ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.72 by root, Tue Nov 6 16:09:37 2007 UTC vs.
Revision 1.358 by root, Sun Oct 24 14:44:40 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
33 61
34# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
63# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
65# endif
66# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
68# endif
69# else
70# ifndef EV_USE_MONOTONIC
71# define EV_USE_MONOTONIC 0
72# endif
73# ifndef EV_USE_REALTIME
74# define EV_USE_REALTIME 0
75# endif
37# endif 76# endif
38 77
78# if HAVE_NANOSLEEP
79# ifndef EV_USE_NANOSLEEP
80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
85# endif
86
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
90# endif
91# else
92# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 93# define EV_USE_SELECT 0
41# endif 94# endif
42 95
43# if HAVE_POLL && HAVE_POLL_H 96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
44# define EV_USE_POLL 1 102# define EV_USE_POLL 0
45# endif 103# endif
46 104
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# ifndef EV_USE_EPOLL
107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# endif
109# else
110# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 111# define EV_USE_EPOLL 0
49# endif 112# endif
50 113
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
115# ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117# endif
118# else
119# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 120# define EV_USE_KQUEUE 0
53# endif 121# endif
122
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# ifndef EV_USE_PORT
125# define EV_USE_PORT EV_FEATURE_BACKENDS
126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
130# endif
54 131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
55#endif 159#endif
56 160
57#include <math.h> 161#include <math.h>
58#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
59#include <fcntl.h> 164#include <fcntl.h>
60#include <stddef.h> 165#include <stddef.h>
61 166
62#include <stdio.h> 167#include <stdio.h>
63 168
64#include <assert.h> 169#include <assert.h>
65#include <errno.h> 170#include <errno.h>
66#include <sys/types.h> 171#include <sys/types.h>
67#include <time.h> 172#include <time.h>
173#include <limits.h>
68 174
69#include <signal.h> 175#include <signal.h>
70 176
177#ifdef EV_H
178# include EV_H
179#else
180# include "ev.h"
181#endif
182
183EV_CPP(extern "C" {)
184
71#ifndef WIN32 185#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 186# include <sys/time.h>
74# include <sys/wait.h> 187# include <sys/wait.h>
188# include <unistd.h>
189#else
190# include <io.h>
191# define WIN32_LEAN_AND_MEAN
192# include <windows.h>
193# ifndef EV_SELECT_IS_WINSOCKET
194# define EV_SELECT_IS_WINSOCKET 1
75#endif 195# endif
76/**/ 196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
77 244
78#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
79# define EV_USE_MONOTONIC 1 249# define EV_USE_MONOTONIC 0
250# endif
251#endif
252
253#ifndef EV_USE_REALTIME
254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
80#endif 263#endif
81 264
82#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
84#endif 267#endif
85 268
86#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 270# ifdef _WIN32
271# define EV_USE_POLL 0
272# else
273# define EV_USE_POLL EV_FEATURE_BACKENDS
274# endif
88#endif 275#endif
89 276
90#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
91# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
92#endif 283#endif
93 284
94#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
96#endif 287#endif
97 288
289#ifndef EV_USE_PORT
290# define EV_USE_PORT 0
291#endif
292
98#ifndef EV_USE_WIN32 293#ifndef EV_USE_INOTIFY
99# ifdef WIN32 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */ 295# define EV_USE_INOTIFY EV_FEATURE_OS
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else 296# else
104# define EV_USE_WIN32 0 297# define EV_USE_INOTIFY 0
105# endif 298# endif
106#endif 299#endif
107 300
301#ifndef EV_PID_HASHSIZE
302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
108#ifndef EV_USE_REALTIME 309#ifndef EV_USE_EVENTFD
109# define EV_USE_REALTIME 1 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
110#endif 314# endif
315#endif
111 316
112/**/ 317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
113 364
114#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
117#endif 368#endif
119#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
122#endif 373#endif
123 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
396#if EV_SELECT_IS_WINSOCKET
397# include <winsock.h>
398#endif
399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
124/**/ 438/**/
125 439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
455
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 458
131#include "ev.h" 459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
132 461
133#if __GNUC__ >= 3 462#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 464# define noinline __attribute__ ((noinline))
136#else 465#else
137# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
138# define inline static 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
139#endif 471#endif
140 472
141#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
143 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
146 490
491#define EMPTY /* required for microsofts broken pseudo-c compiler */
492#define EMPTY2(a,b) /* used to suppress some warnings */
493
147typedef struct ev_watcher *W; 494typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
150 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
152 510
153#if WIN32 511#ifndef EV_FD_TO_WIN32_HANDLE
154/* note: the comment below could not be substantiated, but what would I care */ 512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
155/* MSDN says this is required to handle SIGFPE */ 513#endif
156volatile double SIGFPE_REQ = 0.0f; 514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
157 520
158static int 521#ifdef _WIN32
159ev_socketpair_tcp (int filedes [2]) 522# include "ev_win32.c"
160{ 523#endif
161 struct sockaddr_in addr = { 0 };
162 int addr_size = sizeof (addr);
163 SOCKET listener;
164 SOCKET sock [2] = { -1, -1 };
165 524
166 if ((listener = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET) 525/*****************************************************************************/
526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 struct utsname buf;
536 unsigned int v;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
167 return -1; 541 return 0;
168 542
169 addr.sin_family = AF_INET; 543 for (i = 3+1; --i; )
170 addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK); 544 {
171 addr.sin_port = 0; 545 unsigned int c = 0;
172 546
173 if (bind (listener, (struct sockaddr *)&addr, addr_size)) 547 for (;;)
174 goto fail; 548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
175 557
176 if (getsockname(listener, (struct sockaddr *)&addr, &addr_size)) 558 v = (v << 8) | c;
177 goto fail; 559 }
178 560
179 if (listen (listener, 1)) 561 return v;
180 goto fail; 562#else
181
182 if ((sock [0] = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
183 goto fail;
184
185 if (connect (sock[0], (struct sockaddr *)&addr, addr_size))
186 goto fail;
187
188 if ((sock[1] = accept (listener, 0, 0)) < 0)
189 goto fail;
190
191 closesocket (listener);
192
193 filedes [0] = sock [0];
194 filedes [1] = sock [1];
195
196 return 0; 563 return 0;
197
198fail:
199 closesocket (listener);
200
201 if (sock [0] != INVALID_SOCKET) closesocket (sock [0]);
202 if (sock [1] != INVALID_SOCKET) closesocket (sock [1]);
203
204 return -1;
205}
206
207# define ev_pipe(filedes) ev_socketpair_tcp (filedes)
208#else
209# define ev_pipe(filedes) pipe (filedes)
210#endif 564#endif
565}
211 566
212/*****************************************************************************/ 567/*****************************************************************************/
213 568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
214static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
215 578
579void
216void ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
217{ 581{
218 syserr_cb = cb; 582 syserr_cb = cb;
219} 583}
220 584
221static void 585static void noinline
222syserr (const char *msg) 586ev_syserr (const char *msg)
223{ 587{
224 if (!msg) 588 if (!msg)
225 msg = "(libev) system error"; 589 msg = "(libev) system error";
226 590
227 if (syserr_cb) 591 if (syserr_cb)
228 syserr_cb (msg); 592 syserr_cb (msg);
229 else 593 else
230 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
231 perror (msg); 603 perror (msg);
604#endif
232 abort (); 605 abort ();
233 } 606 }
234} 607}
235 608
609static void *
610ev_realloc_emul (void *ptr, long size)
611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625#endif
626}
627
236static void *(*alloc)(void *ptr, long size); 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
237 629
630void
238void ev_set_allocator (void *(*cb)(void *ptr, long size)) 631ev_set_allocator (void *(*cb)(void *ptr, long size))
239{ 632{
240 alloc = cb; 633 alloc = cb;
241} 634}
242 635
243static void * 636inline_speed void *
244ev_realloc (void *ptr, long size) 637ev_realloc (void *ptr, long size)
245{ 638{
246 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 639 ptr = alloc (ptr, size);
247 640
248 if (!ptr && size) 641 if (!ptr && size)
249 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
250 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
251 abort (); 648 abort ();
252 } 649 }
253 650
254 return ptr; 651 return ptr;
255} 652}
257#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
258#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
259 656
260/*****************************************************************************/ 657/*****************************************************************************/
261 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
262typedef struct 663typedef struct
263{ 664{
264 WL head; 665 WL head;
265 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
266 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
674 SOCKET handle;
675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
267} ANFD; 679} ANFD;
268 680
681/* stores the pending event set for a given watcher */
269typedef struct 682typedef struct
270{ 683{
271 W w; 684 W w;
272 int events; 685 int events; /* the pending event set for the given watcher */
273} ANPENDING; 686} ANPENDING;
274 687
688#if EV_USE_INOTIFY
689/* hash table entry per inotify-id */
690typedef struct
691{
692 WL head;
693} ANFS;
694#endif
695
696/* Heap Entry */
697#if EV_HEAP_CACHE_AT
698 /* a heap element */
699 typedef struct {
700 ev_tstamp at;
701 WT w;
702 } ANHE;
703
704 #define ANHE_w(he) (he).w /* access watcher, read-write */
705 #define ANHE_at(he) (he).at /* access cached at, read-only */
706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
707#else
708 /* a heap element */
709 typedef WT ANHE;
710
711 #define ANHE_w(he) (he)
712 #define ANHE_at(he) (he)->at
713 #define ANHE_at_cache(he)
714#endif
715
275#if EV_MULTIPLICITY 716#if EV_MULTIPLICITY
276 717
277struct ev_loop 718 struct ev_loop
278{ 719 {
720 ev_tstamp ev_rt_now;
721 #define ev_rt_now ((loop)->ev_rt_now)
279# define VAR(name,decl) decl; 722 #define VAR(name,decl) decl;
280# include "ev_vars.h" 723 #include "ev_vars.h"
281};
282# undef VAR 724 #undef VAR
725 };
283# include "ev_wrap.h" 726 #include "ev_wrap.h"
727
728 static struct ev_loop default_loop_struct;
729 struct ev_loop *ev_default_loop_ptr;
284 730
285#else 731#else
286 732
733 ev_tstamp ev_rt_now;
287# define VAR(name,decl) static decl; 734 #define VAR(name,decl) static decl;
288# include "ev_vars.h" 735 #include "ev_vars.h"
289# undef VAR 736 #undef VAR
290 737
738 static int ev_default_loop_ptr;
739
291#endif 740#endif
741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
292 753
293/*****************************************************************************/ 754/*****************************************************************************/
294 755
295inline ev_tstamp 756#ifndef EV_HAVE_EV_TIME
757ev_tstamp
296ev_time (void) 758ev_time (void)
297{ 759{
298#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
299 struct timespec ts; 763 struct timespec ts;
300 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
301 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
302#else 766 }
767#endif
768
303 struct timeval tv; 769 struct timeval tv;
304 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
305 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
306#endif
307} 772}
773#endif
308 774
309inline ev_tstamp 775inline_size ev_tstamp
310get_clock (void) 776get_clock (void)
311{ 777{
312#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
313 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
314 { 780 {
319#endif 785#endif
320 786
321 return ev_time (); 787 return ev_time ();
322} 788}
323 789
790#if EV_MULTIPLICITY
324ev_tstamp 791ev_tstamp
325ev_now (EV_P) 792ev_now (EV_P)
326{ 793{
327 return rt_now; 794 return ev_rt_now;
328} 795}
796#endif
329 797
330#define array_roundsize(base,n) ((n) | 4 & ~3) 798void
799ev_sleep (ev_tstamp delay)
800{
801 if (delay > 0.)
802 {
803#if EV_USE_NANOSLEEP
804 struct timespec ts;
331 805
806 EV_TS_SET (ts, delay);
807 nanosleep (&ts, 0);
808#elif defined(_WIN32)
809 Sleep ((unsigned long)(delay * 1e3));
810#else
811 struct timeval tv;
812
813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
814 /* something not guaranteed by newer posix versions, but guaranteed */
815 /* by older ones */
816 EV_TV_SET (tv, delay);
817 select (0, 0, 0, 0, &tv);
818#endif
819 }
820}
821
822/*****************************************************************************/
823
824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
825
826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
829array_nextsize (int elem, int cur, int cnt)
830{
831 int ncur = cur + 1;
832
833 do
834 ncur <<= 1;
835 while (cnt > ncur);
836
837 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
838 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
839 {
840 ncur *= elem;
841 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
842 ncur = ncur - sizeof (void *) * 4;
843 ncur /= elem;
844 }
845
846 return ncur;
847}
848
849static noinline void *
850array_realloc (int elem, void *base, int *cur, int cnt)
851{
852 *cur = array_nextsize (elem, *cur, cnt);
853 return ev_realloc (base, elem * *cur);
854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
858
332#define array_needsize(base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
333 if (expect_false ((cnt) > cur)) \ 860 if (expect_false ((cnt) > (cur))) \
334 { \ 861 { \
335 int newcnt = cur; \ 862 int ocur_ = (cur); \
336 do \ 863 (base) = (type *)array_realloc \
337 { \ 864 (sizeof (type), (base), &(cur), (cnt)); \
338 newcnt = array_roundsize (base, newcnt << 1); \ 865 init ((base) + (ocur_), (cur) - ocur_); \
339 } \
340 while ((cnt) > newcnt); \
341 \
342 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
343 init (base + cur, newcnt - cur); \
344 cur = newcnt; \
345 } 866 }
346 867
868#if 0
347#define array_slim(stem) \ 869#define array_slim(type,stem) \
348 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 870 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
349 { \ 871 { \
350 stem ## max = array_roundsize (stem ## cnt >> 1); \ 872 stem ## max = array_roundsize (stem ## cnt >> 1); \
351 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 873 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
352 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
353 } 875 }
354 876#endif
355/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
356/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
357#define array_free_microshit(stem) \
358 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
359 877
360#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
361 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
362 880
363/*****************************************************************************/ 881/*****************************************************************************/
364 882
365static void 883/* dummy callback for pending events */
366anfds_init (ANFD *base, int count) 884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
367{ 886{
368 while (count--) 887}
369 {
370 base->head = 0;
371 base->events = EV_NONE;
372 base->reify = 0;
373 888
374 ++base; 889void noinline
890ev_feed_event (EV_P_ void *w, int revents)
891{
892 W w_ = (W)w;
893 int pri = ABSPRI (w_);
894
895 if (expect_false (w_->pending))
896 pendings [pri][w_->pending - 1].events |= revents;
897 else
375 } 898 {
376} 899 w_->pending = ++pendingcnt [pri];
377 900 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
378static void 901 pendings [pri][w_->pending - 1].w = w_;
379event (EV_P_ W w, int events)
380{
381 if (w->pending)
382 {
383 pendings [ABSPRI (w)][w->pending - 1].events |= events; 902 pendings [pri][w_->pending - 1].events = revents;
384 return;
385 } 903 }
386
387 w->pending = ++pendingcnt [ABSPRI (w)];
388 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
389 pendings [ABSPRI (w)][w->pending - 1].w = w;
390 pendings [ABSPRI (w)][w->pending - 1].events = events;
391} 904}
392 905
393static void 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
394queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
395{ 923{
396 int i; 924 int i;
397 925
398 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
399 event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
400} 928}
401 929
402static void 930/*****************************************************************************/
931
932inline_speed void
403fd_event (EV_P_ int fd, int events) 933fd_event_nocheck (EV_P_ int fd, int revents)
404{ 934{
405 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
406 struct ev_io *w; 936 ev_io *w;
407 937
408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
409 { 939 {
410 int ev = w->events & events; 940 int ev = w->events & revents;
411 941
412 if (ev) 942 if (ev)
413 event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
414 } 944 }
415} 945}
416 946
417/*****************************************************************************/ 947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
418 953
419static void 954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
958void
959ev_feed_fd_event (EV_P_ int fd, int revents)
960{
961 if (fd >= 0 && fd < anfdmax)
962 fd_event_nocheck (EV_A_ fd, revents);
963}
964
965/* make sure the external fd watch events are in-sync */
966/* with the kernel/libev internal state */
967inline_size void
420fd_reify (EV_P) 968fd_reify (EV_P)
421{ 969{
422 int i; 970 int i;
423 971
424 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
425 { 973 {
426 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
427 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
428 struct ev_io *w; 976 ev_io *w;
429 977
430 int events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
431 980
432 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
433 events |= w->events;
434
435 anfd->reify = 0; 981 anfd->reify = 0;
436 982
437 method_modify (EV_A_ fd, anfd->events, events); 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
984 if (o_reify & EV__IOFDSET)
985 {
986 unsigned long arg;
987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
990 }
991#endif
992
993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
994 {
438 anfd->events = events; 995 anfd->events = 0;
996
997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
1005 backend_modify (EV_A_ fd, o_events, anfd->events);
439 } 1006 }
440 1007
441 fdchangecnt = 0; 1008 fdchangecnt = 0;
442} 1009}
443 1010
444static void 1011/* something about the given fd changed */
1012inline_size void
445fd_change (EV_P_ int fd) 1013fd_change (EV_P_ int fd, int flags)
446{ 1014{
447 if (anfds [fd].reify) 1015 unsigned char reify = anfds [fd].reify;
448 return;
449
450 anfds [fd].reify = 1; 1016 anfds [fd].reify |= flags;
451 1017
1018 if (expect_true (!reify))
1019 {
452 ++fdchangecnt; 1020 ++fdchangecnt;
453 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
454 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
1023 }
455} 1024}
456 1025
457static void 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
458fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
459{ 1029{
460 struct ev_io *w; 1030 ev_io *w;
461 1031
462 while ((w = (struct ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
463 { 1033 {
464 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
465 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
466 } 1036 }
467} 1037}
468 1038
469static int 1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
470fd_valid (int fd) 1041fd_valid (int fd)
471{ 1042{
472#ifdef WIN32 1043#ifdef _WIN32
473 return !!win32_get_osfhandle (fd); 1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
474#else 1045#else
475 return fcntl (fd, F_GETFD) != -1; 1046 return fcntl (fd, F_GETFD) != -1;
476#endif 1047#endif
477} 1048}
478 1049
479/* called on EBADF to verify fds */ 1050/* called on EBADF to verify fds */
480static void 1051static void noinline
481fd_ebadf (EV_P) 1052fd_ebadf (EV_P)
482{ 1053{
483 int fd; 1054 int fd;
484 1055
485 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
486 if (anfds [fd].events) 1057 if (anfds [fd].events)
487 if (!fd_valid (fd) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
488 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
489} 1060}
490 1061
491/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
492static void 1063static void noinline
493fd_enomem (EV_P) 1064fd_enomem (EV_P)
494{ 1065{
495 int fd; 1066 int fd;
496 1067
497 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
498 if (anfds [fd].events) 1069 if (anfds [fd].events)
499 { 1070 {
500 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
501 return; 1072 break;
502 } 1073 }
503} 1074}
504 1075
505/* usually called after fork if method needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
506static void 1077static void noinline
507fd_rearm_all (EV_P) 1078fd_rearm_all (EV_P)
508{ 1079{
509 int fd; 1080 int fd;
510 1081
511 /* this should be highly optimised to not do anything but set a flag */
512 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
513 if (anfds [fd].events) 1083 if (anfds [fd].events)
514 { 1084 {
515 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
516 fd_change (EV_A_ fd); 1086 anfds [fd].emask = 0;
1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
517 } 1088 }
518} 1089}
519 1090
1091/* used to prepare libev internal fd's */
1092/* this is not fork-safe */
1093inline_speed void
1094fd_intern (int fd)
1095{
1096#ifdef _WIN32
1097 unsigned long arg = 1;
1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1099#else
1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
1101 fcntl (fd, F_SETFL, O_NONBLOCK);
1102#endif
1103}
1104
520/*****************************************************************************/ 1105/*****************************************************************************/
521 1106
1107/*
1108 * the heap functions want a real array index. array index 0 is guaranteed to not
1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1110 * the branching factor of the d-tree.
1111 */
1112
1113/*
1114 * at the moment we allow libev the luxury of two heaps,
1115 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1116 * which is more cache-efficient.
1117 * the difference is about 5% with 50000+ watchers.
1118 */
1119#if EV_USE_4HEAP
1120
1121#define DHEAP 4
1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1124#define UPHEAP_DONE(p,k) ((p) == (k))
1125
1126/* away from the root */
1127inline_speed void
1128downheap (ANHE *heap, int N, int k)
1129{
1130 ANHE he = heap [k];
1131 ANHE *E = heap + N + HEAP0;
1132
1133 for (;;)
1134 {
1135 ev_tstamp minat;
1136 ANHE *minpos;
1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1138
1139 /* find minimum child */
1140 if (expect_true (pos + DHEAP - 1 < E))
1141 {
1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else if (pos < E)
1148 {
1149 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else
1155 break;
1156
1157 if (ANHE_at (he) <= minat)
1158 break;
1159
1160 heap [k] = *minpos;
1161 ev_active (ANHE_w (*minpos)) = k;
1162
1163 k = minpos - heap;
1164 }
1165
1166 heap [k] = he;
1167 ev_active (ANHE_w (he)) = k;
1168}
1169
1170#else /* 4HEAP */
1171
1172#define HEAP0 1
1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
1175
1176/* away from the root */
1177inline_speed void
1178downheap (ANHE *heap, int N, int k)
1179{
1180 ANHE he = heap [k];
1181
1182 for (;;)
1183 {
1184 int c = k << 1;
1185
1186 if (c >= N + HEAP0)
1187 break;
1188
1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1190 ? 1 : 0;
1191
1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
1193 break;
1194
1195 heap [k] = heap [c];
1196 ev_active (ANHE_w (heap [k])) = k;
1197
1198 k = c;
1199 }
1200
1201 heap [k] = he;
1202 ev_active (ANHE_w (he)) = k;
1203}
1204#endif
1205
1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
1230adjustheap (ANHE *heap, int N, int k)
1231{
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1233 upheap (heap, k);
1234 else
1235 downheap (heap, N, k);
1236}
1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
1248}
1249
1250/*****************************************************************************/
1251
1252/* associate signal watchers to a signal signal */
1253typedef struct
1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
1259 WL head;
1260} ANSIG;
1261
1262static ANSIG signals [EV_NSIG - 1];
1263
1264/*****************************************************************************/
1265
1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1267
1268static void noinline
1269evpipe_init (EV_P)
1270{
1271 if (!ev_is_active (&pipe_w))
1272 {
1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
1279 {
1280 evpipe [0] = -1;
1281 fd_intern (evfd); /* doing it twice doesn't hurt */
1282 ev_io_set (&pipe_w, evfd, EV_READ);
1283 }
1284 else
1285# endif
1286 {
1287 while (pipe (evpipe))
1288 ev_syserr ("(libev) error creating signal/async pipe");
1289
1290 fd_intern (evpipe [0]);
1291 fd_intern (evpipe [1]);
1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1293 }
1294
1295 ev_io_start (EV_A_ &pipe_w);
1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1297 }
1298}
1299
1300inline_size void
1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1302{
1303 if (!*flag)
1304 {
1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1307
1308 *flag = 1;
1309
1310#if EV_USE_EVENTFD
1311 if (evfd >= 0)
1312 {
1313 uint64_t counter = 1;
1314 write (evfd, &counter, sizeof (uint64_t));
1315 }
1316 else
1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1323 write (evpipe [1], &dummy, 1);
1324
1325 errno = old_errno;
1326 }
1327}
1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
522static void 1331static void
523upheap (WT *heap, int k) 1332pipecb (EV_P_ ev_io *iow, int revents)
524{ 1333{
525 WT w = heap [k]; 1334 int i;
526 1335
527 while (k && heap [k >> 1]->at > w->at) 1336#if EV_USE_EVENTFD
528 { 1337 if (evfd >= 0)
529 heap [k] = heap [k >> 1];
530 ((W)heap [k])->active = k + 1;
531 k >>= 1;
532 } 1338 {
1339 uint64_t counter;
1340 read (evfd, &counter, sizeof (uint64_t));
1341 }
1342 else
1343#endif
1344 {
1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1347 read (evpipe [0], &dummy, 1);
1348 }
533 1349
534 heap [k] = w; 1350 if (sig_pending)
535 ((W)heap [k])->active = k + 1; 1351 {
1352 sig_pending = 0;
536 1353
1354 for (i = EV_NSIG - 1; i--; )
1355 if (expect_false (signals [i].pending))
1356 ev_feed_signal_event (EV_A_ i + 1);
1357 }
1358
1359#if EV_ASYNC_ENABLE
1360 if (async_pending)
1361 {
1362 async_pending = 0;
1363
1364 for (i = asynccnt; i--; )
1365 if (asyncs [i]->sent)
1366 {
1367 asyncs [i]->sent = 0;
1368 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1369 }
1370 }
1371#endif
537} 1372}
1373
1374/*****************************************************************************/
538 1375
539static void 1376static void
540downheap (WT *heap, int N, int k) 1377ev_sighandler (int signum)
541{ 1378{
542 WT w = heap [k]; 1379#if EV_MULTIPLICITY
1380 EV_P = signals [signum - 1].loop;
1381#endif
543 1382
544 while (k < (N >> 1)) 1383#ifdef _WIN32
545 { 1384 signal (signum, ev_sighandler);
546 int j = k << 1; 1385#endif
547 1386
548 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1387 signals [signum - 1].pending = 1;
549 ++j; 1388 evpipe_write (EV_A_ &sig_pending);
1389}
550 1390
551 if (w->at <= heap [j]->at) 1391void noinline
1392ev_feed_signal_event (EV_P_ int signum)
1393{
1394 WL w;
1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
1401#if EV_MULTIPLICITY
1402 /* it is permissible to try to feed a signal to the wrong loop */
1403 /* or, likely more useful, feeding a signal nobody is waiting for */
1404
1405 if (expect_false (signals [signum].loop != EV_A))
1406 return;
1407#endif
1408
1409 signals [signum].pending = 0;
1410
1411 for (w = signals [signum].head; w; w = w->next)
1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1413}
1414
1415#if EV_USE_SIGNALFD
1416static void
1417sigfdcb (EV_P_ ev_io *iow, int revents)
1418{
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
552 break; 1430 break;
553
554 heap [k] = heap [j];
555 ((W)heap [k])->active = k + 1;
556 k = j;
557 } 1431 }
558
559 heap [k] = w;
560 ((W)heap [k])->active = k + 1;
561} 1432}
1433#endif
1434
1435#endif
562 1436
563/*****************************************************************************/ 1437/*****************************************************************************/
564 1438
565typedef struct 1439#if EV_CHILD_ENABLE
566{ 1440static WL childs [EV_PID_HASHSIZE];
567 WL head;
568 sig_atomic_t volatile gotsig;
569} ANSIG;
570 1441
571static ANSIG *signals;
572static int signalmax;
573
574static int sigpipe [2];
575static sig_atomic_t volatile gotsig;
576static struct ev_io sigev;
577
578static void
579signals_init (ANSIG *base, int count)
580{
581 while (count--)
582 {
583 base->head = 0;
584 base->gotsig = 0;
585
586 ++base;
587 }
588}
589
590static void
591sighandler (int signum)
592{
593#if WIN32
594 signal (signum, sighandler);
595#endif
596
597 signals [signum - 1].gotsig = 1;
598
599 if (!gotsig)
600 {
601 int old_errno = errno;
602 gotsig = 1;
603 write (sigpipe [1], &signum, 1);
604 errno = old_errno;
605 }
606}
607
608static void
609sigcb (EV_P_ struct ev_io *iow, int revents)
610{
611 WL w;
612 int signum;
613
614 read (sigpipe [0], &revents, 1);
615 gotsig = 0;
616
617 for (signum = signalmax; signum--; )
618 if (signals [signum].gotsig)
619 {
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 event (EV_A_ (W)w, EV_SIGNAL);
624 }
625}
626
627static void
628siginit (EV_P)
629{
630#ifndef WIN32
631 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
632 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
633
634 /* rather than sort out wether we really need nb, set it */
635 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
636 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
637#endif
638
639 ev_io_set (&sigev, sigpipe [0], EV_READ);
640 ev_io_start (EV_A_ &sigev);
641 ev_unref (EV_A); /* child watcher should not keep loop alive */
642}
643
644/*****************************************************************************/
645
646static struct ev_child *childs [PID_HASHSIZE];
647
648#ifndef WIN32
649
650static struct ev_signal childev; 1442static ev_signal childev;
1443
1444#ifndef WIFCONTINUED
1445# define WIFCONTINUED(status) 0
1446#endif
1447
1448/* handle a single child status event */
1449inline_speed void
1450child_reap (EV_P_ int chain, int pid, int status)
1451{
1452 ev_child *w;
1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1454
1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1456 {
1457 if ((w->pid == pid || !w->pid)
1458 && (!traced || (w->flags & 1)))
1459 {
1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1461 w->rpid = pid;
1462 w->rstatus = status;
1463 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1464 }
1465 }
1466}
651 1467
652#ifndef WCONTINUED 1468#ifndef WCONTINUED
653# define WCONTINUED 0 1469# define WCONTINUED 0
654#endif 1470#endif
655 1471
1472/* called on sigchld etc., calls waitpid */
656static void 1473static void
657child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
658{
659 struct ev_child *w;
660
661 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
662 if (w->pid == pid || !w->pid)
663 {
664 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
665 w->rpid = pid;
666 w->rstatus = status;
667 event (EV_A_ (W)w, EV_CHILD);
668 }
669}
670
671static void
672childcb (EV_P_ struct ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
673{ 1475{
674 int pid, status; 1476 int pid, status;
675 1477
1478 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
676 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1479 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
677 { 1480 if (!WCONTINUED
1481 || errno != EINVAL
1482 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1483 return;
1484
678 /* make sure we are called again until all childs have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
1486 /* we need to do it this way so that the callback gets called before we continue */
679 event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
680 1488
681 child_reap (EV_A_ sw, pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
1490 if ((EV_PID_HASHSIZE) > 1)
682 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
683 }
684} 1492}
685 1493
686#endif 1494#endif
687 1495
688/*****************************************************************************/ 1496/*****************************************************************************/
689 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
1501#if EV_USE_PORT
1502# include "ev_port.c"
1503#endif
690#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
691# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
692#endif 1506#endif
693#if EV_USE_EPOLL 1507#if EV_USE_EPOLL
694# include "ev_epoll.c" 1508# include "ev_epoll.c"
711{ 1525{
712 return EV_VERSION_MINOR; 1526 return EV_VERSION_MINOR;
713} 1527}
714 1528
715/* return true if we are running with elevated privileges and should ignore env variables */ 1529/* return true if we are running with elevated privileges and should ignore env variables */
716static int 1530int inline_size
717enable_secure (void) 1531enable_secure (void)
718{ 1532{
719#ifdef WIN32 1533#ifdef _WIN32
720 return 0; 1534 return 0;
721#else 1535#else
722 return getuid () != geteuid () 1536 return getuid () != geteuid ()
723 || getgid () != getegid (); 1537 || getgid () != getegid ();
724#endif 1538#endif
725} 1539}
726 1540
727int 1541unsigned int
1542ev_supported_backends (void)
1543{
1544 unsigned int flags = 0;
1545
1546 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1547 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1548 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1549 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1550 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1551
1552 return flags;
1553}
1554
1555unsigned int
1556ev_recommended_backends (void)
1557{
1558 unsigned int flags = ev_supported_backends ();
1559
1560#ifndef __NetBSD__
1561 /* kqueue is borked on everything but netbsd apparently */
1562 /* it usually doesn't work correctly on anything but sockets and pipes */
1563 flags &= ~EVBACKEND_KQUEUE;
1564#endif
1565#ifdef __APPLE__
1566 /* only select works correctly on that "unix-certified" platform */
1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1572#endif
1573
1574 return flags;
1575}
1576
1577unsigned int
1578ev_embeddable_backends (void)
1579{
1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1581
1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1584 flags &= ~EVBACKEND_EPOLL;
1585
1586 return flags;
1587}
1588
1589unsigned int
1590ev_backend (EV_P)
1591{
1592 return backend;
1593}
1594
1595#if EV_FEATURE_API
1596unsigned int
1597ev_iteration (EV_P)
1598{
1599 return loop_count;
1600}
1601
1602unsigned int
728ev_method (EV_P) 1603ev_depth (EV_P)
729{ 1604{
730 return method; 1605 return loop_depth;
731} 1606}
732 1607
733static void 1608void
734loop_init (EV_P_ int methods) 1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
735{ 1610{
736 if (!method) 1611 io_blocktime = interval;
1612}
1613
1614void
1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1616{
1617 timeout_blocktime = interval;
1618}
1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
1645static void noinline
1646loop_init (EV_P_ unsigned int flags)
1647{
1648 if (!backend)
737 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
738#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
1662 {
1663 struct timespec ts;
1664
1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1666 have_monotonic = 1;
1667 }
1668#endif
1669
1670 /* pid check not overridable via env */
1671#ifndef _WIN32
1672 if (flags & EVFLAG_FORKCHECK)
1673 curpid = getpid ();
1674#endif
1675
1676 if (!(flags & EVFLAG_NOENV)
1677 && !enable_secure ()
1678 && getenv ("LIBEV_FLAGS"))
1679 flags = atoi (getenv ("LIBEV_FLAGS"));
1680
1681 ev_rt_now = ev_time ();
1682 mn_now = get_clock ();
1683 now_floor = mn_now;
1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1688
1689 io_blocktime = 0.;
1690 timeout_blocktime = 0.;
1691 backend = 0;
1692 backend_fd = -1;
1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1697#if EV_USE_INOTIFY
1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1699#endif
1700#if EV_USE_SIGNALFD
1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1702#endif
1703
1704 if (!(flags & 0x0000ffffU))
1705 flags |= ev_recommended_backends ();
1706
1707#if EV_USE_IOCP
1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709#endif
1710#if EV_USE_PORT
1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1712#endif
1713#if EV_USE_KQUEUE
1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1715#endif
1716#if EV_USE_EPOLL
1717 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1718#endif
1719#if EV_USE_POLL
1720 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1721#endif
1722#if EV_USE_SELECT
1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1724#endif
1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1729 ev_init (&pipe_w, pipecb);
1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
1732 }
1733}
1734
1735/* free up a loop structure */
1736static void noinline
1737loop_destroy (EV_P)
1738{
1739 int i;
1740
1741 if (ev_is_active (&pipe_w))
1742 {
1743 /*ev_ref (EV_A);*/
1744 /*ev_io_stop (EV_A_ &pipe_w);*/
1745
1746#if EV_USE_EVENTFD
1747 if (evfd >= 0)
1748 close (evfd);
1749#endif
1750
1751 if (evpipe [0] >= 0)
1752 {
1753 EV_WIN32_CLOSE_FD (evpipe [0]);
1754 EV_WIN32_CLOSE_FD (evpipe [1]);
1755 }
1756 }
1757
1758#if EV_USE_SIGNALFD
1759 if (ev_is_active (&sigfd_w))
1760 close (sigfd);
1761#endif
1762
1763#if EV_USE_INOTIFY
1764 if (fs_fd >= 0)
1765 close (fs_fd);
1766#endif
1767
1768 if (backend_fd >= 0)
1769 close (backend_fd);
1770
1771#if EV_USE_IOCP
1772 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1773#endif
1774#if EV_USE_PORT
1775 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1776#endif
1777#if EV_USE_KQUEUE
1778 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1779#endif
1780#if EV_USE_EPOLL
1781 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1782#endif
1783#if EV_USE_POLL
1784 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1785#endif
1786#if EV_USE_SELECT
1787 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1788#endif
1789
1790 for (i = NUMPRI; i--; )
1791 {
1792 array_free (pending, [i]);
1793#if EV_IDLE_ENABLE
1794 array_free (idle, [i]);
1795#endif
1796 }
1797
1798 ev_free (anfds); anfds = 0; anfdmax = 0;
1799
1800 /* have to use the microsoft-never-gets-it-right macro */
1801 array_free (rfeed, EMPTY);
1802 array_free (fdchange, EMPTY);
1803 array_free (timer, EMPTY);
1804#if EV_PERIODIC_ENABLE
1805 array_free (periodic, EMPTY);
1806#endif
1807#if EV_FORK_ENABLE
1808 array_free (fork, EMPTY);
1809#endif
1810 array_free (prepare, EMPTY);
1811 array_free (check, EMPTY);
1812#if EV_ASYNC_ENABLE
1813 array_free (async, EMPTY);
1814#endif
1815
1816 backend = 0;
1817}
1818
1819#if EV_USE_INOTIFY
1820inline_size void infy_fork (EV_P);
1821#endif
1822
1823inline_size void
1824loop_fork (EV_P)
1825{
1826#if EV_USE_PORT
1827 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1828#endif
1829#if EV_USE_KQUEUE
1830 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1831#endif
1832#if EV_USE_EPOLL
1833 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1834#endif
1835#if EV_USE_INOTIFY
1836 infy_fork (EV_A);
1837#endif
1838
1839 if (ev_is_active (&pipe_w))
1840 {
1841 /* this "locks" the handlers against writing to the pipe */
1842 /* while we modify the fd vars */
1843 sig_pending = 1;
1844#if EV_ASYNC_ENABLE
1845 async_pending = 1;
1846#endif
1847
1848 ev_ref (EV_A);
1849 ev_io_stop (EV_A_ &pipe_w);
1850
1851#if EV_USE_EVENTFD
1852 if (evfd >= 0)
1853 close (evfd);
1854#endif
1855
1856 if (evpipe [0] >= 0)
1857 {
1858 EV_WIN32_CLOSE_FD (evpipe [0]);
1859 EV_WIN32_CLOSE_FD (evpipe [1]);
1860 }
1861
1862#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1863 evpipe_init (EV_A);
1864 /* now iterate over everything, in case we missed something */
1865 pipecb (EV_A_ &pipe_w, EV_READ);
1866#endif
1867 }
1868
1869 postfork = 0;
1870}
1871
1872#if EV_MULTIPLICITY
1873
1874struct ev_loop *
1875ev_loop_new (unsigned int flags)
1876{
1877 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1878
1879 memset (EV_A, 0, sizeof (struct ev_loop));
1880 loop_init (EV_A_ flags);
1881
1882 if (ev_backend (EV_A))
1883 return EV_A;
1884
1885 return 0;
1886}
1887
1888void
1889ev_loop_destroy (EV_P)
1890{
1891 loop_destroy (EV_A);
1892 ev_free (loop);
1893}
1894
1895void
1896ev_loop_fork (EV_P)
1897{
1898 postfork = 1; /* must be in line with ev_default_fork */
1899}
1900#endif /* multiplicity */
1901
1902#if EV_VERIFY
1903static void noinline
1904verify_watcher (EV_P_ W w)
1905{
1906 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1907
1908 if (w->pending)
1909 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1910}
1911
1912static void noinline
1913verify_heap (EV_P_ ANHE *heap, int N)
1914{
1915 int i;
1916
1917 for (i = HEAP0; i < N + HEAP0; ++i)
1918 {
1919 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1920 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1921 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1922
1923 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1924 }
1925}
1926
1927static void noinline
1928array_verify (EV_P_ W *ws, int cnt)
1929{
1930 while (cnt--)
1931 {
1932 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1933 verify_watcher (EV_A_ ws [cnt]);
1934 }
1935}
1936#endif
1937
1938#if EV_FEATURE_API
1939void
1940ev_verify (EV_P)
1941{
1942#if EV_VERIFY
1943 int i;
1944 WL w;
1945
1946 assert (activecnt >= -1);
1947
1948 assert (fdchangemax >= fdchangecnt);
1949 for (i = 0; i < fdchangecnt; ++i)
1950 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1951
1952 assert (anfdmax >= 0);
1953 for (i = 0; i < anfdmax; ++i)
1954 for (w = anfds [i].head; w; w = w->next)
739 { 1955 {
740 struct timespec ts; 1956 verify_watcher (EV_A_ (W)w);
741 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1957 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
742 have_monotonic = 1; 1958 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
743 } 1959 }
744#endif
745 1960
746 rt_now = ev_time (); 1961 assert (timermax >= timercnt);
747 mn_now = get_clock (); 1962 verify_heap (EV_A_ timers, timercnt);
748 now_floor = mn_now;
749 rtmn_diff = rt_now - mn_now;
750 1963
751 if (methods == EVMETHOD_AUTO) 1964#if EV_PERIODIC_ENABLE
752 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1965 assert (periodicmax >= periodiccnt);
753 methods = atoi (getenv ("LIBEV_METHODS")); 1966 verify_heap (EV_A_ periodics, periodiccnt);
754 else
755 methods = EVMETHOD_ANY;
756
757 method = 0;
758#if EV_USE_WIN32
759 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
760#endif
761#if EV_USE_KQUEUE
762 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
763#endif
764#if EV_USE_EPOLL
765 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
766#endif
767#if EV_USE_POLL
768 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
769#endif
770#if EV_USE_SELECT
771 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
772#endif
773
774 ev_watcher_init (&sigev, sigcb);
775 ev_set_priority (&sigev, EV_MAXPRI);
776 }
777}
778
779void
780loop_destroy (EV_P)
781{
782 int i;
783
784#if EV_USE_WIN32
785 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
786#endif
787#if EV_USE_KQUEUE
788 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
789#endif
790#if EV_USE_EPOLL
791 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
792#endif
793#if EV_USE_POLL
794 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
795#endif
796#if EV_USE_SELECT
797 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
798#endif 1967#endif
799 1968
800 for (i = NUMPRI; i--; ) 1969 for (i = NUMPRI; i--; )
801 array_free (pending, [i]); 1970 {
1971 assert (pendingmax [i] >= pendingcnt [i]);
1972#if EV_IDLE_ENABLE
1973 assert (idleall >= 0);
1974 assert (idlemax [i] >= idlecnt [i]);
1975 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1976#endif
1977 }
802 1978
803 /* have to use the microsoft-never-gets-it-right macro */ 1979#if EV_FORK_ENABLE
804 array_free_microshit (fdchange); 1980 assert (forkmax >= forkcnt);
805 array_free_microshit (timer); 1981 array_verify (EV_A_ (W *)forks, forkcnt);
806 array_free_microshit (periodic); 1982#endif
807 array_free_microshit (idle);
808 array_free_microshit (prepare);
809 array_free_microshit (check);
810 1983
811 method = 0; 1984#if EV_ASYNC_ENABLE
812} 1985 assert (asyncmax >= asynccnt);
1986 array_verify (EV_A_ (W *)asyncs, asynccnt);
1987#endif
813 1988
814static void 1989#if EV_PREPARE_ENABLE
815loop_fork (EV_P) 1990 assert (preparemax >= preparecnt);
816{ 1991 array_verify (EV_A_ (W *)prepares, preparecnt);
817#if EV_USE_EPOLL 1992#endif
818 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1993
1994#if EV_CHECK_ENABLE
1995 assert (checkmax >= checkcnt);
1996 array_verify (EV_A_ (W *)checks, checkcnt);
1997#endif
1998
1999# if 0
2000#if EV_CHILD_ENABLE
2001 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2002 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2003#endif
819#endif 2004# endif
820#if EV_USE_KQUEUE
821 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
822#endif 2005#endif
823
824 if (ev_is_active (&sigev))
825 {
826 /* default loop */
827
828 ev_ref (EV_A);
829 ev_io_stop (EV_A_ &sigev);
830 close (sigpipe [0]);
831 close (sigpipe [1]);
832
833 while (ev_pipe (sigpipe))
834 syserr ("(libev) error creating pipe");
835
836 siginit (EV_A);
837 }
838
839 postfork = 0;
840} 2006}
2007#endif
841 2008
842#if EV_MULTIPLICITY 2009#if EV_MULTIPLICITY
843struct ev_loop * 2010struct ev_loop *
844ev_loop_new (int methods) 2011#else
845{ 2012int
846 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
847
848 memset (loop, 0, sizeof (struct ev_loop));
849
850 loop_init (EV_A_ methods);
851
852 if (ev_method (EV_A))
853 return loop;
854
855 return 0;
856}
857
858void
859ev_loop_destroy (EV_P)
860{
861 loop_destroy (EV_A);
862 ev_free (loop);
863}
864
865void
866ev_loop_fork (EV_P)
867{
868 postfork = 1;
869}
870
871#endif 2013#endif
872 2014ev_default_loop (unsigned int flags)
2015{
2016 if (!ev_default_loop_ptr)
2017 {
873#if EV_MULTIPLICITY 2018#if EV_MULTIPLICITY
874struct ev_loop default_loop_struct; 2019 EV_P = ev_default_loop_ptr = &default_loop_struct;
875static struct ev_loop *default_loop;
876
877struct ev_loop *
878#else 2020#else
879static int default_loop;
880
881int
882#endif
883ev_default_loop (int methods)
884{
885 if (sigpipe [0] == sigpipe [1])
886 if (ev_pipe (sigpipe))
887 return 0;
888
889 if (!default_loop)
890 {
891#if EV_MULTIPLICITY
892 struct ev_loop *loop = default_loop = &default_loop_struct;
893#else
894 default_loop = 1; 2021 ev_default_loop_ptr = 1;
895#endif 2022#endif
896 2023
897 loop_init (EV_A_ methods); 2024 loop_init (EV_A_ flags);
898 2025
899 if (ev_method (EV_A)) 2026 if (ev_backend (EV_A))
900 { 2027 {
901 siginit (EV_A); 2028#if EV_CHILD_ENABLE
902
903#ifndef WIN32
904 ev_signal_init (&childev, childcb, SIGCHLD); 2029 ev_signal_init (&childev, childcb, SIGCHLD);
905 ev_set_priority (&childev, EV_MAXPRI); 2030 ev_set_priority (&childev, EV_MAXPRI);
906 ev_signal_start (EV_A_ &childev); 2031 ev_signal_start (EV_A_ &childev);
907 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2032 ev_unref (EV_A); /* child watcher should not keep loop alive */
908#endif 2033#endif
909 } 2034 }
910 else 2035 else
911 default_loop = 0; 2036 ev_default_loop_ptr = 0;
912 } 2037 }
913 2038
914 return default_loop; 2039 return ev_default_loop_ptr;
915} 2040}
916 2041
917void 2042void
918ev_default_destroy (void) 2043ev_default_destroy (void)
919{ 2044{
920#if EV_MULTIPLICITY 2045#if EV_MULTIPLICITY
921 struct ev_loop *loop = default_loop; 2046 EV_P = ev_default_loop_ptr;
922#endif 2047#endif
923 2048
924#ifndef WIN32 2049 ev_default_loop_ptr = 0;
2050
2051#if EV_CHILD_ENABLE
925 ev_ref (EV_A); /* child watcher */ 2052 ev_ref (EV_A); /* child watcher */
926 ev_signal_stop (EV_A_ &childev); 2053 ev_signal_stop (EV_A_ &childev);
927#endif 2054#endif
928 2055
929 ev_ref (EV_A); /* signal watcher */
930 ev_io_stop (EV_A_ &sigev);
931
932 close (sigpipe [0]); sigpipe [0] = 0;
933 close (sigpipe [1]); sigpipe [1] = 0;
934
935 loop_destroy (EV_A); 2056 loop_destroy (EV_A);
936} 2057}
937 2058
938void 2059void
939ev_default_fork (void) 2060ev_default_fork (void)
940{ 2061{
941#if EV_MULTIPLICITY 2062#if EV_MULTIPLICITY
942 struct ev_loop *loop = default_loop; 2063 EV_P = ev_default_loop_ptr;
943#endif 2064#endif
944 2065
945 if (method) 2066 postfork = 1; /* must be in line with ev_loop_fork */
946 postfork = 1;
947} 2067}
948 2068
949/*****************************************************************************/ 2069/*****************************************************************************/
950 2070
951static void 2071void
952call_pending (EV_P) 2072ev_invoke (EV_P_ void *w, int revents)
2073{
2074 EV_CB_INVOKE ((W)w, revents);
2075}
2076
2077unsigned int
2078ev_pending_count (EV_P)
2079{
2080 int pri;
2081 unsigned int count = 0;
2082
2083 for (pri = NUMPRI; pri--; )
2084 count += pendingcnt [pri];
2085
2086 return count;
2087}
2088
2089void noinline
2090ev_invoke_pending (EV_P)
953{ 2091{
954 int pri; 2092 int pri;
955 2093
956 for (pri = NUMPRI; pri--; ) 2094 for (pri = NUMPRI; pri--; )
957 while (pendingcnt [pri]) 2095 while (pendingcnt [pri])
958 { 2096 {
959 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2097 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
960 2098
961 if (p->w) 2099 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
962 { 2100 /* ^ this is no longer true, as pending_w could be here */
2101
963 p->w->pending = 0; 2102 p->w->pending = 0;
964 p->w->cb (EV_A_ p->w, p->events); 2103 EV_CB_INVOKE (p->w, p->events);
965 } 2104 EV_FREQUENT_CHECK;
966 } 2105 }
967} 2106}
968 2107
969static void 2108#if EV_IDLE_ENABLE
2109/* make idle watchers pending. this handles the "call-idle */
2110/* only when higher priorities are idle" logic */
2111inline_size void
970timers_reify (EV_P) 2112idle_reify (EV_P)
971{ 2113{
972 while (timercnt && ((WT)timers [0])->at <= mn_now) 2114 if (expect_false (idleall))
973 { 2115 {
974 struct ev_timer *w = timers [0]; 2116 int pri;
975 2117
976 assert (("inactive timer on timer heap detected", ev_is_active (w))); 2118 for (pri = NUMPRI; pri--; )
977
978 /* first reschedule or stop timer */
979 if (w->repeat)
980 { 2119 {
981 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2120 if (pendingcnt [pri])
982 ((WT)w)->at = mn_now + w->repeat; 2121 break;
983 downheap ((WT *)timers, timercnt, 0);
984 }
985 else
986 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
987 2122
988 event (EV_A_ (W)w, EV_TIMEOUT); 2123 if (idlecnt [pri])
989 }
990}
991
992static void
993periodics_reify (EV_P)
994{
995 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
996 {
997 struct ev_periodic *w = periodics [0];
998
999 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1000
1001 /* first reschedule or stop timer */
1002 if (w->interval)
1003 {
1004 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1005 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
1006 downheap ((WT *)periodics, periodiccnt, 0);
1007 }
1008 else
1009 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1010
1011 event (EV_A_ (W)w, EV_PERIODIC);
1012 }
1013}
1014
1015static void
1016periodics_reschedule (EV_P)
1017{
1018 int i;
1019
1020 /* adjust periodics after time jump */
1021 for (i = 0; i < periodiccnt; ++i)
1022 {
1023 struct ev_periodic *w = periodics [i];
1024
1025 if (w->interval)
1026 {
1027 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1028
1029 if (fabs (diff) >= 1e-4)
1030 { 2124 {
1031 ev_periodic_stop (EV_A_ w); 2125 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1032 ev_periodic_start (EV_A_ w); 2126 break;
1033
1034 i = 0; /* restart loop, inefficient, but time jumps should be rare */
1035 } 2127 }
1036 } 2128 }
1037 } 2129 }
1038} 2130}
2131#endif
1039 2132
1040inline int 2133/* make timers pending */
1041time_update_monotonic (EV_P) 2134inline_size void
2135timers_reify (EV_P)
1042{ 2136{
1043 mn_now = get_clock (); 2137 EV_FREQUENT_CHECK;
1044 2138
1045 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2139 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1046 {
1047 rt_now = rtmn_diff + mn_now;
1048 return 0;
1049 } 2140 {
1050 else 2141 do
2142 {
2143 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2144
2145 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2146
2147 /* first reschedule or stop timer */
2148 if (w->repeat)
2149 {
2150 ev_at (w) += w->repeat;
2151 if (ev_at (w) < mn_now)
2152 ev_at (w) = mn_now;
2153
2154 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2155
2156 ANHE_at_cache (timers [HEAP0]);
2157 downheap (timers, timercnt, HEAP0);
2158 }
2159 else
2160 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2161
2162 EV_FREQUENT_CHECK;
2163 feed_reverse (EV_A_ (W)w);
2164 }
2165 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2166
2167 feed_reverse_done (EV_A_ EV_TIMER);
1051 { 2168 }
1052 now_floor = mn_now; 2169}
1053 rt_now = ev_time (); 2170
1054 return 1; 2171#if EV_PERIODIC_ENABLE
2172/* make periodics pending */
2173inline_size void
2174periodics_reify (EV_P)
2175{
2176 EV_FREQUENT_CHECK;
2177
2178 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1055 } 2179 {
1056} 2180 int feed_count = 0;
1057 2181
1058static void 2182 do
1059time_update (EV_P) 2183 {
2184 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2185
2186 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2187
2188 /* first reschedule or stop timer */
2189 if (w->reschedule_cb)
2190 {
2191 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2192
2193 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2194
2195 ANHE_at_cache (periodics [HEAP0]);
2196 downheap (periodics, periodiccnt, HEAP0);
2197 }
2198 else if (w->interval)
2199 {
2200 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2201 /* if next trigger time is not sufficiently in the future, put it there */
2202 /* this might happen because of floating point inexactness */
2203 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2204 {
2205 ev_at (w) += w->interval;
2206
2207 /* if interval is unreasonably low we might still have a time in the past */
2208 /* so correct this. this will make the periodic very inexact, but the user */
2209 /* has effectively asked to get triggered more often than possible */
2210 if (ev_at (w) < ev_rt_now)
2211 ev_at (w) = ev_rt_now;
2212 }
2213
2214 ANHE_at_cache (periodics [HEAP0]);
2215 downheap (periodics, periodiccnt, HEAP0);
2216 }
2217 else
2218 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2219
2220 EV_FREQUENT_CHECK;
2221 feed_reverse (EV_A_ (W)w);
2222 }
2223 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2224
2225 feed_reverse_done (EV_A_ EV_PERIODIC);
2226 }
2227}
2228
2229/* simply recalculate all periodics */
2230/* TODO: maybe ensure that at least one event happens when jumping forward? */
2231static void noinline
2232periodics_reschedule (EV_P)
1060{ 2233{
1061 int i; 2234 int i;
1062 2235
2236 /* adjust periodics after time jump */
2237 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2238 {
2239 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2240
2241 if (w->reschedule_cb)
2242 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2243 else if (w->interval)
2244 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2245
2246 ANHE_at_cache (periodics [i]);
2247 }
2248
2249 reheap (periodics, periodiccnt);
2250}
2251#endif
2252
2253/* adjust all timers by a given offset */
2254static void noinline
2255timers_reschedule (EV_P_ ev_tstamp adjust)
2256{
2257 int i;
2258
2259 for (i = 0; i < timercnt; ++i)
2260 {
2261 ANHE *he = timers + i + HEAP0;
2262 ANHE_w (*he)->at += adjust;
2263 ANHE_at_cache (*he);
2264 }
2265}
2266
2267/* fetch new monotonic and realtime times from the kernel */
2268/* also detect if there was a timejump, and act accordingly */
2269inline_speed void
2270time_update (EV_P_ ev_tstamp max_block)
2271{
1063#if EV_USE_MONOTONIC 2272#if EV_USE_MONOTONIC
1064 if (expect_true (have_monotonic)) 2273 if (expect_true (have_monotonic))
1065 { 2274 {
1066 if (time_update_monotonic (EV_A)) 2275 int i;
2276 ev_tstamp odiff = rtmn_diff;
2277
2278 mn_now = get_clock ();
2279
2280 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2281 /* interpolate in the meantime */
2282 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1067 { 2283 {
1068 ev_tstamp odiff = rtmn_diff; 2284 ev_rt_now = rtmn_diff + mn_now;
2285 return;
2286 }
1069 2287
2288 now_floor = mn_now;
2289 ev_rt_now = ev_time ();
2290
1070 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2291 /* loop a few times, before making important decisions.
2292 * on the choice of "4": one iteration isn't enough,
2293 * in case we get preempted during the calls to
2294 * ev_time and get_clock. a second call is almost guaranteed
2295 * to succeed in that case, though. and looping a few more times
2296 * doesn't hurt either as we only do this on time-jumps or
2297 * in the unlikely event of having been preempted here.
2298 */
2299 for (i = 4; --i; )
1071 { 2300 {
1072 rtmn_diff = rt_now - mn_now; 2301 rtmn_diff = ev_rt_now - mn_now;
1073 2302
1074 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2303 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1075 return; /* all is well */ 2304 return; /* all is well */
1076 2305
1077 rt_now = ev_time (); 2306 ev_rt_now = ev_time ();
1078 mn_now = get_clock (); 2307 mn_now = get_clock ();
1079 now_floor = mn_now; 2308 now_floor = mn_now;
1080 } 2309 }
1081 2310
2311 /* no timer adjustment, as the monotonic clock doesn't jump */
2312 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2313# if EV_PERIODIC_ENABLE
2314 periodics_reschedule (EV_A);
2315# endif
2316 }
2317 else
2318#endif
2319 {
2320 ev_rt_now = ev_time ();
2321
2322 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2323 {
2324 /* adjust timers. this is easy, as the offset is the same for all of them */
2325 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2326#if EV_PERIODIC_ENABLE
1082 periodics_reschedule (EV_A); 2327 periodics_reschedule (EV_A);
1083 /* no timer adjustment, as the monotonic clock doesn't jump */ 2328#endif
1084 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1085 } 2329 }
1086 }
1087 else
1088#endif
1089 {
1090 rt_now = ev_time ();
1091 2330
1092 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1093 {
1094 periodics_reschedule (EV_A);
1095
1096 /* adjust timers. this is easy, as the offset is the same for all */
1097 for (i = 0; i < timercnt; ++i)
1098 ((WT)timers [i])->at += rt_now - mn_now;
1099 }
1100
1101 mn_now = rt_now; 2331 mn_now = ev_rt_now;
1102 } 2332 }
1103} 2333}
1104 2334
1105void 2335void
1106ev_ref (EV_P)
1107{
1108 ++activecnt;
1109}
1110
1111void
1112ev_unref (EV_P)
1113{
1114 --activecnt;
1115}
1116
1117static int loop_done;
1118
1119void
1120ev_loop (EV_P_ int flags) 2336ev_run (EV_P_ int flags)
1121{ 2337{
1122 double block; 2338#if EV_FEATURE_API
1123 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2339 ++loop_depth;
2340#endif
2341
2342 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2343
2344 loop_done = EVBREAK_CANCEL;
2345
2346 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1124 2347
1125 do 2348 do
1126 { 2349 {
2350#if EV_VERIFY >= 2
2351 ev_verify (EV_A);
2352#endif
2353
2354#ifndef _WIN32
2355 if (expect_false (curpid)) /* penalise the forking check even more */
2356 if (expect_false (getpid () != curpid))
2357 {
2358 curpid = getpid ();
2359 postfork = 1;
2360 }
2361#endif
2362
2363#if EV_FORK_ENABLE
2364 /* we might have forked, so queue fork handlers */
2365 if (expect_false (postfork))
2366 if (forkcnt)
2367 {
2368 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2369 EV_INVOKE_PENDING;
2370 }
2371#endif
2372
2373#if EV_PREPARE_ENABLE
1127 /* queue check watchers (and execute them) */ 2374 /* queue prepare watchers (and execute them) */
1128 if (expect_false (preparecnt)) 2375 if (expect_false (preparecnt))
1129 { 2376 {
1130 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2377 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1131 call_pending (EV_A); 2378 EV_INVOKE_PENDING;
1132 } 2379 }
2380#endif
2381
2382 if (expect_false (loop_done))
2383 break;
1133 2384
1134 /* we might have forked, so reify kernel state if necessary */ 2385 /* we might have forked, so reify kernel state if necessary */
1135 if (expect_false (postfork)) 2386 if (expect_false (postfork))
1136 loop_fork (EV_A); 2387 loop_fork (EV_A);
1137 2388
1138 /* update fd-related kernel structures */ 2389 /* update fd-related kernel structures */
1139 fd_reify (EV_A); 2390 fd_reify (EV_A);
1140 2391
1141 /* calculate blocking time */ 2392 /* calculate blocking time */
2393 {
2394 ev_tstamp waittime = 0.;
2395 ev_tstamp sleeptime = 0.;
1142 2396
1143 /* we only need this for !monotonic clockor timers, but as we basically 2397 /* remember old timestamp for io_blocktime calculation */
1144 always have timers, we just calculate it always */ 2398 ev_tstamp prev_mn_now = mn_now;
1145#if EV_USE_MONOTONIC 2399
1146 if (expect_true (have_monotonic)) 2400 /* update time to cancel out callback processing overhead */
1147 time_update_monotonic (EV_A); 2401 time_update (EV_A_ 1e100);
1148 else 2402
1149#endif 2403 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1150 { 2404 {
1151 rt_now = ev_time ();
1152 mn_now = rt_now;
1153 }
1154
1155 if (flags & EVLOOP_NONBLOCK || idlecnt)
1156 block = 0.;
1157 else
1158 {
1159 block = MAX_BLOCKTIME; 2405 waittime = MAX_BLOCKTIME;
1160 2406
1161 if (timercnt) 2407 if (timercnt)
1162 { 2408 {
1163 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2409 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1164 if (block > to) block = to; 2410 if (waittime > to) waittime = to;
1165 } 2411 }
1166 2412
2413#if EV_PERIODIC_ENABLE
1167 if (periodiccnt) 2414 if (periodiccnt)
1168 { 2415 {
1169 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2416 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1170 if (block > to) block = to; 2417 if (waittime > to) waittime = to;
1171 } 2418 }
2419#endif
1172 2420
1173 if (block < 0.) block = 0.; 2421 /* don't let timeouts decrease the waittime below timeout_blocktime */
2422 if (expect_false (waittime < timeout_blocktime))
2423 waittime = timeout_blocktime;
2424
2425 /* extra check because io_blocktime is commonly 0 */
2426 if (expect_false (io_blocktime))
2427 {
2428 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2429
2430 if (sleeptime > waittime - backend_fudge)
2431 sleeptime = waittime - backend_fudge;
2432
2433 if (expect_true (sleeptime > 0.))
2434 {
2435 ev_sleep (sleeptime);
2436 waittime -= sleeptime;
2437 }
2438 }
1174 } 2439 }
1175 2440
1176 method_poll (EV_A_ block); 2441#if EV_FEATURE_API
2442 ++loop_count;
2443#endif
2444 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2445 backend_poll (EV_A_ waittime);
2446 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1177 2447
1178 /* update rt_now, do magic */ 2448 /* update ev_rt_now, do magic */
1179 time_update (EV_A); 2449 time_update (EV_A_ waittime + sleeptime);
2450 }
1180 2451
1181 /* queue pending timers and reschedule them */ 2452 /* queue pending timers and reschedule them */
1182 timers_reify (EV_A); /* relative timers called last */ 2453 timers_reify (EV_A); /* relative timers called last */
2454#if EV_PERIODIC_ENABLE
1183 periodics_reify (EV_A); /* absolute timers called first */ 2455 periodics_reify (EV_A); /* absolute timers called first */
2456#endif
1184 2457
2458#if EV_IDLE_ENABLE
1185 /* queue idle watchers unless io or timers are pending */ 2459 /* queue idle watchers unless other events are pending */
1186 if (!pendingcnt) 2460 idle_reify (EV_A);
1187 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2461#endif
1188 2462
2463#if EV_CHECK_ENABLE
1189 /* queue check watchers, to be executed first */ 2464 /* queue check watchers, to be executed first */
1190 if (checkcnt) 2465 if (expect_false (checkcnt))
1191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2466 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2467#endif
1192 2468
1193 call_pending (EV_A); 2469 EV_INVOKE_PENDING;
1194 } 2470 }
1195 while (activecnt && !loop_done); 2471 while (expect_true (
2472 activecnt
2473 && !loop_done
2474 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2475 ));
1196 2476
1197 if (loop_done != 2) 2477 if (loop_done == EVBREAK_ONE)
1198 loop_done = 0; 2478 loop_done = EVBREAK_CANCEL;
1199}
1200 2479
2480#if EV_FEATURE_API
2481 --loop_depth;
2482#endif
2483}
2484
1201void 2485void
1202ev_unloop (EV_P_ int how) 2486ev_break (EV_P_ int how)
1203{ 2487{
1204 loop_done = how; 2488 loop_done = how;
1205} 2489}
1206 2490
2491void
2492ev_ref (EV_P)
2493{
2494 ++activecnt;
2495}
2496
2497void
2498ev_unref (EV_P)
2499{
2500 --activecnt;
2501}
2502
2503void
2504ev_now_update (EV_P)
2505{
2506 time_update (EV_A_ 1e100);
2507}
2508
2509void
2510ev_suspend (EV_P)
2511{
2512 ev_now_update (EV_A);
2513}
2514
2515void
2516ev_resume (EV_P)
2517{
2518 ev_tstamp mn_prev = mn_now;
2519
2520 ev_now_update (EV_A);
2521 timers_reschedule (EV_A_ mn_now - mn_prev);
2522#if EV_PERIODIC_ENABLE
2523 /* TODO: really do this? */
2524 periodics_reschedule (EV_A);
2525#endif
2526}
2527
1207/*****************************************************************************/ 2528/*****************************************************************************/
2529/* singly-linked list management, used when the expected list length is short */
1208 2530
1209inline void 2531inline_size void
1210wlist_add (WL *head, WL elem) 2532wlist_add (WL *head, WL elem)
1211{ 2533{
1212 elem->next = *head; 2534 elem->next = *head;
1213 *head = elem; 2535 *head = elem;
1214} 2536}
1215 2537
1216inline void 2538inline_size void
1217wlist_del (WL *head, WL elem) 2539wlist_del (WL *head, WL elem)
1218{ 2540{
1219 while (*head) 2541 while (*head)
1220 { 2542 {
1221 if (*head == elem) 2543 if (expect_true (*head == elem))
1222 { 2544 {
1223 *head = elem->next; 2545 *head = elem->next;
1224 return; 2546 break;
1225 } 2547 }
1226 2548
1227 head = &(*head)->next; 2549 head = &(*head)->next;
1228 } 2550 }
1229} 2551}
1230 2552
2553/* internal, faster, version of ev_clear_pending */
1231inline void 2554inline_speed void
1232ev_clear_pending (EV_P_ W w) 2555clear_pending (EV_P_ W w)
1233{ 2556{
1234 if (w->pending) 2557 if (w->pending)
1235 { 2558 {
1236 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2559 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1237 w->pending = 0; 2560 w->pending = 0;
1238 } 2561 }
1239} 2562}
1240 2563
2564int
2565ev_clear_pending (EV_P_ void *w)
2566{
2567 W w_ = (W)w;
2568 int pending = w_->pending;
2569
2570 if (expect_true (pending))
2571 {
2572 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2573 p->w = (W)&pending_w;
2574 w_->pending = 0;
2575 return p->events;
2576 }
2577 else
2578 return 0;
2579}
2580
1241inline void 2581inline_size void
2582pri_adjust (EV_P_ W w)
2583{
2584 int pri = ev_priority (w);
2585 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2586 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2587 ev_set_priority (w, pri);
2588}
2589
2590inline_speed void
1242ev_start (EV_P_ W w, int active) 2591ev_start (EV_P_ W w, int active)
1243{ 2592{
1244 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2593 pri_adjust (EV_A_ w);
1245 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1246
1247 w->active = active; 2594 w->active = active;
1248 ev_ref (EV_A); 2595 ev_ref (EV_A);
1249} 2596}
1250 2597
1251inline void 2598inline_size void
1252ev_stop (EV_P_ W w) 2599ev_stop (EV_P_ W w)
1253{ 2600{
1254 ev_unref (EV_A); 2601 ev_unref (EV_A);
1255 w->active = 0; 2602 w->active = 0;
1256} 2603}
1257 2604
1258/*****************************************************************************/ 2605/*****************************************************************************/
1259 2606
1260void 2607void noinline
1261ev_io_start (EV_P_ struct ev_io *w) 2608ev_io_start (EV_P_ ev_io *w)
1262{ 2609{
1263 int fd = w->fd; 2610 int fd = w->fd;
1264 2611
1265 if (ev_is_active (w)) 2612 if (expect_false (ev_is_active (w)))
1266 return; 2613 return;
1267 2614
1268 assert (("ev_io_start called with negative fd", fd >= 0)); 2615 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2616 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2617
2618 EV_FREQUENT_CHECK;
1269 2619
1270 ev_start (EV_A_ (W)w, 1); 2620 ev_start (EV_A_ (W)w, 1);
1271 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2621 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1272 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2622 wlist_add (&anfds[fd].head, (WL)w);
1273 2623
1274 fd_change (EV_A_ fd); 2624 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1275} 2625 w->events &= ~EV__IOFDSET;
1276 2626
1277void 2627 EV_FREQUENT_CHECK;
2628}
2629
2630void noinline
1278ev_io_stop (EV_P_ struct ev_io *w) 2631ev_io_stop (EV_P_ ev_io *w)
1279{ 2632{
1280 ev_clear_pending (EV_A_ (W)w); 2633 clear_pending (EV_A_ (W)w);
1281 if (!ev_is_active (w)) 2634 if (expect_false (!ev_is_active (w)))
1282 return; 2635 return;
1283 2636
2637 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2638
2639 EV_FREQUENT_CHECK;
2640
1284 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2641 wlist_del (&anfds[w->fd].head, (WL)w);
1285 ev_stop (EV_A_ (W)w); 2642 ev_stop (EV_A_ (W)w);
1286 2643
1287 fd_change (EV_A_ w->fd); 2644 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1288}
1289 2645
1290void 2646 EV_FREQUENT_CHECK;
2647}
2648
2649void noinline
1291ev_timer_start (EV_P_ struct ev_timer *w) 2650ev_timer_start (EV_P_ ev_timer *w)
1292{ 2651{
1293 if (ev_is_active (w)) 2652 if (expect_false (ev_is_active (w)))
1294 return; 2653 return;
1295 2654
1296 ((WT)w)->at += mn_now; 2655 ev_at (w) += mn_now;
1297 2656
1298 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2657 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1299 2658
2659 EV_FREQUENT_CHECK;
2660
2661 ++timercnt;
1300 ev_start (EV_A_ (W)w, ++timercnt); 2662 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1301 array_needsize (timers, timermax, timercnt, (void)); 2663 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1302 timers [timercnt - 1] = w; 2664 ANHE_w (timers [ev_active (w)]) = (WT)w;
1303 upheap ((WT *)timers, timercnt - 1); 2665 ANHE_at_cache (timers [ev_active (w)]);
2666 upheap (timers, ev_active (w));
1304 2667
2668 EV_FREQUENT_CHECK;
2669
1305 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2670 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1306} 2671}
1307 2672
1308void 2673void noinline
1309ev_timer_stop (EV_P_ struct ev_timer *w) 2674ev_timer_stop (EV_P_ ev_timer *w)
1310{ 2675{
1311 ev_clear_pending (EV_A_ (W)w); 2676 clear_pending (EV_A_ (W)w);
1312 if (!ev_is_active (w)) 2677 if (expect_false (!ev_is_active (w)))
1313 return; 2678 return;
1314 2679
2680 EV_FREQUENT_CHECK;
2681
2682 {
2683 int active = ev_active (w);
2684
1315 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2685 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1316 2686
1317 if (((W)w)->active < timercnt--) 2687 --timercnt;
2688
2689 if (expect_true (active < timercnt + HEAP0))
1318 { 2690 {
1319 timers [((W)w)->active - 1] = timers [timercnt]; 2691 timers [active] = timers [timercnt + HEAP0];
1320 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2692 adjustheap (timers, timercnt, active);
1321 } 2693 }
2694 }
1322 2695
1323 ((WT)w)->at = w->repeat; 2696 ev_at (w) -= mn_now;
1324 2697
1325 ev_stop (EV_A_ (W)w); 2698 ev_stop (EV_A_ (W)w);
1326}
1327 2699
1328void 2700 EV_FREQUENT_CHECK;
2701}
2702
2703void noinline
1329ev_timer_again (EV_P_ struct ev_timer *w) 2704ev_timer_again (EV_P_ ev_timer *w)
1330{ 2705{
2706 EV_FREQUENT_CHECK;
2707
1331 if (ev_is_active (w)) 2708 if (ev_is_active (w))
1332 { 2709 {
1333 if (w->repeat) 2710 if (w->repeat)
1334 { 2711 {
1335 ((WT)w)->at = mn_now + w->repeat; 2712 ev_at (w) = mn_now + w->repeat;
1336 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2713 ANHE_at_cache (timers [ev_active (w)]);
2714 adjustheap (timers, timercnt, ev_active (w));
1337 } 2715 }
1338 else 2716 else
1339 ev_timer_stop (EV_A_ w); 2717 ev_timer_stop (EV_A_ w);
1340 } 2718 }
1341 else if (w->repeat) 2719 else if (w->repeat)
2720 {
2721 ev_at (w) = w->repeat;
1342 ev_timer_start (EV_A_ w); 2722 ev_timer_start (EV_A_ w);
1343} 2723 }
1344 2724
1345void 2725 EV_FREQUENT_CHECK;
2726}
2727
2728ev_tstamp
2729ev_timer_remaining (EV_P_ ev_timer *w)
2730{
2731 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2732}
2733
2734#if EV_PERIODIC_ENABLE
2735void noinline
1346ev_periodic_start (EV_P_ struct ev_periodic *w) 2736ev_periodic_start (EV_P_ ev_periodic *w)
1347{ 2737{
1348 if (ev_is_active (w)) 2738 if (expect_false (ev_is_active (w)))
1349 return; 2739 return;
1350 2740
2741 if (w->reschedule_cb)
2742 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2743 else if (w->interval)
2744 {
1351 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2745 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1352
1353 /* this formula differs from the one in periodic_reify because we do not always round up */ 2746 /* this formula differs from the one in periodic_reify because we do not always round up */
1354 if (w->interval)
1355 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2747 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2748 }
2749 else
2750 ev_at (w) = w->offset;
1356 2751
2752 EV_FREQUENT_CHECK;
2753
2754 ++periodiccnt;
1357 ev_start (EV_A_ (W)w, ++periodiccnt); 2755 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1358 array_needsize (periodics, periodicmax, periodiccnt, (void)); 2756 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1359 periodics [periodiccnt - 1] = w; 2757 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1360 upheap ((WT *)periodics, periodiccnt - 1); 2758 ANHE_at_cache (periodics [ev_active (w)]);
2759 upheap (periodics, ev_active (w));
1361 2760
2761 EV_FREQUENT_CHECK;
2762
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2763 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1363} 2764}
1364 2765
1365void 2766void noinline
1366ev_periodic_stop (EV_P_ struct ev_periodic *w) 2767ev_periodic_stop (EV_P_ ev_periodic *w)
1367{ 2768{
1368 ev_clear_pending (EV_A_ (W)w); 2769 clear_pending (EV_A_ (W)w);
1369 if (!ev_is_active (w)) 2770 if (expect_false (!ev_is_active (w)))
1370 return; 2771 return;
1371 2772
2773 EV_FREQUENT_CHECK;
2774
2775 {
2776 int active = ev_active (w);
2777
1372 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2778 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1373 2779
1374 if (((W)w)->active < periodiccnt--) 2780 --periodiccnt;
2781
2782 if (expect_true (active < periodiccnt + HEAP0))
1375 { 2783 {
1376 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2784 periodics [active] = periodics [periodiccnt + HEAP0];
1377 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2785 adjustheap (periodics, periodiccnt, active);
1378 } 2786 }
2787 }
1379 2788
1380 ev_stop (EV_A_ (W)w); 2789 ev_stop (EV_A_ (W)w);
1381}
1382 2790
1383void 2791 EV_FREQUENT_CHECK;
1384ev_idle_start (EV_P_ struct ev_idle *w)
1385{
1386 if (ev_is_active (w))
1387 return;
1388
1389 ev_start (EV_A_ (W)w, ++idlecnt);
1390 array_needsize (idles, idlemax, idlecnt, (void));
1391 idles [idlecnt - 1] = w;
1392} 2792}
1393 2793
1394void 2794void noinline
1395ev_idle_stop (EV_P_ struct ev_idle *w) 2795ev_periodic_again (EV_P_ ev_periodic *w)
1396{ 2796{
1397 ev_clear_pending (EV_A_ (W)w); 2797 /* TODO: use adjustheap and recalculation */
1398 if (ev_is_active (w))
1399 return;
1400
1401 idles [((W)w)->active - 1] = idles [--idlecnt];
1402 ev_stop (EV_A_ (W)w); 2798 ev_periodic_stop (EV_A_ w);
2799 ev_periodic_start (EV_A_ w);
1403} 2800}
1404 2801#endif
1405void
1406ev_prepare_start (EV_P_ struct ev_prepare *w)
1407{
1408 if (ev_is_active (w))
1409 return;
1410
1411 ev_start (EV_A_ (W)w, ++preparecnt);
1412 array_needsize (prepares, preparemax, preparecnt, (void));
1413 prepares [preparecnt - 1] = w;
1414}
1415
1416void
1417ev_prepare_stop (EV_P_ struct ev_prepare *w)
1418{
1419 ev_clear_pending (EV_A_ (W)w);
1420 if (ev_is_active (w))
1421 return;
1422
1423 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1424 ev_stop (EV_A_ (W)w);
1425}
1426
1427void
1428ev_check_start (EV_P_ struct ev_check *w)
1429{
1430 if (ev_is_active (w))
1431 return;
1432
1433 ev_start (EV_A_ (W)w, ++checkcnt);
1434 array_needsize (checks, checkmax, checkcnt, (void));
1435 checks [checkcnt - 1] = w;
1436}
1437
1438void
1439ev_check_stop (EV_P_ struct ev_check *w)
1440{
1441 ev_clear_pending (EV_A_ (W)w);
1442 if (ev_is_active (w))
1443 return;
1444
1445 checks [((W)w)->active - 1] = checks [--checkcnt];
1446 ev_stop (EV_A_ (W)w);
1447}
1448 2802
1449#ifndef SA_RESTART 2803#ifndef SA_RESTART
1450# define SA_RESTART 0 2804# define SA_RESTART 0
1451#endif 2805#endif
1452 2806
1453void 2807#if EV_SIGNAL_ENABLE
2808
2809void noinline
1454ev_signal_start (EV_P_ struct ev_signal *w) 2810ev_signal_start (EV_P_ ev_signal *w)
1455{ 2811{
2812 if (expect_false (ev_is_active (w)))
2813 return;
2814
2815 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2816
1456#if EV_MULTIPLICITY 2817#if EV_MULTIPLICITY
1457 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2818 assert (("libev: a signal must not be attached to two different loops",
2819 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2820
2821 signals [w->signum - 1].loop = EV_A;
2822#endif
2823
2824 EV_FREQUENT_CHECK;
2825
2826#if EV_USE_SIGNALFD
2827 if (sigfd == -2)
2828 {
2829 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2830 if (sigfd < 0 && errno == EINVAL)
2831 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2832
2833 if (sigfd >= 0)
2834 {
2835 fd_intern (sigfd); /* doing it twice will not hurt */
2836
2837 sigemptyset (&sigfd_set);
2838
2839 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2840 ev_set_priority (&sigfd_w, EV_MAXPRI);
2841 ev_io_start (EV_A_ &sigfd_w);
2842 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2843 }
2844 }
2845
2846 if (sigfd >= 0)
2847 {
2848 /* TODO: check .head */
2849 sigaddset (&sigfd_set, w->signum);
2850 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2851
2852 signalfd (sigfd, &sigfd_set, 0);
2853 }
2854#endif
2855
2856 ev_start (EV_A_ (W)w, 1);
2857 wlist_add (&signals [w->signum - 1].head, (WL)w);
2858
2859 if (!((WL)w)->next)
2860# if EV_USE_SIGNALFD
2861 if (sigfd < 0) /*TODO*/
1458#endif 2862# endif
1459 if (ev_is_active (w)) 2863 {
2864# ifdef _WIN32
2865 evpipe_init (EV_A);
2866
2867 signal (w->signum, ev_sighandler);
2868# else
2869 struct sigaction sa;
2870
2871 evpipe_init (EV_A);
2872
2873 sa.sa_handler = ev_sighandler;
2874 sigfillset (&sa.sa_mask);
2875 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2876 sigaction (w->signum, &sa, 0);
2877
2878 sigemptyset (&sa.sa_mask);
2879 sigaddset (&sa.sa_mask, w->signum);
2880 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2881#endif
2882 }
2883
2884 EV_FREQUENT_CHECK;
2885}
2886
2887void noinline
2888ev_signal_stop (EV_P_ ev_signal *w)
2889{
2890 clear_pending (EV_A_ (W)w);
2891 if (expect_false (!ev_is_active (w)))
1460 return; 2892 return;
1461 2893
1462 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2894 EV_FREQUENT_CHECK;
2895
2896 wlist_del (&signals [w->signum - 1].head, (WL)w);
2897 ev_stop (EV_A_ (W)w);
2898
2899 if (!signals [w->signum - 1].head)
2900 {
2901#if EV_MULTIPLICITY
2902 signals [w->signum - 1].loop = 0; /* unattach from signal */
2903#endif
2904#if EV_USE_SIGNALFD
2905 if (sigfd >= 0)
2906 {
2907 sigset_t ss;
2908
2909 sigemptyset (&ss);
2910 sigaddset (&ss, w->signum);
2911 sigdelset (&sigfd_set, w->signum);
2912
2913 signalfd (sigfd, &sigfd_set, 0);
2914 sigprocmask (SIG_UNBLOCK, &ss, 0);
2915 }
2916 else
2917#endif
2918 signal (w->signum, SIG_DFL);
2919 }
2920
2921 EV_FREQUENT_CHECK;
2922}
2923
2924#endif
2925
2926#if EV_CHILD_ENABLE
2927
2928void
2929ev_child_start (EV_P_ ev_child *w)
2930{
2931#if EV_MULTIPLICITY
2932 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2933#endif
2934 if (expect_false (ev_is_active (w)))
2935 return;
2936
2937 EV_FREQUENT_CHECK;
1463 2938
1464 ev_start (EV_A_ (W)w, 1); 2939 ev_start (EV_A_ (W)w, 1);
1465 array_needsize (signals, signalmax, w->signum, signals_init); 2940 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1466 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1467 2941
1468 if (!((WL)w)->next) 2942 EV_FREQUENT_CHECK;
2943}
2944
2945void
2946ev_child_stop (EV_P_ ev_child *w)
2947{
2948 clear_pending (EV_A_ (W)w);
2949 if (expect_false (!ev_is_active (w)))
2950 return;
2951
2952 EV_FREQUENT_CHECK;
2953
2954 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2955 ev_stop (EV_A_ (W)w);
2956
2957 EV_FREQUENT_CHECK;
2958}
2959
2960#endif
2961
2962#if EV_STAT_ENABLE
2963
2964# ifdef _WIN32
2965# undef lstat
2966# define lstat(a,b) _stati64 (a,b)
2967# endif
2968
2969#define DEF_STAT_INTERVAL 5.0074891
2970#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2971#define MIN_STAT_INTERVAL 0.1074891
2972
2973static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2974
2975#if EV_USE_INOTIFY
2976
2977/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2978# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2979
2980static void noinline
2981infy_add (EV_P_ ev_stat *w)
2982{
2983 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2984
2985 if (w->wd >= 0)
2986 {
2987 struct statfs sfs;
2988
2989 /* now local changes will be tracked by inotify, but remote changes won't */
2990 /* unless the filesystem is known to be local, we therefore still poll */
2991 /* also do poll on <2.6.25, but with normal frequency */
2992
2993 if (!fs_2625)
2994 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2995 else if (!statfs (w->path, &sfs)
2996 && (sfs.f_type == 0x1373 /* devfs */
2997 || sfs.f_type == 0xEF53 /* ext2/3 */
2998 || sfs.f_type == 0x3153464a /* jfs */
2999 || sfs.f_type == 0x52654973 /* reiser3 */
3000 || sfs.f_type == 0x01021994 /* tempfs */
3001 || sfs.f_type == 0x58465342 /* xfs */))
3002 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3003 else
3004 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1469 { 3005 }
1470#if WIN32 3006 else
1471 signal (w->signum, sighandler); 3007 {
3008 /* can't use inotify, continue to stat */
3009 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3010
3011 /* if path is not there, monitor some parent directory for speedup hints */
3012 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3013 /* but an efficiency issue only */
3014 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3015 {
3016 char path [4096];
3017 strcpy (path, w->path);
3018
3019 do
3020 {
3021 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3022 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3023
3024 char *pend = strrchr (path, '/');
3025
3026 if (!pend || pend == path)
3027 break;
3028
3029 *pend = 0;
3030 w->wd = inotify_add_watch (fs_fd, path, mask);
3031 }
3032 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3033 }
3034 }
3035
3036 if (w->wd >= 0)
3037 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3038
3039 /* now re-arm timer, if required */
3040 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3041 ev_timer_again (EV_A_ &w->timer);
3042 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3043}
3044
3045static void noinline
3046infy_del (EV_P_ ev_stat *w)
3047{
3048 int slot;
3049 int wd = w->wd;
3050
3051 if (wd < 0)
3052 return;
3053
3054 w->wd = -2;
3055 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3056 wlist_del (&fs_hash [slot].head, (WL)w);
3057
3058 /* remove this watcher, if others are watching it, they will rearm */
3059 inotify_rm_watch (fs_fd, wd);
3060}
3061
3062static void noinline
3063infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3064{
3065 if (slot < 0)
3066 /* overflow, need to check for all hash slots */
3067 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3068 infy_wd (EV_A_ slot, wd, ev);
3069 else
3070 {
3071 WL w_;
3072
3073 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3074 {
3075 ev_stat *w = (ev_stat *)w_;
3076 w_ = w_->next; /* lets us remove this watcher and all before it */
3077
3078 if (w->wd == wd || wd == -1)
3079 {
3080 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3081 {
3082 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3083 w->wd = -1;
3084 infy_add (EV_A_ w); /* re-add, no matter what */
3085 }
3086
3087 stat_timer_cb (EV_A_ &w->timer, 0);
3088 }
3089 }
3090 }
3091}
3092
3093static void
3094infy_cb (EV_P_ ev_io *w, int revents)
3095{
3096 char buf [EV_INOTIFY_BUFSIZE];
3097 int ofs;
3098 int len = read (fs_fd, buf, sizeof (buf));
3099
3100 for (ofs = 0; ofs < len; )
3101 {
3102 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3103 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3104 ofs += sizeof (struct inotify_event) + ev->len;
3105 }
3106}
3107
3108inline_size void
3109ev_check_2625 (EV_P)
3110{
3111 /* kernels < 2.6.25 are borked
3112 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3113 */
3114 if (ev_linux_version () < 0x020619)
3115 return;
3116
3117 fs_2625 = 1;
3118}
3119
3120inline_size int
3121infy_newfd (void)
3122{
3123#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3124 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3125 if (fd >= 0)
3126 return fd;
3127#endif
3128 return inotify_init ();
3129}
3130
3131inline_size void
3132infy_init (EV_P)
3133{
3134 if (fs_fd != -2)
3135 return;
3136
3137 fs_fd = -1;
3138
3139 ev_check_2625 (EV_A);
3140
3141 fs_fd = infy_newfd ();
3142
3143 if (fs_fd >= 0)
3144 {
3145 fd_intern (fs_fd);
3146 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3147 ev_set_priority (&fs_w, EV_MAXPRI);
3148 ev_io_start (EV_A_ &fs_w);
3149 ev_unref (EV_A);
3150 }
3151}
3152
3153inline_size void
3154infy_fork (EV_P)
3155{
3156 int slot;
3157
3158 if (fs_fd < 0)
3159 return;
3160
3161 ev_ref (EV_A);
3162 ev_io_stop (EV_A_ &fs_w);
3163 close (fs_fd);
3164 fs_fd = infy_newfd ();
3165
3166 if (fs_fd >= 0)
3167 {
3168 fd_intern (fs_fd);
3169 ev_io_set (&fs_w, fs_fd, EV_READ);
3170 ev_io_start (EV_A_ &fs_w);
3171 ev_unref (EV_A);
3172 }
3173
3174 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3175 {
3176 WL w_ = fs_hash [slot].head;
3177 fs_hash [slot].head = 0;
3178
3179 while (w_)
3180 {
3181 ev_stat *w = (ev_stat *)w_;
3182 w_ = w_->next; /* lets us add this watcher */
3183
3184 w->wd = -1;
3185
3186 if (fs_fd >= 0)
3187 infy_add (EV_A_ w); /* re-add, no matter what */
3188 else
3189 {
3190 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3191 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3192 ev_timer_again (EV_A_ &w->timer);
3193 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3194 }
3195 }
3196 }
3197}
3198
3199#endif
3200
3201#ifdef _WIN32
3202# define EV_LSTAT(p,b) _stati64 (p, b)
1472#else 3203#else
1473 struct sigaction sa; 3204# define EV_LSTAT(p,b) lstat (p, b)
1474 sa.sa_handler = sighandler;
1475 sigfillset (&sa.sa_mask);
1476 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1477 sigaction (w->signum, &sa, 0);
1478#endif 3205#endif
1479 }
1480}
1481 3206
1482void 3207void
1483ev_signal_stop (EV_P_ struct ev_signal *w) 3208ev_stat_stat (EV_P_ ev_stat *w)
1484{ 3209{
1485 ev_clear_pending (EV_A_ (W)w); 3210 if (lstat (w->path, &w->attr) < 0)
1486 if (!ev_is_active (w)) 3211 w->attr.st_nlink = 0;
3212 else if (!w->attr.st_nlink)
3213 w->attr.st_nlink = 1;
3214}
3215
3216static void noinline
3217stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3218{
3219 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3220
3221 ev_statdata prev = w->attr;
3222 ev_stat_stat (EV_A_ w);
3223
3224 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3225 if (
3226 prev.st_dev != w->attr.st_dev
3227 || prev.st_ino != w->attr.st_ino
3228 || prev.st_mode != w->attr.st_mode
3229 || prev.st_nlink != w->attr.st_nlink
3230 || prev.st_uid != w->attr.st_uid
3231 || prev.st_gid != w->attr.st_gid
3232 || prev.st_rdev != w->attr.st_rdev
3233 || prev.st_size != w->attr.st_size
3234 || prev.st_atime != w->attr.st_atime
3235 || prev.st_mtime != w->attr.st_mtime
3236 || prev.st_ctime != w->attr.st_ctime
3237 ) {
3238 /* we only update w->prev on actual differences */
3239 /* in case we test more often than invoke the callback, */
3240 /* to ensure that prev is always different to attr */
3241 w->prev = prev;
3242
3243 #if EV_USE_INOTIFY
3244 if (fs_fd >= 0)
3245 {
3246 infy_del (EV_A_ w);
3247 infy_add (EV_A_ w);
3248 ev_stat_stat (EV_A_ w); /* avoid race... */
3249 }
3250 #endif
3251
3252 ev_feed_event (EV_A_ w, EV_STAT);
3253 }
3254}
3255
3256void
3257ev_stat_start (EV_P_ ev_stat *w)
3258{
3259 if (expect_false (ev_is_active (w)))
1487 return; 3260 return;
1488 3261
1489 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3262 ev_stat_stat (EV_A_ w);
3263
3264 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3265 w->interval = MIN_STAT_INTERVAL;
3266
3267 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3268 ev_set_priority (&w->timer, ev_priority (w));
3269
3270#if EV_USE_INOTIFY
3271 infy_init (EV_A);
3272
3273 if (fs_fd >= 0)
3274 infy_add (EV_A_ w);
3275 else
3276#endif
3277 {
3278 ev_timer_again (EV_A_ &w->timer);
3279 ev_unref (EV_A);
3280 }
3281
3282 ev_start (EV_A_ (W)w, 1);
3283
3284 EV_FREQUENT_CHECK;
3285}
3286
3287void
3288ev_stat_stop (EV_P_ ev_stat *w)
3289{
3290 clear_pending (EV_A_ (W)w);
3291 if (expect_false (!ev_is_active (w)))
3292 return;
3293
3294 EV_FREQUENT_CHECK;
3295
3296#if EV_USE_INOTIFY
3297 infy_del (EV_A_ w);
3298#endif
3299
3300 if (ev_is_active (&w->timer))
3301 {
3302 ev_ref (EV_A);
3303 ev_timer_stop (EV_A_ &w->timer);
3304 }
3305
1490 ev_stop (EV_A_ (W)w); 3306 ev_stop (EV_A_ (W)w);
1491 3307
1492 if (!signals [w->signum - 1].head) 3308 EV_FREQUENT_CHECK;
1493 signal (w->signum, SIG_DFL);
1494} 3309}
3310#endif
1495 3311
3312#if EV_IDLE_ENABLE
1496void 3313void
1497ev_child_start (EV_P_ struct ev_child *w) 3314ev_idle_start (EV_P_ ev_idle *w)
1498{ 3315{
1499#if EV_MULTIPLICITY
1500 assert (("child watchers are only supported in the default loop", loop == default_loop));
1501#endif
1502 if (ev_is_active (w)) 3316 if (expect_false (ev_is_active (w)))
1503 return; 3317 return;
1504 3318
3319 pri_adjust (EV_A_ (W)w);
3320
3321 EV_FREQUENT_CHECK;
3322
3323 {
3324 int active = ++idlecnt [ABSPRI (w)];
3325
3326 ++idleall;
3327 ev_start (EV_A_ (W)w, active);
3328
3329 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3330 idles [ABSPRI (w)][active - 1] = w;
3331 }
3332
3333 EV_FREQUENT_CHECK;
3334}
3335
3336void
3337ev_idle_stop (EV_P_ ev_idle *w)
3338{
3339 clear_pending (EV_A_ (W)w);
3340 if (expect_false (!ev_is_active (w)))
3341 return;
3342
3343 EV_FREQUENT_CHECK;
3344
3345 {
3346 int active = ev_active (w);
3347
3348 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3349 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3350
3351 ev_stop (EV_A_ (W)w);
3352 --idleall;
3353 }
3354
3355 EV_FREQUENT_CHECK;
3356}
3357#endif
3358
3359#if EV_PREPARE_ENABLE
3360void
3361ev_prepare_start (EV_P_ ev_prepare *w)
3362{
3363 if (expect_false (ev_is_active (w)))
3364 return;
3365
3366 EV_FREQUENT_CHECK;
3367
3368 ev_start (EV_A_ (W)w, ++preparecnt);
3369 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3370 prepares [preparecnt - 1] = w;
3371
3372 EV_FREQUENT_CHECK;
3373}
3374
3375void
3376ev_prepare_stop (EV_P_ ev_prepare *w)
3377{
3378 clear_pending (EV_A_ (W)w);
3379 if (expect_false (!ev_is_active (w)))
3380 return;
3381
3382 EV_FREQUENT_CHECK;
3383
3384 {
3385 int active = ev_active (w);
3386
3387 prepares [active - 1] = prepares [--preparecnt];
3388 ev_active (prepares [active - 1]) = active;
3389 }
3390
3391 ev_stop (EV_A_ (W)w);
3392
3393 EV_FREQUENT_CHECK;
3394}
3395#endif
3396
3397#if EV_CHECK_ENABLE
3398void
3399ev_check_start (EV_P_ ev_check *w)
3400{
3401 if (expect_false (ev_is_active (w)))
3402 return;
3403
3404 EV_FREQUENT_CHECK;
3405
3406 ev_start (EV_A_ (W)w, ++checkcnt);
3407 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3408 checks [checkcnt - 1] = w;
3409
3410 EV_FREQUENT_CHECK;
3411}
3412
3413void
3414ev_check_stop (EV_P_ ev_check *w)
3415{
3416 clear_pending (EV_A_ (W)w);
3417 if (expect_false (!ev_is_active (w)))
3418 return;
3419
3420 EV_FREQUENT_CHECK;
3421
3422 {
3423 int active = ev_active (w);
3424
3425 checks [active - 1] = checks [--checkcnt];
3426 ev_active (checks [active - 1]) = active;
3427 }
3428
3429 ev_stop (EV_A_ (W)w);
3430
3431 EV_FREQUENT_CHECK;
3432}
3433#endif
3434
3435#if EV_EMBED_ENABLE
3436void noinline
3437ev_embed_sweep (EV_P_ ev_embed *w)
3438{
3439 ev_run (w->other, EVRUN_NOWAIT);
3440}
3441
3442static void
3443embed_io_cb (EV_P_ ev_io *io, int revents)
3444{
3445 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3446
3447 if (ev_cb (w))
3448 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3449 else
3450 ev_run (w->other, EVRUN_NOWAIT);
3451}
3452
3453static void
3454embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3455{
3456 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3457
3458 {
3459 EV_P = w->other;
3460
3461 while (fdchangecnt)
3462 {
3463 fd_reify (EV_A);
3464 ev_run (EV_A_ EVRUN_NOWAIT);
3465 }
3466 }
3467}
3468
3469static void
3470embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3471{
3472 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3473
3474 ev_embed_stop (EV_A_ w);
3475
3476 {
3477 EV_P = w->other;
3478
3479 ev_loop_fork (EV_A);
3480 ev_run (EV_A_ EVRUN_NOWAIT);
3481 }
3482
3483 ev_embed_start (EV_A_ w);
3484}
3485
3486#if 0
3487static void
3488embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3489{
3490 ev_idle_stop (EV_A_ idle);
3491}
3492#endif
3493
3494void
3495ev_embed_start (EV_P_ ev_embed *w)
3496{
3497 if (expect_false (ev_is_active (w)))
3498 return;
3499
3500 {
3501 EV_P = w->other;
3502 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3503 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3504 }
3505
3506 EV_FREQUENT_CHECK;
3507
3508 ev_set_priority (&w->io, ev_priority (w));
3509 ev_io_start (EV_A_ &w->io);
3510
3511 ev_prepare_init (&w->prepare, embed_prepare_cb);
3512 ev_set_priority (&w->prepare, EV_MINPRI);
3513 ev_prepare_start (EV_A_ &w->prepare);
3514
3515 ev_fork_init (&w->fork, embed_fork_cb);
3516 ev_fork_start (EV_A_ &w->fork);
3517
3518 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3519
1505 ev_start (EV_A_ (W)w, 1); 3520 ev_start (EV_A_ (W)w, 1);
1506 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1507}
1508 3521
3522 EV_FREQUENT_CHECK;
3523}
3524
1509void 3525void
1510ev_child_stop (EV_P_ struct ev_child *w) 3526ev_embed_stop (EV_P_ ev_embed *w)
1511{ 3527{
1512 ev_clear_pending (EV_A_ (W)w); 3528 clear_pending (EV_A_ (W)w);
1513 if (ev_is_active (w)) 3529 if (expect_false (!ev_is_active (w)))
1514 return; 3530 return;
1515 3531
1516 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3532 EV_FREQUENT_CHECK;
3533
3534 ev_io_stop (EV_A_ &w->io);
3535 ev_prepare_stop (EV_A_ &w->prepare);
3536 ev_fork_stop (EV_A_ &w->fork);
3537
1517 ev_stop (EV_A_ (W)w); 3538 ev_stop (EV_A_ (W)w);
3539
3540 EV_FREQUENT_CHECK;
1518} 3541}
3542#endif
3543
3544#if EV_FORK_ENABLE
3545void
3546ev_fork_start (EV_P_ ev_fork *w)
3547{
3548 if (expect_false (ev_is_active (w)))
3549 return;
3550
3551 EV_FREQUENT_CHECK;
3552
3553 ev_start (EV_A_ (W)w, ++forkcnt);
3554 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3555 forks [forkcnt - 1] = w;
3556
3557 EV_FREQUENT_CHECK;
3558}
3559
3560void
3561ev_fork_stop (EV_P_ ev_fork *w)
3562{
3563 clear_pending (EV_A_ (W)w);
3564 if (expect_false (!ev_is_active (w)))
3565 return;
3566
3567 EV_FREQUENT_CHECK;
3568
3569 {
3570 int active = ev_active (w);
3571
3572 forks [active - 1] = forks [--forkcnt];
3573 ev_active (forks [active - 1]) = active;
3574 }
3575
3576 ev_stop (EV_A_ (W)w);
3577
3578 EV_FREQUENT_CHECK;
3579}
3580#endif
3581
3582#if EV_ASYNC_ENABLE
3583void
3584ev_async_start (EV_P_ ev_async *w)
3585{
3586 if (expect_false (ev_is_active (w)))
3587 return;
3588
3589 w->sent = 0;
3590
3591 evpipe_init (EV_A);
3592
3593 EV_FREQUENT_CHECK;
3594
3595 ev_start (EV_A_ (W)w, ++asynccnt);
3596 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3597 asyncs [asynccnt - 1] = w;
3598
3599 EV_FREQUENT_CHECK;
3600}
3601
3602void
3603ev_async_stop (EV_P_ ev_async *w)
3604{
3605 clear_pending (EV_A_ (W)w);
3606 if (expect_false (!ev_is_active (w)))
3607 return;
3608
3609 EV_FREQUENT_CHECK;
3610
3611 {
3612 int active = ev_active (w);
3613
3614 asyncs [active - 1] = asyncs [--asynccnt];
3615 ev_active (asyncs [active - 1]) = active;
3616 }
3617
3618 ev_stop (EV_A_ (W)w);
3619
3620 EV_FREQUENT_CHECK;
3621}
3622
3623void
3624ev_async_send (EV_P_ ev_async *w)
3625{
3626 w->sent = 1;
3627 evpipe_write (EV_A_ &async_pending);
3628}
3629#endif
1519 3630
1520/*****************************************************************************/ 3631/*****************************************************************************/
1521 3632
1522struct ev_once 3633struct ev_once
1523{ 3634{
1524 struct ev_io io; 3635 ev_io io;
1525 struct ev_timer to; 3636 ev_timer to;
1526 void (*cb)(int revents, void *arg); 3637 void (*cb)(int revents, void *arg);
1527 void *arg; 3638 void *arg;
1528}; 3639};
1529 3640
1530static void 3641static void
1531once_cb (EV_P_ struct ev_once *once, int revents) 3642once_cb (EV_P_ struct ev_once *once, int revents)
1532{ 3643{
1533 void (*cb)(int revents, void *arg) = once->cb; 3644 void (*cb)(int revents, void *arg) = once->cb;
1534 void *arg = once->arg; 3645 void *arg = once->arg;
1535 3646
1536 ev_io_stop (EV_A_ &once->io); 3647 ev_io_stop (EV_A_ &once->io);
1537 ev_timer_stop (EV_A_ &once->to); 3648 ev_timer_stop (EV_A_ &once->to);
1538 ev_free (once); 3649 ev_free (once);
1539 3650
1540 cb (revents, arg); 3651 cb (revents, arg);
1541} 3652}
1542 3653
1543static void 3654static void
1544once_cb_io (EV_P_ struct ev_io *w, int revents) 3655once_cb_io (EV_P_ ev_io *w, int revents)
1545{ 3656{
1546 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3657 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3658
3659 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1547} 3660}
1548 3661
1549static void 3662static void
1550once_cb_to (EV_P_ struct ev_timer *w, int revents) 3663once_cb_to (EV_P_ ev_timer *w, int revents)
1551{ 3664{
1552 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3665 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3666
3667 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1553} 3668}
1554 3669
1555void 3670void
1556ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3671ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1557{ 3672{
1558 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 3673 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1559 3674
1560 if (!once) 3675 if (expect_false (!once))
3676 {
1561 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3677 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1562 else 3678 return;
1563 { 3679 }
3680
1564 once->cb = cb; 3681 once->cb = cb;
1565 once->arg = arg; 3682 once->arg = arg;
1566 3683
1567 ev_watcher_init (&once->io, once_cb_io); 3684 ev_init (&once->io, once_cb_io);
1568 if (fd >= 0) 3685 if (fd >= 0)
3686 {
3687 ev_io_set (&once->io, fd, events);
3688 ev_io_start (EV_A_ &once->io);
3689 }
3690
3691 ev_init (&once->to, once_cb_to);
3692 if (timeout >= 0.)
3693 {
3694 ev_timer_set (&once->to, timeout, 0.);
3695 ev_timer_start (EV_A_ &once->to);
3696 }
3697}
3698
3699/*****************************************************************************/
3700
3701#if EV_WALK_ENABLE
3702void
3703ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3704{
3705 int i, j;
3706 ev_watcher_list *wl, *wn;
3707
3708 if (types & (EV_IO | EV_EMBED))
3709 for (i = 0; i < anfdmax; ++i)
3710 for (wl = anfds [i].head; wl; )
1569 { 3711 {
1570 ev_io_set (&once->io, fd, events); 3712 wn = wl->next;
1571 ev_io_start (EV_A_ &once->io); 3713
3714#if EV_EMBED_ENABLE
3715 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3716 {
3717 if (types & EV_EMBED)
3718 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3719 }
3720 else
3721#endif
3722#if EV_USE_INOTIFY
3723 if (ev_cb ((ev_io *)wl) == infy_cb)
3724 ;
3725 else
3726#endif
3727 if ((ev_io *)wl != &pipe_w)
3728 if (types & EV_IO)
3729 cb (EV_A_ EV_IO, wl);
3730
3731 wl = wn;
1572 } 3732 }
1573 3733
1574 ev_watcher_init (&once->to, once_cb_to); 3734 if (types & (EV_TIMER | EV_STAT))
1575 if (timeout >= 0.) 3735 for (i = timercnt + HEAP0; i-- > HEAP0; )
3736#if EV_STAT_ENABLE
3737 /*TODO: timer is not always active*/
3738 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1576 { 3739 {
1577 ev_timer_set (&once->to, timeout, 0.); 3740 if (types & EV_STAT)
1578 ev_timer_start (EV_A_ &once->to); 3741 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1579 } 3742 }
1580 } 3743 else
1581} 3744#endif
3745 if (types & EV_TIMER)
3746 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1582 3747
3748#if EV_PERIODIC_ENABLE
3749 if (types & EV_PERIODIC)
3750 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3751 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3752#endif
3753
3754#if EV_IDLE_ENABLE
3755 if (types & EV_IDLE)
3756 for (j = NUMPRI; i--; )
3757 for (i = idlecnt [j]; i--; )
3758 cb (EV_A_ EV_IDLE, idles [j][i]);
3759#endif
3760
3761#if EV_FORK_ENABLE
3762 if (types & EV_FORK)
3763 for (i = forkcnt; i--; )
3764 if (ev_cb (forks [i]) != embed_fork_cb)
3765 cb (EV_A_ EV_FORK, forks [i]);
3766#endif
3767
3768#if EV_ASYNC_ENABLE
3769 if (types & EV_ASYNC)
3770 for (i = asynccnt; i--; )
3771 cb (EV_A_ EV_ASYNC, asyncs [i]);
3772#endif
3773
3774#if EV_PREPARE_ENABLE
3775 if (types & EV_PREPARE)
3776 for (i = preparecnt; i--; )
3777# if EV_EMBED_ENABLE
3778 if (ev_cb (prepares [i]) != embed_prepare_cb)
3779# endif
3780 cb (EV_A_ EV_PREPARE, prepares [i]);
3781#endif
3782
3783#if EV_CHECK_ENABLE
3784 if (types & EV_CHECK)
3785 for (i = checkcnt; i--; )
3786 cb (EV_A_ EV_CHECK, checks [i]);
3787#endif
3788
3789#if EV_SIGNAL_ENABLE
3790 if (types & EV_SIGNAL)
3791 for (i = 0; i < EV_NSIG - 1; ++i)
3792 for (wl = signals [i].head; wl; )
3793 {
3794 wn = wl->next;
3795 cb (EV_A_ EV_SIGNAL, wl);
3796 wl = wn;
3797 }
3798#endif
3799
3800#if EV_CHILD_ENABLE
3801 if (types & EV_CHILD)
3802 for (i = (EV_PID_HASHSIZE); i--; )
3803 for (wl = childs [i]; wl; )
3804 {
3805 wn = wl->next;
3806 cb (EV_A_ EV_CHILD, wl);
3807 wl = wn;
3808 }
3809#endif
3810/* EV_STAT 0x00001000 /* stat data changed */
3811/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3812}
3813#endif
3814
3815#if EV_MULTIPLICITY
3816 #include "ev_wrap.h"
3817#endif
3818
3819EV_CPP(})
3820

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines