ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.72 by root, Tue Nov 6 16:09:37 2007 UTC vs.
Revision 1.359 by root, Sun Oct 24 17:58:41 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
33 61
34# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
63# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
65# endif
66# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
68# endif
69# else
70# ifndef EV_USE_MONOTONIC
71# define EV_USE_MONOTONIC 0
72# endif
73# ifndef EV_USE_REALTIME
74# define EV_USE_REALTIME 0
75# endif
37# endif 76# endif
38 77
78# if HAVE_NANOSLEEP
79# ifndef EV_USE_NANOSLEEP
80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
85# endif
86
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
90# endif
91# else
92# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 93# define EV_USE_SELECT 0
41# endif 94# endif
42 95
43# if HAVE_POLL && HAVE_POLL_H 96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
44# define EV_USE_POLL 1 102# define EV_USE_POLL 0
45# endif 103# endif
46 104
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# ifndef EV_USE_EPOLL
107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# endif
109# else
110# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 111# define EV_USE_EPOLL 0
49# endif 112# endif
50 113
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
115# ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117# endif
118# else
119# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 120# define EV_USE_KQUEUE 0
53# endif 121# endif
122
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# ifndef EV_USE_PORT
125# define EV_USE_PORT EV_FEATURE_BACKENDS
126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
130# endif
54 131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
55#endif 159#endif
56 160
57#include <math.h> 161#include <math.h>
58#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
59#include <fcntl.h> 164#include <fcntl.h>
60#include <stddef.h> 165#include <stddef.h>
61 166
62#include <stdio.h> 167#include <stdio.h>
63 168
64#include <assert.h> 169#include <assert.h>
65#include <errno.h> 170#include <errno.h>
66#include <sys/types.h> 171#include <sys/types.h>
67#include <time.h> 172#include <time.h>
173#include <limits.h>
68 174
69#include <signal.h> 175#include <signal.h>
70 176
177#ifdef EV_H
178# include EV_H
179#else
180# include "ev.h"
181#endif
182
183EV_CPP(extern "C" {)
184
71#ifndef WIN32 185#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 186# include <sys/time.h>
74# include <sys/wait.h> 187# include <sys/wait.h>
188# include <unistd.h>
189#else
190# include <io.h>
191# define WIN32_LEAN_AND_MEAN
192# include <windows.h>
193# ifndef EV_SELECT_IS_WINSOCKET
194# define EV_SELECT_IS_WINSOCKET 1
75#endif 195# endif
76/**/ 196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
77 244
78#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
79# define EV_USE_MONOTONIC 1 249# define EV_USE_MONOTONIC 0
250# endif
251#endif
252
253#ifndef EV_USE_REALTIME
254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
80#endif 263#endif
81 264
82#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
84#endif 267#endif
85 268
86#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 270# ifdef _WIN32
271# define EV_USE_POLL 0
272# else
273# define EV_USE_POLL EV_FEATURE_BACKENDS
274# endif
88#endif 275#endif
89 276
90#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
91# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
92#endif 283#endif
93 284
94#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
96#endif 287#endif
97 288
289#ifndef EV_USE_PORT
290# define EV_USE_PORT 0
291#endif
292
98#ifndef EV_USE_WIN32 293#ifndef EV_USE_INOTIFY
99# ifdef WIN32 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */ 295# define EV_USE_INOTIFY EV_FEATURE_OS
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else 296# else
104# define EV_USE_WIN32 0 297# define EV_USE_INOTIFY 0
105# endif 298# endif
106#endif 299#endif
107 300
301#ifndef EV_PID_HASHSIZE
302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
108#ifndef EV_USE_REALTIME 309#ifndef EV_USE_EVENTFD
109# define EV_USE_REALTIME 1 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
110#endif 314# endif
315#endif
111 316
112/**/ 317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
113 364
114#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
117#endif 368#endif
119#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
122#endif 373#endif
123 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
396#if EV_SELECT_IS_WINSOCKET
397# include <winsock.h>
398#endif
399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
124/**/ 438/**/
125 439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
455
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 458
131#include "ev.h" 459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
132 461
133#if __GNUC__ >= 3 462#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 464# define noinline __attribute__ ((noinline))
136#else 465#else
137# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
138# define inline static 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
139#endif 471#endif
140 472
141#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
143 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
146 490
491#define EMPTY /* required for microsofts broken pseudo-c compiler */
492#define EMPTY2(a,b) /* used to suppress some warnings */
493
147typedef struct ev_watcher *W; 494typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
150 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
152 510
153#if WIN32 511#ifndef EV_FD_TO_WIN32_HANDLE
154/* note: the comment below could not be substantiated, but what would I care */ 512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
155/* MSDN says this is required to handle SIGFPE */ 513#endif
156volatile double SIGFPE_REQ = 0.0f; 514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
157 520
158static int 521#ifdef _WIN32
159ev_socketpair_tcp (int filedes [2]) 522# include "ev_win32.c"
160{ 523#endif
161 struct sockaddr_in addr = { 0 };
162 int addr_size = sizeof (addr);
163 SOCKET listener;
164 SOCKET sock [2] = { -1, -1 };
165 524
166 if ((listener = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET) 525/*****************************************************************************/
526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
167 return -1; 541 return 0;
168 542
169 addr.sin_family = AF_INET; 543 for (i = 3+1; --i; )
170 addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK); 544 {
171 addr.sin_port = 0; 545 unsigned int c = 0;
172 546
173 if (bind (listener, (struct sockaddr *)&addr, addr_size)) 547 for (;;)
174 goto fail; 548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
175 557
176 if (getsockname(listener, (struct sockaddr *)&addr, &addr_size)) 558 v = (v << 8) | c;
177 goto fail; 559 }
178 560
179 if (listen (listener, 1)) 561 return v;
180 goto fail; 562#else
181
182 if ((sock [0] = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
183 goto fail;
184
185 if (connect (sock[0], (struct sockaddr *)&addr, addr_size))
186 goto fail;
187
188 if ((sock[1] = accept (listener, 0, 0)) < 0)
189 goto fail;
190
191 closesocket (listener);
192
193 filedes [0] = sock [0];
194 filedes [1] = sock [1];
195
196 return 0; 563 return 0;
197
198fail:
199 closesocket (listener);
200
201 if (sock [0] != INVALID_SOCKET) closesocket (sock [0]);
202 if (sock [1] != INVALID_SOCKET) closesocket (sock [1]);
203
204 return -1;
205}
206
207# define ev_pipe(filedes) ev_socketpair_tcp (filedes)
208#else
209# define ev_pipe(filedes) pipe (filedes)
210#endif 564#endif
565}
211 566
212/*****************************************************************************/ 567/*****************************************************************************/
213 568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
214static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
215 578
579void
216void ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
217{ 581{
218 syserr_cb = cb; 582 syserr_cb = cb;
219} 583}
220 584
221static void 585static void noinline
222syserr (const char *msg) 586ev_syserr (const char *msg)
223{ 587{
224 if (!msg) 588 if (!msg)
225 msg = "(libev) system error"; 589 msg = "(libev) system error";
226 590
227 if (syserr_cb) 591 if (syserr_cb)
228 syserr_cb (msg); 592 syserr_cb (msg);
229 else 593 else
230 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
231 perror (msg); 603 perror (msg);
604#endif
232 abort (); 605 abort ();
233 } 606 }
234} 607}
235 608
609static void *
610ev_realloc_emul (void *ptr, long size)
611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625#endif
626}
627
236static void *(*alloc)(void *ptr, long size); 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
237 629
630void
238void ev_set_allocator (void *(*cb)(void *ptr, long size)) 631ev_set_allocator (void *(*cb)(void *ptr, long size))
239{ 632{
240 alloc = cb; 633 alloc = cb;
241} 634}
242 635
243static void * 636inline_speed void *
244ev_realloc (void *ptr, long size) 637ev_realloc (void *ptr, long size)
245{ 638{
246 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 639 ptr = alloc (ptr, size);
247 640
248 if (!ptr && size) 641 if (!ptr && size)
249 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
250 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
251 abort (); 648 abort ();
252 } 649 }
253 650
254 return ptr; 651 return ptr;
255} 652}
257#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
258#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
259 656
260/*****************************************************************************/ 657/*****************************************************************************/
261 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
262typedef struct 663typedef struct
263{ 664{
264 WL head; 665 WL head;
265 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
266 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
674 SOCKET handle;
675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
267} ANFD; 679} ANFD;
268 680
681/* stores the pending event set for a given watcher */
269typedef struct 682typedef struct
270{ 683{
271 W w; 684 W w;
272 int events; 685 int events; /* the pending event set for the given watcher */
273} ANPENDING; 686} ANPENDING;
274 687
688#if EV_USE_INOTIFY
689/* hash table entry per inotify-id */
690typedef struct
691{
692 WL head;
693} ANFS;
694#endif
695
696/* Heap Entry */
697#if EV_HEAP_CACHE_AT
698 /* a heap element */
699 typedef struct {
700 ev_tstamp at;
701 WT w;
702 } ANHE;
703
704 #define ANHE_w(he) (he).w /* access watcher, read-write */
705 #define ANHE_at(he) (he).at /* access cached at, read-only */
706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
707#else
708 /* a heap element */
709 typedef WT ANHE;
710
711 #define ANHE_w(he) (he)
712 #define ANHE_at(he) (he)->at
713 #define ANHE_at_cache(he)
714#endif
715
275#if EV_MULTIPLICITY 716#if EV_MULTIPLICITY
276 717
277struct ev_loop 718 struct ev_loop
278{ 719 {
720 ev_tstamp ev_rt_now;
721 #define ev_rt_now ((loop)->ev_rt_now)
279# define VAR(name,decl) decl; 722 #define VAR(name,decl) decl;
280# include "ev_vars.h" 723 #include "ev_vars.h"
281};
282# undef VAR 724 #undef VAR
725 };
283# include "ev_wrap.h" 726 #include "ev_wrap.h"
727
728 static struct ev_loop default_loop_struct;
729 struct ev_loop *ev_default_loop_ptr;
284 730
285#else 731#else
286 732
733 ev_tstamp ev_rt_now;
287# define VAR(name,decl) static decl; 734 #define VAR(name,decl) static decl;
288# include "ev_vars.h" 735 #include "ev_vars.h"
289# undef VAR 736 #undef VAR
290 737
738 static int ev_default_loop_ptr;
739
291#endif 740#endif
741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
292 753
293/*****************************************************************************/ 754/*****************************************************************************/
294 755
295inline ev_tstamp 756#ifndef EV_HAVE_EV_TIME
757ev_tstamp
296ev_time (void) 758ev_time (void)
297{ 759{
298#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
299 struct timespec ts; 763 struct timespec ts;
300 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
301 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
302#else 766 }
767#endif
768
303 struct timeval tv; 769 struct timeval tv;
304 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
305 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
306#endif
307} 772}
773#endif
308 774
309inline ev_tstamp 775inline_size ev_tstamp
310get_clock (void) 776get_clock (void)
311{ 777{
312#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
313 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
314 { 780 {
319#endif 785#endif
320 786
321 return ev_time (); 787 return ev_time ();
322} 788}
323 789
790#if EV_MULTIPLICITY
324ev_tstamp 791ev_tstamp
325ev_now (EV_P) 792ev_now (EV_P)
326{ 793{
327 return rt_now; 794 return ev_rt_now;
328} 795}
796#endif
329 797
330#define array_roundsize(base,n) ((n) | 4 & ~3) 798void
799ev_sleep (ev_tstamp delay)
800{
801 if (delay > 0.)
802 {
803#if EV_USE_NANOSLEEP
804 struct timespec ts;
331 805
806 EV_TS_SET (ts, delay);
807 nanosleep (&ts, 0);
808#elif defined(_WIN32)
809 Sleep ((unsigned long)(delay * 1e3));
810#else
811 struct timeval tv;
812
813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
814 /* something not guaranteed by newer posix versions, but guaranteed */
815 /* by older ones */
816 EV_TV_SET (tv, delay);
817 select (0, 0, 0, 0, &tv);
818#endif
819 }
820}
821
822/*****************************************************************************/
823
824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
825
826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
829array_nextsize (int elem, int cur, int cnt)
830{
831 int ncur = cur + 1;
832
833 do
834 ncur <<= 1;
835 while (cnt > ncur);
836
837 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
838 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
839 {
840 ncur *= elem;
841 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
842 ncur = ncur - sizeof (void *) * 4;
843 ncur /= elem;
844 }
845
846 return ncur;
847}
848
849static noinline void *
850array_realloc (int elem, void *base, int *cur, int cnt)
851{
852 *cur = array_nextsize (elem, *cur, cnt);
853 return ev_realloc (base, elem * *cur);
854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
858
332#define array_needsize(base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
333 if (expect_false ((cnt) > cur)) \ 860 if (expect_false ((cnt) > (cur))) \
334 { \ 861 { \
335 int newcnt = cur; \ 862 int ocur_ = (cur); \
336 do \ 863 (base) = (type *)array_realloc \
337 { \ 864 (sizeof (type), (base), &(cur), (cnt)); \
338 newcnt = array_roundsize (base, newcnt << 1); \ 865 init ((base) + (ocur_), (cur) - ocur_); \
339 } \
340 while ((cnt) > newcnt); \
341 \
342 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
343 init (base + cur, newcnt - cur); \
344 cur = newcnt; \
345 } 866 }
346 867
868#if 0
347#define array_slim(stem) \ 869#define array_slim(type,stem) \
348 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 870 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
349 { \ 871 { \
350 stem ## max = array_roundsize (stem ## cnt >> 1); \ 872 stem ## max = array_roundsize (stem ## cnt >> 1); \
351 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 873 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
352 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
353 } 875 }
354 876#endif
355/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
356/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
357#define array_free_microshit(stem) \
358 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
359 877
360#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
361 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
362 880
363/*****************************************************************************/ 881/*****************************************************************************/
364 882
365static void 883/* dummy callback for pending events */
366anfds_init (ANFD *base, int count) 884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
367{ 886{
368 while (count--) 887}
369 {
370 base->head = 0;
371 base->events = EV_NONE;
372 base->reify = 0;
373 888
374 ++base; 889void noinline
890ev_feed_event (EV_P_ void *w, int revents)
891{
892 W w_ = (W)w;
893 int pri = ABSPRI (w_);
894
895 if (expect_false (w_->pending))
896 pendings [pri][w_->pending - 1].events |= revents;
897 else
375 } 898 {
376} 899 w_->pending = ++pendingcnt [pri];
377 900 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
378static void 901 pendings [pri][w_->pending - 1].w = w_;
379event (EV_P_ W w, int events)
380{
381 if (w->pending)
382 {
383 pendings [ABSPRI (w)][w->pending - 1].events |= events; 902 pendings [pri][w_->pending - 1].events = revents;
384 return;
385 } 903 }
386
387 w->pending = ++pendingcnt [ABSPRI (w)];
388 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
389 pendings [ABSPRI (w)][w->pending - 1].w = w;
390 pendings [ABSPRI (w)][w->pending - 1].events = events;
391} 904}
392 905
393static void 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
394queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
395{ 923{
396 int i; 924 int i;
397 925
398 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
399 event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
400} 928}
401 929
402static void 930/*****************************************************************************/
931
932inline_speed void
403fd_event (EV_P_ int fd, int events) 933fd_event_nocheck (EV_P_ int fd, int revents)
404{ 934{
405 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
406 struct ev_io *w; 936 ev_io *w;
407 937
408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
409 { 939 {
410 int ev = w->events & events; 940 int ev = w->events & revents;
411 941
412 if (ev) 942 if (ev)
413 event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
414 } 944 }
415} 945}
416 946
417/*****************************************************************************/ 947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
418 953
419static void 954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
958void
959ev_feed_fd_event (EV_P_ int fd, int revents)
960{
961 if (fd >= 0 && fd < anfdmax)
962 fd_event_nocheck (EV_A_ fd, revents);
963}
964
965/* make sure the external fd watch events are in-sync */
966/* with the kernel/libev internal state */
967inline_size void
420fd_reify (EV_P) 968fd_reify (EV_P)
421{ 969{
422 int i; 970 int i;
423 971
424 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
425 { 973 {
426 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
427 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
428 struct ev_io *w; 976 ev_io *w;
429 977
430 int events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
431 980
432 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
433 events |= w->events;
434
435 anfd->reify = 0; 981 anfd->reify = 0;
436 982
437 method_modify (EV_A_ fd, anfd->events, events); 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
984 if (o_reify & EV__IOFDSET)
985 {
986 unsigned long arg;
987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
990 }
991#endif
992
993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
994 {
438 anfd->events = events; 995 anfd->events = 0;
996
997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
1005 backend_modify (EV_A_ fd, o_events, anfd->events);
439 } 1006 }
440 1007
441 fdchangecnt = 0; 1008 fdchangecnt = 0;
442} 1009}
443 1010
444static void 1011/* something about the given fd changed */
1012inline_size void
445fd_change (EV_P_ int fd) 1013fd_change (EV_P_ int fd, int flags)
446{ 1014{
447 if (anfds [fd].reify) 1015 unsigned char reify = anfds [fd].reify;
448 return;
449
450 anfds [fd].reify = 1; 1016 anfds [fd].reify |= flags;
451 1017
1018 if (expect_true (!reify))
1019 {
452 ++fdchangecnt; 1020 ++fdchangecnt;
453 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
454 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
1023 }
455} 1024}
456 1025
457static void 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
458fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
459{ 1029{
460 struct ev_io *w; 1030 ev_io *w;
461 1031
462 while ((w = (struct ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
463 { 1033 {
464 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
465 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
466 } 1036 }
467} 1037}
468 1038
469static int 1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
470fd_valid (int fd) 1041fd_valid (int fd)
471{ 1042{
472#ifdef WIN32 1043#ifdef _WIN32
473 return !!win32_get_osfhandle (fd); 1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
474#else 1045#else
475 return fcntl (fd, F_GETFD) != -1; 1046 return fcntl (fd, F_GETFD) != -1;
476#endif 1047#endif
477} 1048}
478 1049
479/* called on EBADF to verify fds */ 1050/* called on EBADF to verify fds */
480static void 1051static void noinline
481fd_ebadf (EV_P) 1052fd_ebadf (EV_P)
482{ 1053{
483 int fd; 1054 int fd;
484 1055
485 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
486 if (anfds [fd].events) 1057 if (anfds [fd].events)
487 if (!fd_valid (fd) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
488 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
489} 1060}
490 1061
491/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
492static void 1063static void noinline
493fd_enomem (EV_P) 1064fd_enomem (EV_P)
494{ 1065{
495 int fd; 1066 int fd;
496 1067
497 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
498 if (anfds [fd].events) 1069 if (anfds [fd].events)
499 { 1070 {
500 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
501 return; 1072 break;
502 } 1073 }
503} 1074}
504 1075
505/* usually called after fork if method needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
506static void 1077static void noinline
507fd_rearm_all (EV_P) 1078fd_rearm_all (EV_P)
508{ 1079{
509 int fd; 1080 int fd;
510 1081
511 /* this should be highly optimised to not do anything but set a flag */
512 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
513 if (anfds [fd].events) 1083 if (anfds [fd].events)
514 { 1084 {
515 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
516 fd_change (EV_A_ fd); 1086 anfds [fd].emask = 0;
1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
517 } 1088 }
518} 1089}
519 1090
1091/* used to prepare libev internal fd's */
1092/* this is not fork-safe */
1093inline_speed void
1094fd_intern (int fd)
1095{
1096#ifdef _WIN32
1097 unsigned long arg = 1;
1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1099#else
1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
1101 fcntl (fd, F_SETFL, O_NONBLOCK);
1102#endif
1103}
1104
520/*****************************************************************************/ 1105/*****************************************************************************/
521 1106
1107/*
1108 * the heap functions want a real array index. array index 0 is guaranteed to not
1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1110 * the branching factor of the d-tree.
1111 */
1112
1113/*
1114 * at the moment we allow libev the luxury of two heaps,
1115 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1116 * which is more cache-efficient.
1117 * the difference is about 5% with 50000+ watchers.
1118 */
1119#if EV_USE_4HEAP
1120
1121#define DHEAP 4
1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1124#define UPHEAP_DONE(p,k) ((p) == (k))
1125
1126/* away from the root */
1127inline_speed void
1128downheap (ANHE *heap, int N, int k)
1129{
1130 ANHE he = heap [k];
1131 ANHE *E = heap + N + HEAP0;
1132
1133 for (;;)
1134 {
1135 ev_tstamp minat;
1136 ANHE *minpos;
1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1138
1139 /* find minimum child */
1140 if (expect_true (pos + DHEAP - 1 < E))
1141 {
1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else if (pos < E)
1148 {
1149 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else
1155 break;
1156
1157 if (ANHE_at (he) <= minat)
1158 break;
1159
1160 heap [k] = *minpos;
1161 ev_active (ANHE_w (*minpos)) = k;
1162
1163 k = minpos - heap;
1164 }
1165
1166 heap [k] = he;
1167 ev_active (ANHE_w (he)) = k;
1168}
1169
1170#else /* 4HEAP */
1171
1172#define HEAP0 1
1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
1175
1176/* away from the root */
1177inline_speed void
1178downheap (ANHE *heap, int N, int k)
1179{
1180 ANHE he = heap [k];
1181
1182 for (;;)
1183 {
1184 int c = k << 1;
1185
1186 if (c >= N + HEAP0)
1187 break;
1188
1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1190 ? 1 : 0;
1191
1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
1193 break;
1194
1195 heap [k] = heap [c];
1196 ev_active (ANHE_w (heap [k])) = k;
1197
1198 k = c;
1199 }
1200
1201 heap [k] = he;
1202 ev_active (ANHE_w (he)) = k;
1203}
1204#endif
1205
1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
1230adjustheap (ANHE *heap, int N, int k)
1231{
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1233 upheap (heap, k);
1234 else
1235 downheap (heap, N, k);
1236}
1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
1248}
1249
1250/*****************************************************************************/
1251
1252/* associate signal watchers to a signal signal */
1253typedef struct
1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
1259 WL head;
1260} ANSIG;
1261
1262static ANSIG signals [EV_NSIG - 1];
1263
1264/*****************************************************************************/
1265
1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1267
1268static void noinline
1269evpipe_init (EV_P)
1270{
1271 if (!ev_is_active (&pipe_w))
1272 {
1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
1279 {
1280 evpipe [0] = -1;
1281 fd_intern (evfd); /* doing it twice doesn't hurt */
1282 ev_io_set (&pipe_w, evfd, EV_READ);
1283 }
1284 else
1285# endif
1286 {
1287 while (pipe (evpipe))
1288 ev_syserr ("(libev) error creating signal/async pipe");
1289
1290 fd_intern (evpipe [0]);
1291 fd_intern (evpipe [1]);
1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1293 }
1294
1295 ev_io_start (EV_A_ &pipe_w);
1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1297 }
1298}
1299
1300inline_size void
1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1302{
1303 if (!*flag)
1304 {
1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1307
1308 *flag = 1;
1309
1310#if EV_USE_EVENTFD
1311 if (evfd >= 0)
1312 {
1313 uint64_t counter = 1;
1314 write (evfd, &counter, sizeof (uint64_t));
1315 }
1316 else
1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1323 write (evpipe [1], &dummy, 1);
1324
1325 errno = old_errno;
1326 }
1327}
1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
522static void 1331static void
523upheap (WT *heap, int k) 1332pipecb (EV_P_ ev_io *iow, int revents)
524{ 1333{
525 WT w = heap [k]; 1334 int i;
526 1335
527 while (k && heap [k >> 1]->at > w->at) 1336#if EV_USE_EVENTFD
528 { 1337 if (evfd >= 0)
529 heap [k] = heap [k >> 1];
530 ((W)heap [k])->active = k + 1;
531 k >>= 1;
532 } 1338 {
1339 uint64_t counter;
1340 read (evfd, &counter, sizeof (uint64_t));
1341 }
1342 else
1343#endif
1344 {
1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1347 read (evpipe [0], &dummy, 1);
1348 }
533 1349
534 heap [k] = w; 1350 if (sig_pending)
535 ((W)heap [k])->active = k + 1; 1351 {
1352 sig_pending = 0;
536 1353
1354 for (i = EV_NSIG - 1; i--; )
1355 if (expect_false (signals [i].pending))
1356 ev_feed_signal_event (EV_A_ i + 1);
1357 }
1358
1359#if EV_ASYNC_ENABLE
1360 if (async_pending)
1361 {
1362 async_pending = 0;
1363
1364 for (i = asynccnt; i--; )
1365 if (asyncs [i]->sent)
1366 {
1367 asyncs [i]->sent = 0;
1368 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1369 }
1370 }
1371#endif
537} 1372}
1373
1374/*****************************************************************************/
538 1375
539static void 1376static void
540downheap (WT *heap, int N, int k) 1377ev_sighandler (int signum)
541{ 1378{
542 WT w = heap [k]; 1379#if EV_MULTIPLICITY
1380 EV_P = signals [signum - 1].loop;
1381#endif
543 1382
544 while (k < (N >> 1)) 1383#ifdef _WIN32
545 { 1384 signal (signum, ev_sighandler);
546 int j = k << 1; 1385#endif
547 1386
548 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1387 signals [signum - 1].pending = 1;
549 ++j; 1388 evpipe_write (EV_A_ &sig_pending);
1389}
550 1390
551 if (w->at <= heap [j]->at) 1391void noinline
1392ev_feed_signal_event (EV_P_ int signum)
1393{
1394 WL w;
1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
1401#if EV_MULTIPLICITY
1402 /* it is permissible to try to feed a signal to the wrong loop */
1403 /* or, likely more useful, feeding a signal nobody is waiting for */
1404
1405 if (expect_false (signals [signum].loop != EV_A))
1406 return;
1407#endif
1408
1409 signals [signum].pending = 0;
1410
1411 for (w = signals [signum].head; w; w = w->next)
1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1413}
1414
1415#if EV_USE_SIGNALFD
1416static void
1417sigfdcb (EV_P_ ev_io *iow, int revents)
1418{
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
552 break; 1430 break;
553
554 heap [k] = heap [j];
555 ((W)heap [k])->active = k + 1;
556 k = j;
557 } 1431 }
558
559 heap [k] = w;
560 ((W)heap [k])->active = k + 1;
561} 1432}
1433#endif
1434
1435#endif
562 1436
563/*****************************************************************************/ 1437/*****************************************************************************/
564 1438
565typedef struct 1439#if EV_CHILD_ENABLE
566{ 1440static WL childs [EV_PID_HASHSIZE];
567 WL head;
568 sig_atomic_t volatile gotsig;
569} ANSIG;
570 1441
571static ANSIG *signals;
572static int signalmax;
573
574static int sigpipe [2];
575static sig_atomic_t volatile gotsig;
576static struct ev_io sigev;
577
578static void
579signals_init (ANSIG *base, int count)
580{
581 while (count--)
582 {
583 base->head = 0;
584 base->gotsig = 0;
585
586 ++base;
587 }
588}
589
590static void
591sighandler (int signum)
592{
593#if WIN32
594 signal (signum, sighandler);
595#endif
596
597 signals [signum - 1].gotsig = 1;
598
599 if (!gotsig)
600 {
601 int old_errno = errno;
602 gotsig = 1;
603 write (sigpipe [1], &signum, 1);
604 errno = old_errno;
605 }
606}
607
608static void
609sigcb (EV_P_ struct ev_io *iow, int revents)
610{
611 WL w;
612 int signum;
613
614 read (sigpipe [0], &revents, 1);
615 gotsig = 0;
616
617 for (signum = signalmax; signum--; )
618 if (signals [signum].gotsig)
619 {
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 event (EV_A_ (W)w, EV_SIGNAL);
624 }
625}
626
627static void
628siginit (EV_P)
629{
630#ifndef WIN32
631 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
632 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
633
634 /* rather than sort out wether we really need nb, set it */
635 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
636 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
637#endif
638
639 ev_io_set (&sigev, sigpipe [0], EV_READ);
640 ev_io_start (EV_A_ &sigev);
641 ev_unref (EV_A); /* child watcher should not keep loop alive */
642}
643
644/*****************************************************************************/
645
646static struct ev_child *childs [PID_HASHSIZE];
647
648#ifndef WIN32
649
650static struct ev_signal childev; 1442static ev_signal childev;
1443
1444#ifndef WIFCONTINUED
1445# define WIFCONTINUED(status) 0
1446#endif
1447
1448/* handle a single child status event */
1449inline_speed void
1450child_reap (EV_P_ int chain, int pid, int status)
1451{
1452 ev_child *w;
1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1454
1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1456 {
1457 if ((w->pid == pid || !w->pid)
1458 && (!traced || (w->flags & 1)))
1459 {
1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1461 w->rpid = pid;
1462 w->rstatus = status;
1463 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1464 }
1465 }
1466}
651 1467
652#ifndef WCONTINUED 1468#ifndef WCONTINUED
653# define WCONTINUED 0 1469# define WCONTINUED 0
654#endif 1470#endif
655 1471
1472/* called on sigchld etc., calls waitpid */
656static void 1473static void
657child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
658{
659 struct ev_child *w;
660
661 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
662 if (w->pid == pid || !w->pid)
663 {
664 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
665 w->rpid = pid;
666 w->rstatus = status;
667 event (EV_A_ (W)w, EV_CHILD);
668 }
669}
670
671static void
672childcb (EV_P_ struct ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
673{ 1475{
674 int pid, status; 1476 int pid, status;
675 1477
1478 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
676 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1479 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
677 { 1480 if (!WCONTINUED
1481 || errno != EINVAL
1482 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1483 return;
1484
678 /* make sure we are called again until all childs have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
1486 /* we need to do it this way so that the callback gets called before we continue */
679 event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
680 1488
681 child_reap (EV_A_ sw, pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
1490 if ((EV_PID_HASHSIZE) > 1)
682 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
683 }
684} 1492}
685 1493
686#endif 1494#endif
687 1495
688/*****************************************************************************/ 1496/*****************************************************************************/
689 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
1501#if EV_USE_PORT
1502# include "ev_port.c"
1503#endif
690#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
691# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
692#endif 1506#endif
693#if EV_USE_EPOLL 1507#if EV_USE_EPOLL
694# include "ev_epoll.c" 1508# include "ev_epoll.c"
711{ 1525{
712 return EV_VERSION_MINOR; 1526 return EV_VERSION_MINOR;
713} 1527}
714 1528
715/* return true if we are running with elevated privileges and should ignore env variables */ 1529/* return true if we are running with elevated privileges and should ignore env variables */
716static int 1530int inline_size
717enable_secure (void) 1531enable_secure (void)
718{ 1532{
719#ifdef WIN32 1533#ifdef _WIN32
720 return 0; 1534 return 0;
721#else 1535#else
722 return getuid () != geteuid () 1536 return getuid () != geteuid ()
723 || getgid () != getegid (); 1537 || getgid () != getegid ();
724#endif 1538#endif
725} 1539}
726 1540
727int 1541unsigned int
1542ev_supported_backends (void)
1543{
1544 unsigned int flags = 0;
1545
1546 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1547 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1548 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1549 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1550 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1551
1552 return flags;
1553}
1554
1555unsigned int
1556ev_recommended_backends (void)
1557{
1558 unsigned int flags = ev_supported_backends ();
1559
1560#ifndef __NetBSD__
1561 /* kqueue is borked on everything but netbsd apparently */
1562 /* it usually doesn't work correctly on anything but sockets and pipes */
1563 flags &= ~EVBACKEND_KQUEUE;
1564#endif
1565#ifdef __APPLE__
1566 /* only select works correctly on that "unix-certified" platform */
1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1572#endif
1573
1574 return flags;
1575}
1576
1577unsigned int
1578ev_embeddable_backends (void)
1579{
1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1581
1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1584 flags &= ~EVBACKEND_EPOLL;
1585
1586 return flags;
1587}
1588
1589unsigned int
1590ev_backend (EV_P)
1591{
1592 return backend;
1593}
1594
1595#if EV_FEATURE_API
1596unsigned int
1597ev_iteration (EV_P)
1598{
1599 return loop_count;
1600}
1601
1602unsigned int
728ev_method (EV_P) 1603ev_depth (EV_P)
729{ 1604{
730 return method; 1605 return loop_depth;
731} 1606}
732 1607
733static void 1608void
734loop_init (EV_P_ int methods) 1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
735{ 1610{
736 if (!method) 1611 io_blocktime = interval;
1612}
1613
1614void
1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1616{
1617 timeout_blocktime = interval;
1618}
1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
1645static void noinline
1646loop_init (EV_P_ unsigned int flags)
1647{
1648 if (!backend)
737 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
738#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
1662 {
1663 struct timespec ts;
1664
1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1666 have_monotonic = 1;
1667 }
1668#endif
1669
1670 /* pid check not overridable via env */
1671#ifndef _WIN32
1672 if (flags & EVFLAG_FORKCHECK)
1673 curpid = getpid ();
1674#endif
1675
1676 if (!(flags & EVFLAG_NOENV)
1677 && !enable_secure ()
1678 && getenv ("LIBEV_FLAGS"))
1679 flags = atoi (getenv ("LIBEV_FLAGS"));
1680
1681 ev_rt_now = ev_time ();
1682 mn_now = get_clock ();
1683 now_floor = mn_now;
1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1688
1689 io_blocktime = 0.;
1690 timeout_blocktime = 0.;
1691 backend = 0;
1692 backend_fd = -1;
1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1697#if EV_USE_INOTIFY
1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1699#endif
1700#if EV_USE_SIGNALFD
1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1702#endif
1703
1704 if (!(flags & 0x0000ffffU))
1705 flags |= ev_recommended_backends ();
1706
1707#if EV_USE_IOCP
1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709#endif
1710#if EV_USE_PORT
1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1712#endif
1713#if EV_USE_KQUEUE
1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1715#endif
1716#if EV_USE_EPOLL
1717 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1718#endif
1719#if EV_USE_POLL
1720 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1721#endif
1722#if EV_USE_SELECT
1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1724#endif
1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1729 ev_init (&pipe_w, pipecb);
1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
1732 }
1733}
1734
1735/* free up a loop structure */
1736void
1737ev_loop_destroy (EV_P)
1738{
1739 int i;
1740
1741#if EV_CHILD_ENABLE
1742 if (ev_is_active (&childev))
1743 {
1744 ev_ref (EV_A); /* child watcher */
1745 ev_signal_stop (EV_A_ &childev);
1746 }
1747#endif
1748
1749 if (ev_is_active (&pipe_w))
1750 {
1751 /*ev_ref (EV_A);*/
1752 /*ev_io_stop (EV_A_ &pipe_w);*/
1753
1754#if EV_USE_EVENTFD
1755 if (evfd >= 0)
1756 close (evfd);
1757#endif
1758
1759 if (evpipe [0] >= 0)
1760 {
1761 EV_WIN32_CLOSE_FD (evpipe [0]);
1762 EV_WIN32_CLOSE_FD (evpipe [1]);
1763 }
1764 }
1765
1766#if EV_USE_SIGNALFD
1767 if (ev_is_active (&sigfd_w))
1768 close (sigfd);
1769#endif
1770
1771#if EV_USE_INOTIFY
1772 if (fs_fd >= 0)
1773 close (fs_fd);
1774#endif
1775
1776 if (backend_fd >= 0)
1777 close (backend_fd);
1778
1779#if EV_USE_IOCP
1780 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1781#endif
1782#if EV_USE_PORT
1783 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1784#endif
1785#if EV_USE_KQUEUE
1786 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1787#endif
1788#if EV_USE_EPOLL
1789 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1790#endif
1791#if EV_USE_POLL
1792 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1793#endif
1794#if EV_USE_SELECT
1795 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1796#endif
1797
1798 for (i = NUMPRI; i--; )
1799 {
1800 array_free (pending, [i]);
1801#if EV_IDLE_ENABLE
1802 array_free (idle, [i]);
1803#endif
1804 }
1805
1806 ev_free (anfds); anfds = 0; anfdmax = 0;
1807
1808 /* have to use the microsoft-never-gets-it-right macro */
1809 array_free (rfeed, EMPTY);
1810 array_free (fdchange, EMPTY);
1811 array_free (timer, EMPTY);
1812#if EV_PERIODIC_ENABLE
1813 array_free (periodic, EMPTY);
1814#endif
1815#if EV_FORK_ENABLE
1816 array_free (fork, EMPTY);
1817#endif
1818 array_free (prepare, EMPTY);
1819 array_free (check, EMPTY);
1820#if EV_ASYNC_ENABLE
1821 array_free (async, EMPTY);
1822#endif
1823
1824 backend = 0;
1825
1826#if EV_MULTIPLICITY
1827 if (ev_is_default_loop (EV_A))
1828#endif
1829 ev_default_loop_ptr = 0;
1830#if EV_MULTIPLICITY
1831 else
1832 ev_free (EV_A);
1833#endif
1834}
1835
1836#if EV_USE_INOTIFY
1837inline_size void infy_fork (EV_P);
1838#endif
1839
1840inline_size void
1841loop_fork (EV_P)
1842{
1843#if EV_USE_PORT
1844 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1845#endif
1846#if EV_USE_KQUEUE
1847 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1848#endif
1849#if EV_USE_EPOLL
1850 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1851#endif
1852#if EV_USE_INOTIFY
1853 infy_fork (EV_A);
1854#endif
1855
1856 if (ev_is_active (&pipe_w))
1857 {
1858 /* this "locks" the handlers against writing to the pipe */
1859 /* while we modify the fd vars */
1860 sig_pending = 1;
1861#if EV_ASYNC_ENABLE
1862 async_pending = 1;
1863#endif
1864
1865 ev_ref (EV_A);
1866 ev_io_stop (EV_A_ &pipe_w);
1867
1868#if EV_USE_EVENTFD
1869 if (evfd >= 0)
1870 close (evfd);
1871#endif
1872
1873 if (evpipe [0] >= 0)
1874 {
1875 EV_WIN32_CLOSE_FD (evpipe [0]);
1876 EV_WIN32_CLOSE_FD (evpipe [1]);
1877 }
1878
1879#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1880 evpipe_init (EV_A);
1881 /* now iterate over everything, in case we missed something */
1882 pipecb (EV_A_ &pipe_w, EV_READ);
1883#endif
1884 }
1885
1886 postfork = 0;
1887}
1888
1889#if EV_MULTIPLICITY
1890
1891struct ev_loop *
1892ev_loop_new (unsigned int flags)
1893{
1894 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1895
1896 memset (EV_A, 0, sizeof (struct ev_loop));
1897 loop_init (EV_A_ flags);
1898
1899 if (ev_backend (EV_A))
1900 return EV_A;
1901
1902 ev_free (EV_A);
1903 return 0;
1904}
1905
1906#endif /* multiplicity */
1907
1908#if EV_VERIFY
1909static void noinline
1910verify_watcher (EV_P_ W w)
1911{
1912 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1913
1914 if (w->pending)
1915 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1916}
1917
1918static void noinline
1919verify_heap (EV_P_ ANHE *heap, int N)
1920{
1921 int i;
1922
1923 for (i = HEAP0; i < N + HEAP0; ++i)
1924 {
1925 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1926 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1927 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1928
1929 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1930 }
1931}
1932
1933static void noinline
1934array_verify (EV_P_ W *ws, int cnt)
1935{
1936 while (cnt--)
1937 {
1938 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1939 verify_watcher (EV_A_ ws [cnt]);
1940 }
1941}
1942#endif
1943
1944#if EV_FEATURE_API
1945void
1946ev_verify (EV_P)
1947{
1948#if EV_VERIFY
1949 int i;
1950 WL w;
1951
1952 assert (activecnt >= -1);
1953
1954 assert (fdchangemax >= fdchangecnt);
1955 for (i = 0; i < fdchangecnt; ++i)
1956 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1957
1958 assert (anfdmax >= 0);
1959 for (i = 0; i < anfdmax; ++i)
1960 for (w = anfds [i].head; w; w = w->next)
739 { 1961 {
740 struct timespec ts; 1962 verify_watcher (EV_A_ (W)w);
741 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1963 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
742 have_monotonic = 1; 1964 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
743 } 1965 }
744#endif
745 1966
746 rt_now = ev_time (); 1967 assert (timermax >= timercnt);
747 mn_now = get_clock (); 1968 verify_heap (EV_A_ timers, timercnt);
748 now_floor = mn_now;
749 rtmn_diff = rt_now - mn_now;
750 1969
751 if (methods == EVMETHOD_AUTO) 1970#if EV_PERIODIC_ENABLE
752 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1971 assert (periodicmax >= periodiccnt);
753 methods = atoi (getenv ("LIBEV_METHODS")); 1972 verify_heap (EV_A_ periodics, periodiccnt);
754 else
755 methods = EVMETHOD_ANY;
756
757 method = 0;
758#if EV_USE_WIN32
759 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
760#endif
761#if EV_USE_KQUEUE
762 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
763#endif
764#if EV_USE_EPOLL
765 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
766#endif
767#if EV_USE_POLL
768 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
769#endif
770#if EV_USE_SELECT
771 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
772#endif
773
774 ev_watcher_init (&sigev, sigcb);
775 ev_set_priority (&sigev, EV_MAXPRI);
776 }
777}
778
779void
780loop_destroy (EV_P)
781{
782 int i;
783
784#if EV_USE_WIN32
785 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
786#endif
787#if EV_USE_KQUEUE
788 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
789#endif
790#if EV_USE_EPOLL
791 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
792#endif
793#if EV_USE_POLL
794 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
795#endif
796#if EV_USE_SELECT
797 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
798#endif 1973#endif
799 1974
800 for (i = NUMPRI; i--; ) 1975 for (i = NUMPRI; i--; )
801 array_free (pending, [i]); 1976 {
1977 assert (pendingmax [i] >= pendingcnt [i]);
1978#if EV_IDLE_ENABLE
1979 assert (idleall >= 0);
1980 assert (idlemax [i] >= idlecnt [i]);
1981 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1982#endif
1983 }
802 1984
803 /* have to use the microsoft-never-gets-it-right macro */ 1985#if EV_FORK_ENABLE
804 array_free_microshit (fdchange); 1986 assert (forkmax >= forkcnt);
805 array_free_microshit (timer); 1987 array_verify (EV_A_ (W *)forks, forkcnt);
806 array_free_microshit (periodic); 1988#endif
807 array_free_microshit (idle);
808 array_free_microshit (prepare);
809 array_free_microshit (check);
810 1989
811 method = 0; 1990#if EV_ASYNC_ENABLE
812} 1991 assert (asyncmax >= asynccnt);
1992 array_verify (EV_A_ (W *)asyncs, asynccnt);
1993#endif
813 1994
814static void 1995#if EV_PREPARE_ENABLE
815loop_fork (EV_P) 1996 assert (preparemax >= preparecnt);
816{ 1997 array_verify (EV_A_ (W *)prepares, preparecnt);
817#if EV_USE_EPOLL 1998#endif
818 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1999
2000#if EV_CHECK_ENABLE
2001 assert (checkmax >= checkcnt);
2002 array_verify (EV_A_ (W *)checks, checkcnt);
2003#endif
2004
2005# if 0
2006#if EV_CHILD_ENABLE
2007 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2008 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2009#endif
819#endif 2010# endif
820#if EV_USE_KQUEUE
821 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
822#endif 2011#endif
823
824 if (ev_is_active (&sigev))
825 {
826 /* default loop */
827
828 ev_ref (EV_A);
829 ev_io_stop (EV_A_ &sigev);
830 close (sigpipe [0]);
831 close (sigpipe [1]);
832
833 while (ev_pipe (sigpipe))
834 syserr ("(libev) error creating pipe");
835
836 siginit (EV_A);
837 }
838
839 postfork = 0;
840} 2012}
2013#endif
841 2014
842#if EV_MULTIPLICITY 2015#if EV_MULTIPLICITY
843struct ev_loop * 2016struct ev_loop *
844ev_loop_new (int methods) 2017#else
845{ 2018int
846 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
847
848 memset (loop, 0, sizeof (struct ev_loop));
849
850 loop_init (EV_A_ methods);
851
852 if (ev_method (EV_A))
853 return loop;
854
855 return 0;
856}
857
858void
859ev_loop_destroy (EV_P)
860{
861 loop_destroy (EV_A);
862 ev_free (loop);
863}
864
865void
866ev_loop_fork (EV_P)
867{
868 postfork = 1;
869}
870
871#endif 2019#endif
872 2020ev_default_loop (unsigned int flags)
2021{
2022 if (!ev_default_loop_ptr)
2023 {
873#if EV_MULTIPLICITY 2024#if EV_MULTIPLICITY
874struct ev_loop default_loop_struct; 2025 EV_P = ev_default_loop_ptr = &default_loop_struct;
875static struct ev_loop *default_loop;
876
877struct ev_loop *
878#else 2026#else
879static int default_loop;
880
881int
882#endif
883ev_default_loop (int methods)
884{
885 if (sigpipe [0] == sigpipe [1])
886 if (ev_pipe (sigpipe))
887 return 0;
888
889 if (!default_loop)
890 {
891#if EV_MULTIPLICITY
892 struct ev_loop *loop = default_loop = &default_loop_struct;
893#else
894 default_loop = 1; 2027 ev_default_loop_ptr = 1;
895#endif 2028#endif
896 2029
897 loop_init (EV_A_ methods); 2030 loop_init (EV_A_ flags);
898 2031
899 if (ev_method (EV_A)) 2032 if (ev_backend (EV_A))
900 { 2033 {
901 siginit (EV_A); 2034#if EV_CHILD_ENABLE
902
903#ifndef WIN32
904 ev_signal_init (&childev, childcb, SIGCHLD); 2035 ev_signal_init (&childev, childcb, SIGCHLD);
905 ev_set_priority (&childev, EV_MAXPRI); 2036 ev_set_priority (&childev, EV_MAXPRI);
906 ev_signal_start (EV_A_ &childev); 2037 ev_signal_start (EV_A_ &childev);
907 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2038 ev_unref (EV_A); /* child watcher should not keep loop alive */
908#endif 2039#endif
909 } 2040 }
910 else 2041 else
911 default_loop = 0; 2042 ev_default_loop_ptr = 0;
912 } 2043 }
913 2044
914 return default_loop; 2045 return ev_default_loop_ptr;
915} 2046}
916 2047
917void 2048void
918ev_default_destroy (void) 2049ev_loop_fork (EV_P)
919{ 2050{
920#if EV_MULTIPLICITY 2051 postfork = 1; /* must be in line with ev_default_fork */
921 struct ev_loop *loop = default_loop;
922#endif
923
924#ifndef WIN32
925 ev_ref (EV_A); /* child watcher */
926 ev_signal_stop (EV_A_ &childev);
927#endif
928
929 ev_ref (EV_A); /* signal watcher */
930 ev_io_stop (EV_A_ &sigev);
931
932 close (sigpipe [0]); sigpipe [0] = 0;
933 close (sigpipe [1]); sigpipe [1] = 0;
934
935 loop_destroy (EV_A);
936} 2052}
2053
2054/*****************************************************************************/
937 2055
938void 2056void
939ev_default_fork (void) 2057ev_invoke (EV_P_ void *w, int revents)
940{ 2058{
941#if EV_MULTIPLICITY 2059 EV_CB_INVOKE ((W)w, revents);
942 struct ev_loop *loop = default_loop;
943#endif
944
945 if (method)
946 postfork = 1;
947} 2060}
948 2061
949/*****************************************************************************/ 2062unsigned int
2063ev_pending_count (EV_P)
2064{
2065 int pri;
2066 unsigned int count = 0;
950 2067
951static void 2068 for (pri = NUMPRI; pri--; )
952call_pending (EV_P) 2069 count += pendingcnt [pri];
2070
2071 return count;
2072}
2073
2074void noinline
2075ev_invoke_pending (EV_P)
953{ 2076{
954 int pri; 2077 int pri;
955 2078
956 for (pri = NUMPRI; pri--; ) 2079 for (pri = NUMPRI; pri--; )
957 while (pendingcnt [pri]) 2080 while (pendingcnt [pri])
958 { 2081 {
959 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2082 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
960 2083
961 if (p->w) 2084 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
962 { 2085 /* ^ this is no longer true, as pending_w could be here */
2086
963 p->w->pending = 0; 2087 p->w->pending = 0;
964 p->w->cb (EV_A_ p->w, p->events); 2088 EV_CB_INVOKE (p->w, p->events);
965 } 2089 EV_FREQUENT_CHECK;
966 } 2090 }
967} 2091}
968 2092
969static void 2093#if EV_IDLE_ENABLE
2094/* make idle watchers pending. this handles the "call-idle */
2095/* only when higher priorities are idle" logic */
2096inline_size void
970timers_reify (EV_P) 2097idle_reify (EV_P)
971{ 2098{
972 while (timercnt && ((WT)timers [0])->at <= mn_now) 2099 if (expect_false (idleall))
973 { 2100 {
974 struct ev_timer *w = timers [0]; 2101 int pri;
975 2102
976 assert (("inactive timer on timer heap detected", ev_is_active (w))); 2103 for (pri = NUMPRI; pri--; )
977
978 /* first reschedule or stop timer */
979 if (w->repeat)
980 { 2104 {
981 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2105 if (pendingcnt [pri])
982 ((WT)w)->at = mn_now + w->repeat; 2106 break;
983 downheap ((WT *)timers, timercnt, 0);
984 }
985 else
986 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
987 2107
988 event (EV_A_ (W)w, EV_TIMEOUT); 2108 if (idlecnt [pri])
989 }
990}
991
992static void
993periodics_reify (EV_P)
994{
995 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
996 {
997 struct ev_periodic *w = periodics [0];
998
999 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1000
1001 /* first reschedule or stop timer */
1002 if (w->interval)
1003 {
1004 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1005 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
1006 downheap ((WT *)periodics, periodiccnt, 0);
1007 }
1008 else
1009 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1010
1011 event (EV_A_ (W)w, EV_PERIODIC);
1012 }
1013}
1014
1015static void
1016periodics_reschedule (EV_P)
1017{
1018 int i;
1019
1020 /* adjust periodics after time jump */
1021 for (i = 0; i < periodiccnt; ++i)
1022 {
1023 struct ev_periodic *w = periodics [i];
1024
1025 if (w->interval)
1026 {
1027 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1028
1029 if (fabs (diff) >= 1e-4)
1030 { 2109 {
1031 ev_periodic_stop (EV_A_ w); 2110 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1032 ev_periodic_start (EV_A_ w); 2111 break;
1033
1034 i = 0; /* restart loop, inefficient, but time jumps should be rare */
1035 } 2112 }
1036 } 2113 }
1037 } 2114 }
1038} 2115}
2116#endif
1039 2117
1040inline int 2118/* make timers pending */
1041time_update_monotonic (EV_P) 2119inline_size void
2120timers_reify (EV_P)
1042{ 2121{
1043 mn_now = get_clock (); 2122 EV_FREQUENT_CHECK;
1044 2123
1045 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2124 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1046 {
1047 rt_now = rtmn_diff + mn_now;
1048 return 0;
1049 } 2125 {
1050 else 2126 do
2127 {
2128 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2129
2130 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2131
2132 /* first reschedule or stop timer */
2133 if (w->repeat)
2134 {
2135 ev_at (w) += w->repeat;
2136 if (ev_at (w) < mn_now)
2137 ev_at (w) = mn_now;
2138
2139 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2140
2141 ANHE_at_cache (timers [HEAP0]);
2142 downheap (timers, timercnt, HEAP0);
2143 }
2144 else
2145 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2146
2147 EV_FREQUENT_CHECK;
2148 feed_reverse (EV_A_ (W)w);
2149 }
2150 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2151
2152 feed_reverse_done (EV_A_ EV_TIMER);
1051 { 2153 }
1052 now_floor = mn_now; 2154}
1053 rt_now = ev_time (); 2155
1054 return 1; 2156#if EV_PERIODIC_ENABLE
2157/* make periodics pending */
2158inline_size void
2159periodics_reify (EV_P)
2160{
2161 EV_FREQUENT_CHECK;
2162
2163 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1055 } 2164 {
1056} 2165 int feed_count = 0;
1057 2166
1058static void 2167 do
1059time_update (EV_P) 2168 {
2169 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2170
2171 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2172
2173 /* first reschedule or stop timer */
2174 if (w->reschedule_cb)
2175 {
2176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2177
2178 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2179
2180 ANHE_at_cache (periodics [HEAP0]);
2181 downheap (periodics, periodiccnt, HEAP0);
2182 }
2183 else if (w->interval)
2184 {
2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2186 /* if next trigger time is not sufficiently in the future, put it there */
2187 /* this might happen because of floating point inexactness */
2188 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2189 {
2190 ev_at (w) += w->interval;
2191
2192 /* if interval is unreasonably low we might still have a time in the past */
2193 /* so correct this. this will make the periodic very inexact, but the user */
2194 /* has effectively asked to get triggered more often than possible */
2195 if (ev_at (w) < ev_rt_now)
2196 ev_at (w) = ev_rt_now;
2197 }
2198
2199 ANHE_at_cache (periodics [HEAP0]);
2200 downheap (periodics, periodiccnt, HEAP0);
2201 }
2202 else
2203 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2204
2205 EV_FREQUENT_CHECK;
2206 feed_reverse (EV_A_ (W)w);
2207 }
2208 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2209
2210 feed_reverse_done (EV_A_ EV_PERIODIC);
2211 }
2212}
2213
2214/* simply recalculate all periodics */
2215/* TODO: maybe ensure that at least one event happens when jumping forward? */
2216static void noinline
2217periodics_reschedule (EV_P)
1060{ 2218{
1061 int i; 2219 int i;
1062 2220
2221 /* adjust periodics after time jump */
2222 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2223 {
2224 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2225
2226 if (w->reschedule_cb)
2227 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2228 else if (w->interval)
2229 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2230
2231 ANHE_at_cache (periodics [i]);
2232 }
2233
2234 reheap (periodics, periodiccnt);
2235}
2236#endif
2237
2238/* adjust all timers by a given offset */
2239static void noinline
2240timers_reschedule (EV_P_ ev_tstamp adjust)
2241{
2242 int i;
2243
2244 for (i = 0; i < timercnt; ++i)
2245 {
2246 ANHE *he = timers + i + HEAP0;
2247 ANHE_w (*he)->at += adjust;
2248 ANHE_at_cache (*he);
2249 }
2250}
2251
2252/* fetch new monotonic and realtime times from the kernel */
2253/* also detect if there was a timejump, and act accordingly */
2254inline_speed void
2255time_update (EV_P_ ev_tstamp max_block)
2256{
1063#if EV_USE_MONOTONIC 2257#if EV_USE_MONOTONIC
1064 if (expect_true (have_monotonic)) 2258 if (expect_true (have_monotonic))
1065 { 2259 {
1066 if (time_update_monotonic (EV_A)) 2260 int i;
2261 ev_tstamp odiff = rtmn_diff;
2262
2263 mn_now = get_clock ();
2264
2265 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2266 /* interpolate in the meantime */
2267 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1067 { 2268 {
1068 ev_tstamp odiff = rtmn_diff; 2269 ev_rt_now = rtmn_diff + mn_now;
2270 return;
2271 }
1069 2272
2273 now_floor = mn_now;
2274 ev_rt_now = ev_time ();
2275
1070 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2276 /* loop a few times, before making important decisions.
2277 * on the choice of "4": one iteration isn't enough,
2278 * in case we get preempted during the calls to
2279 * ev_time and get_clock. a second call is almost guaranteed
2280 * to succeed in that case, though. and looping a few more times
2281 * doesn't hurt either as we only do this on time-jumps or
2282 * in the unlikely event of having been preempted here.
2283 */
2284 for (i = 4; --i; )
1071 { 2285 {
1072 rtmn_diff = rt_now - mn_now; 2286 rtmn_diff = ev_rt_now - mn_now;
1073 2287
1074 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2288 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1075 return; /* all is well */ 2289 return; /* all is well */
1076 2290
1077 rt_now = ev_time (); 2291 ev_rt_now = ev_time ();
1078 mn_now = get_clock (); 2292 mn_now = get_clock ();
1079 now_floor = mn_now; 2293 now_floor = mn_now;
1080 } 2294 }
1081 2295
2296 /* no timer adjustment, as the monotonic clock doesn't jump */
2297 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2298# if EV_PERIODIC_ENABLE
2299 periodics_reschedule (EV_A);
2300# endif
2301 }
2302 else
2303#endif
2304 {
2305 ev_rt_now = ev_time ();
2306
2307 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2308 {
2309 /* adjust timers. this is easy, as the offset is the same for all of them */
2310 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2311#if EV_PERIODIC_ENABLE
1082 periodics_reschedule (EV_A); 2312 periodics_reschedule (EV_A);
1083 /* no timer adjustment, as the monotonic clock doesn't jump */ 2313#endif
1084 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1085 } 2314 }
1086 }
1087 else
1088#endif
1089 {
1090 rt_now = ev_time ();
1091 2315
1092 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1093 {
1094 periodics_reschedule (EV_A);
1095
1096 /* adjust timers. this is easy, as the offset is the same for all */
1097 for (i = 0; i < timercnt; ++i)
1098 ((WT)timers [i])->at += rt_now - mn_now;
1099 }
1100
1101 mn_now = rt_now; 2316 mn_now = ev_rt_now;
1102 } 2317 }
1103} 2318}
1104 2319
1105void 2320void
1106ev_ref (EV_P)
1107{
1108 ++activecnt;
1109}
1110
1111void
1112ev_unref (EV_P)
1113{
1114 --activecnt;
1115}
1116
1117static int loop_done;
1118
1119void
1120ev_loop (EV_P_ int flags) 2321ev_run (EV_P_ int flags)
1121{ 2322{
1122 double block; 2323#if EV_FEATURE_API
1123 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2324 ++loop_depth;
2325#endif
2326
2327 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2328
2329 loop_done = EVBREAK_CANCEL;
2330
2331 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1124 2332
1125 do 2333 do
1126 { 2334 {
2335#if EV_VERIFY >= 2
2336 ev_verify (EV_A);
2337#endif
2338
2339#ifndef _WIN32
2340 if (expect_false (curpid)) /* penalise the forking check even more */
2341 if (expect_false (getpid () != curpid))
2342 {
2343 curpid = getpid ();
2344 postfork = 1;
2345 }
2346#endif
2347
2348#if EV_FORK_ENABLE
2349 /* we might have forked, so queue fork handlers */
2350 if (expect_false (postfork))
2351 if (forkcnt)
2352 {
2353 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2354 EV_INVOKE_PENDING;
2355 }
2356#endif
2357
2358#if EV_PREPARE_ENABLE
1127 /* queue check watchers (and execute them) */ 2359 /* queue prepare watchers (and execute them) */
1128 if (expect_false (preparecnt)) 2360 if (expect_false (preparecnt))
1129 { 2361 {
1130 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2362 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1131 call_pending (EV_A); 2363 EV_INVOKE_PENDING;
1132 } 2364 }
2365#endif
2366
2367 if (expect_false (loop_done))
2368 break;
1133 2369
1134 /* we might have forked, so reify kernel state if necessary */ 2370 /* we might have forked, so reify kernel state if necessary */
1135 if (expect_false (postfork)) 2371 if (expect_false (postfork))
1136 loop_fork (EV_A); 2372 loop_fork (EV_A);
1137 2373
1138 /* update fd-related kernel structures */ 2374 /* update fd-related kernel structures */
1139 fd_reify (EV_A); 2375 fd_reify (EV_A);
1140 2376
1141 /* calculate blocking time */ 2377 /* calculate blocking time */
2378 {
2379 ev_tstamp waittime = 0.;
2380 ev_tstamp sleeptime = 0.;
1142 2381
1143 /* we only need this for !monotonic clockor timers, but as we basically 2382 /* remember old timestamp for io_blocktime calculation */
1144 always have timers, we just calculate it always */ 2383 ev_tstamp prev_mn_now = mn_now;
1145#if EV_USE_MONOTONIC 2384
1146 if (expect_true (have_monotonic)) 2385 /* update time to cancel out callback processing overhead */
1147 time_update_monotonic (EV_A); 2386 time_update (EV_A_ 1e100);
1148 else 2387
1149#endif 2388 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1150 { 2389 {
1151 rt_now = ev_time ();
1152 mn_now = rt_now;
1153 }
1154
1155 if (flags & EVLOOP_NONBLOCK || idlecnt)
1156 block = 0.;
1157 else
1158 {
1159 block = MAX_BLOCKTIME; 2390 waittime = MAX_BLOCKTIME;
1160 2391
1161 if (timercnt) 2392 if (timercnt)
1162 { 2393 {
1163 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2394 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1164 if (block > to) block = to; 2395 if (waittime > to) waittime = to;
1165 } 2396 }
1166 2397
2398#if EV_PERIODIC_ENABLE
1167 if (periodiccnt) 2399 if (periodiccnt)
1168 { 2400 {
1169 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2401 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1170 if (block > to) block = to; 2402 if (waittime > to) waittime = to;
1171 } 2403 }
2404#endif
1172 2405
1173 if (block < 0.) block = 0.; 2406 /* don't let timeouts decrease the waittime below timeout_blocktime */
2407 if (expect_false (waittime < timeout_blocktime))
2408 waittime = timeout_blocktime;
2409
2410 /* extra check because io_blocktime is commonly 0 */
2411 if (expect_false (io_blocktime))
2412 {
2413 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2414
2415 if (sleeptime > waittime - backend_fudge)
2416 sleeptime = waittime - backend_fudge;
2417
2418 if (expect_true (sleeptime > 0.))
2419 {
2420 ev_sleep (sleeptime);
2421 waittime -= sleeptime;
2422 }
2423 }
1174 } 2424 }
1175 2425
1176 method_poll (EV_A_ block); 2426#if EV_FEATURE_API
2427 ++loop_count;
2428#endif
2429 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2430 backend_poll (EV_A_ waittime);
2431 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1177 2432
1178 /* update rt_now, do magic */ 2433 /* update ev_rt_now, do magic */
1179 time_update (EV_A); 2434 time_update (EV_A_ waittime + sleeptime);
2435 }
1180 2436
1181 /* queue pending timers and reschedule them */ 2437 /* queue pending timers and reschedule them */
1182 timers_reify (EV_A); /* relative timers called last */ 2438 timers_reify (EV_A); /* relative timers called last */
2439#if EV_PERIODIC_ENABLE
1183 periodics_reify (EV_A); /* absolute timers called first */ 2440 periodics_reify (EV_A); /* absolute timers called first */
2441#endif
1184 2442
2443#if EV_IDLE_ENABLE
1185 /* queue idle watchers unless io or timers are pending */ 2444 /* queue idle watchers unless other events are pending */
1186 if (!pendingcnt) 2445 idle_reify (EV_A);
1187 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2446#endif
1188 2447
2448#if EV_CHECK_ENABLE
1189 /* queue check watchers, to be executed first */ 2449 /* queue check watchers, to be executed first */
1190 if (checkcnt) 2450 if (expect_false (checkcnt))
1191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2451 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2452#endif
1192 2453
1193 call_pending (EV_A); 2454 EV_INVOKE_PENDING;
1194 } 2455 }
1195 while (activecnt && !loop_done); 2456 while (expect_true (
2457 activecnt
2458 && !loop_done
2459 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2460 ));
1196 2461
1197 if (loop_done != 2) 2462 if (loop_done == EVBREAK_ONE)
1198 loop_done = 0; 2463 loop_done = EVBREAK_CANCEL;
2464
2465#if EV_FEATURE_API
2466 --loop_depth;
2467#endif
1199} 2468}
1200 2469
1201void 2470void
1202ev_unloop (EV_P_ int how) 2471ev_break (EV_P_ int how)
1203{ 2472{
1204 loop_done = how; 2473 loop_done = how;
1205} 2474}
1206 2475
2476void
2477ev_ref (EV_P)
2478{
2479 ++activecnt;
2480}
2481
2482void
2483ev_unref (EV_P)
2484{
2485 --activecnt;
2486}
2487
2488void
2489ev_now_update (EV_P)
2490{
2491 time_update (EV_A_ 1e100);
2492}
2493
2494void
2495ev_suspend (EV_P)
2496{
2497 ev_now_update (EV_A);
2498}
2499
2500void
2501ev_resume (EV_P)
2502{
2503 ev_tstamp mn_prev = mn_now;
2504
2505 ev_now_update (EV_A);
2506 timers_reschedule (EV_A_ mn_now - mn_prev);
2507#if EV_PERIODIC_ENABLE
2508 /* TODO: really do this? */
2509 periodics_reschedule (EV_A);
2510#endif
2511}
2512
1207/*****************************************************************************/ 2513/*****************************************************************************/
2514/* singly-linked list management, used when the expected list length is short */
1208 2515
1209inline void 2516inline_size void
1210wlist_add (WL *head, WL elem) 2517wlist_add (WL *head, WL elem)
1211{ 2518{
1212 elem->next = *head; 2519 elem->next = *head;
1213 *head = elem; 2520 *head = elem;
1214} 2521}
1215 2522
1216inline void 2523inline_size void
1217wlist_del (WL *head, WL elem) 2524wlist_del (WL *head, WL elem)
1218{ 2525{
1219 while (*head) 2526 while (*head)
1220 { 2527 {
1221 if (*head == elem) 2528 if (expect_true (*head == elem))
1222 { 2529 {
1223 *head = elem->next; 2530 *head = elem->next;
1224 return; 2531 break;
1225 } 2532 }
1226 2533
1227 head = &(*head)->next; 2534 head = &(*head)->next;
1228 } 2535 }
1229} 2536}
1230 2537
2538/* internal, faster, version of ev_clear_pending */
1231inline void 2539inline_speed void
1232ev_clear_pending (EV_P_ W w) 2540clear_pending (EV_P_ W w)
1233{ 2541{
1234 if (w->pending) 2542 if (w->pending)
1235 { 2543 {
1236 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2544 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1237 w->pending = 0; 2545 w->pending = 0;
1238 } 2546 }
1239} 2547}
1240 2548
2549int
2550ev_clear_pending (EV_P_ void *w)
2551{
2552 W w_ = (W)w;
2553 int pending = w_->pending;
2554
2555 if (expect_true (pending))
2556 {
2557 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2558 p->w = (W)&pending_w;
2559 w_->pending = 0;
2560 return p->events;
2561 }
2562 else
2563 return 0;
2564}
2565
1241inline void 2566inline_size void
2567pri_adjust (EV_P_ W w)
2568{
2569 int pri = ev_priority (w);
2570 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2571 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2572 ev_set_priority (w, pri);
2573}
2574
2575inline_speed void
1242ev_start (EV_P_ W w, int active) 2576ev_start (EV_P_ W w, int active)
1243{ 2577{
1244 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2578 pri_adjust (EV_A_ w);
1245 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1246
1247 w->active = active; 2579 w->active = active;
1248 ev_ref (EV_A); 2580 ev_ref (EV_A);
1249} 2581}
1250 2582
1251inline void 2583inline_size void
1252ev_stop (EV_P_ W w) 2584ev_stop (EV_P_ W w)
1253{ 2585{
1254 ev_unref (EV_A); 2586 ev_unref (EV_A);
1255 w->active = 0; 2587 w->active = 0;
1256} 2588}
1257 2589
1258/*****************************************************************************/ 2590/*****************************************************************************/
1259 2591
1260void 2592void noinline
1261ev_io_start (EV_P_ struct ev_io *w) 2593ev_io_start (EV_P_ ev_io *w)
1262{ 2594{
1263 int fd = w->fd; 2595 int fd = w->fd;
1264 2596
1265 if (ev_is_active (w)) 2597 if (expect_false (ev_is_active (w)))
1266 return; 2598 return;
1267 2599
1268 assert (("ev_io_start called with negative fd", fd >= 0)); 2600 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2601 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2602
2603 EV_FREQUENT_CHECK;
1269 2604
1270 ev_start (EV_A_ (W)w, 1); 2605 ev_start (EV_A_ (W)w, 1);
1271 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2606 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1272 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2607 wlist_add (&anfds[fd].head, (WL)w);
1273 2608
1274 fd_change (EV_A_ fd); 2609 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1275} 2610 w->events &= ~EV__IOFDSET;
1276 2611
1277void 2612 EV_FREQUENT_CHECK;
2613}
2614
2615void noinline
1278ev_io_stop (EV_P_ struct ev_io *w) 2616ev_io_stop (EV_P_ ev_io *w)
1279{ 2617{
1280 ev_clear_pending (EV_A_ (W)w); 2618 clear_pending (EV_A_ (W)w);
1281 if (!ev_is_active (w)) 2619 if (expect_false (!ev_is_active (w)))
1282 return; 2620 return;
1283 2621
2622 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2623
2624 EV_FREQUENT_CHECK;
2625
1284 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2626 wlist_del (&anfds[w->fd].head, (WL)w);
1285 ev_stop (EV_A_ (W)w); 2627 ev_stop (EV_A_ (W)w);
1286 2628
1287 fd_change (EV_A_ w->fd); 2629 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1288}
1289 2630
1290void 2631 EV_FREQUENT_CHECK;
2632}
2633
2634void noinline
1291ev_timer_start (EV_P_ struct ev_timer *w) 2635ev_timer_start (EV_P_ ev_timer *w)
1292{ 2636{
1293 if (ev_is_active (w)) 2637 if (expect_false (ev_is_active (w)))
1294 return; 2638 return;
1295 2639
1296 ((WT)w)->at += mn_now; 2640 ev_at (w) += mn_now;
1297 2641
1298 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2642 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1299 2643
2644 EV_FREQUENT_CHECK;
2645
2646 ++timercnt;
1300 ev_start (EV_A_ (W)w, ++timercnt); 2647 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1301 array_needsize (timers, timermax, timercnt, (void)); 2648 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1302 timers [timercnt - 1] = w; 2649 ANHE_w (timers [ev_active (w)]) = (WT)w;
1303 upheap ((WT *)timers, timercnt - 1); 2650 ANHE_at_cache (timers [ev_active (w)]);
2651 upheap (timers, ev_active (w));
1304 2652
2653 EV_FREQUENT_CHECK;
2654
1305 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2655 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1306} 2656}
1307 2657
1308void 2658void noinline
1309ev_timer_stop (EV_P_ struct ev_timer *w) 2659ev_timer_stop (EV_P_ ev_timer *w)
1310{ 2660{
1311 ev_clear_pending (EV_A_ (W)w); 2661 clear_pending (EV_A_ (W)w);
1312 if (!ev_is_active (w)) 2662 if (expect_false (!ev_is_active (w)))
1313 return; 2663 return;
1314 2664
2665 EV_FREQUENT_CHECK;
2666
2667 {
2668 int active = ev_active (w);
2669
1315 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2670 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1316 2671
1317 if (((W)w)->active < timercnt--) 2672 --timercnt;
2673
2674 if (expect_true (active < timercnt + HEAP0))
1318 { 2675 {
1319 timers [((W)w)->active - 1] = timers [timercnt]; 2676 timers [active] = timers [timercnt + HEAP0];
1320 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2677 adjustheap (timers, timercnt, active);
1321 } 2678 }
2679 }
1322 2680
1323 ((WT)w)->at = w->repeat; 2681 ev_at (w) -= mn_now;
1324 2682
1325 ev_stop (EV_A_ (W)w); 2683 ev_stop (EV_A_ (W)w);
1326}
1327 2684
1328void 2685 EV_FREQUENT_CHECK;
2686}
2687
2688void noinline
1329ev_timer_again (EV_P_ struct ev_timer *w) 2689ev_timer_again (EV_P_ ev_timer *w)
1330{ 2690{
2691 EV_FREQUENT_CHECK;
2692
1331 if (ev_is_active (w)) 2693 if (ev_is_active (w))
1332 { 2694 {
1333 if (w->repeat) 2695 if (w->repeat)
1334 { 2696 {
1335 ((WT)w)->at = mn_now + w->repeat; 2697 ev_at (w) = mn_now + w->repeat;
1336 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2698 ANHE_at_cache (timers [ev_active (w)]);
2699 adjustheap (timers, timercnt, ev_active (w));
1337 } 2700 }
1338 else 2701 else
1339 ev_timer_stop (EV_A_ w); 2702 ev_timer_stop (EV_A_ w);
1340 } 2703 }
1341 else if (w->repeat) 2704 else if (w->repeat)
2705 {
2706 ev_at (w) = w->repeat;
1342 ev_timer_start (EV_A_ w); 2707 ev_timer_start (EV_A_ w);
1343} 2708 }
1344 2709
1345void 2710 EV_FREQUENT_CHECK;
2711}
2712
2713ev_tstamp
2714ev_timer_remaining (EV_P_ ev_timer *w)
2715{
2716 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2717}
2718
2719#if EV_PERIODIC_ENABLE
2720void noinline
1346ev_periodic_start (EV_P_ struct ev_periodic *w) 2721ev_periodic_start (EV_P_ ev_periodic *w)
1347{ 2722{
1348 if (ev_is_active (w)) 2723 if (expect_false (ev_is_active (w)))
1349 return; 2724 return;
1350 2725
2726 if (w->reschedule_cb)
2727 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2728 else if (w->interval)
2729 {
1351 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2730 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1352
1353 /* this formula differs from the one in periodic_reify because we do not always round up */ 2731 /* this formula differs from the one in periodic_reify because we do not always round up */
1354 if (w->interval)
1355 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2732 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2733 }
2734 else
2735 ev_at (w) = w->offset;
1356 2736
2737 EV_FREQUENT_CHECK;
2738
2739 ++periodiccnt;
1357 ev_start (EV_A_ (W)w, ++periodiccnt); 2740 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1358 array_needsize (periodics, periodicmax, periodiccnt, (void)); 2741 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1359 periodics [periodiccnt - 1] = w; 2742 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1360 upheap ((WT *)periodics, periodiccnt - 1); 2743 ANHE_at_cache (periodics [ev_active (w)]);
2744 upheap (periodics, ev_active (w));
1361 2745
2746 EV_FREQUENT_CHECK;
2747
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2748 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1363} 2749}
1364 2750
1365void 2751void noinline
1366ev_periodic_stop (EV_P_ struct ev_periodic *w) 2752ev_periodic_stop (EV_P_ ev_periodic *w)
1367{ 2753{
1368 ev_clear_pending (EV_A_ (W)w); 2754 clear_pending (EV_A_ (W)w);
1369 if (!ev_is_active (w)) 2755 if (expect_false (!ev_is_active (w)))
1370 return; 2756 return;
1371 2757
2758 EV_FREQUENT_CHECK;
2759
2760 {
2761 int active = ev_active (w);
2762
1372 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2763 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1373 2764
1374 if (((W)w)->active < periodiccnt--) 2765 --periodiccnt;
2766
2767 if (expect_true (active < periodiccnt + HEAP0))
1375 { 2768 {
1376 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2769 periodics [active] = periodics [periodiccnt + HEAP0];
1377 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2770 adjustheap (periodics, periodiccnt, active);
1378 } 2771 }
2772 }
1379 2773
1380 ev_stop (EV_A_ (W)w); 2774 ev_stop (EV_A_ (W)w);
1381}
1382 2775
1383void 2776 EV_FREQUENT_CHECK;
1384ev_idle_start (EV_P_ struct ev_idle *w)
1385{
1386 if (ev_is_active (w))
1387 return;
1388
1389 ev_start (EV_A_ (W)w, ++idlecnt);
1390 array_needsize (idles, idlemax, idlecnt, (void));
1391 idles [idlecnt - 1] = w;
1392} 2777}
1393 2778
1394void 2779void noinline
1395ev_idle_stop (EV_P_ struct ev_idle *w) 2780ev_periodic_again (EV_P_ ev_periodic *w)
1396{ 2781{
1397 ev_clear_pending (EV_A_ (W)w); 2782 /* TODO: use adjustheap and recalculation */
1398 if (ev_is_active (w))
1399 return;
1400
1401 idles [((W)w)->active - 1] = idles [--idlecnt];
1402 ev_stop (EV_A_ (W)w); 2783 ev_periodic_stop (EV_A_ w);
2784 ev_periodic_start (EV_A_ w);
1403} 2785}
1404 2786#endif
1405void
1406ev_prepare_start (EV_P_ struct ev_prepare *w)
1407{
1408 if (ev_is_active (w))
1409 return;
1410
1411 ev_start (EV_A_ (W)w, ++preparecnt);
1412 array_needsize (prepares, preparemax, preparecnt, (void));
1413 prepares [preparecnt - 1] = w;
1414}
1415
1416void
1417ev_prepare_stop (EV_P_ struct ev_prepare *w)
1418{
1419 ev_clear_pending (EV_A_ (W)w);
1420 if (ev_is_active (w))
1421 return;
1422
1423 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1424 ev_stop (EV_A_ (W)w);
1425}
1426
1427void
1428ev_check_start (EV_P_ struct ev_check *w)
1429{
1430 if (ev_is_active (w))
1431 return;
1432
1433 ev_start (EV_A_ (W)w, ++checkcnt);
1434 array_needsize (checks, checkmax, checkcnt, (void));
1435 checks [checkcnt - 1] = w;
1436}
1437
1438void
1439ev_check_stop (EV_P_ struct ev_check *w)
1440{
1441 ev_clear_pending (EV_A_ (W)w);
1442 if (ev_is_active (w))
1443 return;
1444
1445 checks [((W)w)->active - 1] = checks [--checkcnt];
1446 ev_stop (EV_A_ (W)w);
1447}
1448 2787
1449#ifndef SA_RESTART 2788#ifndef SA_RESTART
1450# define SA_RESTART 0 2789# define SA_RESTART 0
1451#endif 2790#endif
1452 2791
2792#if EV_SIGNAL_ENABLE
2793
2794void noinline
2795ev_signal_start (EV_P_ ev_signal *w)
2796{
2797 if (expect_false (ev_is_active (w)))
2798 return;
2799
2800 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2801
2802#if EV_MULTIPLICITY
2803 assert (("libev: a signal must not be attached to two different loops",
2804 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2805
2806 signals [w->signum - 1].loop = EV_A;
2807#endif
2808
2809 EV_FREQUENT_CHECK;
2810
2811#if EV_USE_SIGNALFD
2812 if (sigfd == -2)
2813 {
2814 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2815 if (sigfd < 0 && errno == EINVAL)
2816 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2817
2818 if (sigfd >= 0)
2819 {
2820 fd_intern (sigfd); /* doing it twice will not hurt */
2821
2822 sigemptyset (&sigfd_set);
2823
2824 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2825 ev_set_priority (&sigfd_w, EV_MAXPRI);
2826 ev_io_start (EV_A_ &sigfd_w);
2827 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2828 }
2829 }
2830
2831 if (sigfd >= 0)
2832 {
2833 /* TODO: check .head */
2834 sigaddset (&sigfd_set, w->signum);
2835 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2836
2837 signalfd (sigfd, &sigfd_set, 0);
2838 }
2839#endif
2840
2841 ev_start (EV_A_ (W)w, 1);
2842 wlist_add (&signals [w->signum - 1].head, (WL)w);
2843
2844 if (!((WL)w)->next)
2845# if EV_USE_SIGNALFD
2846 if (sigfd < 0) /*TODO*/
2847# endif
2848 {
2849# ifdef _WIN32
2850 evpipe_init (EV_A);
2851
2852 signal (w->signum, ev_sighandler);
2853# else
2854 struct sigaction sa;
2855
2856 evpipe_init (EV_A);
2857
2858 sa.sa_handler = ev_sighandler;
2859 sigfillset (&sa.sa_mask);
2860 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2861 sigaction (w->signum, &sa, 0);
2862
2863 sigemptyset (&sa.sa_mask);
2864 sigaddset (&sa.sa_mask, w->signum);
2865 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2866#endif
2867 }
2868
2869 EV_FREQUENT_CHECK;
2870}
2871
2872void noinline
2873ev_signal_stop (EV_P_ ev_signal *w)
2874{
2875 clear_pending (EV_A_ (W)w);
2876 if (expect_false (!ev_is_active (w)))
2877 return;
2878
2879 EV_FREQUENT_CHECK;
2880
2881 wlist_del (&signals [w->signum - 1].head, (WL)w);
2882 ev_stop (EV_A_ (W)w);
2883
2884 if (!signals [w->signum - 1].head)
2885 {
2886#if EV_MULTIPLICITY
2887 signals [w->signum - 1].loop = 0; /* unattach from signal */
2888#endif
2889#if EV_USE_SIGNALFD
2890 if (sigfd >= 0)
2891 {
2892 sigset_t ss;
2893
2894 sigemptyset (&ss);
2895 sigaddset (&ss, w->signum);
2896 sigdelset (&sigfd_set, w->signum);
2897
2898 signalfd (sigfd, &sigfd_set, 0);
2899 sigprocmask (SIG_UNBLOCK, &ss, 0);
2900 }
2901 else
2902#endif
2903 signal (w->signum, SIG_DFL);
2904 }
2905
2906 EV_FREQUENT_CHECK;
2907}
2908
2909#endif
2910
2911#if EV_CHILD_ENABLE
2912
1453void 2913void
1454ev_signal_start (EV_P_ struct ev_signal *w) 2914ev_child_start (EV_P_ ev_child *w)
1455{ 2915{
1456#if EV_MULTIPLICITY 2916#if EV_MULTIPLICITY
1457 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2917 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1458#endif 2918#endif
1459 if (ev_is_active (w)) 2919 if (expect_false (ev_is_active (w)))
1460 return; 2920 return;
1461 2921
1462 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2922 EV_FREQUENT_CHECK;
1463 2923
1464 ev_start (EV_A_ (W)w, 1); 2924 ev_start (EV_A_ (W)w, 1);
1465 array_needsize (signals, signalmax, w->signum, signals_init); 2925 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1466 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1467 2926
1468 if (!((WL)w)->next) 2927 EV_FREQUENT_CHECK;
2928}
2929
2930void
2931ev_child_stop (EV_P_ ev_child *w)
2932{
2933 clear_pending (EV_A_ (W)w);
2934 if (expect_false (!ev_is_active (w)))
2935 return;
2936
2937 EV_FREQUENT_CHECK;
2938
2939 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2940 ev_stop (EV_A_ (W)w);
2941
2942 EV_FREQUENT_CHECK;
2943}
2944
2945#endif
2946
2947#if EV_STAT_ENABLE
2948
2949# ifdef _WIN32
2950# undef lstat
2951# define lstat(a,b) _stati64 (a,b)
2952# endif
2953
2954#define DEF_STAT_INTERVAL 5.0074891
2955#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2956#define MIN_STAT_INTERVAL 0.1074891
2957
2958static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2959
2960#if EV_USE_INOTIFY
2961
2962/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2963# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2964
2965static void noinline
2966infy_add (EV_P_ ev_stat *w)
2967{
2968 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2969
2970 if (w->wd >= 0)
2971 {
2972 struct statfs sfs;
2973
2974 /* now local changes will be tracked by inotify, but remote changes won't */
2975 /* unless the filesystem is known to be local, we therefore still poll */
2976 /* also do poll on <2.6.25, but with normal frequency */
2977
2978 if (!fs_2625)
2979 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2980 else if (!statfs (w->path, &sfs)
2981 && (sfs.f_type == 0x1373 /* devfs */
2982 || sfs.f_type == 0xEF53 /* ext2/3 */
2983 || sfs.f_type == 0x3153464a /* jfs */
2984 || sfs.f_type == 0x52654973 /* reiser3 */
2985 || sfs.f_type == 0x01021994 /* tempfs */
2986 || sfs.f_type == 0x58465342 /* xfs */))
2987 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2988 else
2989 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1469 { 2990 }
1470#if WIN32 2991 else
1471 signal (w->signum, sighandler); 2992 {
2993 /* can't use inotify, continue to stat */
2994 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2995
2996 /* if path is not there, monitor some parent directory for speedup hints */
2997 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2998 /* but an efficiency issue only */
2999 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3000 {
3001 char path [4096];
3002 strcpy (path, w->path);
3003
3004 do
3005 {
3006 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3007 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3008
3009 char *pend = strrchr (path, '/');
3010
3011 if (!pend || pend == path)
3012 break;
3013
3014 *pend = 0;
3015 w->wd = inotify_add_watch (fs_fd, path, mask);
3016 }
3017 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3018 }
3019 }
3020
3021 if (w->wd >= 0)
3022 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3023
3024 /* now re-arm timer, if required */
3025 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3026 ev_timer_again (EV_A_ &w->timer);
3027 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3028}
3029
3030static void noinline
3031infy_del (EV_P_ ev_stat *w)
3032{
3033 int slot;
3034 int wd = w->wd;
3035
3036 if (wd < 0)
3037 return;
3038
3039 w->wd = -2;
3040 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3041 wlist_del (&fs_hash [slot].head, (WL)w);
3042
3043 /* remove this watcher, if others are watching it, they will rearm */
3044 inotify_rm_watch (fs_fd, wd);
3045}
3046
3047static void noinline
3048infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3049{
3050 if (slot < 0)
3051 /* overflow, need to check for all hash slots */
3052 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3053 infy_wd (EV_A_ slot, wd, ev);
3054 else
3055 {
3056 WL w_;
3057
3058 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3059 {
3060 ev_stat *w = (ev_stat *)w_;
3061 w_ = w_->next; /* lets us remove this watcher and all before it */
3062
3063 if (w->wd == wd || wd == -1)
3064 {
3065 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3066 {
3067 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3068 w->wd = -1;
3069 infy_add (EV_A_ w); /* re-add, no matter what */
3070 }
3071
3072 stat_timer_cb (EV_A_ &w->timer, 0);
3073 }
3074 }
3075 }
3076}
3077
3078static void
3079infy_cb (EV_P_ ev_io *w, int revents)
3080{
3081 char buf [EV_INOTIFY_BUFSIZE];
3082 int ofs;
3083 int len = read (fs_fd, buf, sizeof (buf));
3084
3085 for (ofs = 0; ofs < len; )
3086 {
3087 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3088 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3089 ofs += sizeof (struct inotify_event) + ev->len;
3090 }
3091}
3092
3093inline_size void
3094ev_check_2625 (EV_P)
3095{
3096 /* kernels < 2.6.25 are borked
3097 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3098 */
3099 if (ev_linux_version () < 0x020619)
3100 return;
3101
3102 fs_2625 = 1;
3103}
3104
3105inline_size int
3106infy_newfd (void)
3107{
3108#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3109 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3110 if (fd >= 0)
3111 return fd;
3112#endif
3113 return inotify_init ();
3114}
3115
3116inline_size void
3117infy_init (EV_P)
3118{
3119 if (fs_fd != -2)
3120 return;
3121
3122 fs_fd = -1;
3123
3124 ev_check_2625 (EV_A);
3125
3126 fs_fd = infy_newfd ();
3127
3128 if (fs_fd >= 0)
3129 {
3130 fd_intern (fs_fd);
3131 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3132 ev_set_priority (&fs_w, EV_MAXPRI);
3133 ev_io_start (EV_A_ &fs_w);
3134 ev_unref (EV_A);
3135 }
3136}
3137
3138inline_size void
3139infy_fork (EV_P)
3140{
3141 int slot;
3142
3143 if (fs_fd < 0)
3144 return;
3145
3146 ev_ref (EV_A);
3147 ev_io_stop (EV_A_ &fs_w);
3148 close (fs_fd);
3149 fs_fd = infy_newfd ();
3150
3151 if (fs_fd >= 0)
3152 {
3153 fd_intern (fs_fd);
3154 ev_io_set (&fs_w, fs_fd, EV_READ);
3155 ev_io_start (EV_A_ &fs_w);
3156 ev_unref (EV_A);
3157 }
3158
3159 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3160 {
3161 WL w_ = fs_hash [slot].head;
3162 fs_hash [slot].head = 0;
3163
3164 while (w_)
3165 {
3166 ev_stat *w = (ev_stat *)w_;
3167 w_ = w_->next; /* lets us add this watcher */
3168
3169 w->wd = -1;
3170
3171 if (fs_fd >= 0)
3172 infy_add (EV_A_ w); /* re-add, no matter what */
3173 else
3174 {
3175 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3176 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3177 ev_timer_again (EV_A_ &w->timer);
3178 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3179 }
3180 }
3181 }
3182}
3183
3184#endif
3185
3186#ifdef _WIN32
3187# define EV_LSTAT(p,b) _stati64 (p, b)
1472#else 3188#else
1473 struct sigaction sa; 3189# define EV_LSTAT(p,b) lstat (p, b)
1474 sa.sa_handler = sighandler;
1475 sigfillset (&sa.sa_mask);
1476 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1477 sigaction (w->signum, &sa, 0);
1478#endif 3190#endif
1479 }
1480}
1481 3191
1482void 3192void
1483ev_signal_stop (EV_P_ struct ev_signal *w) 3193ev_stat_stat (EV_P_ ev_stat *w)
1484{ 3194{
1485 ev_clear_pending (EV_A_ (W)w); 3195 if (lstat (w->path, &w->attr) < 0)
1486 if (!ev_is_active (w)) 3196 w->attr.st_nlink = 0;
3197 else if (!w->attr.st_nlink)
3198 w->attr.st_nlink = 1;
3199}
3200
3201static void noinline
3202stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3203{
3204 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3205
3206 ev_statdata prev = w->attr;
3207 ev_stat_stat (EV_A_ w);
3208
3209 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3210 if (
3211 prev.st_dev != w->attr.st_dev
3212 || prev.st_ino != w->attr.st_ino
3213 || prev.st_mode != w->attr.st_mode
3214 || prev.st_nlink != w->attr.st_nlink
3215 || prev.st_uid != w->attr.st_uid
3216 || prev.st_gid != w->attr.st_gid
3217 || prev.st_rdev != w->attr.st_rdev
3218 || prev.st_size != w->attr.st_size
3219 || prev.st_atime != w->attr.st_atime
3220 || prev.st_mtime != w->attr.st_mtime
3221 || prev.st_ctime != w->attr.st_ctime
3222 ) {
3223 /* we only update w->prev on actual differences */
3224 /* in case we test more often than invoke the callback, */
3225 /* to ensure that prev is always different to attr */
3226 w->prev = prev;
3227
3228 #if EV_USE_INOTIFY
3229 if (fs_fd >= 0)
3230 {
3231 infy_del (EV_A_ w);
3232 infy_add (EV_A_ w);
3233 ev_stat_stat (EV_A_ w); /* avoid race... */
3234 }
3235 #endif
3236
3237 ev_feed_event (EV_A_ w, EV_STAT);
3238 }
3239}
3240
3241void
3242ev_stat_start (EV_P_ ev_stat *w)
3243{
3244 if (expect_false (ev_is_active (w)))
1487 return; 3245 return;
1488 3246
1489 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3247 ev_stat_stat (EV_A_ w);
3248
3249 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3250 w->interval = MIN_STAT_INTERVAL;
3251
3252 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3253 ev_set_priority (&w->timer, ev_priority (w));
3254
3255#if EV_USE_INOTIFY
3256 infy_init (EV_A);
3257
3258 if (fs_fd >= 0)
3259 infy_add (EV_A_ w);
3260 else
3261#endif
3262 {
3263 ev_timer_again (EV_A_ &w->timer);
3264 ev_unref (EV_A);
3265 }
3266
3267 ev_start (EV_A_ (W)w, 1);
3268
3269 EV_FREQUENT_CHECK;
3270}
3271
3272void
3273ev_stat_stop (EV_P_ ev_stat *w)
3274{
3275 clear_pending (EV_A_ (W)w);
3276 if (expect_false (!ev_is_active (w)))
3277 return;
3278
3279 EV_FREQUENT_CHECK;
3280
3281#if EV_USE_INOTIFY
3282 infy_del (EV_A_ w);
3283#endif
3284
3285 if (ev_is_active (&w->timer))
3286 {
3287 ev_ref (EV_A);
3288 ev_timer_stop (EV_A_ &w->timer);
3289 }
3290
1490 ev_stop (EV_A_ (W)w); 3291 ev_stop (EV_A_ (W)w);
1491 3292
1492 if (!signals [w->signum - 1].head) 3293 EV_FREQUENT_CHECK;
1493 signal (w->signum, SIG_DFL);
1494} 3294}
3295#endif
1495 3296
3297#if EV_IDLE_ENABLE
1496void 3298void
1497ev_child_start (EV_P_ struct ev_child *w) 3299ev_idle_start (EV_P_ ev_idle *w)
1498{ 3300{
1499#if EV_MULTIPLICITY
1500 assert (("child watchers are only supported in the default loop", loop == default_loop));
1501#endif
1502 if (ev_is_active (w)) 3301 if (expect_false (ev_is_active (w)))
1503 return; 3302 return;
1504 3303
3304 pri_adjust (EV_A_ (W)w);
3305
3306 EV_FREQUENT_CHECK;
3307
3308 {
3309 int active = ++idlecnt [ABSPRI (w)];
3310
3311 ++idleall;
3312 ev_start (EV_A_ (W)w, active);
3313
3314 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3315 idles [ABSPRI (w)][active - 1] = w;
3316 }
3317
3318 EV_FREQUENT_CHECK;
3319}
3320
3321void
3322ev_idle_stop (EV_P_ ev_idle *w)
3323{
3324 clear_pending (EV_A_ (W)w);
3325 if (expect_false (!ev_is_active (w)))
3326 return;
3327
3328 EV_FREQUENT_CHECK;
3329
3330 {
3331 int active = ev_active (w);
3332
3333 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3334 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3335
3336 ev_stop (EV_A_ (W)w);
3337 --idleall;
3338 }
3339
3340 EV_FREQUENT_CHECK;
3341}
3342#endif
3343
3344#if EV_PREPARE_ENABLE
3345void
3346ev_prepare_start (EV_P_ ev_prepare *w)
3347{
3348 if (expect_false (ev_is_active (w)))
3349 return;
3350
3351 EV_FREQUENT_CHECK;
3352
3353 ev_start (EV_A_ (W)w, ++preparecnt);
3354 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3355 prepares [preparecnt - 1] = w;
3356
3357 EV_FREQUENT_CHECK;
3358}
3359
3360void
3361ev_prepare_stop (EV_P_ ev_prepare *w)
3362{
3363 clear_pending (EV_A_ (W)w);
3364 if (expect_false (!ev_is_active (w)))
3365 return;
3366
3367 EV_FREQUENT_CHECK;
3368
3369 {
3370 int active = ev_active (w);
3371
3372 prepares [active - 1] = prepares [--preparecnt];
3373 ev_active (prepares [active - 1]) = active;
3374 }
3375
3376 ev_stop (EV_A_ (W)w);
3377
3378 EV_FREQUENT_CHECK;
3379}
3380#endif
3381
3382#if EV_CHECK_ENABLE
3383void
3384ev_check_start (EV_P_ ev_check *w)
3385{
3386 if (expect_false (ev_is_active (w)))
3387 return;
3388
3389 EV_FREQUENT_CHECK;
3390
3391 ev_start (EV_A_ (W)w, ++checkcnt);
3392 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3393 checks [checkcnt - 1] = w;
3394
3395 EV_FREQUENT_CHECK;
3396}
3397
3398void
3399ev_check_stop (EV_P_ ev_check *w)
3400{
3401 clear_pending (EV_A_ (W)w);
3402 if (expect_false (!ev_is_active (w)))
3403 return;
3404
3405 EV_FREQUENT_CHECK;
3406
3407 {
3408 int active = ev_active (w);
3409
3410 checks [active - 1] = checks [--checkcnt];
3411 ev_active (checks [active - 1]) = active;
3412 }
3413
3414 ev_stop (EV_A_ (W)w);
3415
3416 EV_FREQUENT_CHECK;
3417}
3418#endif
3419
3420#if EV_EMBED_ENABLE
3421void noinline
3422ev_embed_sweep (EV_P_ ev_embed *w)
3423{
3424 ev_run (w->other, EVRUN_NOWAIT);
3425}
3426
3427static void
3428embed_io_cb (EV_P_ ev_io *io, int revents)
3429{
3430 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3431
3432 if (ev_cb (w))
3433 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3434 else
3435 ev_run (w->other, EVRUN_NOWAIT);
3436}
3437
3438static void
3439embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3440{
3441 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3442
3443 {
3444 EV_P = w->other;
3445
3446 while (fdchangecnt)
3447 {
3448 fd_reify (EV_A);
3449 ev_run (EV_A_ EVRUN_NOWAIT);
3450 }
3451 }
3452}
3453
3454static void
3455embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3456{
3457 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3458
3459 ev_embed_stop (EV_A_ w);
3460
3461 {
3462 EV_P = w->other;
3463
3464 ev_loop_fork (EV_A);
3465 ev_run (EV_A_ EVRUN_NOWAIT);
3466 }
3467
3468 ev_embed_start (EV_A_ w);
3469}
3470
3471#if 0
3472static void
3473embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3474{
3475 ev_idle_stop (EV_A_ idle);
3476}
3477#endif
3478
3479void
3480ev_embed_start (EV_P_ ev_embed *w)
3481{
3482 if (expect_false (ev_is_active (w)))
3483 return;
3484
3485 {
3486 EV_P = w->other;
3487 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3489 }
3490
3491 EV_FREQUENT_CHECK;
3492
3493 ev_set_priority (&w->io, ev_priority (w));
3494 ev_io_start (EV_A_ &w->io);
3495
3496 ev_prepare_init (&w->prepare, embed_prepare_cb);
3497 ev_set_priority (&w->prepare, EV_MINPRI);
3498 ev_prepare_start (EV_A_ &w->prepare);
3499
3500 ev_fork_init (&w->fork, embed_fork_cb);
3501 ev_fork_start (EV_A_ &w->fork);
3502
3503 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3504
1505 ev_start (EV_A_ (W)w, 1); 3505 ev_start (EV_A_ (W)w, 1);
1506 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3506
3507 EV_FREQUENT_CHECK;
1507} 3508}
1508 3509
1509void 3510void
1510ev_child_stop (EV_P_ struct ev_child *w) 3511ev_embed_stop (EV_P_ ev_embed *w)
1511{ 3512{
1512 ev_clear_pending (EV_A_ (W)w); 3513 clear_pending (EV_A_ (W)w);
1513 if (ev_is_active (w)) 3514 if (expect_false (!ev_is_active (w)))
1514 return; 3515 return;
1515 3516
1516 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3517 EV_FREQUENT_CHECK;
3518
3519 ev_io_stop (EV_A_ &w->io);
3520 ev_prepare_stop (EV_A_ &w->prepare);
3521 ev_fork_stop (EV_A_ &w->fork);
3522
1517 ev_stop (EV_A_ (W)w); 3523 ev_stop (EV_A_ (W)w);
3524
3525 EV_FREQUENT_CHECK;
1518} 3526}
3527#endif
3528
3529#if EV_FORK_ENABLE
3530void
3531ev_fork_start (EV_P_ ev_fork *w)
3532{
3533 if (expect_false (ev_is_active (w)))
3534 return;
3535
3536 EV_FREQUENT_CHECK;
3537
3538 ev_start (EV_A_ (W)w, ++forkcnt);
3539 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3540 forks [forkcnt - 1] = w;
3541
3542 EV_FREQUENT_CHECK;
3543}
3544
3545void
3546ev_fork_stop (EV_P_ ev_fork *w)
3547{
3548 clear_pending (EV_A_ (W)w);
3549 if (expect_false (!ev_is_active (w)))
3550 return;
3551
3552 EV_FREQUENT_CHECK;
3553
3554 {
3555 int active = ev_active (w);
3556
3557 forks [active - 1] = forks [--forkcnt];
3558 ev_active (forks [active - 1]) = active;
3559 }
3560
3561 ev_stop (EV_A_ (W)w);
3562
3563 EV_FREQUENT_CHECK;
3564}
3565#endif
3566
3567#if EV_ASYNC_ENABLE
3568void
3569ev_async_start (EV_P_ ev_async *w)
3570{
3571 if (expect_false (ev_is_active (w)))
3572 return;
3573
3574 w->sent = 0;
3575
3576 evpipe_init (EV_A);
3577
3578 EV_FREQUENT_CHECK;
3579
3580 ev_start (EV_A_ (W)w, ++asynccnt);
3581 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3582 asyncs [asynccnt - 1] = w;
3583
3584 EV_FREQUENT_CHECK;
3585}
3586
3587void
3588ev_async_stop (EV_P_ ev_async *w)
3589{
3590 clear_pending (EV_A_ (W)w);
3591 if (expect_false (!ev_is_active (w)))
3592 return;
3593
3594 EV_FREQUENT_CHECK;
3595
3596 {
3597 int active = ev_active (w);
3598
3599 asyncs [active - 1] = asyncs [--asynccnt];
3600 ev_active (asyncs [active - 1]) = active;
3601 }
3602
3603 ev_stop (EV_A_ (W)w);
3604
3605 EV_FREQUENT_CHECK;
3606}
3607
3608void
3609ev_async_send (EV_P_ ev_async *w)
3610{
3611 w->sent = 1;
3612 evpipe_write (EV_A_ &async_pending);
3613}
3614#endif
1519 3615
1520/*****************************************************************************/ 3616/*****************************************************************************/
1521 3617
1522struct ev_once 3618struct ev_once
1523{ 3619{
1524 struct ev_io io; 3620 ev_io io;
1525 struct ev_timer to; 3621 ev_timer to;
1526 void (*cb)(int revents, void *arg); 3622 void (*cb)(int revents, void *arg);
1527 void *arg; 3623 void *arg;
1528}; 3624};
1529 3625
1530static void 3626static void
1531once_cb (EV_P_ struct ev_once *once, int revents) 3627once_cb (EV_P_ struct ev_once *once, int revents)
1532{ 3628{
1533 void (*cb)(int revents, void *arg) = once->cb; 3629 void (*cb)(int revents, void *arg) = once->cb;
1534 void *arg = once->arg; 3630 void *arg = once->arg;
1535 3631
1536 ev_io_stop (EV_A_ &once->io); 3632 ev_io_stop (EV_A_ &once->io);
1537 ev_timer_stop (EV_A_ &once->to); 3633 ev_timer_stop (EV_A_ &once->to);
1538 ev_free (once); 3634 ev_free (once);
1539 3635
1540 cb (revents, arg); 3636 cb (revents, arg);
1541} 3637}
1542 3638
1543static void 3639static void
1544once_cb_io (EV_P_ struct ev_io *w, int revents) 3640once_cb_io (EV_P_ ev_io *w, int revents)
1545{ 3641{
1546 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3642 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3643
3644 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1547} 3645}
1548 3646
1549static void 3647static void
1550once_cb_to (EV_P_ struct ev_timer *w, int revents) 3648once_cb_to (EV_P_ ev_timer *w, int revents)
1551{ 3649{
1552 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3650 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3651
3652 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1553} 3653}
1554 3654
1555void 3655void
1556ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3656ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1557{ 3657{
1558 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 3658 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1559 3659
1560 if (!once) 3660 if (expect_false (!once))
3661 {
1561 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3662 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1562 else 3663 return;
1563 { 3664 }
3665
1564 once->cb = cb; 3666 once->cb = cb;
1565 once->arg = arg; 3667 once->arg = arg;
1566 3668
1567 ev_watcher_init (&once->io, once_cb_io); 3669 ev_init (&once->io, once_cb_io);
1568 if (fd >= 0) 3670 if (fd >= 0)
3671 {
3672 ev_io_set (&once->io, fd, events);
3673 ev_io_start (EV_A_ &once->io);
3674 }
3675
3676 ev_init (&once->to, once_cb_to);
3677 if (timeout >= 0.)
3678 {
3679 ev_timer_set (&once->to, timeout, 0.);
3680 ev_timer_start (EV_A_ &once->to);
3681 }
3682}
3683
3684/*****************************************************************************/
3685
3686#if EV_WALK_ENABLE
3687void
3688ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3689{
3690 int i, j;
3691 ev_watcher_list *wl, *wn;
3692
3693 if (types & (EV_IO | EV_EMBED))
3694 for (i = 0; i < anfdmax; ++i)
3695 for (wl = anfds [i].head; wl; )
1569 { 3696 {
1570 ev_io_set (&once->io, fd, events); 3697 wn = wl->next;
1571 ev_io_start (EV_A_ &once->io); 3698
3699#if EV_EMBED_ENABLE
3700 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3701 {
3702 if (types & EV_EMBED)
3703 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3704 }
3705 else
3706#endif
3707#if EV_USE_INOTIFY
3708 if (ev_cb ((ev_io *)wl) == infy_cb)
3709 ;
3710 else
3711#endif
3712 if ((ev_io *)wl != &pipe_w)
3713 if (types & EV_IO)
3714 cb (EV_A_ EV_IO, wl);
3715
3716 wl = wn;
1572 } 3717 }
1573 3718
1574 ev_watcher_init (&once->to, once_cb_to); 3719 if (types & (EV_TIMER | EV_STAT))
1575 if (timeout >= 0.) 3720 for (i = timercnt + HEAP0; i-- > HEAP0; )
3721#if EV_STAT_ENABLE
3722 /*TODO: timer is not always active*/
3723 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1576 { 3724 {
1577 ev_timer_set (&once->to, timeout, 0.); 3725 if (types & EV_STAT)
1578 ev_timer_start (EV_A_ &once->to); 3726 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1579 } 3727 }
1580 } 3728 else
1581} 3729#endif
3730 if (types & EV_TIMER)
3731 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1582 3732
3733#if EV_PERIODIC_ENABLE
3734 if (types & EV_PERIODIC)
3735 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3736 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3737#endif
3738
3739#if EV_IDLE_ENABLE
3740 if (types & EV_IDLE)
3741 for (j = NUMPRI; i--; )
3742 for (i = idlecnt [j]; i--; )
3743 cb (EV_A_ EV_IDLE, idles [j][i]);
3744#endif
3745
3746#if EV_FORK_ENABLE
3747 if (types & EV_FORK)
3748 for (i = forkcnt; i--; )
3749 if (ev_cb (forks [i]) != embed_fork_cb)
3750 cb (EV_A_ EV_FORK, forks [i]);
3751#endif
3752
3753#if EV_ASYNC_ENABLE
3754 if (types & EV_ASYNC)
3755 for (i = asynccnt; i--; )
3756 cb (EV_A_ EV_ASYNC, asyncs [i]);
3757#endif
3758
3759#if EV_PREPARE_ENABLE
3760 if (types & EV_PREPARE)
3761 for (i = preparecnt; i--; )
3762# if EV_EMBED_ENABLE
3763 if (ev_cb (prepares [i]) != embed_prepare_cb)
3764# endif
3765 cb (EV_A_ EV_PREPARE, prepares [i]);
3766#endif
3767
3768#if EV_CHECK_ENABLE
3769 if (types & EV_CHECK)
3770 for (i = checkcnt; i--; )
3771 cb (EV_A_ EV_CHECK, checks [i]);
3772#endif
3773
3774#if EV_SIGNAL_ENABLE
3775 if (types & EV_SIGNAL)
3776 for (i = 0; i < EV_NSIG - 1; ++i)
3777 for (wl = signals [i].head; wl; )
3778 {
3779 wn = wl->next;
3780 cb (EV_A_ EV_SIGNAL, wl);
3781 wl = wn;
3782 }
3783#endif
3784
3785#if EV_CHILD_ENABLE
3786 if (types & EV_CHILD)
3787 for (i = (EV_PID_HASHSIZE); i--; )
3788 for (wl = childs [i]; wl; )
3789 {
3790 wn = wl->next;
3791 cb (EV_A_ EV_CHILD, wl);
3792 wl = wn;
3793 }
3794#endif
3795/* EV_STAT 0x00001000 /* stat data changed */
3796/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3797}
3798#endif
3799
3800#if EV_MULTIPLICITY
3801 #include "ev_wrap.h"
3802#endif
3803
3804EV_CPP(})
3805

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines