1855 return;
1856
1857 ev_start (EV_A_ (W)w, ++forkcnt);
1858 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
1859 forks [forkcnt - 1] = w;
1860}
1861
1862void
1863ev_fork_stop (EV_P_ ev_fork *w)
1864{
1865 ev_clear_pending (EV_A_ (W)w);
1866 if (expect_false (!ev_is_active (w)))
1867 return;
1868
1869 {
1870 int active = ((W)w)->active;
1871 forks [active - 1] = forks [--forkcnt];
1872 ((W)forks [active - 1])->active = active;
1873 }
1874
1875 ev_stop (EV_A_ (W)w);
1876}
1877#endif
1878
1520/*****************************************************************************/ 1879/*****************************************************************************/
1521 1880
1522struct ev_once 1881struct ev_once
1523{ 1882{
1524 struct ev_io io; 1883 ev_io io;
1525 struct ev_timer to; 1884 ev_timer to;
1526 void (*cb)(int revents, void *arg); 1885 void (*cb)(int revents, void *arg);
1527 void *arg; 1886 void *arg;
1528}; 1887};
1529 1888
1530static void 1889static void
1539 1898
1540 cb (revents, arg); 1899 cb (revents, arg);
1541} 1900}
1542 1901
1543static void 1902static void
1544once_cb_io (EV_P_ struct ev_io *w, int revents) 1903once_cb_io (EV_P_ ev_io *w, int revents)
1545{ 1904{
1546 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1905 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1547} 1906}
1548 1907
1549static void 1908static void
1550once_cb_to (EV_P_ struct ev_timer *w, int revents) 1909once_cb_to (EV_P_ ev_timer *w, int revents)
1551{ 1910{
1552 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1911 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1553} 1912}
1554 1913
1555void 1914void
1556ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1915ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1557{ 1916{
1558 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1917 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1559 1918
1560 if (!once) 1919 if (expect_false (!once))
1920 {
1561 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1921 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1562 else 1922 return;
1563 { 1923 }
1924
1564 once->cb = cb; 1925 once->cb = cb;
1565 once->arg = arg; 1926 once->arg = arg;
1566 1927
1567 ev_watcher_init (&once->io, once_cb_io); 1928 ev_init (&once->io, once_cb_io);
1568 if (fd >= 0) 1929 if (fd >= 0)
1569 { 1930 {
1570 ev_io_set (&once->io, fd, events); 1931 ev_io_set (&once->io, fd, events);
1571 ev_io_start (EV_A_ &once->io); 1932 ev_io_start (EV_A_ &once->io);
1572 } 1933 }
1573 1934
1574 ev_watcher_init (&once->to, once_cb_to); 1935 ev_init (&once->to, once_cb_to);
1575 if (timeout >= 0.) 1936 if (timeout >= 0.)
1576 { 1937 {
1577 ev_timer_set (&once->to, timeout, 0.); 1938 ev_timer_set (&once->to, timeout, 0.);
1578 ev_timer_start (EV_A_ &once->to); 1939 ev_timer_start (EV_A_ &once->to);
1579 }
1580 } 1940 }
1581} 1941}
1582 1942
1943#ifdef __cplusplus
1944}
1945#endif
1946

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines