ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.72 by root, Tue Nov 6 16:09:37 2007 UTC vs.
Revision 1.98 by root, Sun Nov 11 02:05:20 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 139
140#ifdef EV_H
141# include EV_H
142#else
131#include "ev.h" 143# include "ev.h"
144#endif
132 145
133#if __GNUC__ >= 3 146#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 148# define inline inline
136#else 149#else
148typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
150 163
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 165
153#if WIN32 166#ifdef WIN32
154/* note: the comment below could not be substantiated, but what would I care */ 167# include "ev_win32.c"
155/* MSDN says this is required to handle SIGFPE */
156volatile double SIGFPE_REQ = 0.0f;
157
158static int
159ev_socketpair_tcp (int filedes [2])
160{
161 struct sockaddr_in addr = { 0 };
162 int addr_size = sizeof (addr);
163 SOCKET listener;
164 SOCKET sock [2] = { -1, -1 };
165
166 if ((listener = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
167 return -1;
168
169 addr.sin_family = AF_INET;
170 addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
171 addr.sin_port = 0;
172
173 if (bind (listener, (struct sockaddr *)&addr, addr_size))
174 goto fail;
175
176 if (getsockname(listener, (struct sockaddr *)&addr, &addr_size))
177 goto fail;
178
179 if (listen (listener, 1))
180 goto fail;
181
182 if ((sock [0] = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
183 goto fail;
184
185 if (connect (sock[0], (struct sockaddr *)&addr, addr_size))
186 goto fail;
187
188 if ((sock[1] = accept (listener, 0, 0)) < 0)
189 goto fail;
190
191 closesocket (listener);
192
193 filedes [0] = sock [0];
194 filedes [1] = sock [1];
195
196 return 0;
197
198fail:
199 closesocket (listener);
200
201 if (sock [0] != INVALID_SOCKET) closesocket (sock [0]);
202 if (sock [1] != INVALID_SOCKET) closesocket (sock [1]);
203
204 return -1;
205}
206
207# define ev_pipe(filedes) ev_socketpair_tcp (filedes)
208#else
209# define ev_pipe(filedes) pipe (filedes)
210#endif 168#endif
211 169
212/*****************************************************************************/ 170/*****************************************************************************/
213 171
214static void (*syserr_cb)(const char *msg); 172static void (*syserr_cb)(const char *msg);
272 int events; 230 int events;
273} ANPENDING; 231} ANPENDING;
274 232
275#if EV_MULTIPLICITY 233#if EV_MULTIPLICITY
276 234
277struct ev_loop 235 struct ev_loop
278{ 236 {
237 ev_tstamp ev_rt_now;
279# define VAR(name,decl) decl; 238 #define VAR(name,decl) decl;
280# include "ev_vars.h" 239 #include "ev_vars.h"
281};
282# undef VAR 240 #undef VAR
241 };
283# include "ev_wrap.h" 242 #include "ev_wrap.h"
243
244 struct ev_loop default_loop_struct;
245 static struct ev_loop *default_loop;
284 246
285#else 247#else
286 248
249 ev_tstamp ev_rt_now;
287# define VAR(name,decl) static decl; 250 #define VAR(name,decl) static decl;
288# include "ev_vars.h" 251 #include "ev_vars.h"
289# undef VAR 252 #undef VAR
253
254 static int default_loop;
290 255
291#endif 256#endif
292 257
293/*****************************************************************************/ 258/*****************************************************************************/
294 259
295inline ev_tstamp 260ev_tstamp
296ev_time (void) 261ev_time (void)
297{ 262{
298#if EV_USE_REALTIME 263#if EV_USE_REALTIME
299 struct timespec ts; 264 struct timespec ts;
300 clock_gettime (CLOCK_REALTIME, &ts); 265 clock_gettime (CLOCK_REALTIME, &ts);
319#endif 284#endif
320 285
321 return ev_time (); 286 return ev_time ();
322} 287}
323 288
289#if EV_MULTIPLICITY
324ev_tstamp 290ev_tstamp
325ev_now (EV_P) 291ev_now (EV_P)
326{ 292{
327 return rt_now; 293 return ev_rt_now;
328} 294}
295#endif
329 296
330#define array_roundsize(base,n) ((n) | 4 & ~3) 297#define array_roundsize(type,n) ((n) | 4 & ~3)
331 298
332#define array_needsize(base,cur,cnt,init) \ 299#define array_needsize(type,base,cur,cnt,init) \
333 if (expect_false ((cnt) > cur)) \ 300 if (expect_false ((cnt) > cur)) \
334 { \ 301 { \
335 int newcnt = cur; \ 302 int newcnt = cur; \
336 do \ 303 do \
337 { \ 304 { \
338 newcnt = array_roundsize (base, newcnt << 1); \ 305 newcnt = array_roundsize (type, newcnt << 1); \
339 } \ 306 } \
340 while ((cnt) > newcnt); \ 307 while ((cnt) > newcnt); \
341 \ 308 \
342 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 309 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
343 init (base + cur, newcnt - cur); \ 310 init (base + cur, newcnt - cur); \
344 cur = newcnt; \ 311 cur = newcnt; \
345 } 312 }
346 313
347#define array_slim(stem) \ 314#define array_slim(type,stem) \
348 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 315 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
349 { \ 316 { \
350 stem ## max = array_roundsize (stem ## cnt >> 1); \ 317 stem ## max = array_roundsize (stem ## cnt >> 1); \
351 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 318 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
352 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 319 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
353 } 320 }
354 321
355/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */ 322/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
356/* bringing us everlasting joy in form of stupid extra macros that are not required in C */ 323/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
373 340
374 ++base; 341 ++base;
375 } 342 }
376} 343}
377 344
378static void 345void
379event (EV_P_ W w, int events) 346ev_feed_event (EV_P_ void *w, int revents)
380{ 347{
348 W w_ = (W)w;
349
381 if (w->pending) 350 if (w_->pending)
382 { 351 {
383 pendings [ABSPRI (w)][w->pending - 1].events |= events; 352 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
384 return; 353 return;
385 } 354 }
386 355
387 w->pending = ++pendingcnt [ABSPRI (w)]; 356 w_->pending = ++pendingcnt [ABSPRI (w_)];
388 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 357 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
389 pendings [ABSPRI (w)][w->pending - 1].w = w; 358 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
390 pendings [ABSPRI (w)][w->pending - 1].events = events; 359 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
391} 360}
392 361
393static void 362static void
394queue_events (EV_P_ W *events, int eventcnt, int type) 363queue_events (EV_P_ W *events, int eventcnt, int type)
395{ 364{
396 int i; 365 int i;
397 366
398 for (i = 0; i < eventcnt; ++i) 367 for (i = 0; i < eventcnt; ++i)
399 event (EV_A_ events [i], type); 368 ev_feed_event (EV_A_ events [i], type);
400} 369}
401 370
402static void 371inline void
403fd_event (EV_P_ int fd, int events) 372fd_event (EV_P_ int fd, int revents)
404{ 373{
405 ANFD *anfd = anfds + fd; 374 ANFD *anfd = anfds + fd;
406 struct ev_io *w; 375 struct ev_io *w;
407 376
408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 377 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
409 { 378 {
410 int ev = w->events & events; 379 int ev = w->events & revents;
411 380
412 if (ev) 381 if (ev)
413 event (EV_A_ (W)w, ev); 382 ev_feed_event (EV_A_ (W)w, ev);
414 } 383 }
384}
385
386void
387ev_feed_fd_event (EV_P_ int fd, int revents)
388{
389 fd_event (EV_A_ fd, revents);
415} 390}
416 391
417/*****************************************************************************/ 392/*****************************************************************************/
418 393
419static void 394static void
448 return; 423 return;
449 424
450 anfds [fd].reify = 1; 425 anfds [fd].reify = 1;
451 426
452 ++fdchangecnt; 427 ++fdchangecnt;
453 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 428 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
454 fdchanges [fdchangecnt - 1] = fd; 429 fdchanges [fdchangecnt - 1] = fd;
455} 430}
456 431
457static void 432static void
458fd_kill (EV_P_ int fd) 433fd_kill (EV_P_ int fd)
460 struct ev_io *w; 435 struct ev_io *w;
461 436
462 while ((w = (struct ev_io *)anfds [fd].head)) 437 while ((w = (struct ev_io *)anfds [fd].head))
463 { 438 {
464 ev_io_stop (EV_A_ w); 439 ev_io_stop (EV_A_ w);
465 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 440 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
466 } 441 }
467} 442}
468 443
469static int 444static int
470fd_valid (int fd) 445fd_valid (int fd)
558 533
559 heap [k] = w; 534 heap [k] = w;
560 ((W)heap [k])->active = k + 1; 535 ((W)heap [k])->active = k + 1;
561} 536}
562 537
538inline void
539adjustheap (WT *heap, int N, int k, ev_tstamp at)
540{
541 ev_tstamp old_at = heap [k]->at;
542 heap [k]->at = at;
543
544 if (old_at < at)
545 downheap (heap, N, k);
546 else
547 upheap (heap, k);
548}
549
563/*****************************************************************************/ 550/*****************************************************************************/
564 551
565typedef struct 552typedef struct
566{ 553{
567 WL head; 554 WL head;
598 585
599 if (!gotsig) 586 if (!gotsig)
600 { 587 {
601 int old_errno = errno; 588 int old_errno = errno;
602 gotsig = 1; 589 gotsig = 1;
590#ifdef WIN32
591 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
592#else
603 write (sigpipe [1], &signum, 1); 593 write (sigpipe [1], &signum, 1);
594#endif
604 errno = old_errno; 595 errno = old_errno;
605 } 596 }
606} 597}
607 598
599void
600ev_feed_signal_event (EV_P_ int signum)
601{
602 WL w;
603
604#if EV_MULTIPLICITY
605 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
606#endif
607
608 --signum;
609
610 if (signum < 0 || signum >= signalmax)
611 return;
612
613 signals [signum].gotsig = 0;
614
615 for (w = signals [signum].head; w; w = w->next)
616 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
617}
618
608static void 619static void
609sigcb (EV_P_ struct ev_io *iow, int revents) 620sigcb (EV_P_ struct ev_io *iow, int revents)
610{ 621{
611 WL w;
612 int signum; 622 int signum;
613 623
624#ifdef WIN32
625 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
626#else
614 read (sigpipe [0], &revents, 1); 627 read (sigpipe [0], &revents, 1);
628#endif
615 gotsig = 0; 629 gotsig = 0;
616 630
617 for (signum = signalmax; signum--; ) 631 for (signum = signalmax; signum--; )
618 if (signals [signum].gotsig) 632 if (signals [signum].gotsig)
619 { 633 ev_feed_signal_event (EV_A_ signum + 1);
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 event (EV_A_ (W)w, EV_SIGNAL);
624 }
625} 634}
626 635
627static void 636static void
628siginit (EV_P) 637siginit (EV_P)
629{ 638{
662 if (w->pid == pid || !w->pid) 671 if (w->pid == pid || !w->pid)
663 { 672 {
664 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 673 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
665 w->rpid = pid; 674 w->rpid = pid;
666 w->rstatus = status; 675 w->rstatus = status;
667 event (EV_A_ (W)w, EV_CHILD); 676 ev_feed_event (EV_A_ (W)w, EV_CHILD);
668 } 677 }
669} 678}
670 679
671static void 680static void
672childcb (EV_P_ struct ev_signal *sw, int revents) 681childcb (EV_P_ struct ev_signal *sw, int revents)
674 int pid, status; 683 int pid, status;
675 684
676 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 685 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
677 { 686 {
678 /* make sure we are called again until all childs have been reaped */ 687 /* make sure we are called again until all childs have been reaped */
679 event (EV_A_ (W)sw, EV_SIGNAL); 688 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
680 689
681 child_reap (EV_A_ sw, pid, pid, status); 690 child_reap (EV_A_ sw, pid, pid, status);
682 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 691 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
683 } 692 }
684} 693}
741 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 750 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
742 have_monotonic = 1; 751 have_monotonic = 1;
743 } 752 }
744#endif 753#endif
745 754
746 rt_now = ev_time (); 755 ev_rt_now = ev_time ();
747 mn_now = get_clock (); 756 mn_now = get_clock ();
748 now_floor = mn_now; 757 now_floor = mn_now;
749 rtmn_diff = rt_now - mn_now; 758 rtmn_diff = ev_rt_now - mn_now;
750 759
751 if (methods == EVMETHOD_AUTO) 760 if (methods == EVMETHOD_AUTO)
752 if (!enable_secure () && getenv ("LIBEV_METHODS")) 761 if (!enable_secure () && getenv ("LIBEV_METHODS"))
753 methods = atoi (getenv ("LIBEV_METHODS")); 762 methods = atoi (getenv ("LIBEV_METHODS"));
754 else 763 else
769#endif 778#endif
770#if EV_USE_SELECT 779#if EV_USE_SELECT
771 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 780 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
772#endif 781#endif
773 782
774 ev_watcher_init (&sigev, sigcb); 783 ev_init (&sigev, sigcb);
775 ev_set_priority (&sigev, EV_MAXPRI); 784 ev_set_priority (&sigev, EV_MAXPRI);
776 } 785 }
777} 786}
778 787
779void 788void
801 array_free (pending, [i]); 810 array_free (pending, [i]);
802 811
803 /* have to use the microsoft-never-gets-it-right macro */ 812 /* have to use the microsoft-never-gets-it-right macro */
804 array_free_microshit (fdchange); 813 array_free_microshit (fdchange);
805 array_free_microshit (timer); 814 array_free_microshit (timer);
815#if EV_PERIODICS
806 array_free_microshit (periodic); 816 array_free_microshit (periodic);
817#endif
807 array_free_microshit (idle); 818 array_free_microshit (idle);
808 array_free_microshit (prepare); 819 array_free_microshit (prepare);
809 array_free_microshit (check); 820 array_free_microshit (check);
810 821
811 method = 0; 822 method = 0;
828 ev_ref (EV_A); 839 ev_ref (EV_A);
829 ev_io_stop (EV_A_ &sigev); 840 ev_io_stop (EV_A_ &sigev);
830 close (sigpipe [0]); 841 close (sigpipe [0]);
831 close (sigpipe [1]); 842 close (sigpipe [1]);
832 843
833 while (ev_pipe (sigpipe)) 844 while (pipe (sigpipe))
834 syserr ("(libev) error creating pipe"); 845 syserr ("(libev) error creating pipe");
835 846
836 siginit (EV_A); 847 siginit (EV_A);
837 } 848 }
838 849
869} 880}
870 881
871#endif 882#endif
872 883
873#if EV_MULTIPLICITY 884#if EV_MULTIPLICITY
874struct ev_loop default_loop_struct;
875static struct ev_loop *default_loop;
876
877struct ev_loop * 885struct ev_loop *
878#else 886#else
879static int default_loop;
880
881int 887int
882#endif 888#endif
883ev_default_loop (int methods) 889ev_default_loop (int methods)
884{ 890{
885 if (sigpipe [0] == sigpipe [1]) 891 if (sigpipe [0] == sigpipe [1])
886 if (ev_pipe (sigpipe)) 892 if (pipe (sigpipe))
887 return 0; 893 return 0;
888 894
889 if (!default_loop) 895 if (!default_loop)
890 { 896 {
891#if EV_MULTIPLICITY 897#if EV_MULTIPLICITY
946 postfork = 1; 952 postfork = 1;
947} 953}
948 954
949/*****************************************************************************/ 955/*****************************************************************************/
950 956
957static int
958any_pending (EV_P)
959{
960 int pri;
961
962 for (pri = NUMPRI; pri--; )
963 if (pendingcnt [pri])
964 return 1;
965
966 return 0;
967}
968
951static void 969static void
952call_pending (EV_P) 970call_pending (EV_P)
953{ 971{
954 int pri; 972 int pri;
955 973
959 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 977 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
960 978
961 if (p->w) 979 if (p->w)
962 { 980 {
963 p->w->pending = 0; 981 p->w->pending = 0;
964 p->w->cb (EV_A_ p->w, p->events); 982 EV_CB_INVOKE (p->w, p->events);
965 } 983 }
966 } 984 }
967} 985}
968 986
969static void 987static void
977 995
978 /* first reschedule or stop timer */ 996 /* first reschedule or stop timer */
979 if (w->repeat) 997 if (w->repeat)
980 { 998 {
981 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 999 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1000
982 ((WT)w)->at = mn_now + w->repeat; 1001 ((WT)w)->at += w->repeat;
1002 if (((WT)w)->at < mn_now)
1003 ((WT)w)->at = mn_now;
1004
983 downheap ((WT *)timers, timercnt, 0); 1005 downheap ((WT *)timers, timercnt, 0);
984 } 1006 }
985 else 1007 else
986 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1008 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
987 1009
988 event (EV_A_ (W)w, EV_TIMEOUT); 1010 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
989 } 1011 }
990} 1012}
991 1013
1014#if EV_PERIODICS
992static void 1015static void
993periodics_reify (EV_P) 1016periodics_reify (EV_P)
994{ 1017{
995 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1018 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
996 { 1019 {
997 struct ev_periodic *w = periodics [0]; 1020 struct ev_periodic *w = periodics [0];
998 1021
999 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1022 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1000 1023
1001 /* first reschedule or stop timer */ 1024 /* first reschedule or stop timer */
1002 if (w->interval) 1025 if (w->reschedule_cb)
1003 { 1026 {
1027 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1028
1029 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1030 downheap ((WT *)periodics, periodiccnt, 0);
1031 }
1032 else if (w->interval)
1033 {
1004 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1034 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1005 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1035 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1006 downheap ((WT *)periodics, periodiccnt, 0); 1036 downheap ((WT *)periodics, periodiccnt, 0);
1007 } 1037 }
1008 else 1038 else
1009 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1039 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1010 1040
1011 event (EV_A_ (W)w, EV_PERIODIC); 1041 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1012 } 1042 }
1013} 1043}
1014 1044
1015static void 1045static void
1016periodics_reschedule (EV_P) 1046periodics_reschedule (EV_P)
1020 /* adjust periodics after time jump */ 1050 /* adjust periodics after time jump */
1021 for (i = 0; i < periodiccnt; ++i) 1051 for (i = 0; i < periodiccnt; ++i)
1022 { 1052 {
1023 struct ev_periodic *w = periodics [i]; 1053 struct ev_periodic *w = periodics [i];
1024 1054
1055 if (w->reschedule_cb)
1056 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1025 if (w->interval) 1057 else if (w->interval)
1026 {
1027 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1058 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1028
1029 if (fabs (diff) >= 1e-4)
1030 {
1031 ev_periodic_stop (EV_A_ w);
1032 ev_periodic_start (EV_A_ w);
1033
1034 i = 0; /* restart loop, inefficient, but time jumps should be rare */
1035 }
1036 }
1037 } 1059 }
1060
1061 /* now rebuild the heap */
1062 for (i = periodiccnt >> 1; i--; )
1063 downheap ((WT *)periodics, periodiccnt, i);
1038} 1064}
1065#endif
1039 1066
1040inline int 1067inline int
1041time_update_monotonic (EV_P) 1068time_update_monotonic (EV_P)
1042{ 1069{
1043 mn_now = get_clock (); 1070 mn_now = get_clock ();
1044 1071
1045 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1072 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1046 { 1073 {
1047 rt_now = rtmn_diff + mn_now; 1074 ev_rt_now = rtmn_diff + mn_now;
1048 return 0; 1075 return 0;
1049 } 1076 }
1050 else 1077 else
1051 { 1078 {
1052 now_floor = mn_now; 1079 now_floor = mn_now;
1053 rt_now = ev_time (); 1080 ev_rt_now = ev_time ();
1054 return 1; 1081 return 1;
1055 } 1082 }
1056} 1083}
1057 1084
1058static void 1085static void
1067 { 1094 {
1068 ev_tstamp odiff = rtmn_diff; 1095 ev_tstamp odiff = rtmn_diff;
1069 1096
1070 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1097 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1071 { 1098 {
1072 rtmn_diff = rt_now - mn_now; 1099 rtmn_diff = ev_rt_now - mn_now;
1073 1100
1074 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1101 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1075 return; /* all is well */ 1102 return; /* all is well */
1076 1103
1077 rt_now = ev_time (); 1104 ev_rt_now = ev_time ();
1078 mn_now = get_clock (); 1105 mn_now = get_clock ();
1079 now_floor = mn_now; 1106 now_floor = mn_now;
1080 } 1107 }
1081 1108
1109# if EV_PERIODICS
1082 periodics_reschedule (EV_A); 1110 periodics_reschedule (EV_A);
1111# endif
1083 /* no timer adjustment, as the monotonic clock doesn't jump */ 1112 /* no timer adjustment, as the monotonic clock doesn't jump */
1084 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1113 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1085 } 1114 }
1086 } 1115 }
1087 else 1116 else
1088#endif 1117#endif
1089 { 1118 {
1090 rt_now = ev_time (); 1119 ev_rt_now = ev_time ();
1091 1120
1092 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1121 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1093 { 1122 {
1123#if EV_PERIODICS
1094 periodics_reschedule (EV_A); 1124 periodics_reschedule (EV_A);
1125#endif
1095 1126
1096 /* adjust timers. this is easy, as the offset is the same for all */ 1127 /* adjust timers. this is easy, as the offset is the same for all */
1097 for (i = 0; i < timercnt; ++i) 1128 for (i = 0; i < timercnt; ++i)
1098 ((WT)timers [i])->at += rt_now - mn_now; 1129 ((WT)timers [i])->at += ev_rt_now - mn_now;
1099 } 1130 }
1100 1131
1101 mn_now = rt_now; 1132 mn_now = ev_rt_now;
1102 } 1133 }
1103} 1134}
1104 1135
1105void 1136void
1106ev_ref (EV_P) 1137ev_ref (EV_P)
1138 /* update fd-related kernel structures */ 1169 /* update fd-related kernel structures */
1139 fd_reify (EV_A); 1170 fd_reify (EV_A);
1140 1171
1141 /* calculate blocking time */ 1172 /* calculate blocking time */
1142 1173
1143 /* we only need this for !monotonic clockor timers, but as we basically 1174 /* we only need this for !monotonic clock or timers, but as we basically
1144 always have timers, we just calculate it always */ 1175 always have timers, we just calculate it always */
1145#if EV_USE_MONOTONIC 1176#if EV_USE_MONOTONIC
1146 if (expect_true (have_monotonic)) 1177 if (expect_true (have_monotonic))
1147 time_update_monotonic (EV_A); 1178 time_update_monotonic (EV_A);
1148 else 1179 else
1149#endif 1180#endif
1150 { 1181 {
1151 rt_now = ev_time (); 1182 ev_rt_now = ev_time ();
1152 mn_now = rt_now; 1183 mn_now = ev_rt_now;
1153 } 1184 }
1154 1185
1155 if (flags & EVLOOP_NONBLOCK || idlecnt) 1186 if (flags & EVLOOP_NONBLOCK || idlecnt)
1156 block = 0.; 1187 block = 0.;
1157 else 1188 else
1162 { 1193 {
1163 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1194 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1164 if (block > to) block = to; 1195 if (block > to) block = to;
1165 } 1196 }
1166 1197
1198#if EV_PERIODICS
1167 if (periodiccnt) 1199 if (periodiccnt)
1168 { 1200 {
1169 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1201 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1170 if (block > to) block = to; 1202 if (block > to) block = to;
1171 } 1203 }
1204#endif
1172 1205
1173 if (block < 0.) block = 0.; 1206 if (block < 0.) block = 0.;
1174 } 1207 }
1175 1208
1176 method_poll (EV_A_ block); 1209 method_poll (EV_A_ block);
1177 1210
1178 /* update rt_now, do magic */ 1211 /* update ev_rt_now, do magic */
1179 time_update (EV_A); 1212 time_update (EV_A);
1180 1213
1181 /* queue pending timers and reschedule them */ 1214 /* queue pending timers and reschedule them */
1182 timers_reify (EV_A); /* relative timers called last */ 1215 timers_reify (EV_A); /* relative timers called last */
1216#if EV_PERIODICS
1183 periodics_reify (EV_A); /* absolute timers called first */ 1217 periodics_reify (EV_A); /* absolute timers called first */
1218#endif
1184 1219
1185 /* queue idle watchers unless io or timers are pending */ 1220 /* queue idle watchers unless io or timers are pending */
1186 if (!pendingcnt) 1221 if (idlecnt && !any_pending (EV_A))
1187 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1222 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1188 1223
1189 /* queue check watchers, to be executed first */ 1224 /* queue check watchers, to be executed first */
1190 if (checkcnt) 1225 if (checkcnt)
1191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1226 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1266 return; 1301 return;
1267 1302
1268 assert (("ev_io_start called with negative fd", fd >= 0)); 1303 assert (("ev_io_start called with negative fd", fd >= 0));
1269 1304
1270 ev_start (EV_A_ (W)w, 1); 1305 ev_start (EV_A_ (W)w, 1);
1271 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1306 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1272 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1307 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1273 1308
1274 fd_change (EV_A_ fd); 1309 fd_change (EV_A_ fd);
1275} 1310}
1276 1311
1279{ 1314{
1280 ev_clear_pending (EV_A_ (W)w); 1315 ev_clear_pending (EV_A_ (W)w);
1281 if (!ev_is_active (w)) 1316 if (!ev_is_active (w))
1282 return; 1317 return;
1283 1318
1319 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1320
1284 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1321 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1285 ev_stop (EV_A_ (W)w); 1322 ev_stop (EV_A_ (W)w);
1286 1323
1287 fd_change (EV_A_ w->fd); 1324 fd_change (EV_A_ w->fd);
1288} 1325}
1296 ((WT)w)->at += mn_now; 1333 ((WT)w)->at += mn_now;
1297 1334
1298 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1335 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1299 1336
1300 ev_start (EV_A_ (W)w, ++timercnt); 1337 ev_start (EV_A_ (W)w, ++timercnt);
1301 array_needsize (timers, timermax, timercnt, (void)); 1338 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1302 timers [timercnt - 1] = w; 1339 timers [timercnt - 1] = w;
1303 upheap ((WT *)timers, timercnt - 1); 1340 upheap ((WT *)timers, timercnt - 1);
1304 1341
1305 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1342 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1306} 1343}
1318 { 1355 {
1319 timers [((W)w)->active - 1] = timers [timercnt]; 1356 timers [((W)w)->active - 1] = timers [timercnt];
1320 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1357 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1321 } 1358 }
1322 1359
1323 ((WT)w)->at = w->repeat; 1360 ((WT)w)->at -= mn_now;
1324 1361
1325 ev_stop (EV_A_ (W)w); 1362 ev_stop (EV_A_ (W)w);
1326} 1363}
1327 1364
1328void 1365void
1329ev_timer_again (EV_P_ struct ev_timer *w) 1366ev_timer_again (EV_P_ struct ev_timer *w)
1330{ 1367{
1331 if (ev_is_active (w)) 1368 if (ev_is_active (w))
1332 { 1369 {
1333 if (w->repeat) 1370 if (w->repeat)
1334 {
1335 ((WT)w)->at = mn_now + w->repeat;
1336 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1371 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1337 }
1338 else 1372 else
1339 ev_timer_stop (EV_A_ w); 1373 ev_timer_stop (EV_A_ w);
1340 } 1374 }
1341 else if (w->repeat) 1375 else if (w->repeat)
1342 ev_timer_start (EV_A_ w); 1376 ev_timer_start (EV_A_ w);
1343} 1377}
1344 1378
1379#if EV_PERIODICS
1345void 1380void
1346ev_periodic_start (EV_P_ struct ev_periodic *w) 1381ev_periodic_start (EV_P_ struct ev_periodic *w)
1347{ 1382{
1348 if (ev_is_active (w)) 1383 if (ev_is_active (w))
1349 return; 1384 return;
1350 1385
1386 if (w->reschedule_cb)
1387 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1388 else if (w->interval)
1389 {
1351 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1390 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1352
1353 /* this formula differs from the one in periodic_reify because we do not always round up */ 1391 /* this formula differs from the one in periodic_reify because we do not always round up */
1354 if (w->interval)
1355 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1392 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1393 }
1356 1394
1357 ev_start (EV_A_ (W)w, ++periodiccnt); 1395 ev_start (EV_A_ (W)w, ++periodiccnt);
1358 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1396 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1359 periodics [periodiccnt - 1] = w; 1397 periodics [periodiccnt - 1] = w;
1360 upheap ((WT *)periodics, periodiccnt - 1); 1398 upheap ((WT *)periodics, periodiccnt - 1);
1361 1399
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1400 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1363} 1401}
1379 1417
1380 ev_stop (EV_A_ (W)w); 1418 ev_stop (EV_A_ (W)w);
1381} 1419}
1382 1420
1383void 1421void
1422ev_periodic_again (EV_P_ struct ev_periodic *w)
1423{
1424 /* TODO: use adjustheap and recalculation */
1425 ev_periodic_stop (EV_A_ w);
1426 ev_periodic_start (EV_A_ w);
1427}
1428#endif
1429
1430void
1384ev_idle_start (EV_P_ struct ev_idle *w) 1431ev_idle_start (EV_P_ struct ev_idle *w)
1385{ 1432{
1386 if (ev_is_active (w)) 1433 if (ev_is_active (w))
1387 return; 1434 return;
1388 1435
1389 ev_start (EV_A_ (W)w, ++idlecnt); 1436 ev_start (EV_A_ (W)w, ++idlecnt);
1390 array_needsize (idles, idlemax, idlecnt, (void)); 1437 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1391 idles [idlecnt - 1] = w; 1438 idles [idlecnt - 1] = w;
1392} 1439}
1393 1440
1394void 1441void
1395ev_idle_stop (EV_P_ struct ev_idle *w) 1442ev_idle_stop (EV_P_ struct ev_idle *w)
1407{ 1454{
1408 if (ev_is_active (w)) 1455 if (ev_is_active (w))
1409 return; 1456 return;
1410 1457
1411 ev_start (EV_A_ (W)w, ++preparecnt); 1458 ev_start (EV_A_ (W)w, ++preparecnt);
1412 array_needsize (prepares, preparemax, preparecnt, (void)); 1459 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1413 prepares [preparecnt - 1] = w; 1460 prepares [preparecnt - 1] = w;
1414} 1461}
1415 1462
1416void 1463void
1417ev_prepare_stop (EV_P_ struct ev_prepare *w) 1464ev_prepare_stop (EV_P_ struct ev_prepare *w)
1429{ 1476{
1430 if (ev_is_active (w)) 1477 if (ev_is_active (w))
1431 return; 1478 return;
1432 1479
1433 ev_start (EV_A_ (W)w, ++checkcnt); 1480 ev_start (EV_A_ (W)w, ++checkcnt);
1434 array_needsize (checks, checkmax, checkcnt, (void)); 1481 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1435 checks [checkcnt - 1] = w; 1482 checks [checkcnt - 1] = w;
1436} 1483}
1437 1484
1438void 1485void
1439ev_check_stop (EV_P_ struct ev_check *w) 1486ev_check_stop (EV_P_ struct ev_check *w)
1440{ 1487{
1441 ev_clear_pending (EV_A_ (W)w); 1488 ev_clear_pending (EV_A_ (W)w);
1442 if (ev_is_active (w)) 1489 if (!ev_is_active (w))
1443 return; 1490 return;
1444 1491
1445 checks [((W)w)->active - 1] = checks [--checkcnt]; 1492 checks [((W)w)->active - 1] = checks [--checkcnt];
1446 ev_stop (EV_A_ (W)w); 1493 ev_stop (EV_A_ (W)w);
1447} 1494}
1460 return; 1507 return;
1461 1508
1462 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1509 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1463 1510
1464 ev_start (EV_A_ (W)w, 1); 1511 ev_start (EV_A_ (W)w, 1);
1465 array_needsize (signals, signalmax, w->signum, signals_init); 1512 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1466 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1513 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1467 1514
1468 if (!((WL)w)->next) 1515 if (!((WL)w)->next)
1469 { 1516 {
1470#if WIN32 1517#if WIN32
1508 1555
1509void 1556void
1510ev_child_stop (EV_P_ struct ev_child *w) 1557ev_child_stop (EV_P_ struct ev_child *w)
1511{ 1558{
1512 ev_clear_pending (EV_A_ (W)w); 1559 ev_clear_pending (EV_A_ (W)w);
1513 if (ev_is_active (w)) 1560 if (!ev_is_active (w))
1514 return; 1561 return;
1515 1562
1516 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1563 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1517 ev_stop (EV_A_ (W)w); 1564 ev_stop (EV_A_ (W)w);
1518} 1565}
1553} 1600}
1554 1601
1555void 1602void
1556ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1603ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1557{ 1604{
1558 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1605 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1559 1606
1560 if (!once) 1607 if (!once)
1561 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1608 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1562 else 1609 else
1563 { 1610 {
1564 once->cb = cb; 1611 once->cb = cb;
1565 once->arg = arg; 1612 once->arg = arg;
1566 1613
1567 ev_watcher_init (&once->io, once_cb_io); 1614 ev_init (&once->io, once_cb_io);
1568 if (fd >= 0) 1615 if (fd >= 0)
1569 { 1616 {
1570 ev_io_set (&once->io, fd, events); 1617 ev_io_set (&once->io, fd, events);
1571 ev_io_start (EV_A_ &once->io); 1618 ev_io_start (EV_A_ &once->io);
1572 } 1619 }
1573 1620
1574 ev_watcher_init (&once->to, once_cb_to); 1621 ev_init (&once->to, once_cb_to);
1575 if (timeout >= 0.) 1622 if (timeout >= 0.)
1576 { 1623 {
1577 ev_timer_set (&once->to, timeout, 0.); 1624 ev_timer_set (&once->to, timeout, 0.);
1578 ev_timer_start (EV_A_ &once->to); 1625 ev_timer_start (EV_A_ &once->to);
1579 } 1626 }
1580 } 1627 }
1581} 1628}
1582 1629
1630#ifdef __cplusplus
1631}
1632#endif
1633

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines