ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.36 by root, Thu Nov 1 13:11:11 2007 UTC vs.
Revision 1.72 by root, Tue Nov 6 16:09:37 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
47#include <sys/wait.h>
48#include <sys/time.h>
49#include <time.h> 67#include <time.h>
50 68
69#include <signal.h>
70
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
77
51#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
52# ifdef CLOCK_MONOTONIC
53# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
54# endif
55#endif 80#endif
56 81
57#ifndef EV_USE_SELECT 82#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 83# define EV_USE_SELECT 1
59#endif 84#endif
60 85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
61#ifndef EV_USE_EPOLL 90#ifndef EV_USE_EPOLL
62# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
63#endif 92#endif
64 93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1
110#endif
111
112/**/
113
114#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0
117#endif
118
65#ifndef CLOCK_REALTIME 119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
66# define EV_USE_REALTIME 0 121# define EV_USE_REALTIME 0
67#endif 122#endif
68#ifndef EV_USE_REALTIME 123
69# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 124/**/
70#endif
71 125
72#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
73#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
74#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
75#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
76 130
77#include "ev.h" 131#include "ev.h"
132
133#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline
136#else
137# define expect(expr,value) (expr)
138# define inline static
139#endif
140
141#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1)
143
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI)
78 146
79typedef struct ev_watcher *W; 147typedef struct ev_watcher *W;
80typedef struct ev_watcher_list *WL; 148typedef struct ev_watcher_list *WL;
81typedef struct ev_watcher_time *WT; 149typedef struct ev_watcher_time *WT;
82 150
83static ev_tstamp now, diff; /* monotonic clock */ 151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
84ev_tstamp ev_now;
85int ev_method;
86 152
87static int have_monotonic; /* runtime */ 153#if WIN32
154/* note: the comment below could not be substantiated, but what would I care */
155/* MSDN says this is required to handle SIGFPE */
156volatile double SIGFPE_REQ = 0.0f;
88 157
89static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 158static int
90static void (*method_modify)(int fd, int oev, int nev); 159ev_socketpair_tcp (int filedes [2])
91static void (*method_poll)(ev_tstamp timeout); 160{
161 struct sockaddr_in addr = { 0 };
162 int addr_size = sizeof (addr);
163 SOCKET listener;
164 SOCKET sock [2] = { -1, -1 };
165
166 if ((listener = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
167 return -1;
168
169 addr.sin_family = AF_INET;
170 addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
171 addr.sin_port = 0;
172
173 if (bind (listener, (struct sockaddr *)&addr, addr_size))
174 goto fail;
175
176 if (getsockname(listener, (struct sockaddr *)&addr, &addr_size))
177 goto fail;
178
179 if (listen (listener, 1))
180 goto fail;
181
182 if ((sock [0] = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
183 goto fail;
184
185 if (connect (sock[0], (struct sockaddr *)&addr, addr_size))
186 goto fail;
187
188 if ((sock[1] = accept (listener, 0, 0)) < 0)
189 goto fail;
190
191 closesocket (listener);
192
193 filedes [0] = sock [0];
194 filedes [1] = sock [1];
195
196 return 0;
197
198fail:
199 closesocket (listener);
200
201 if (sock [0] != INVALID_SOCKET) closesocket (sock [0]);
202 if (sock [1] != INVALID_SOCKET) closesocket (sock [1]);
203
204 return -1;
205}
206
207# define ev_pipe(filedes) ev_socketpair_tcp (filedes)
208#else
209# define ev_pipe(filedes) pipe (filedes)
210#endif
92 211
93/*****************************************************************************/ 212/*****************************************************************************/
94 213
95ev_tstamp 214static void (*syserr_cb)(const char *msg);
215
216void ev_set_syserr_cb (void (*cb)(const char *msg))
217{
218 syserr_cb = cb;
219}
220
221static void
222syserr (const char *msg)
223{
224 if (!msg)
225 msg = "(libev) system error";
226
227 if (syserr_cb)
228 syserr_cb (msg);
229 else
230 {
231 perror (msg);
232 abort ();
233 }
234}
235
236static void *(*alloc)(void *ptr, long size);
237
238void ev_set_allocator (void *(*cb)(void *ptr, long size))
239{
240 alloc = cb;
241}
242
243static void *
244ev_realloc (void *ptr, long size)
245{
246 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
247
248 if (!ptr && size)
249 {
250 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
251 abort ();
252 }
253
254 return ptr;
255}
256
257#define ev_malloc(size) ev_realloc (0, (size))
258#define ev_free(ptr) ev_realloc ((ptr), 0)
259
260/*****************************************************************************/
261
262typedef struct
263{
264 WL head;
265 unsigned char events;
266 unsigned char reify;
267} ANFD;
268
269typedef struct
270{
271 W w;
272 int events;
273} ANPENDING;
274
275#if EV_MULTIPLICITY
276
277struct ev_loop
278{
279# define VAR(name,decl) decl;
280# include "ev_vars.h"
281};
282# undef VAR
283# include "ev_wrap.h"
284
285#else
286
287# define VAR(name,decl) static decl;
288# include "ev_vars.h"
289# undef VAR
290
291#endif
292
293/*****************************************************************************/
294
295inline ev_tstamp
96ev_time (void) 296ev_time (void)
97{ 297{
98#if EV_USE_REALTIME 298#if EV_USE_REALTIME
99 struct timespec ts; 299 struct timespec ts;
100 clock_gettime (CLOCK_REALTIME, &ts); 300 clock_gettime (CLOCK_REALTIME, &ts);
104 gettimeofday (&tv, 0); 304 gettimeofday (&tv, 0);
105 return tv.tv_sec + tv.tv_usec * 1e-6; 305 return tv.tv_sec + tv.tv_usec * 1e-6;
106#endif 306#endif
107} 307}
108 308
109static ev_tstamp 309inline ev_tstamp
110get_clock (void) 310get_clock (void)
111{ 311{
112#if EV_USE_MONOTONIC 312#if EV_USE_MONOTONIC
113 if (have_monotonic) 313 if (expect_true (have_monotonic))
114 { 314 {
115 struct timespec ts; 315 struct timespec ts;
116 clock_gettime (CLOCK_MONOTONIC, &ts); 316 clock_gettime (CLOCK_MONOTONIC, &ts);
117 return ts.tv_sec + ts.tv_nsec * 1e-9; 317 return ts.tv_sec + ts.tv_nsec * 1e-9;
118 } 318 }
119#endif 319#endif
120 320
121 return ev_time (); 321 return ev_time ();
122} 322}
123 323
324ev_tstamp
325ev_now (EV_P)
326{
327 return rt_now;
328}
329
124#define array_roundsize(base,n) ((n) | 4 & ~3) 330#define array_roundsize(base,n) ((n) | 4 & ~3)
125 331
126#define array_needsize(base,cur,cnt,init) \ 332#define array_needsize(base,cur,cnt,init) \
127 if ((cnt) > cur) \ 333 if (expect_false ((cnt) > cur)) \
128 { \ 334 { \
129 int newcnt = cur; \ 335 int newcnt = cur; \
130 do \ 336 do \
131 { \ 337 { \
132 newcnt = array_roundsize (base, newcnt << 1); \ 338 newcnt = array_roundsize (base, newcnt << 1); \
133 } \ 339 } \
134 while ((cnt) > newcnt); \ 340 while ((cnt) > newcnt); \
135 \ 341 \
136 base = realloc (base, sizeof (*base) * (newcnt)); \ 342 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
137 init (base + cur, newcnt - cur); \ 343 init (base + cur, newcnt - cur); \
138 cur = newcnt; \ 344 cur = newcnt; \
139 } 345 }
346
347#define array_slim(stem) \
348 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
349 { \
350 stem ## max = array_roundsize (stem ## cnt >> 1); \
351 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
352 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
353 }
354
355/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
356/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
357#define array_free_microshit(stem) \
358 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
359
360#define array_free(stem, idx) \
361 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
140 362
141/*****************************************************************************/ 363/*****************************************************************************/
142
143typedef struct
144{
145 struct ev_io *head;
146 unsigned char events;
147 unsigned char reify;
148} ANFD;
149
150static ANFD *anfds;
151static int anfdmax;
152 364
153static void 365static void
154anfds_init (ANFD *base, int count) 366anfds_init (ANFD *base, int count)
155{ 367{
156 while (count--) 368 while (count--)
161 373
162 ++base; 374 ++base;
163 } 375 }
164} 376}
165 377
166typedef struct
167{
168 W w;
169 int events;
170} ANPENDING;
171
172static ANPENDING *pendings;
173static int pendingmax, pendingcnt;
174
175static void 378static void
176event (W w, int events) 379event (EV_P_ W w, int events)
177{ 380{
178 if (w->pending) 381 if (w->pending)
179 { 382 {
180 pendings [w->pending - 1].events |= events; 383 pendings [ABSPRI (w)][w->pending - 1].events |= events;
181 return; 384 return;
182 } 385 }
183 386
184 w->pending = ++pendingcnt; 387 w->pending = ++pendingcnt [ABSPRI (w)];
185 array_needsize (pendings, pendingmax, pendingcnt, ); 388 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
186 pendings [pendingcnt - 1].w = w; 389 pendings [ABSPRI (w)][w->pending - 1].w = w;
187 pendings [pendingcnt - 1].events = events; 390 pendings [ABSPRI (w)][w->pending - 1].events = events;
188} 391}
189 392
190static void 393static void
191queue_events (W *events, int eventcnt, int type) 394queue_events (EV_P_ W *events, int eventcnt, int type)
192{ 395{
193 int i; 396 int i;
194 397
195 for (i = 0; i < eventcnt; ++i) 398 for (i = 0; i < eventcnt; ++i)
196 event (events [i], type); 399 event (EV_A_ events [i], type);
197} 400}
198 401
199static void 402static void
200fd_event (int fd, int events) 403fd_event (EV_P_ int fd, int events)
201{ 404{
202 ANFD *anfd = anfds + fd; 405 ANFD *anfd = anfds + fd;
203 struct ev_io *w; 406 struct ev_io *w;
204 407
205 for (w = anfd->head; w; w = w->next) 408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
206 { 409 {
207 int ev = w->events & events; 410 int ev = w->events & events;
208 411
209 if (ev) 412 if (ev)
210 event ((W)w, ev); 413 event (EV_A_ (W)w, ev);
211 } 414 }
212} 415}
213 416
214/*****************************************************************************/ 417/*****************************************************************************/
215 418
216static int *fdchanges;
217static int fdchangemax, fdchangecnt;
218
219static void 419static void
220fd_reify (void) 420fd_reify (EV_P)
221{ 421{
222 int i; 422 int i;
223 423
224 for (i = 0; i < fdchangecnt; ++i) 424 for (i = 0; i < fdchangecnt; ++i)
225 { 425 {
227 ANFD *anfd = anfds + fd; 427 ANFD *anfd = anfds + fd;
228 struct ev_io *w; 428 struct ev_io *w;
229 429
230 int events = 0; 430 int events = 0;
231 431
232 for (w = anfd->head; w; w = w->next) 432 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
233 events |= w->events; 433 events |= w->events;
234 434
235 anfd->reify = 0; 435 anfd->reify = 0;
236 436
237 if (anfd->events != events)
238 {
239 method_modify (fd, anfd->events, events); 437 method_modify (EV_A_ fd, anfd->events, events);
240 anfd->events = events; 438 anfd->events = events;
241 }
242 } 439 }
243 440
244 fdchangecnt = 0; 441 fdchangecnt = 0;
245} 442}
246 443
247static void 444static void
248fd_change (int fd) 445fd_change (EV_P_ int fd)
249{ 446{
250 if (anfds [fd].reify || fdchangecnt < 0) 447 if (anfds [fd].reify)
251 return; 448 return;
252 449
253 anfds [fd].reify = 1; 450 anfds [fd].reify = 1;
254 451
255 ++fdchangecnt; 452 ++fdchangecnt;
256 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 453 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void));
257 fdchanges [fdchangecnt - 1] = fd; 454 fdchanges [fdchangecnt - 1] = fd;
258} 455}
259 456
457static void
458fd_kill (EV_P_ int fd)
459{
460 struct ev_io *w;
461
462 while ((w = (struct ev_io *)anfds [fd].head))
463 {
464 ev_io_stop (EV_A_ w);
465 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
466 }
467}
468
469static int
470fd_valid (int fd)
471{
472#ifdef WIN32
473 return !!win32_get_osfhandle (fd);
474#else
475 return fcntl (fd, F_GETFD) != -1;
476#endif
477}
478
260/* called on EBADF to verify fds */ 479/* called on EBADF to verify fds */
261static void 480static void
262fd_recheck (void) 481fd_ebadf (EV_P)
263{ 482{
264 int fd; 483 int fd;
265 484
266 for (fd = 0; fd < anfdmax; ++fd) 485 for (fd = 0; fd < anfdmax; ++fd)
267 if (anfds [fd].events) 486 if (anfds [fd].events)
268 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 487 if (!fd_valid (fd) == -1 && errno == EBADF)
269 while (anfds [fd].head) 488 fd_kill (EV_A_ fd);
489}
490
491/* called on ENOMEM in select/poll to kill some fds and retry */
492static void
493fd_enomem (EV_P)
494{
495 int fd;
496
497 for (fd = anfdmax; fd--; )
498 if (anfds [fd].events)
270 { 499 {
271 ev_io_stop (anfds [fd].head); 500 fd_kill (EV_A_ fd);
272 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 501 return;
273 } 502 }
503}
504
505/* usually called after fork if method needs to re-arm all fds from scratch */
506static void
507fd_rearm_all (EV_P)
508{
509 int fd;
510
511 /* this should be highly optimised to not do anything but set a flag */
512 for (fd = 0; fd < anfdmax; ++fd)
513 if (anfds [fd].events)
514 {
515 anfds [fd].events = 0;
516 fd_change (EV_A_ fd);
517 }
274} 518}
275 519
276/*****************************************************************************/ 520/*****************************************************************************/
277 521
278static struct ev_timer **timers;
279static int timermax, timercnt;
280
281static struct ev_periodic **periodics;
282static int periodicmax, periodiccnt;
283
284static void 522static void
285upheap (WT *timers, int k) 523upheap (WT *heap, int k)
286{ 524{
287 WT w = timers [k]; 525 WT w = heap [k];
288 526
289 while (k && timers [k >> 1]->at > w->at) 527 while (k && heap [k >> 1]->at > w->at)
290 { 528 {
291 timers [k] = timers [k >> 1]; 529 heap [k] = heap [k >> 1];
292 timers [k]->active = k + 1; 530 ((W)heap [k])->active = k + 1;
293 k >>= 1; 531 k >>= 1;
294 } 532 }
295 533
296 timers [k] = w; 534 heap [k] = w;
297 timers [k]->active = k + 1; 535 ((W)heap [k])->active = k + 1;
298 536
299} 537}
300 538
301static void 539static void
302downheap (WT *timers, int N, int k) 540downheap (WT *heap, int N, int k)
303{ 541{
304 WT w = timers [k]; 542 WT w = heap [k];
305 543
306 while (k < (N >> 1)) 544 while (k < (N >> 1))
307 { 545 {
308 int j = k << 1; 546 int j = k << 1;
309 547
310 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 548 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
311 ++j; 549 ++j;
312 550
313 if (w->at <= timers [j]->at) 551 if (w->at <= heap [j]->at)
314 break; 552 break;
315 553
316 timers [k] = timers [j]; 554 heap [k] = heap [j];
317 timers [k]->active = k + 1; 555 ((W)heap [k])->active = k + 1;
318 k = j; 556 k = j;
319 } 557 }
320 558
321 timers [k] = w; 559 heap [k] = w;
322 timers [k]->active = k + 1; 560 ((W)heap [k])->active = k + 1;
323} 561}
324 562
325/*****************************************************************************/ 563/*****************************************************************************/
326 564
327typedef struct 565typedef struct
328{ 566{
329 struct ev_signal *head; 567 WL head;
330 sig_atomic_t volatile gotsig; 568 sig_atomic_t volatile gotsig;
331} ANSIG; 569} ANSIG;
332 570
333static ANSIG *signals; 571static ANSIG *signals;
334static int signalmax; 572static int signalmax;
350} 588}
351 589
352static void 590static void
353sighandler (int signum) 591sighandler (int signum)
354{ 592{
593#if WIN32
594 signal (signum, sighandler);
595#endif
596
355 signals [signum - 1].gotsig = 1; 597 signals [signum - 1].gotsig = 1;
356 598
357 if (!gotsig) 599 if (!gotsig)
358 { 600 {
601 int old_errno = errno;
359 gotsig = 1; 602 gotsig = 1;
360 write (sigpipe [1], &signum, 1); 603 write (sigpipe [1], &signum, 1);
604 errno = old_errno;
361 } 605 }
362} 606}
363 607
364static void 608static void
365sigcb (struct ev_io *iow, int revents) 609sigcb (EV_P_ struct ev_io *iow, int revents)
366{ 610{
367 struct ev_signal *w; 611 WL w;
368 int sig; 612 int signum;
369 613
370 read (sigpipe [0], &revents, 1); 614 read (sigpipe [0], &revents, 1);
371 gotsig = 0; 615 gotsig = 0;
372 616
373 for (sig = signalmax; sig--; ) 617 for (signum = signalmax; signum--; )
374 if (signals [sig].gotsig) 618 if (signals [signum].gotsig)
375 { 619 {
376 signals [sig].gotsig = 0; 620 signals [signum].gotsig = 0;
377 621
378 for (w = signals [sig].head; w; w = w->next) 622 for (w = signals [signum].head; w; w = w->next)
379 event ((W)w, EV_SIGNAL); 623 event (EV_A_ (W)w, EV_SIGNAL);
380 } 624 }
381} 625}
382 626
383static void 627static void
384siginit (void) 628siginit (EV_P)
385{ 629{
630#ifndef WIN32
386 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 631 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
387 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 632 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
388 633
389 /* rather than sort out wether we really need nb, set it */ 634 /* rather than sort out wether we really need nb, set it */
390 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 635 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
391 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 636 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
637#endif
392 638
393 ev_io_set (&sigev, sigpipe [0], EV_READ); 639 ev_io_set (&sigev, sigpipe [0], EV_READ);
394 ev_io_start (&sigev); 640 ev_io_start (EV_A_ &sigev);
641 ev_unref (EV_A); /* child watcher should not keep loop alive */
395} 642}
396 643
397/*****************************************************************************/ 644/*****************************************************************************/
398 645
399static struct ev_idle **idles;
400static int idlemax, idlecnt;
401
402static struct ev_prepare **prepares;
403static int preparemax, preparecnt;
404
405static struct ev_check **checks;
406static int checkmax, checkcnt;
407
408/*****************************************************************************/
409
410static struct ev_child *childs [PID_HASHSIZE]; 646static struct ev_child *childs [PID_HASHSIZE];
647
648#ifndef WIN32
649
411static struct ev_signal childev; 650static struct ev_signal childev;
412 651
413#ifndef WCONTINUED 652#ifndef WCONTINUED
414# define WCONTINUED 0 653# define WCONTINUED 0
415#endif 654#endif
416 655
417static void 656static void
418childcb (struct ev_signal *sw, int revents) 657child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
419{ 658{
420 struct ev_child *w; 659 struct ev_child *w;
660
661 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
662 if (w->pid == pid || !w->pid)
663 {
664 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
665 w->rpid = pid;
666 w->rstatus = status;
667 event (EV_A_ (W)w, EV_CHILD);
668 }
669}
670
671static void
672childcb (EV_P_ struct ev_signal *sw, int revents)
673{
421 int pid, status; 674 int pid, status;
422 675
423 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 676 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
424 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 677 {
425 if (w->pid == pid || w->pid == -1) 678 /* make sure we are called again until all childs have been reaped */
426 { 679 event (EV_A_ (W)sw, EV_SIGNAL);
427 w->status = status; 680
428 event ((W)w, EV_CHILD); 681 child_reap (EV_A_ sw, pid, pid, status);
429 } 682 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
683 }
430} 684}
685
686#endif
431 687
432/*****************************************************************************/ 688/*****************************************************************************/
433 689
690#if EV_USE_KQUEUE
691# include "ev_kqueue.c"
692#endif
434#if EV_USE_EPOLL 693#if EV_USE_EPOLL
435# include "ev_epoll.c" 694# include "ev_epoll.c"
436#endif 695#endif
696#if EV_USE_POLL
697# include "ev_poll.c"
698#endif
437#if EV_USE_SELECT 699#if EV_USE_SELECT
438# include "ev_select.c" 700# include "ev_select.c"
439#endif 701#endif
440 702
441int 703int
448ev_version_minor (void) 710ev_version_minor (void)
449{ 711{
450 return EV_VERSION_MINOR; 712 return EV_VERSION_MINOR;
451} 713}
452 714
453int ev_init (int flags) 715/* return true if we are running with elevated privileges and should ignore env variables */
716static int
717enable_secure (void)
454{ 718{
719#ifdef WIN32
720 return 0;
721#else
722 return getuid () != geteuid ()
723 || getgid () != getegid ();
724#endif
725}
726
727int
728ev_method (EV_P)
729{
730 return method;
731}
732
733static void
734loop_init (EV_P_ int methods)
735{
455 if (!ev_method) 736 if (!method)
456 { 737 {
457#if EV_USE_MONOTONIC 738#if EV_USE_MONOTONIC
458 { 739 {
459 struct timespec ts; 740 struct timespec ts;
460 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 741 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
461 have_monotonic = 1; 742 have_monotonic = 1;
462 } 743 }
463#endif 744#endif
464 745
465 ev_now = ev_time (); 746 rt_now = ev_time ();
466 now = get_clock (); 747 mn_now = get_clock ();
748 now_floor = mn_now;
467 diff = ev_now - now; 749 rtmn_diff = rt_now - mn_now;
468 750
469 if (pipe (sigpipe)) 751 if (methods == EVMETHOD_AUTO)
470 return 0; 752 if (!enable_secure () && getenv ("LIBEV_METHODS"))
471 753 methods = atoi (getenv ("LIBEV_METHODS"));
754 else
472 ev_method = EVMETHOD_NONE; 755 methods = EVMETHOD_ANY;
756
757 method = 0;
758#if EV_USE_WIN32
759 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
760#endif
761#if EV_USE_KQUEUE
762 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
763#endif
473#if EV_USE_EPOLL 764#if EV_USE_EPOLL
474 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 765 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
766#endif
767#if EV_USE_POLL
768 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
475#endif 769#endif
476#if EV_USE_SELECT 770#if EV_USE_SELECT
477 if (ev_method == EVMETHOD_NONE) select_init (flags); 771 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
478#endif 772#endif
479 773
774 ev_watcher_init (&sigev, sigcb);
775 ev_set_priority (&sigev, EV_MAXPRI);
776 }
777}
778
779void
780loop_destroy (EV_P)
781{
782 int i;
783
784#if EV_USE_WIN32
785 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
786#endif
787#if EV_USE_KQUEUE
788 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
789#endif
790#if EV_USE_EPOLL
791 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
792#endif
793#if EV_USE_POLL
794 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
795#endif
796#if EV_USE_SELECT
797 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
798#endif
799
800 for (i = NUMPRI; i--; )
801 array_free (pending, [i]);
802
803 /* have to use the microsoft-never-gets-it-right macro */
804 array_free_microshit (fdchange);
805 array_free_microshit (timer);
806 array_free_microshit (periodic);
807 array_free_microshit (idle);
808 array_free_microshit (prepare);
809 array_free_microshit (check);
810
811 method = 0;
812}
813
814static void
815loop_fork (EV_P)
816{
817#if EV_USE_EPOLL
818 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
819#endif
820#if EV_USE_KQUEUE
821 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
822#endif
823
824 if (ev_is_active (&sigev))
825 {
826 /* default loop */
827
828 ev_ref (EV_A);
829 ev_io_stop (EV_A_ &sigev);
830 close (sigpipe [0]);
831 close (sigpipe [1]);
832
833 while (ev_pipe (sigpipe))
834 syserr ("(libev) error creating pipe");
835
836 siginit (EV_A);
837 }
838
839 postfork = 0;
840}
841
842#if EV_MULTIPLICITY
843struct ev_loop *
844ev_loop_new (int methods)
845{
846 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
847
848 memset (loop, 0, sizeof (struct ev_loop));
849
850 loop_init (EV_A_ methods);
851
852 if (ev_method (EV_A))
853 return loop;
854
855 return 0;
856}
857
858void
859ev_loop_destroy (EV_P)
860{
861 loop_destroy (EV_A);
862 ev_free (loop);
863}
864
865void
866ev_loop_fork (EV_P)
867{
868 postfork = 1;
869}
870
871#endif
872
873#if EV_MULTIPLICITY
874struct ev_loop default_loop_struct;
875static struct ev_loop *default_loop;
876
877struct ev_loop *
878#else
879static int default_loop;
880
881int
882#endif
883ev_default_loop (int methods)
884{
885 if (sigpipe [0] == sigpipe [1])
886 if (ev_pipe (sigpipe))
887 return 0;
888
889 if (!default_loop)
890 {
891#if EV_MULTIPLICITY
892 struct ev_loop *loop = default_loop = &default_loop_struct;
893#else
894 default_loop = 1;
895#endif
896
897 loop_init (EV_A_ methods);
898
480 if (ev_method) 899 if (ev_method (EV_A))
481 { 900 {
482 ev_watcher_init (&sigev, sigcb);
483 siginit (); 901 siginit (EV_A);
484 902
903#ifndef WIN32
485 ev_signal_init (&childev, childcb, SIGCHLD); 904 ev_signal_init (&childev, childcb, SIGCHLD);
905 ev_set_priority (&childev, EV_MAXPRI);
486 ev_signal_start (&childev); 906 ev_signal_start (EV_A_ &childev);
907 ev_unref (EV_A); /* child watcher should not keep loop alive */
908#endif
487 } 909 }
910 else
911 default_loop = 0;
488 } 912 }
489 913
490 return ev_method; 914 return default_loop;
915}
916
917void
918ev_default_destroy (void)
919{
920#if EV_MULTIPLICITY
921 struct ev_loop *loop = default_loop;
922#endif
923
924#ifndef WIN32
925 ev_ref (EV_A); /* child watcher */
926 ev_signal_stop (EV_A_ &childev);
927#endif
928
929 ev_ref (EV_A); /* signal watcher */
930 ev_io_stop (EV_A_ &sigev);
931
932 close (sigpipe [0]); sigpipe [0] = 0;
933 close (sigpipe [1]); sigpipe [1] = 0;
934
935 loop_destroy (EV_A);
936}
937
938void
939ev_default_fork (void)
940{
941#if EV_MULTIPLICITY
942 struct ev_loop *loop = default_loop;
943#endif
944
945 if (method)
946 postfork = 1;
491} 947}
492 948
493/*****************************************************************************/ 949/*****************************************************************************/
494 950
495void
496ev_fork_prepare (void)
497{
498 /* nop */
499}
500
501void
502ev_fork_parent (void)
503{
504 /* nop */
505}
506
507void
508ev_fork_child (void)
509{
510#if EV_USE_EPOLL
511 if (ev_method == EVMETHOD_EPOLL)
512 epoll_postfork_child ();
513#endif
514
515 ev_io_stop (&sigev);
516 close (sigpipe [0]);
517 close (sigpipe [1]);
518 pipe (sigpipe);
519 siginit ();
520}
521
522/*****************************************************************************/
523
524static void 951static void
525call_pending (void) 952call_pending (EV_P)
526{ 953{
954 int pri;
955
956 for (pri = NUMPRI; pri--; )
527 while (pendingcnt) 957 while (pendingcnt [pri])
528 { 958 {
529 ANPENDING *p = pendings + --pendingcnt; 959 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
530 960
531 if (p->w) 961 if (p->w)
532 { 962 {
533 p->w->pending = 0; 963 p->w->pending = 0;
534 p->w->cb (p->w, p->events); 964 p->w->cb (EV_A_ p->w, p->events);
535 } 965 }
536 } 966 }
537} 967}
538 968
539static void 969static void
540timers_reify (void) 970timers_reify (EV_P)
541{ 971{
542 while (timercnt && timers [0]->at <= now) 972 while (timercnt && ((WT)timers [0])->at <= mn_now)
543 { 973 {
544 struct ev_timer *w = timers [0]; 974 struct ev_timer *w = timers [0];
975
976 assert (("inactive timer on timer heap detected", ev_is_active (w)));
545 977
546 /* first reschedule or stop timer */ 978 /* first reschedule or stop timer */
547 if (w->repeat) 979 if (w->repeat)
548 { 980 {
549 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 981 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
550 w->at = now + w->repeat; 982 ((WT)w)->at = mn_now + w->repeat;
551 downheap ((WT *)timers, timercnt, 0); 983 downheap ((WT *)timers, timercnt, 0);
552 } 984 }
553 else 985 else
554 ev_timer_stop (w); /* nonrepeating: stop timer */ 986 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
555 987
556 event ((W)w, EV_TIMEOUT); 988 event (EV_A_ (W)w, EV_TIMEOUT);
557 } 989 }
558} 990}
559 991
560static void 992static void
561periodics_reify (void) 993periodics_reify (EV_P)
562{ 994{
563 while (periodiccnt && periodics [0]->at <= ev_now) 995 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
564 { 996 {
565 struct ev_periodic *w = periodics [0]; 997 struct ev_periodic *w = periodics [0];
998
999 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
566 1000
567 /* first reschedule or stop timer */ 1001 /* first reschedule or stop timer */
568 if (w->interval) 1002 if (w->interval)
569 { 1003 {
570 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1004 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
571 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 1005 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
572 downheap ((WT *)periodics, periodiccnt, 0); 1006 downheap ((WT *)periodics, periodiccnt, 0);
573 } 1007 }
574 else 1008 else
575 ev_periodic_stop (w); /* nonrepeating: stop timer */ 1009 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
576 1010
577 event ((W)w, EV_PERIODIC); 1011 event (EV_A_ (W)w, EV_PERIODIC);
578 } 1012 }
579} 1013}
580 1014
581static void 1015static void
582periodics_reschedule (ev_tstamp diff) 1016periodics_reschedule (EV_P)
583{ 1017{
584 int i; 1018 int i;
585 1019
586 /* adjust periodics after time jump */ 1020 /* adjust periodics after time jump */
587 for (i = 0; i < periodiccnt; ++i) 1021 for (i = 0; i < periodiccnt; ++i)
588 { 1022 {
589 struct ev_periodic *w = periodics [i]; 1023 struct ev_periodic *w = periodics [i];
590 1024
591 if (w->interval) 1025 if (w->interval)
592 { 1026 {
593 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1027 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
594 1028
595 if (fabs (diff) >= 1e-4) 1029 if (fabs (diff) >= 1e-4)
596 { 1030 {
597 ev_periodic_stop (w); 1031 ev_periodic_stop (EV_A_ w);
598 ev_periodic_start (w); 1032 ev_periodic_start (EV_A_ w);
599 1033
600 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 1034 i = 0; /* restart loop, inefficient, but time jumps should be rare */
601 } 1035 }
602 } 1036 }
603 } 1037 }
604} 1038}
605 1039
1040inline int
1041time_update_monotonic (EV_P)
1042{
1043 mn_now = get_clock ();
1044
1045 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1046 {
1047 rt_now = rtmn_diff + mn_now;
1048 return 0;
1049 }
1050 else
1051 {
1052 now_floor = mn_now;
1053 rt_now = ev_time ();
1054 return 1;
1055 }
1056}
1057
606static void 1058static void
607time_update (void) 1059time_update (EV_P)
608{ 1060{
609 int i; 1061 int i;
610 1062
611 ev_now = ev_time (); 1063#if EV_USE_MONOTONIC
612
613 if (have_monotonic) 1064 if (expect_true (have_monotonic))
614 { 1065 {
615 ev_tstamp odiff = diff; 1066 if (time_update_monotonic (EV_A))
616
617 for (i = 4; --i; ) /* loop a few times, before making important decisions */
618 { 1067 {
619 now = get_clock (); 1068 ev_tstamp odiff = rtmn_diff;
1069
1070 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1071 {
620 diff = ev_now - now; 1072 rtmn_diff = rt_now - mn_now;
621 1073
622 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1074 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
623 return; /* all is well */ 1075 return; /* all is well */
624 1076
625 ev_now = ev_time (); 1077 rt_now = ev_time ();
1078 mn_now = get_clock ();
1079 now_floor = mn_now;
1080 }
1081
1082 periodics_reschedule (EV_A);
1083 /* no timer adjustment, as the monotonic clock doesn't jump */
1084 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
626 } 1085 }
627
628 periodics_reschedule (diff - odiff);
629 /* no timer adjustment, as the monotonic clock doesn't jump */
630 } 1086 }
631 else 1087 else
1088#endif
632 { 1089 {
633 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 1090 rt_now = ev_time ();
1091
1092 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
634 { 1093 {
635 periodics_reschedule (ev_now - now); 1094 periodics_reschedule (EV_A);
636 1095
637 /* adjust timers. this is easy, as the offset is the same for all */ 1096 /* adjust timers. this is easy, as the offset is the same for all */
638 for (i = 0; i < timercnt; ++i) 1097 for (i = 0; i < timercnt; ++i)
639 timers [i]->at += diff; 1098 ((WT)timers [i])->at += rt_now - mn_now;
640 } 1099 }
641 1100
642 now = ev_now; 1101 mn_now = rt_now;
643 } 1102 }
644} 1103}
645 1104
646int ev_loop_done; 1105void
1106ev_ref (EV_P)
1107{
1108 ++activecnt;
1109}
647 1110
1111void
1112ev_unref (EV_P)
1113{
1114 --activecnt;
1115}
1116
1117static int loop_done;
1118
1119void
648void ev_loop (int flags) 1120ev_loop (EV_P_ int flags)
649{ 1121{
650 double block; 1122 double block;
651 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1123 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
652 1124
653 do 1125 do
654 { 1126 {
655 /* queue check watchers (and execute them) */ 1127 /* queue check watchers (and execute them) */
656 if (preparecnt) 1128 if (expect_false (preparecnt))
657 { 1129 {
658 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1130 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
659 call_pending (); 1131 call_pending (EV_A);
660 } 1132 }
661 1133
1134 /* we might have forked, so reify kernel state if necessary */
1135 if (expect_false (postfork))
1136 loop_fork (EV_A);
1137
662 /* update fd-related kernel structures */ 1138 /* update fd-related kernel structures */
663 fd_reify (); 1139 fd_reify (EV_A);
664 1140
665 /* calculate blocking time */ 1141 /* calculate blocking time */
666 1142
667 /* we only need this for !monotonic clockor timers, but as we basically 1143 /* we only need this for !monotonic clockor timers, but as we basically
668 always have timers, we just calculate it always */ 1144 always have timers, we just calculate it always */
1145#if EV_USE_MONOTONIC
1146 if (expect_true (have_monotonic))
1147 time_update_monotonic (EV_A);
1148 else
1149#endif
1150 {
669 ev_now = ev_time (); 1151 rt_now = ev_time ();
1152 mn_now = rt_now;
1153 }
670 1154
671 if (flags & EVLOOP_NONBLOCK || idlecnt) 1155 if (flags & EVLOOP_NONBLOCK || idlecnt)
672 block = 0.; 1156 block = 0.;
673 else 1157 else
674 { 1158 {
675 block = MAX_BLOCKTIME; 1159 block = MAX_BLOCKTIME;
676 1160
677 if (timercnt) 1161 if (timercnt)
678 { 1162 {
679 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1163 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
680 if (block > to) block = to; 1164 if (block > to) block = to;
681 } 1165 }
682 1166
683 if (periodiccnt) 1167 if (periodiccnt)
684 { 1168 {
685 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1169 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
686 if (block > to) block = to; 1170 if (block > to) block = to;
687 } 1171 }
688 1172
689 if (block < 0.) block = 0.; 1173 if (block < 0.) block = 0.;
690 } 1174 }
691 1175
692 method_poll (block); 1176 method_poll (EV_A_ block);
693 1177
694 /* update ev_now, do magic */ 1178 /* update rt_now, do magic */
695 time_update (); 1179 time_update (EV_A);
696 1180
697 /* queue pending timers and reschedule them */ 1181 /* queue pending timers and reschedule them */
698 timers_reify (); /* relative timers called last */ 1182 timers_reify (EV_A); /* relative timers called last */
699 periodics_reify (); /* absolute timers called first */ 1183 periodics_reify (EV_A); /* absolute timers called first */
700 1184
701 /* queue idle watchers unless io or timers are pending */ 1185 /* queue idle watchers unless io or timers are pending */
702 if (!pendingcnt) 1186 if (!pendingcnt)
703 queue_events ((W *)idles, idlecnt, EV_IDLE); 1187 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
704 1188
705 /* queue check watchers, to be executed first */ 1189 /* queue check watchers, to be executed first */
706 if (checkcnt) 1190 if (checkcnt)
707 queue_events ((W *)checks, checkcnt, EV_CHECK); 1191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
708 1192
709 call_pending (); 1193 call_pending (EV_A);
710 } 1194 }
711 while (!ev_loop_done); 1195 while (activecnt && !loop_done);
712 1196
713 if (ev_loop_done != 2) 1197 if (loop_done != 2)
714 ev_loop_done = 0; 1198 loop_done = 0;
1199}
1200
1201void
1202ev_unloop (EV_P_ int how)
1203{
1204 loop_done = how;
715} 1205}
716 1206
717/*****************************************************************************/ 1207/*****************************************************************************/
718 1208
719static void 1209inline void
720wlist_add (WL *head, WL elem) 1210wlist_add (WL *head, WL elem)
721{ 1211{
722 elem->next = *head; 1212 elem->next = *head;
723 *head = elem; 1213 *head = elem;
724} 1214}
725 1215
726static void 1216inline void
727wlist_del (WL *head, WL elem) 1217wlist_del (WL *head, WL elem)
728{ 1218{
729 while (*head) 1219 while (*head)
730 { 1220 {
731 if (*head == elem) 1221 if (*head == elem)
736 1226
737 head = &(*head)->next; 1227 head = &(*head)->next;
738 } 1228 }
739} 1229}
740 1230
741static void 1231inline void
742ev_clear_pending (W w) 1232ev_clear_pending (EV_P_ W w)
743{ 1233{
744 if (w->pending) 1234 if (w->pending)
745 { 1235 {
746 pendings [w->pending - 1].w = 0; 1236 pendings [ABSPRI (w)][w->pending - 1].w = 0;
747 w->pending = 0; 1237 w->pending = 0;
748 } 1238 }
749} 1239}
750 1240
751static void 1241inline void
752ev_start (W w, int active) 1242ev_start (EV_P_ W w, int active)
753{ 1243{
1244 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1245 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1246
754 w->active = active; 1247 w->active = active;
1248 ev_ref (EV_A);
755} 1249}
756 1250
757static void 1251inline void
758ev_stop (W w) 1252ev_stop (EV_P_ W w)
759{ 1253{
1254 ev_unref (EV_A);
760 w->active = 0; 1255 w->active = 0;
761} 1256}
762 1257
763/*****************************************************************************/ 1258/*****************************************************************************/
764 1259
765void 1260void
766ev_io_start (struct ev_io *w) 1261ev_io_start (EV_P_ struct ev_io *w)
767{ 1262{
1263 int fd = w->fd;
1264
768 if (ev_is_active (w)) 1265 if (ev_is_active (w))
769 return; 1266 return;
770 1267
771 int fd = w->fd;
772
773 assert (("ev_io_start called with negative fd", fd >= 0)); 1268 assert (("ev_io_start called with negative fd", fd >= 0));
774 1269
775 ev_start ((W)w, 1); 1270 ev_start (EV_A_ (W)w, 1);
776 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1271 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
777 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1272 wlist_add ((WL *)&anfds[fd].head, (WL)w);
778 1273
779 fd_change (fd); 1274 fd_change (EV_A_ fd);
780} 1275}
781 1276
782void 1277void
783ev_io_stop (struct ev_io *w) 1278ev_io_stop (EV_P_ struct ev_io *w)
784{ 1279{
785 ev_clear_pending ((W)w); 1280 ev_clear_pending (EV_A_ (W)w);
786 if (!ev_is_active (w)) 1281 if (!ev_is_active (w))
787 return; 1282 return;
788 1283
789 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1284 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
790 ev_stop ((W)w); 1285 ev_stop (EV_A_ (W)w);
791 1286
792 fd_change (w->fd); 1287 fd_change (EV_A_ w->fd);
793} 1288}
794 1289
795void 1290void
796ev_timer_start (struct ev_timer *w) 1291ev_timer_start (EV_P_ struct ev_timer *w)
797{ 1292{
798 if (ev_is_active (w)) 1293 if (ev_is_active (w))
799 return; 1294 return;
800 1295
801 w->at += now; 1296 ((WT)w)->at += mn_now;
802 1297
803 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1298 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
804 1299
805 ev_start ((W)w, ++timercnt); 1300 ev_start (EV_A_ (W)w, ++timercnt);
806 array_needsize (timers, timermax, timercnt, ); 1301 array_needsize (timers, timermax, timercnt, (void));
807 timers [timercnt - 1] = w; 1302 timers [timercnt - 1] = w;
808 upheap ((WT *)timers, timercnt - 1); 1303 upheap ((WT *)timers, timercnt - 1);
809}
810 1304
1305 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1306}
1307
811void 1308void
812ev_timer_stop (struct ev_timer *w) 1309ev_timer_stop (EV_P_ struct ev_timer *w)
813{ 1310{
814 ev_clear_pending ((W)w); 1311 ev_clear_pending (EV_A_ (W)w);
815 if (!ev_is_active (w)) 1312 if (!ev_is_active (w))
816 return; 1313 return;
817 1314
1315 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1316
818 if (w->active < timercnt--) 1317 if (((W)w)->active < timercnt--)
819 { 1318 {
820 timers [w->active - 1] = timers [timercnt]; 1319 timers [((W)w)->active - 1] = timers [timercnt];
821 downheap ((WT *)timers, timercnt, w->active - 1); 1320 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
822 } 1321 }
823 1322
824 w->at = w->repeat; 1323 ((WT)w)->at = w->repeat;
825 1324
826 ev_stop ((W)w); 1325 ev_stop (EV_A_ (W)w);
827} 1326}
828 1327
829void 1328void
830ev_timer_again (struct ev_timer *w) 1329ev_timer_again (EV_P_ struct ev_timer *w)
831{ 1330{
832 if (ev_is_active (w)) 1331 if (ev_is_active (w))
833 { 1332 {
834 if (w->repeat) 1333 if (w->repeat)
835 { 1334 {
836 w->at = now + w->repeat; 1335 ((WT)w)->at = mn_now + w->repeat;
837 downheap ((WT *)timers, timercnt, w->active - 1); 1336 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
838 } 1337 }
839 else 1338 else
840 ev_timer_stop (w); 1339 ev_timer_stop (EV_A_ w);
841 } 1340 }
842 else if (w->repeat) 1341 else if (w->repeat)
843 ev_timer_start (w); 1342 ev_timer_start (EV_A_ w);
844} 1343}
845 1344
846void 1345void
847ev_periodic_start (struct ev_periodic *w) 1346ev_periodic_start (EV_P_ struct ev_periodic *w)
848{ 1347{
849 if (ev_is_active (w)) 1348 if (ev_is_active (w))
850 return; 1349 return;
851 1350
852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1351 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
853 1352
854 /* this formula differs from the one in periodic_reify because we do not always round up */ 1353 /* this formula differs from the one in periodic_reify because we do not always round up */
855 if (w->interval) 1354 if (w->interval)
856 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1355 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
857 1356
858 ev_start ((W)w, ++periodiccnt); 1357 ev_start (EV_A_ (W)w, ++periodiccnt);
859 array_needsize (periodics, periodicmax, periodiccnt, ); 1358 array_needsize (periodics, periodicmax, periodiccnt, (void));
860 periodics [periodiccnt - 1] = w; 1359 periodics [periodiccnt - 1] = w;
861 upheap ((WT *)periodics, periodiccnt - 1); 1360 upheap ((WT *)periodics, periodiccnt - 1);
862}
863 1361
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1363}
1364
864void 1365void
865ev_periodic_stop (struct ev_periodic *w) 1366ev_periodic_stop (EV_P_ struct ev_periodic *w)
866{ 1367{
867 ev_clear_pending ((W)w); 1368 ev_clear_pending (EV_A_ (W)w);
868 if (!ev_is_active (w)) 1369 if (!ev_is_active (w))
869 return; 1370 return;
870 1371
1372 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1373
871 if (w->active < periodiccnt--) 1374 if (((W)w)->active < periodiccnt--)
872 { 1375 {
873 periodics [w->active - 1] = periodics [periodiccnt]; 1376 periodics [((W)w)->active - 1] = periodics [periodiccnt];
874 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1377 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
875 } 1378 }
876 1379
877 ev_stop ((W)w); 1380 ev_stop (EV_A_ (W)w);
878} 1381}
879 1382
880void 1383void
881ev_signal_start (struct ev_signal *w) 1384ev_idle_start (EV_P_ struct ev_idle *w)
882{ 1385{
883 if (ev_is_active (w)) 1386 if (ev_is_active (w))
884 return; 1387 return;
885 1388
1389 ev_start (EV_A_ (W)w, ++idlecnt);
1390 array_needsize (idles, idlemax, idlecnt, (void));
1391 idles [idlecnt - 1] = w;
1392}
1393
1394void
1395ev_idle_stop (EV_P_ struct ev_idle *w)
1396{
1397 ev_clear_pending (EV_A_ (W)w);
1398 if (ev_is_active (w))
1399 return;
1400
1401 idles [((W)w)->active - 1] = idles [--idlecnt];
1402 ev_stop (EV_A_ (W)w);
1403}
1404
1405void
1406ev_prepare_start (EV_P_ struct ev_prepare *w)
1407{
1408 if (ev_is_active (w))
1409 return;
1410
1411 ev_start (EV_A_ (W)w, ++preparecnt);
1412 array_needsize (prepares, preparemax, preparecnt, (void));
1413 prepares [preparecnt - 1] = w;
1414}
1415
1416void
1417ev_prepare_stop (EV_P_ struct ev_prepare *w)
1418{
1419 ev_clear_pending (EV_A_ (W)w);
1420 if (ev_is_active (w))
1421 return;
1422
1423 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1424 ev_stop (EV_A_ (W)w);
1425}
1426
1427void
1428ev_check_start (EV_P_ struct ev_check *w)
1429{
1430 if (ev_is_active (w))
1431 return;
1432
1433 ev_start (EV_A_ (W)w, ++checkcnt);
1434 array_needsize (checks, checkmax, checkcnt, (void));
1435 checks [checkcnt - 1] = w;
1436}
1437
1438void
1439ev_check_stop (EV_P_ struct ev_check *w)
1440{
1441 ev_clear_pending (EV_A_ (W)w);
1442 if (ev_is_active (w))
1443 return;
1444
1445 checks [((W)w)->active - 1] = checks [--checkcnt];
1446 ev_stop (EV_A_ (W)w);
1447}
1448
1449#ifndef SA_RESTART
1450# define SA_RESTART 0
1451#endif
1452
1453void
1454ev_signal_start (EV_P_ struct ev_signal *w)
1455{
1456#if EV_MULTIPLICITY
1457 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1458#endif
1459 if (ev_is_active (w))
1460 return;
1461
886 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1462 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
887 1463
888 ev_start ((W)w, 1); 1464 ev_start (EV_A_ (W)w, 1);
889 array_needsize (signals, signalmax, w->signum, signals_init); 1465 array_needsize (signals, signalmax, w->signum, signals_init);
890 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1466 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
891 1467
892 if (!w->next) 1468 if (!((WL)w)->next)
893 { 1469 {
1470#if WIN32
1471 signal (w->signum, sighandler);
1472#else
894 struct sigaction sa; 1473 struct sigaction sa;
895 sa.sa_handler = sighandler; 1474 sa.sa_handler = sighandler;
896 sigfillset (&sa.sa_mask); 1475 sigfillset (&sa.sa_mask);
897 sa.sa_flags = 0; 1476 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
898 sigaction (w->signum, &sa, 0); 1477 sigaction (w->signum, &sa, 0);
1478#endif
899 } 1479 }
900} 1480}
901 1481
902void 1482void
903ev_signal_stop (struct ev_signal *w) 1483ev_signal_stop (EV_P_ struct ev_signal *w)
904{ 1484{
905 ev_clear_pending ((W)w); 1485 ev_clear_pending (EV_A_ (W)w);
906 if (!ev_is_active (w)) 1486 if (!ev_is_active (w))
907 return; 1487 return;
908 1488
909 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1489 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
910 ev_stop ((W)w); 1490 ev_stop (EV_A_ (W)w);
911 1491
912 if (!signals [w->signum - 1].head) 1492 if (!signals [w->signum - 1].head)
913 signal (w->signum, SIG_DFL); 1493 signal (w->signum, SIG_DFL);
914} 1494}
915 1495
916void 1496void
917ev_idle_start (struct ev_idle *w) 1497ev_child_start (EV_P_ struct ev_child *w)
918{ 1498{
1499#if EV_MULTIPLICITY
1500 assert (("child watchers are only supported in the default loop", loop == default_loop));
1501#endif
919 if (ev_is_active (w)) 1502 if (ev_is_active (w))
920 return; 1503 return;
921 1504
922 ev_start ((W)w, ++idlecnt); 1505 ev_start (EV_A_ (W)w, 1);
923 array_needsize (idles, idlemax, idlecnt, ); 1506 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
924 idles [idlecnt - 1] = w;
925} 1507}
926 1508
927void 1509void
928ev_idle_stop (struct ev_idle *w) 1510ev_child_stop (EV_P_ struct ev_child *w)
929{ 1511{
930 ev_clear_pending ((W)w); 1512 ev_clear_pending (EV_A_ (W)w);
931 if (ev_is_active (w)) 1513 if (ev_is_active (w))
932 return; 1514 return;
933 1515
934 idles [w->active - 1] = idles [--idlecnt];
935 ev_stop ((W)w);
936}
937
938void
939ev_prepare_start (struct ev_prepare *w)
940{
941 if (ev_is_active (w))
942 return;
943
944 ev_start ((W)w, ++preparecnt);
945 array_needsize (prepares, preparemax, preparecnt, );
946 prepares [preparecnt - 1] = w;
947}
948
949void
950ev_prepare_stop (struct ev_prepare *w)
951{
952 ev_clear_pending ((W)w);
953 if (ev_is_active (w))
954 return;
955
956 prepares [w->active - 1] = prepares [--preparecnt];
957 ev_stop ((W)w);
958}
959
960void
961ev_check_start (struct ev_check *w)
962{
963 if (ev_is_active (w))
964 return;
965
966 ev_start ((W)w, ++checkcnt);
967 array_needsize (checks, checkmax, checkcnt, );
968 checks [checkcnt - 1] = w;
969}
970
971void
972ev_check_stop (struct ev_check *w)
973{
974 ev_clear_pending ((W)w);
975 if (ev_is_active (w))
976 return;
977
978 checks [w->active - 1] = checks [--checkcnt];
979 ev_stop ((W)w);
980}
981
982void
983ev_child_start (struct ev_child *w)
984{
985 if (ev_is_active (w))
986 return;
987
988 ev_start ((W)w, 1);
989 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
990}
991
992void
993ev_child_stop (struct ev_child *w)
994{
995 ev_clear_pending ((W)w);
996 if (ev_is_active (w))
997 return;
998
999 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1516 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1000 ev_stop ((W)w); 1517 ev_stop (EV_A_ (W)w);
1001} 1518}
1002 1519
1003/*****************************************************************************/ 1520/*****************************************************************************/
1004 1521
1005struct ev_once 1522struct ev_once
1009 void (*cb)(int revents, void *arg); 1526 void (*cb)(int revents, void *arg);
1010 void *arg; 1527 void *arg;
1011}; 1528};
1012 1529
1013static void 1530static void
1014once_cb (struct ev_once *once, int revents) 1531once_cb (EV_P_ struct ev_once *once, int revents)
1015{ 1532{
1016 void (*cb)(int revents, void *arg) = once->cb; 1533 void (*cb)(int revents, void *arg) = once->cb;
1017 void *arg = once->arg; 1534 void *arg = once->arg;
1018 1535
1019 ev_io_stop (&once->io); 1536 ev_io_stop (EV_A_ &once->io);
1020 ev_timer_stop (&once->to); 1537 ev_timer_stop (EV_A_ &once->to);
1021 free (once); 1538 ev_free (once);
1022 1539
1023 cb (revents, arg); 1540 cb (revents, arg);
1024} 1541}
1025 1542
1026static void 1543static void
1027once_cb_io (struct ev_io *w, int revents) 1544once_cb_io (EV_P_ struct ev_io *w, int revents)
1028{ 1545{
1029 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1546 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1030} 1547}
1031 1548
1032static void 1549static void
1033once_cb_to (struct ev_timer *w, int revents) 1550once_cb_to (EV_P_ struct ev_timer *w, int revents)
1034{ 1551{
1035 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1552 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1036} 1553}
1037 1554
1038void 1555void
1039ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1556ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1040{ 1557{
1041 struct ev_once *once = malloc (sizeof (struct ev_once)); 1558 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1042 1559
1043 if (!once) 1560 if (!once)
1044 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1561 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1045 else 1562 else
1046 { 1563 {
1049 1566
1050 ev_watcher_init (&once->io, once_cb_io); 1567 ev_watcher_init (&once->io, once_cb_io);
1051 if (fd >= 0) 1568 if (fd >= 0)
1052 { 1569 {
1053 ev_io_set (&once->io, fd, events); 1570 ev_io_set (&once->io, fd, events);
1054 ev_io_start (&once->io); 1571 ev_io_start (EV_A_ &once->io);
1055 } 1572 }
1056 1573
1057 ev_watcher_init (&once->to, once_cb_to); 1574 ev_watcher_init (&once->to, once_cb_to);
1058 if (timeout >= 0.) 1575 if (timeout >= 0.)
1059 { 1576 {
1060 ev_timer_set (&once->to, timeout, 0.); 1577 ev_timer_set (&once->to, timeout, 0.);
1061 ev_timer_start (&once->to); 1578 ev_timer_start (EV_A_ &once->to);
1062 } 1579 }
1063 } 1580 }
1064} 1581}
1065 1582
1066/*****************************************************************************/
1067
1068#if 0
1069
1070struct ev_io wio;
1071
1072static void
1073sin_cb (struct ev_io *w, int revents)
1074{
1075 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1076}
1077
1078static void
1079ocb (struct ev_timer *w, int revents)
1080{
1081 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1082 ev_timer_stop (w);
1083 ev_timer_start (w);
1084}
1085
1086static void
1087scb (struct ev_signal *w, int revents)
1088{
1089 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1090 ev_io_stop (&wio);
1091 ev_io_start (&wio);
1092}
1093
1094static void
1095gcb (struct ev_signal *w, int revents)
1096{
1097 fprintf (stderr, "generic %x\n", revents);
1098
1099}
1100
1101int main (void)
1102{
1103 ev_init (0);
1104
1105 ev_io_init (&wio, sin_cb, 0, EV_READ);
1106 ev_io_start (&wio);
1107
1108 struct ev_timer t[10000];
1109
1110#if 0
1111 int i;
1112 for (i = 0; i < 10000; ++i)
1113 {
1114 struct ev_timer *w = t + i;
1115 ev_watcher_init (w, ocb, i);
1116 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1117 ev_timer_start (w);
1118 if (drand48 () < 0.5)
1119 ev_timer_stop (w);
1120 }
1121#endif
1122
1123 struct ev_timer t1;
1124 ev_timer_init (&t1, ocb, 5, 10);
1125 ev_timer_start (&t1);
1126
1127 struct ev_signal sig;
1128 ev_signal_init (&sig, scb, SIGQUIT);
1129 ev_signal_start (&sig);
1130
1131 struct ev_check cw;
1132 ev_check_init (&cw, gcb);
1133 ev_check_start (&cw);
1134
1135 struct ev_idle iw;
1136 ev_idle_init (&iw, gcb);
1137 ev_idle_start (&iw);
1138
1139 ev_loop (0);
1140
1141 return 0;
1142}
1143
1144#endif
1145
1146
1147
1148

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines