ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.72 by root, Tue Nov 6 16:09:37 2007 UTC vs.
Revision 1.97 by root, Sun Nov 11 01:53:07 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 139
140#ifdef EV_H
141# include EV_H
142#else
131#include "ev.h" 143# include "ev.h"
144#endif
132 145
133#if __GNUC__ >= 3 146#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 148# define inline inline
136#else 149#else
148typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
150 163
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 165
153#if WIN32 166#include "ev_win32.c"
154/* note: the comment below could not be substantiated, but what would I care */
155/* MSDN says this is required to handle SIGFPE */
156volatile double SIGFPE_REQ = 0.0f;
157
158static int
159ev_socketpair_tcp (int filedes [2])
160{
161 struct sockaddr_in addr = { 0 };
162 int addr_size = sizeof (addr);
163 SOCKET listener;
164 SOCKET sock [2] = { -1, -1 };
165
166 if ((listener = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
167 return -1;
168
169 addr.sin_family = AF_INET;
170 addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
171 addr.sin_port = 0;
172
173 if (bind (listener, (struct sockaddr *)&addr, addr_size))
174 goto fail;
175
176 if (getsockname(listener, (struct sockaddr *)&addr, &addr_size))
177 goto fail;
178
179 if (listen (listener, 1))
180 goto fail;
181
182 if ((sock [0] = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
183 goto fail;
184
185 if (connect (sock[0], (struct sockaddr *)&addr, addr_size))
186 goto fail;
187
188 if ((sock[1] = accept (listener, 0, 0)) < 0)
189 goto fail;
190
191 closesocket (listener);
192
193 filedes [0] = sock [0];
194 filedes [1] = sock [1];
195
196 return 0;
197
198fail:
199 closesocket (listener);
200
201 if (sock [0] != INVALID_SOCKET) closesocket (sock [0]);
202 if (sock [1] != INVALID_SOCKET) closesocket (sock [1]);
203
204 return -1;
205}
206
207# define ev_pipe(filedes) ev_socketpair_tcp (filedes)
208#else
209# define ev_pipe(filedes) pipe (filedes)
210#endif
211 167
212/*****************************************************************************/ 168/*****************************************************************************/
213 169
214static void (*syserr_cb)(const char *msg); 170static void (*syserr_cb)(const char *msg);
215 171
272 int events; 228 int events;
273} ANPENDING; 229} ANPENDING;
274 230
275#if EV_MULTIPLICITY 231#if EV_MULTIPLICITY
276 232
277struct ev_loop 233 struct ev_loop
278{ 234 {
235 ev_tstamp ev_rt_now;
279# define VAR(name,decl) decl; 236 #define VAR(name,decl) decl;
280# include "ev_vars.h" 237 #include "ev_vars.h"
281};
282# undef VAR 238 #undef VAR
239 };
283# include "ev_wrap.h" 240 #include "ev_wrap.h"
241
242 struct ev_loop default_loop_struct;
243 static struct ev_loop *default_loop;
284 244
285#else 245#else
286 246
247 ev_tstamp ev_rt_now;
287# define VAR(name,decl) static decl; 248 #define VAR(name,decl) static decl;
288# include "ev_vars.h" 249 #include "ev_vars.h"
289# undef VAR 250 #undef VAR
251
252 static int default_loop;
290 253
291#endif 254#endif
292 255
293/*****************************************************************************/ 256/*****************************************************************************/
294 257
295inline ev_tstamp 258ev_tstamp
296ev_time (void) 259ev_time (void)
297{ 260{
298#if EV_USE_REALTIME 261#if EV_USE_REALTIME
299 struct timespec ts; 262 struct timespec ts;
300 clock_gettime (CLOCK_REALTIME, &ts); 263 clock_gettime (CLOCK_REALTIME, &ts);
319#endif 282#endif
320 283
321 return ev_time (); 284 return ev_time ();
322} 285}
323 286
287#if EV_MULTIPLICITY
324ev_tstamp 288ev_tstamp
325ev_now (EV_P) 289ev_now (EV_P)
326{ 290{
327 return rt_now; 291 return ev_rt_now;
328} 292}
293#endif
329 294
330#define array_roundsize(base,n) ((n) | 4 & ~3) 295#define array_roundsize(type,n) ((n) | 4 & ~3)
331 296
332#define array_needsize(base,cur,cnt,init) \ 297#define array_needsize(type,base,cur,cnt,init) \
333 if (expect_false ((cnt) > cur)) \ 298 if (expect_false ((cnt) > cur)) \
334 { \ 299 { \
335 int newcnt = cur; \ 300 int newcnt = cur; \
336 do \ 301 do \
337 { \ 302 { \
338 newcnt = array_roundsize (base, newcnt << 1); \ 303 newcnt = array_roundsize (type, newcnt << 1); \
339 } \ 304 } \
340 while ((cnt) > newcnt); \ 305 while ((cnt) > newcnt); \
341 \ 306 \
342 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 307 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
343 init (base + cur, newcnt - cur); \ 308 init (base + cur, newcnt - cur); \
344 cur = newcnt; \ 309 cur = newcnt; \
345 } 310 }
346 311
347#define array_slim(stem) \ 312#define array_slim(type,stem) \
348 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 313 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
349 { \ 314 { \
350 stem ## max = array_roundsize (stem ## cnt >> 1); \ 315 stem ## max = array_roundsize (stem ## cnt >> 1); \
351 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 316 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
352 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 317 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
353 } 318 }
354 319
355/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */ 320/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
356/* bringing us everlasting joy in form of stupid extra macros that are not required in C */ 321/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
373 338
374 ++base; 339 ++base;
375 } 340 }
376} 341}
377 342
378static void 343void
379event (EV_P_ W w, int events) 344ev_feed_event (EV_P_ void *w, int revents)
380{ 345{
346 W w_ = (W)w;
347
381 if (w->pending) 348 if (w_->pending)
382 { 349 {
383 pendings [ABSPRI (w)][w->pending - 1].events |= events; 350 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
384 return; 351 return;
385 } 352 }
386 353
387 w->pending = ++pendingcnt [ABSPRI (w)]; 354 w_->pending = ++pendingcnt [ABSPRI (w_)];
388 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 355 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
389 pendings [ABSPRI (w)][w->pending - 1].w = w; 356 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
390 pendings [ABSPRI (w)][w->pending - 1].events = events; 357 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
391} 358}
392 359
393static void 360static void
394queue_events (EV_P_ W *events, int eventcnt, int type) 361queue_events (EV_P_ W *events, int eventcnt, int type)
395{ 362{
396 int i; 363 int i;
397 364
398 for (i = 0; i < eventcnt; ++i) 365 for (i = 0; i < eventcnt; ++i)
399 event (EV_A_ events [i], type); 366 ev_feed_event (EV_A_ events [i], type);
400} 367}
401 368
402static void 369inline void
403fd_event (EV_P_ int fd, int events) 370fd_event (EV_P_ int fd, int revents)
404{ 371{
405 ANFD *anfd = anfds + fd; 372 ANFD *anfd = anfds + fd;
406 struct ev_io *w; 373 struct ev_io *w;
407 374
408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
409 { 376 {
410 int ev = w->events & events; 377 int ev = w->events & revents;
411 378
412 if (ev) 379 if (ev)
413 event (EV_A_ (W)w, ev); 380 ev_feed_event (EV_A_ (W)w, ev);
414 } 381 }
382}
383
384void
385ev_feed_fd_event (EV_P_ int fd, int revents)
386{
387 fd_event (EV_A_ fd, revents);
415} 388}
416 389
417/*****************************************************************************/ 390/*****************************************************************************/
418 391
419static void 392static void
448 return; 421 return;
449 422
450 anfds [fd].reify = 1; 423 anfds [fd].reify = 1;
451 424
452 ++fdchangecnt; 425 ++fdchangecnt;
453 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 426 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
454 fdchanges [fdchangecnt - 1] = fd; 427 fdchanges [fdchangecnt - 1] = fd;
455} 428}
456 429
457static void 430static void
458fd_kill (EV_P_ int fd) 431fd_kill (EV_P_ int fd)
460 struct ev_io *w; 433 struct ev_io *w;
461 434
462 while ((w = (struct ev_io *)anfds [fd].head)) 435 while ((w = (struct ev_io *)anfds [fd].head))
463 { 436 {
464 ev_io_stop (EV_A_ w); 437 ev_io_stop (EV_A_ w);
465 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 438 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
466 } 439 }
467} 440}
468 441
469static int 442static int
470fd_valid (int fd) 443fd_valid (int fd)
558 531
559 heap [k] = w; 532 heap [k] = w;
560 ((W)heap [k])->active = k + 1; 533 ((W)heap [k])->active = k + 1;
561} 534}
562 535
536inline void
537adjustheap (WT *heap, int N, int k, ev_tstamp at)
538{
539 ev_tstamp old_at = heap [k]->at;
540 heap [k]->at = at;
541
542 if (old_at < at)
543 downheap (heap, N, k);
544 else
545 upheap (heap, k);
546}
547
563/*****************************************************************************/ 548/*****************************************************************************/
564 549
565typedef struct 550typedef struct
566{ 551{
567 WL head; 552 WL head;
598 583
599 if (!gotsig) 584 if (!gotsig)
600 { 585 {
601 int old_errno = errno; 586 int old_errno = errno;
602 gotsig = 1; 587 gotsig = 1;
588#ifdef WIN32
589 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
590#else
603 write (sigpipe [1], &signum, 1); 591 write (sigpipe [1], &signum, 1);
592#endif
604 errno = old_errno; 593 errno = old_errno;
605 } 594 }
606} 595}
607 596
597void
598ev_feed_signal_event (EV_P_ int signum)
599{
600 WL w;
601
602#if EV_MULTIPLICITY
603 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
604#endif
605
606 --signum;
607
608 if (signum < 0 || signum >= signalmax)
609 return;
610
611 signals [signum].gotsig = 0;
612
613 for (w = signals [signum].head; w; w = w->next)
614 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
615}
616
608static void 617static void
609sigcb (EV_P_ struct ev_io *iow, int revents) 618sigcb (EV_P_ struct ev_io *iow, int revents)
610{ 619{
611 WL w;
612 int signum; 620 int signum;
613 621
622#ifdef WIN32
623 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
624#else
614 read (sigpipe [0], &revents, 1); 625 read (sigpipe [0], &revents, 1);
626#endif
615 gotsig = 0; 627 gotsig = 0;
616 628
617 for (signum = signalmax; signum--; ) 629 for (signum = signalmax; signum--; )
618 if (signals [signum].gotsig) 630 if (signals [signum].gotsig)
619 { 631 ev_feed_signal_event (EV_A_ signum + 1);
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 event (EV_A_ (W)w, EV_SIGNAL);
624 }
625} 632}
626 633
627static void 634static void
628siginit (EV_P) 635siginit (EV_P)
629{ 636{
662 if (w->pid == pid || !w->pid) 669 if (w->pid == pid || !w->pid)
663 { 670 {
664 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 671 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
665 w->rpid = pid; 672 w->rpid = pid;
666 w->rstatus = status; 673 w->rstatus = status;
667 event (EV_A_ (W)w, EV_CHILD); 674 ev_feed_event (EV_A_ (W)w, EV_CHILD);
668 } 675 }
669} 676}
670 677
671static void 678static void
672childcb (EV_P_ struct ev_signal *sw, int revents) 679childcb (EV_P_ struct ev_signal *sw, int revents)
674 int pid, status; 681 int pid, status;
675 682
676 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 683 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
677 { 684 {
678 /* make sure we are called again until all childs have been reaped */ 685 /* make sure we are called again until all childs have been reaped */
679 event (EV_A_ (W)sw, EV_SIGNAL); 686 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
680 687
681 child_reap (EV_A_ sw, pid, pid, status); 688 child_reap (EV_A_ sw, pid, pid, status);
682 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 689 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
683 } 690 }
684} 691}
741 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 748 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
742 have_monotonic = 1; 749 have_monotonic = 1;
743 } 750 }
744#endif 751#endif
745 752
746 rt_now = ev_time (); 753 ev_rt_now = ev_time ();
747 mn_now = get_clock (); 754 mn_now = get_clock ();
748 now_floor = mn_now; 755 now_floor = mn_now;
749 rtmn_diff = rt_now - mn_now; 756 rtmn_diff = ev_rt_now - mn_now;
750 757
751 if (methods == EVMETHOD_AUTO) 758 if (methods == EVMETHOD_AUTO)
752 if (!enable_secure () && getenv ("LIBEV_METHODS")) 759 if (!enable_secure () && getenv ("LIBEV_METHODS"))
753 methods = atoi (getenv ("LIBEV_METHODS")); 760 methods = atoi (getenv ("LIBEV_METHODS"));
754 else 761 else
769#endif 776#endif
770#if EV_USE_SELECT 777#if EV_USE_SELECT
771 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 778 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
772#endif 779#endif
773 780
774 ev_watcher_init (&sigev, sigcb); 781 ev_init (&sigev, sigcb);
775 ev_set_priority (&sigev, EV_MAXPRI); 782 ev_set_priority (&sigev, EV_MAXPRI);
776 } 783 }
777} 784}
778 785
779void 786void
801 array_free (pending, [i]); 808 array_free (pending, [i]);
802 809
803 /* have to use the microsoft-never-gets-it-right macro */ 810 /* have to use the microsoft-never-gets-it-right macro */
804 array_free_microshit (fdchange); 811 array_free_microshit (fdchange);
805 array_free_microshit (timer); 812 array_free_microshit (timer);
813#if EV_PERIODICS
806 array_free_microshit (periodic); 814 array_free_microshit (periodic);
815#endif
807 array_free_microshit (idle); 816 array_free_microshit (idle);
808 array_free_microshit (prepare); 817 array_free_microshit (prepare);
809 array_free_microshit (check); 818 array_free_microshit (check);
810 819
811 method = 0; 820 method = 0;
828 ev_ref (EV_A); 837 ev_ref (EV_A);
829 ev_io_stop (EV_A_ &sigev); 838 ev_io_stop (EV_A_ &sigev);
830 close (sigpipe [0]); 839 close (sigpipe [0]);
831 close (sigpipe [1]); 840 close (sigpipe [1]);
832 841
833 while (ev_pipe (sigpipe)) 842 while (pipe (sigpipe))
834 syserr ("(libev) error creating pipe"); 843 syserr ("(libev) error creating pipe");
835 844
836 siginit (EV_A); 845 siginit (EV_A);
837 } 846 }
838 847
869} 878}
870 879
871#endif 880#endif
872 881
873#if EV_MULTIPLICITY 882#if EV_MULTIPLICITY
874struct ev_loop default_loop_struct;
875static struct ev_loop *default_loop;
876
877struct ev_loop * 883struct ev_loop *
878#else 884#else
879static int default_loop;
880
881int 885int
882#endif 886#endif
883ev_default_loop (int methods) 887ev_default_loop (int methods)
884{ 888{
885 if (sigpipe [0] == sigpipe [1]) 889 if (sigpipe [0] == sigpipe [1])
886 if (ev_pipe (sigpipe)) 890 if (pipe (sigpipe))
887 return 0; 891 return 0;
888 892
889 if (!default_loop) 893 if (!default_loop)
890 { 894 {
891#if EV_MULTIPLICITY 895#if EV_MULTIPLICITY
946 postfork = 1; 950 postfork = 1;
947} 951}
948 952
949/*****************************************************************************/ 953/*****************************************************************************/
950 954
955static int
956any_pending (EV_P)
957{
958 int pri;
959
960 for (pri = NUMPRI; pri--; )
961 if (pendingcnt [pri])
962 return 1;
963
964 return 0;
965}
966
951static void 967static void
952call_pending (EV_P) 968call_pending (EV_P)
953{ 969{
954 int pri; 970 int pri;
955 971
959 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 975 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
960 976
961 if (p->w) 977 if (p->w)
962 { 978 {
963 p->w->pending = 0; 979 p->w->pending = 0;
964 p->w->cb (EV_A_ p->w, p->events); 980 EV_CB_INVOKE (p->w, p->events);
965 } 981 }
966 } 982 }
967} 983}
968 984
969static void 985static void
977 993
978 /* first reschedule or stop timer */ 994 /* first reschedule or stop timer */
979 if (w->repeat) 995 if (w->repeat)
980 { 996 {
981 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 997 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
998
982 ((WT)w)->at = mn_now + w->repeat; 999 ((WT)w)->at += w->repeat;
1000 if (((WT)w)->at < mn_now)
1001 ((WT)w)->at = mn_now;
1002
983 downheap ((WT *)timers, timercnt, 0); 1003 downheap ((WT *)timers, timercnt, 0);
984 } 1004 }
985 else 1005 else
986 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1006 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
987 1007
988 event (EV_A_ (W)w, EV_TIMEOUT); 1008 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
989 } 1009 }
990} 1010}
991 1011
1012#if EV_PERIODICS
992static void 1013static void
993periodics_reify (EV_P) 1014periodics_reify (EV_P)
994{ 1015{
995 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1016 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
996 { 1017 {
997 struct ev_periodic *w = periodics [0]; 1018 struct ev_periodic *w = periodics [0];
998 1019
999 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1020 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1000 1021
1001 /* first reschedule or stop timer */ 1022 /* first reschedule or stop timer */
1002 if (w->interval) 1023 if (w->reschedule_cb)
1003 { 1024 {
1025 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1026
1027 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1028 downheap ((WT *)periodics, periodiccnt, 0);
1029 }
1030 else if (w->interval)
1031 {
1004 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1032 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1005 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1033 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1006 downheap ((WT *)periodics, periodiccnt, 0); 1034 downheap ((WT *)periodics, periodiccnt, 0);
1007 } 1035 }
1008 else 1036 else
1009 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1037 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1010 1038
1011 event (EV_A_ (W)w, EV_PERIODIC); 1039 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1012 } 1040 }
1013} 1041}
1014 1042
1015static void 1043static void
1016periodics_reschedule (EV_P) 1044periodics_reschedule (EV_P)
1020 /* adjust periodics after time jump */ 1048 /* adjust periodics after time jump */
1021 for (i = 0; i < periodiccnt; ++i) 1049 for (i = 0; i < periodiccnt; ++i)
1022 { 1050 {
1023 struct ev_periodic *w = periodics [i]; 1051 struct ev_periodic *w = periodics [i];
1024 1052
1053 if (w->reschedule_cb)
1054 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1025 if (w->interval) 1055 else if (w->interval)
1026 {
1027 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1056 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1028
1029 if (fabs (diff) >= 1e-4)
1030 {
1031 ev_periodic_stop (EV_A_ w);
1032 ev_periodic_start (EV_A_ w);
1033
1034 i = 0; /* restart loop, inefficient, but time jumps should be rare */
1035 }
1036 }
1037 } 1057 }
1058
1059 /* now rebuild the heap */
1060 for (i = periodiccnt >> 1; i--; )
1061 downheap ((WT *)periodics, periodiccnt, i);
1038} 1062}
1063#endif
1039 1064
1040inline int 1065inline int
1041time_update_monotonic (EV_P) 1066time_update_monotonic (EV_P)
1042{ 1067{
1043 mn_now = get_clock (); 1068 mn_now = get_clock ();
1044 1069
1045 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1070 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1046 { 1071 {
1047 rt_now = rtmn_diff + mn_now; 1072 ev_rt_now = rtmn_diff + mn_now;
1048 return 0; 1073 return 0;
1049 } 1074 }
1050 else 1075 else
1051 { 1076 {
1052 now_floor = mn_now; 1077 now_floor = mn_now;
1053 rt_now = ev_time (); 1078 ev_rt_now = ev_time ();
1054 return 1; 1079 return 1;
1055 } 1080 }
1056} 1081}
1057 1082
1058static void 1083static void
1067 { 1092 {
1068 ev_tstamp odiff = rtmn_diff; 1093 ev_tstamp odiff = rtmn_diff;
1069 1094
1070 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1095 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1071 { 1096 {
1072 rtmn_diff = rt_now - mn_now; 1097 rtmn_diff = ev_rt_now - mn_now;
1073 1098
1074 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1099 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1075 return; /* all is well */ 1100 return; /* all is well */
1076 1101
1077 rt_now = ev_time (); 1102 ev_rt_now = ev_time ();
1078 mn_now = get_clock (); 1103 mn_now = get_clock ();
1079 now_floor = mn_now; 1104 now_floor = mn_now;
1080 } 1105 }
1081 1106
1107# if EV_PERIODICS
1082 periodics_reschedule (EV_A); 1108 periodics_reschedule (EV_A);
1109# endif
1083 /* no timer adjustment, as the monotonic clock doesn't jump */ 1110 /* no timer adjustment, as the monotonic clock doesn't jump */
1084 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1111 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1085 } 1112 }
1086 } 1113 }
1087 else 1114 else
1088#endif 1115#endif
1089 { 1116 {
1090 rt_now = ev_time (); 1117 ev_rt_now = ev_time ();
1091 1118
1092 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1119 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1093 { 1120 {
1121#if EV_PERIODICS
1094 periodics_reschedule (EV_A); 1122 periodics_reschedule (EV_A);
1123#endif
1095 1124
1096 /* adjust timers. this is easy, as the offset is the same for all */ 1125 /* adjust timers. this is easy, as the offset is the same for all */
1097 for (i = 0; i < timercnt; ++i) 1126 for (i = 0; i < timercnt; ++i)
1098 ((WT)timers [i])->at += rt_now - mn_now; 1127 ((WT)timers [i])->at += ev_rt_now - mn_now;
1099 } 1128 }
1100 1129
1101 mn_now = rt_now; 1130 mn_now = ev_rt_now;
1102 } 1131 }
1103} 1132}
1104 1133
1105void 1134void
1106ev_ref (EV_P) 1135ev_ref (EV_P)
1138 /* update fd-related kernel structures */ 1167 /* update fd-related kernel structures */
1139 fd_reify (EV_A); 1168 fd_reify (EV_A);
1140 1169
1141 /* calculate blocking time */ 1170 /* calculate blocking time */
1142 1171
1143 /* we only need this for !monotonic clockor timers, but as we basically 1172 /* we only need this for !monotonic clock or timers, but as we basically
1144 always have timers, we just calculate it always */ 1173 always have timers, we just calculate it always */
1145#if EV_USE_MONOTONIC 1174#if EV_USE_MONOTONIC
1146 if (expect_true (have_monotonic)) 1175 if (expect_true (have_monotonic))
1147 time_update_monotonic (EV_A); 1176 time_update_monotonic (EV_A);
1148 else 1177 else
1149#endif 1178#endif
1150 { 1179 {
1151 rt_now = ev_time (); 1180 ev_rt_now = ev_time ();
1152 mn_now = rt_now; 1181 mn_now = ev_rt_now;
1153 } 1182 }
1154 1183
1155 if (flags & EVLOOP_NONBLOCK || idlecnt) 1184 if (flags & EVLOOP_NONBLOCK || idlecnt)
1156 block = 0.; 1185 block = 0.;
1157 else 1186 else
1162 { 1191 {
1163 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1192 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1164 if (block > to) block = to; 1193 if (block > to) block = to;
1165 } 1194 }
1166 1195
1196#if EV_PERIODICS
1167 if (periodiccnt) 1197 if (periodiccnt)
1168 { 1198 {
1169 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1199 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1170 if (block > to) block = to; 1200 if (block > to) block = to;
1171 } 1201 }
1202#endif
1172 1203
1173 if (block < 0.) block = 0.; 1204 if (block < 0.) block = 0.;
1174 } 1205 }
1175 1206
1176 method_poll (EV_A_ block); 1207 method_poll (EV_A_ block);
1177 1208
1178 /* update rt_now, do magic */ 1209 /* update ev_rt_now, do magic */
1179 time_update (EV_A); 1210 time_update (EV_A);
1180 1211
1181 /* queue pending timers and reschedule them */ 1212 /* queue pending timers and reschedule them */
1182 timers_reify (EV_A); /* relative timers called last */ 1213 timers_reify (EV_A); /* relative timers called last */
1214#if EV_PERIODICS
1183 periodics_reify (EV_A); /* absolute timers called first */ 1215 periodics_reify (EV_A); /* absolute timers called first */
1216#endif
1184 1217
1185 /* queue idle watchers unless io or timers are pending */ 1218 /* queue idle watchers unless io or timers are pending */
1186 if (!pendingcnt) 1219 if (idlecnt && !any_pending (EV_A))
1187 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1220 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1188 1221
1189 /* queue check watchers, to be executed first */ 1222 /* queue check watchers, to be executed first */
1190 if (checkcnt) 1223 if (checkcnt)
1191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1224 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1266 return; 1299 return;
1267 1300
1268 assert (("ev_io_start called with negative fd", fd >= 0)); 1301 assert (("ev_io_start called with negative fd", fd >= 0));
1269 1302
1270 ev_start (EV_A_ (W)w, 1); 1303 ev_start (EV_A_ (W)w, 1);
1271 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1304 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1272 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1305 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1273 1306
1274 fd_change (EV_A_ fd); 1307 fd_change (EV_A_ fd);
1275} 1308}
1276 1309
1279{ 1312{
1280 ev_clear_pending (EV_A_ (W)w); 1313 ev_clear_pending (EV_A_ (W)w);
1281 if (!ev_is_active (w)) 1314 if (!ev_is_active (w))
1282 return; 1315 return;
1283 1316
1317 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1318
1284 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1319 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1285 ev_stop (EV_A_ (W)w); 1320 ev_stop (EV_A_ (W)w);
1286 1321
1287 fd_change (EV_A_ w->fd); 1322 fd_change (EV_A_ w->fd);
1288} 1323}
1296 ((WT)w)->at += mn_now; 1331 ((WT)w)->at += mn_now;
1297 1332
1298 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1333 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1299 1334
1300 ev_start (EV_A_ (W)w, ++timercnt); 1335 ev_start (EV_A_ (W)w, ++timercnt);
1301 array_needsize (timers, timermax, timercnt, (void)); 1336 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1302 timers [timercnt - 1] = w; 1337 timers [timercnt - 1] = w;
1303 upheap ((WT *)timers, timercnt - 1); 1338 upheap ((WT *)timers, timercnt - 1);
1304 1339
1305 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1340 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1306} 1341}
1318 { 1353 {
1319 timers [((W)w)->active - 1] = timers [timercnt]; 1354 timers [((W)w)->active - 1] = timers [timercnt];
1320 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1355 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1321 } 1356 }
1322 1357
1323 ((WT)w)->at = w->repeat; 1358 ((WT)w)->at -= mn_now;
1324 1359
1325 ev_stop (EV_A_ (W)w); 1360 ev_stop (EV_A_ (W)w);
1326} 1361}
1327 1362
1328void 1363void
1329ev_timer_again (EV_P_ struct ev_timer *w) 1364ev_timer_again (EV_P_ struct ev_timer *w)
1330{ 1365{
1331 if (ev_is_active (w)) 1366 if (ev_is_active (w))
1332 { 1367 {
1333 if (w->repeat) 1368 if (w->repeat)
1334 {
1335 ((WT)w)->at = mn_now + w->repeat;
1336 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1337 }
1338 else 1370 else
1339 ev_timer_stop (EV_A_ w); 1371 ev_timer_stop (EV_A_ w);
1340 } 1372 }
1341 else if (w->repeat) 1373 else if (w->repeat)
1342 ev_timer_start (EV_A_ w); 1374 ev_timer_start (EV_A_ w);
1343} 1375}
1344 1376
1377#if EV_PERIODICS
1345void 1378void
1346ev_periodic_start (EV_P_ struct ev_periodic *w) 1379ev_periodic_start (EV_P_ struct ev_periodic *w)
1347{ 1380{
1348 if (ev_is_active (w)) 1381 if (ev_is_active (w))
1349 return; 1382 return;
1350 1383
1384 if (w->reschedule_cb)
1385 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1386 else if (w->interval)
1387 {
1351 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1388 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1352
1353 /* this formula differs from the one in periodic_reify because we do not always round up */ 1389 /* this formula differs from the one in periodic_reify because we do not always round up */
1354 if (w->interval)
1355 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1390 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1391 }
1356 1392
1357 ev_start (EV_A_ (W)w, ++periodiccnt); 1393 ev_start (EV_A_ (W)w, ++periodiccnt);
1358 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1394 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1359 periodics [periodiccnt - 1] = w; 1395 periodics [periodiccnt - 1] = w;
1360 upheap ((WT *)periodics, periodiccnt - 1); 1396 upheap ((WT *)periodics, periodiccnt - 1);
1361 1397
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1398 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1363} 1399}
1379 1415
1380 ev_stop (EV_A_ (W)w); 1416 ev_stop (EV_A_ (W)w);
1381} 1417}
1382 1418
1383void 1419void
1420ev_periodic_again (EV_P_ struct ev_periodic *w)
1421{
1422 /* TODO: use adjustheap and recalculation */
1423 ev_periodic_stop (EV_A_ w);
1424 ev_periodic_start (EV_A_ w);
1425}
1426#endif
1427
1428void
1384ev_idle_start (EV_P_ struct ev_idle *w) 1429ev_idle_start (EV_P_ struct ev_idle *w)
1385{ 1430{
1386 if (ev_is_active (w)) 1431 if (ev_is_active (w))
1387 return; 1432 return;
1388 1433
1389 ev_start (EV_A_ (W)w, ++idlecnt); 1434 ev_start (EV_A_ (W)w, ++idlecnt);
1390 array_needsize (idles, idlemax, idlecnt, (void)); 1435 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1391 idles [idlecnt - 1] = w; 1436 idles [idlecnt - 1] = w;
1392} 1437}
1393 1438
1394void 1439void
1395ev_idle_stop (EV_P_ struct ev_idle *w) 1440ev_idle_stop (EV_P_ struct ev_idle *w)
1407{ 1452{
1408 if (ev_is_active (w)) 1453 if (ev_is_active (w))
1409 return; 1454 return;
1410 1455
1411 ev_start (EV_A_ (W)w, ++preparecnt); 1456 ev_start (EV_A_ (W)w, ++preparecnt);
1412 array_needsize (prepares, preparemax, preparecnt, (void)); 1457 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1413 prepares [preparecnt - 1] = w; 1458 prepares [preparecnt - 1] = w;
1414} 1459}
1415 1460
1416void 1461void
1417ev_prepare_stop (EV_P_ struct ev_prepare *w) 1462ev_prepare_stop (EV_P_ struct ev_prepare *w)
1429{ 1474{
1430 if (ev_is_active (w)) 1475 if (ev_is_active (w))
1431 return; 1476 return;
1432 1477
1433 ev_start (EV_A_ (W)w, ++checkcnt); 1478 ev_start (EV_A_ (W)w, ++checkcnt);
1434 array_needsize (checks, checkmax, checkcnt, (void)); 1479 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1435 checks [checkcnt - 1] = w; 1480 checks [checkcnt - 1] = w;
1436} 1481}
1437 1482
1438void 1483void
1439ev_check_stop (EV_P_ struct ev_check *w) 1484ev_check_stop (EV_P_ struct ev_check *w)
1440{ 1485{
1441 ev_clear_pending (EV_A_ (W)w); 1486 ev_clear_pending (EV_A_ (W)w);
1442 if (ev_is_active (w)) 1487 if (!ev_is_active (w))
1443 return; 1488 return;
1444 1489
1445 checks [((W)w)->active - 1] = checks [--checkcnt]; 1490 checks [((W)w)->active - 1] = checks [--checkcnt];
1446 ev_stop (EV_A_ (W)w); 1491 ev_stop (EV_A_ (W)w);
1447} 1492}
1460 return; 1505 return;
1461 1506
1462 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1507 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1463 1508
1464 ev_start (EV_A_ (W)w, 1); 1509 ev_start (EV_A_ (W)w, 1);
1465 array_needsize (signals, signalmax, w->signum, signals_init); 1510 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1466 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1511 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1467 1512
1468 if (!((WL)w)->next) 1513 if (!((WL)w)->next)
1469 { 1514 {
1470#if WIN32 1515#if WIN32
1508 1553
1509void 1554void
1510ev_child_stop (EV_P_ struct ev_child *w) 1555ev_child_stop (EV_P_ struct ev_child *w)
1511{ 1556{
1512 ev_clear_pending (EV_A_ (W)w); 1557 ev_clear_pending (EV_A_ (W)w);
1513 if (ev_is_active (w)) 1558 if (!ev_is_active (w))
1514 return; 1559 return;
1515 1560
1516 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1561 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1517 ev_stop (EV_A_ (W)w); 1562 ev_stop (EV_A_ (W)w);
1518} 1563}
1553} 1598}
1554 1599
1555void 1600void
1556ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1601ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1557{ 1602{
1558 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1603 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1559 1604
1560 if (!once) 1605 if (!once)
1561 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1606 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1562 else 1607 else
1563 { 1608 {
1564 once->cb = cb; 1609 once->cb = cb;
1565 once->arg = arg; 1610 once->arg = arg;
1566 1611
1567 ev_watcher_init (&once->io, once_cb_io); 1612 ev_init (&once->io, once_cb_io);
1568 if (fd >= 0) 1613 if (fd >= 0)
1569 { 1614 {
1570 ev_io_set (&once->io, fd, events); 1615 ev_io_set (&once->io, fd, events);
1571 ev_io_start (EV_A_ &once->io); 1616 ev_io_start (EV_A_ &once->io);
1572 } 1617 }
1573 1618
1574 ev_watcher_init (&once->to, once_cb_to); 1619 ev_init (&once->to, once_cb_to);
1575 if (timeout >= 0.) 1620 if (timeout >= 0.)
1576 { 1621 {
1577 ev_timer_set (&once->to, timeout, 0.); 1622 ev_timer_set (&once->to, timeout, 0.);
1578 ev_timer_start (EV_A_ &once->to); 1623 ev_timer_start (EV_A_ &once->to);
1579 } 1624 }
1580 } 1625 }
1581} 1626}
1582 1627
1628#ifdef __cplusplus
1629}
1630#endif
1631

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines