ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.72 by root, Tue Nov 6 16:09:37 2007 UTC vs.
Revision 1.90 by root, Sun Nov 11 00:05:59 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1 40# define EV_USE_MONOTONIC 1
46 51
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 53# define EV_USE_EPOLL 1
49# endif 54# endif
50 55
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 57# define EV_USE_KQUEUE 1
53# endif 58# endif
54 59
55#endif 60#endif
56 61
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 135
136#ifdef EV_H
137# include EV_H
138#else
131#include "ev.h" 139# include "ev.h"
140#endif
132 141
133#if __GNUC__ >= 3 142#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 143# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 144# define inline inline
136#else 145#else
148typedef struct ev_watcher_list *WL; 157typedef struct ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 158typedef struct ev_watcher_time *WT;
150 159
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 161
153#if WIN32 162#include "ev_win32.c"
154/* note: the comment below could not be substantiated, but what would I care */
155/* MSDN says this is required to handle SIGFPE */
156volatile double SIGFPE_REQ = 0.0f;
157
158static int
159ev_socketpair_tcp (int filedes [2])
160{
161 struct sockaddr_in addr = { 0 };
162 int addr_size = sizeof (addr);
163 SOCKET listener;
164 SOCKET sock [2] = { -1, -1 };
165
166 if ((listener = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
167 return -1;
168
169 addr.sin_family = AF_INET;
170 addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
171 addr.sin_port = 0;
172
173 if (bind (listener, (struct sockaddr *)&addr, addr_size))
174 goto fail;
175
176 if (getsockname(listener, (struct sockaddr *)&addr, &addr_size))
177 goto fail;
178
179 if (listen (listener, 1))
180 goto fail;
181
182 if ((sock [0] = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
183 goto fail;
184
185 if (connect (sock[0], (struct sockaddr *)&addr, addr_size))
186 goto fail;
187
188 if ((sock[1] = accept (listener, 0, 0)) < 0)
189 goto fail;
190
191 closesocket (listener);
192
193 filedes [0] = sock [0];
194 filedes [1] = sock [1];
195
196 return 0;
197
198fail:
199 closesocket (listener);
200
201 if (sock [0] != INVALID_SOCKET) closesocket (sock [0]);
202 if (sock [1] != INVALID_SOCKET) closesocket (sock [1]);
203
204 return -1;
205}
206
207# define ev_pipe(filedes) ev_socketpair_tcp (filedes)
208#else
209# define ev_pipe(filedes) pipe (filedes)
210#endif
211 163
212/*****************************************************************************/ 164/*****************************************************************************/
213 165
214static void (*syserr_cb)(const char *msg); 166static void (*syserr_cb)(const char *msg);
215 167
272 int events; 224 int events;
273} ANPENDING; 225} ANPENDING;
274 226
275#if EV_MULTIPLICITY 227#if EV_MULTIPLICITY
276 228
277struct ev_loop 229 struct ev_loop
278{ 230 {
231 ev_tstamp ev_rt_now;
279# define VAR(name,decl) decl; 232 #define VAR(name,decl) decl;
280# include "ev_vars.h" 233 #include "ev_vars.h"
281};
282# undef VAR 234 #undef VAR
235 };
283# include "ev_wrap.h" 236 #include "ev_wrap.h"
237
238 struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop;
284 240
285#else 241#else
286 242
243 ev_tstamp ev_rt_now;
287# define VAR(name,decl) static decl; 244 #define VAR(name,decl) static decl;
288# include "ev_vars.h" 245 #include "ev_vars.h"
289# undef VAR 246 #undef VAR
247
248 static int default_loop;
290 249
291#endif 250#endif
292 251
293/*****************************************************************************/ 252/*****************************************************************************/
294 253
319#endif 278#endif
320 279
321 return ev_time (); 280 return ev_time ();
322} 281}
323 282
283#if EV_MULTIPLICITY
324ev_tstamp 284ev_tstamp
325ev_now (EV_P) 285ev_now (EV_P)
326{ 286{
327 return rt_now; 287 return ev_rt_now;
328} 288}
289#endif
329 290
330#define array_roundsize(base,n) ((n) | 4 & ~3) 291#define array_roundsize(type,n) ((n) | 4 & ~3)
331 292
332#define array_needsize(base,cur,cnt,init) \ 293#define array_needsize(type,base,cur,cnt,init) \
333 if (expect_false ((cnt) > cur)) \ 294 if (expect_false ((cnt) > cur)) \
334 { \ 295 { \
335 int newcnt = cur; \ 296 int newcnt = cur; \
336 do \ 297 do \
337 { \ 298 { \
338 newcnt = array_roundsize (base, newcnt << 1); \ 299 newcnt = array_roundsize (type, newcnt << 1); \
339 } \ 300 } \
340 while ((cnt) > newcnt); \ 301 while ((cnt) > newcnt); \
341 \ 302 \
342 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
343 init (base + cur, newcnt - cur); \ 304 init (base + cur, newcnt - cur); \
344 cur = newcnt; \ 305 cur = newcnt; \
345 } 306 }
346 307
347#define array_slim(stem) \ 308#define array_slim(type,stem) \
348 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
349 { \ 310 { \
350 stem ## max = array_roundsize (stem ## cnt >> 1); \ 311 stem ## max = array_roundsize (stem ## cnt >> 1); \
351 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
352 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
353 } 314 }
354 315
355/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */ 316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
356/* bringing us everlasting joy in form of stupid extra macros that are not required in C */ 317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
373 334
374 ++base; 335 ++base;
375 } 336 }
376} 337}
377 338
378static void 339void
379event (EV_P_ W w, int events) 340ev_feed_event (EV_P_ void *w, int revents)
380{ 341{
342 W w_ = (W)w;
343
381 if (w->pending) 344 if (w_->pending)
382 { 345 {
383 pendings [ABSPRI (w)][w->pending - 1].events |= events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
384 return; 347 return;
385 } 348 }
386 349
387 w->pending = ++pendingcnt [ABSPRI (w)]; 350 w_->pending = ++pendingcnt [ABSPRI (w_)];
388 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
389 pendings [ABSPRI (w)][w->pending - 1].w = w; 352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
390 pendings [ABSPRI (w)][w->pending - 1].events = events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
391} 354}
392 355
393static void 356static void
394queue_events (EV_P_ W *events, int eventcnt, int type) 357queue_events (EV_P_ W *events, int eventcnt, int type)
395{ 358{
396 int i; 359 int i;
397 360
398 for (i = 0; i < eventcnt; ++i) 361 for (i = 0; i < eventcnt; ++i)
399 event (EV_A_ events [i], type); 362 ev_feed_event (EV_A_ events [i], type);
400} 363}
401 364
402static void 365inline void
403fd_event (EV_P_ int fd, int events) 366fd_event (EV_P_ int fd, int revents)
404{ 367{
405 ANFD *anfd = anfds + fd; 368 ANFD *anfd = anfds + fd;
406 struct ev_io *w; 369 struct ev_io *w;
407 370
408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
409 { 372 {
410 int ev = w->events & events; 373 int ev = w->events & revents;
411 374
412 if (ev) 375 if (ev)
413 event (EV_A_ (W)w, ev); 376 ev_feed_event (EV_A_ (W)w, ev);
414 } 377 }
378}
379
380void
381ev_feed_fd_event (EV_P_ int fd, int revents)
382{
383 fd_event (EV_A_ fd, revents);
415} 384}
416 385
417/*****************************************************************************/ 386/*****************************************************************************/
418 387
419static void 388static void
448 return; 417 return;
449 418
450 anfds [fd].reify = 1; 419 anfds [fd].reify = 1;
451 420
452 ++fdchangecnt; 421 ++fdchangecnt;
453 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
454 fdchanges [fdchangecnt - 1] = fd; 423 fdchanges [fdchangecnt - 1] = fd;
455} 424}
456 425
457static void 426static void
458fd_kill (EV_P_ int fd) 427fd_kill (EV_P_ int fd)
460 struct ev_io *w; 429 struct ev_io *w;
461 430
462 while ((w = (struct ev_io *)anfds [fd].head)) 431 while ((w = (struct ev_io *)anfds [fd].head))
463 { 432 {
464 ev_io_stop (EV_A_ w); 433 ev_io_stop (EV_A_ w);
465 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
466 } 435 }
467} 436}
468 437
469static int 438static int
470fd_valid (int fd) 439fd_valid (int fd)
558 527
559 heap [k] = w; 528 heap [k] = w;
560 ((W)heap [k])->active = k + 1; 529 ((W)heap [k])->active = k + 1;
561} 530}
562 531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
542}
543
563/*****************************************************************************/ 544/*****************************************************************************/
564 545
565typedef struct 546typedef struct
566{ 547{
567 WL head; 548 WL head;
598 579
599 if (!gotsig) 580 if (!gotsig)
600 { 581 {
601 int old_errno = errno; 582 int old_errno = errno;
602 gotsig = 1; 583 gotsig = 1;
584#ifdef WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
586#else
603 write (sigpipe [1], &signum, 1); 587 write (sigpipe [1], &signum, 1);
588#endif
604 errno = old_errno; 589 errno = old_errno;
605 } 590 }
606} 591}
607 592
593void
594ev_feed_signal_event (EV_P_ int signum)
595{
596 WL w;
597
598#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
600#endif
601
602 --signum;
603
604 if (signum < 0 || signum >= signalmax)
605 return;
606
607 signals [signum].gotsig = 0;
608
609 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611}
612
608static void 613static void
609sigcb (EV_P_ struct ev_io *iow, int revents) 614sigcb (EV_P_ struct ev_io *iow, int revents)
610{ 615{
611 WL w;
612 int signum; 616 int signum;
613 617
618#ifdef WIN32
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
620#else
614 read (sigpipe [0], &revents, 1); 621 read (sigpipe [0], &revents, 1);
622#endif
615 gotsig = 0; 623 gotsig = 0;
616 624
617 for (signum = signalmax; signum--; ) 625 for (signum = signalmax; signum--; )
618 if (signals [signum].gotsig) 626 if (signals [signum].gotsig)
619 { 627 ev_feed_signal_event (EV_A_ signum + 1);
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 event (EV_A_ (W)w, EV_SIGNAL);
624 }
625} 628}
626 629
627static void 630static void
628siginit (EV_P) 631siginit (EV_P)
629{ 632{
662 if (w->pid == pid || !w->pid) 665 if (w->pid == pid || !w->pid)
663 { 666 {
664 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
665 w->rpid = pid; 668 w->rpid = pid;
666 w->rstatus = status; 669 w->rstatus = status;
667 event (EV_A_ (W)w, EV_CHILD); 670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
668 } 671 }
669} 672}
670 673
671static void 674static void
672childcb (EV_P_ struct ev_signal *sw, int revents) 675childcb (EV_P_ struct ev_signal *sw, int revents)
674 int pid, status; 677 int pid, status;
675 678
676 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
677 { 680 {
678 /* make sure we are called again until all childs have been reaped */ 681 /* make sure we are called again until all childs have been reaped */
679 event (EV_A_ (W)sw, EV_SIGNAL); 682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
680 683
681 child_reap (EV_A_ sw, pid, pid, status); 684 child_reap (EV_A_ sw, pid, pid, status);
682 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
683 } 686 }
684} 687}
741 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 744 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
742 have_monotonic = 1; 745 have_monotonic = 1;
743 } 746 }
744#endif 747#endif
745 748
746 rt_now = ev_time (); 749 ev_rt_now = ev_time ();
747 mn_now = get_clock (); 750 mn_now = get_clock ();
748 now_floor = mn_now; 751 now_floor = mn_now;
749 rtmn_diff = rt_now - mn_now; 752 rtmn_diff = ev_rt_now - mn_now;
750 753
751 if (methods == EVMETHOD_AUTO) 754 if (methods == EVMETHOD_AUTO)
752 if (!enable_secure () && getenv ("LIBEV_METHODS")) 755 if (!enable_secure () && getenv ("LIBEV_METHODS"))
753 methods = atoi (getenv ("LIBEV_METHODS")); 756 methods = atoi (getenv ("LIBEV_METHODS"));
754 else 757 else
769#endif 772#endif
770#if EV_USE_SELECT 773#if EV_USE_SELECT
771 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
772#endif 775#endif
773 776
774 ev_watcher_init (&sigev, sigcb); 777 ev_init (&sigev, sigcb);
775 ev_set_priority (&sigev, EV_MAXPRI); 778 ev_set_priority (&sigev, EV_MAXPRI);
776 } 779 }
777} 780}
778 781
779void 782void
828 ev_ref (EV_A); 831 ev_ref (EV_A);
829 ev_io_stop (EV_A_ &sigev); 832 ev_io_stop (EV_A_ &sigev);
830 close (sigpipe [0]); 833 close (sigpipe [0]);
831 close (sigpipe [1]); 834 close (sigpipe [1]);
832 835
833 while (ev_pipe (sigpipe)) 836 while (pipe (sigpipe))
834 syserr ("(libev) error creating pipe"); 837 syserr ("(libev) error creating pipe");
835 838
836 siginit (EV_A); 839 siginit (EV_A);
837 } 840 }
838 841
869} 872}
870 873
871#endif 874#endif
872 875
873#if EV_MULTIPLICITY 876#if EV_MULTIPLICITY
874struct ev_loop default_loop_struct;
875static struct ev_loop *default_loop;
876
877struct ev_loop * 877struct ev_loop *
878#else 878#else
879static int default_loop;
880
881int 879int
882#endif 880#endif
883ev_default_loop (int methods) 881ev_default_loop (int methods)
884{ 882{
885 if (sigpipe [0] == sigpipe [1]) 883 if (sigpipe [0] == sigpipe [1])
886 if (ev_pipe (sigpipe)) 884 if (pipe (sigpipe))
887 return 0; 885 return 0;
888 886
889 if (!default_loop) 887 if (!default_loop)
890 { 888 {
891#if EV_MULTIPLICITY 889#if EV_MULTIPLICITY
946 postfork = 1; 944 postfork = 1;
947} 945}
948 946
949/*****************************************************************************/ 947/*****************************************************************************/
950 948
949static int
950any_pending (EV_P)
951{
952 int pri;
953
954 for (pri = NUMPRI; pri--; )
955 if (pendingcnt [pri])
956 return 1;
957
958 return 0;
959}
960
951static void 961static void
952call_pending (EV_P) 962call_pending (EV_P)
953{ 963{
954 int pri; 964 int pri;
955 965
959 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 969 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
960 970
961 if (p->w) 971 if (p->w)
962 { 972 {
963 p->w->pending = 0; 973 p->w->pending = 0;
964 p->w->cb (EV_A_ p->w, p->events); 974 EV_CB_INVOKE (p->w, p->events);
965 } 975 }
966 } 976 }
967} 977}
968 978
969static void 979static void
977 987
978 /* first reschedule or stop timer */ 988 /* first reschedule or stop timer */
979 if (w->repeat) 989 if (w->repeat)
980 { 990 {
981 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 991 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
992
982 ((WT)w)->at = mn_now + w->repeat; 993 ((WT)w)->at += w->repeat;
994 if (((WT)w)->at < mn_now)
995 ((WT)w)->at = mn_now;
996
983 downheap ((WT *)timers, timercnt, 0); 997 downheap ((WT *)timers, timercnt, 0);
984 } 998 }
985 else 999 else
986 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1000 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
987 1001
988 event (EV_A_ (W)w, EV_TIMEOUT); 1002 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
989 } 1003 }
990} 1004}
991 1005
992static void 1006static void
993periodics_reify (EV_P) 1007periodics_reify (EV_P)
994{ 1008{
995 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1009 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
996 { 1010 {
997 struct ev_periodic *w = periodics [0]; 1011 struct ev_periodic *w = periodics [0];
998 1012
999 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1013 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1000 1014
1001 /* first reschedule or stop timer */ 1015 /* first reschedule or stop timer */
1002 if (w->interval) 1016 if (w->reschedule_cb)
1003 { 1017 {
1018 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1019
1020 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1021 downheap ((WT *)periodics, periodiccnt, 0);
1022 }
1023 else if (w->interval)
1024 {
1004 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1025 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1005 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1026 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1006 downheap ((WT *)periodics, periodiccnt, 0); 1027 downheap ((WT *)periodics, periodiccnt, 0);
1007 } 1028 }
1008 else 1029 else
1009 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1030 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1010 1031
1011 event (EV_A_ (W)w, EV_PERIODIC); 1032 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1012 } 1033 }
1013} 1034}
1014 1035
1015static void 1036static void
1016periodics_reschedule (EV_P) 1037periodics_reschedule (EV_P)
1020 /* adjust periodics after time jump */ 1041 /* adjust periodics after time jump */
1021 for (i = 0; i < periodiccnt; ++i) 1042 for (i = 0; i < periodiccnt; ++i)
1022 { 1043 {
1023 struct ev_periodic *w = periodics [i]; 1044 struct ev_periodic *w = periodics [i];
1024 1045
1046 if (w->reschedule_cb)
1047 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1025 if (w->interval) 1048 else if (w->interval)
1026 {
1027 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1049 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1028
1029 if (fabs (diff) >= 1e-4)
1030 {
1031 ev_periodic_stop (EV_A_ w);
1032 ev_periodic_start (EV_A_ w);
1033
1034 i = 0; /* restart loop, inefficient, but time jumps should be rare */
1035 }
1036 }
1037 } 1050 }
1051
1052 /* now rebuild the heap */
1053 for (i = periodiccnt >> 1; i--; )
1054 downheap ((WT *)periodics, periodiccnt, i);
1038} 1055}
1039 1056
1040inline int 1057inline int
1041time_update_monotonic (EV_P) 1058time_update_monotonic (EV_P)
1042{ 1059{
1043 mn_now = get_clock (); 1060 mn_now = get_clock ();
1044 1061
1045 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1062 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1046 { 1063 {
1047 rt_now = rtmn_diff + mn_now; 1064 ev_rt_now = rtmn_diff + mn_now;
1048 return 0; 1065 return 0;
1049 } 1066 }
1050 else 1067 else
1051 { 1068 {
1052 now_floor = mn_now; 1069 now_floor = mn_now;
1053 rt_now = ev_time (); 1070 ev_rt_now = ev_time ();
1054 return 1; 1071 return 1;
1055 } 1072 }
1056} 1073}
1057 1074
1058static void 1075static void
1067 { 1084 {
1068 ev_tstamp odiff = rtmn_diff; 1085 ev_tstamp odiff = rtmn_diff;
1069 1086
1070 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1087 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1071 { 1088 {
1072 rtmn_diff = rt_now - mn_now; 1089 rtmn_diff = ev_rt_now - mn_now;
1073 1090
1074 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1091 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1075 return; /* all is well */ 1092 return; /* all is well */
1076 1093
1077 rt_now = ev_time (); 1094 ev_rt_now = ev_time ();
1078 mn_now = get_clock (); 1095 mn_now = get_clock ();
1079 now_floor = mn_now; 1096 now_floor = mn_now;
1080 } 1097 }
1081 1098
1082 periodics_reschedule (EV_A); 1099 periodics_reschedule (EV_A);
1085 } 1102 }
1086 } 1103 }
1087 else 1104 else
1088#endif 1105#endif
1089 { 1106 {
1090 rt_now = ev_time (); 1107 ev_rt_now = ev_time ();
1091 1108
1092 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1109 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1093 { 1110 {
1094 periodics_reschedule (EV_A); 1111 periodics_reschedule (EV_A);
1095 1112
1096 /* adjust timers. this is easy, as the offset is the same for all */ 1113 /* adjust timers. this is easy, as the offset is the same for all */
1097 for (i = 0; i < timercnt; ++i) 1114 for (i = 0; i < timercnt; ++i)
1098 ((WT)timers [i])->at += rt_now - mn_now; 1115 ((WT)timers [i])->at += ev_rt_now - mn_now;
1099 } 1116 }
1100 1117
1101 mn_now = rt_now; 1118 mn_now = ev_rt_now;
1102 } 1119 }
1103} 1120}
1104 1121
1105void 1122void
1106ev_ref (EV_P) 1123ev_ref (EV_P)
1138 /* update fd-related kernel structures */ 1155 /* update fd-related kernel structures */
1139 fd_reify (EV_A); 1156 fd_reify (EV_A);
1140 1157
1141 /* calculate blocking time */ 1158 /* calculate blocking time */
1142 1159
1143 /* we only need this for !monotonic clockor timers, but as we basically 1160 /* we only need this for !monotonic clock or timers, but as we basically
1144 always have timers, we just calculate it always */ 1161 always have timers, we just calculate it always */
1145#if EV_USE_MONOTONIC 1162#if EV_USE_MONOTONIC
1146 if (expect_true (have_monotonic)) 1163 if (expect_true (have_monotonic))
1147 time_update_monotonic (EV_A); 1164 time_update_monotonic (EV_A);
1148 else 1165 else
1149#endif 1166#endif
1150 { 1167 {
1151 rt_now = ev_time (); 1168 ev_rt_now = ev_time ();
1152 mn_now = rt_now; 1169 mn_now = ev_rt_now;
1153 } 1170 }
1154 1171
1155 if (flags & EVLOOP_NONBLOCK || idlecnt) 1172 if (flags & EVLOOP_NONBLOCK || idlecnt)
1156 block = 0.; 1173 block = 0.;
1157 else 1174 else
1164 if (block > to) block = to; 1181 if (block > to) block = to;
1165 } 1182 }
1166 1183
1167 if (periodiccnt) 1184 if (periodiccnt)
1168 { 1185 {
1169 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1186 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1170 if (block > to) block = to; 1187 if (block > to) block = to;
1171 } 1188 }
1172 1189
1173 if (block < 0.) block = 0.; 1190 if (block < 0.) block = 0.;
1174 } 1191 }
1175 1192
1176 method_poll (EV_A_ block); 1193 method_poll (EV_A_ block);
1177 1194
1178 /* update rt_now, do magic */ 1195 /* update ev_rt_now, do magic */
1179 time_update (EV_A); 1196 time_update (EV_A);
1180 1197
1181 /* queue pending timers and reschedule them */ 1198 /* queue pending timers and reschedule them */
1182 timers_reify (EV_A); /* relative timers called last */ 1199 timers_reify (EV_A); /* relative timers called last */
1183 periodics_reify (EV_A); /* absolute timers called first */ 1200 periodics_reify (EV_A); /* absolute timers called first */
1184 1201
1185 /* queue idle watchers unless io or timers are pending */ 1202 /* queue idle watchers unless io or timers are pending */
1186 if (!pendingcnt) 1203 if (idlecnt && !any_pending (EV_A))
1187 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1204 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1188 1205
1189 /* queue check watchers, to be executed first */ 1206 /* queue check watchers, to be executed first */
1190 if (checkcnt) 1207 if (checkcnt)
1191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1208 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1266 return; 1283 return;
1267 1284
1268 assert (("ev_io_start called with negative fd", fd >= 0)); 1285 assert (("ev_io_start called with negative fd", fd >= 0));
1269 1286
1270 ev_start (EV_A_ (W)w, 1); 1287 ev_start (EV_A_ (W)w, 1);
1271 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1288 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1272 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1289 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1273 1290
1274 fd_change (EV_A_ fd); 1291 fd_change (EV_A_ fd);
1275} 1292}
1276 1293
1279{ 1296{
1280 ev_clear_pending (EV_A_ (W)w); 1297 ev_clear_pending (EV_A_ (W)w);
1281 if (!ev_is_active (w)) 1298 if (!ev_is_active (w))
1282 return; 1299 return;
1283 1300
1301 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1302
1284 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1303 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1285 ev_stop (EV_A_ (W)w); 1304 ev_stop (EV_A_ (W)w);
1286 1305
1287 fd_change (EV_A_ w->fd); 1306 fd_change (EV_A_ w->fd);
1288} 1307}
1296 ((WT)w)->at += mn_now; 1315 ((WT)w)->at += mn_now;
1297 1316
1298 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1317 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1299 1318
1300 ev_start (EV_A_ (W)w, ++timercnt); 1319 ev_start (EV_A_ (W)w, ++timercnt);
1301 array_needsize (timers, timermax, timercnt, (void)); 1320 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1302 timers [timercnt - 1] = w; 1321 timers [timercnt - 1] = w;
1303 upheap ((WT *)timers, timercnt - 1); 1322 upheap ((WT *)timers, timercnt - 1);
1304 1323
1305 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1324 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1306} 1325}
1329ev_timer_again (EV_P_ struct ev_timer *w) 1348ev_timer_again (EV_P_ struct ev_timer *w)
1330{ 1349{
1331 if (ev_is_active (w)) 1350 if (ev_is_active (w))
1332 { 1351 {
1333 if (w->repeat) 1352 if (w->repeat)
1334 {
1335 ((WT)w)->at = mn_now + w->repeat;
1336 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1337 }
1338 else 1354 else
1339 ev_timer_stop (EV_A_ w); 1355 ev_timer_stop (EV_A_ w);
1340 } 1356 }
1341 else if (w->repeat) 1357 else if (w->repeat)
1342 ev_timer_start (EV_A_ w); 1358 ev_timer_start (EV_A_ w);
1346ev_periodic_start (EV_P_ struct ev_periodic *w) 1362ev_periodic_start (EV_P_ struct ev_periodic *w)
1347{ 1363{
1348 if (ev_is_active (w)) 1364 if (ev_is_active (w))
1349 return; 1365 return;
1350 1366
1367 if (w->reschedule_cb)
1368 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1369 else if (w->interval)
1370 {
1351 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1371 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1352
1353 /* this formula differs from the one in periodic_reify because we do not always round up */ 1372 /* this formula differs from the one in periodic_reify because we do not always round up */
1354 if (w->interval)
1355 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1373 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1374 }
1356 1375
1357 ev_start (EV_A_ (W)w, ++periodiccnt); 1376 ev_start (EV_A_ (W)w, ++periodiccnt);
1358 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1377 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1359 periodics [periodiccnt - 1] = w; 1378 periodics [periodiccnt - 1] = w;
1360 upheap ((WT *)periodics, periodiccnt - 1); 1379 upheap ((WT *)periodics, periodiccnt - 1);
1361 1380
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1381 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1363} 1382}
1379 1398
1380 ev_stop (EV_A_ (W)w); 1399 ev_stop (EV_A_ (W)w);
1381} 1400}
1382 1401
1383void 1402void
1403ev_periodic_again (EV_P_ struct ev_periodic *w)
1404{
1405 /* TODO: use adjustheap and recalculation */
1406 ev_periodic_stop (EV_A_ w);
1407 ev_periodic_start (EV_A_ w);
1408}
1409
1410void
1384ev_idle_start (EV_P_ struct ev_idle *w) 1411ev_idle_start (EV_P_ struct ev_idle *w)
1385{ 1412{
1386 if (ev_is_active (w)) 1413 if (ev_is_active (w))
1387 return; 1414 return;
1388 1415
1389 ev_start (EV_A_ (W)w, ++idlecnt); 1416 ev_start (EV_A_ (W)w, ++idlecnt);
1390 array_needsize (idles, idlemax, idlecnt, (void)); 1417 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1391 idles [idlecnt - 1] = w; 1418 idles [idlecnt - 1] = w;
1392} 1419}
1393 1420
1394void 1421void
1395ev_idle_stop (EV_P_ struct ev_idle *w) 1422ev_idle_stop (EV_P_ struct ev_idle *w)
1407{ 1434{
1408 if (ev_is_active (w)) 1435 if (ev_is_active (w))
1409 return; 1436 return;
1410 1437
1411 ev_start (EV_A_ (W)w, ++preparecnt); 1438 ev_start (EV_A_ (W)w, ++preparecnt);
1412 array_needsize (prepares, preparemax, preparecnt, (void)); 1439 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1413 prepares [preparecnt - 1] = w; 1440 prepares [preparecnt - 1] = w;
1414} 1441}
1415 1442
1416void 1443void
1417ev_prepare_stop (EV_P_ struct ev_prepare *w) 1444ev_prepare_stop (EV_P_ struct ev_prepare *w)
1429{ 1456{
1430 if (ev_is_active (w)) 1457 if (ev_is_active (w))
1431 return; 1458 return;
1432 1459
1433 ev_start (EV_A_ (W)w, ++checkcnt); 1460 ev_start (EV_A_ (W)w, ++checkcnt);
1434 array_needsize (checks, checkmax, checkcnt, (void)); 1461 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1435 checks [checkcnt - 1] = w; 1462 checks [checkcnt - 1] = w;
1436} 1463}
1437 1464
1438void 1465void
1439ev_check_stop (EV_P_ struct ev_check *w) 1466ev_check_stop (EV_P_ struct ev_check *w)
1460 return; 1487 return;
1461 1488
1462 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1489 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1463 1490
1464 ev_start (EV_A_ (W)w, 1); 1491 ev_start (EV_A_ (W)w, 1);
1465 array_needsize (signals, signalmax, w->signum, signals_init); 1492 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1466 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1493 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1467 1494
1468 if (!((WL)w)->next) 1495 if (!((WL)w)->next)
1469 { 1496 {
1470#if WIN32 1497#if WIN32
1553} 1580}
1554 1581
1555void 1582void
1556ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1583ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1557{ 1584{
1558 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1585 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1559 1586
1560 if (!once) 1587 if (!once)
1561 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1588 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1562 else 1589 else
1563 { 1590 {
1564 once->cb = cb; 1591 once->cb = cb;
1565 once->arg = arg; 1592 once->arg = arg;
1566 1593
1567 ev_watcher_init (&once->io, once_cb_io); 1594 ev_init (&once->io, once_cb_io);
1568 if (fd >= 0) 1595 if (fd >= 0)
1569 { 1596 {
1570 ev_io_set (&once->io, fd, events); 1597 ev_io_set (&once->io, fd, events);
1571 ev_io_start (EV_A_ &once->io); 1598 ev_io_start (EV_A_ &once->io);
1572 } 1599 }
1573 1600
1574 ev_watcher_init (&once->to, once_cb_to); 1601 ev_init (&once->to, once_cb_to);
1575 if (timeout >= 0.) 1602 if (timeout >= 0.)
1576 { 1603 {
1577 ev_timer_set (&once->to, timeout, 0.); 1604 ev_timer_set (&once->to, timeout, 0.);
1578 ev_timer_start (EV_A_ &once->to); 1605 ev_timer_start (EV_A_ &once->to);
1579 } 1606 }
1580 } 1607 }
1581} 1608}
1582 1609
1610#ifdef __cplusplus
1611}
1612#endif
1613

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines