ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.73 by root, Tue Nov 6 16:27:10 2007 UTC vs.
Revision 1.109 by root, Mon Nov 12 05:53:55 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
66#include <sys/types.h> 75#include <sys/types.h>
67#include <time.h> 76#include <time.h>
68 77
69#include <signal.h> 78#include <signal.h>
70 79
71#ifndef WIN32 80#ifndef _WIN32
72# include <unistd.h> 81# include <unistd.h>
73# include <sys/time.h> 82# include <sys/time.h>
74# include <sys/wait.h> 83# include <sys/wait.h>
84#else
85# define WIN32_LEAN_AND_MEAN
86# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1
75#endif 89# endif
90#endif
91
76/**/ 92/**/
77 93
78#ifndef EV_USE_MONOTONIC 94#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 95# define EV_USE_MONOTONIC 1
80#endif 96#endif
81 97
82#ifndef EV_USE_SELECT 98#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 99# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
84#endif 101#endif
85 102
86#ifndef EV_USE_POLL 103#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 104# ifdef _WIN32
105# define EV_USE_POLL 0
106# else
107# define EV_USE_POLL 1
108# endif
88#endif 109#endif
89 110
90#ifndef EV_USE_EPOLL 111#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0 112# define EV_USE_EPOLL 0
92#endif 113#endif
93 114
94#ifndef EV_USE_KQUEUE 115#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 116# define EV_USE_KQUEUE 0
96#endif 117#endif
97 118
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME 119#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1 120# define EV_USE_REALTIME 1
110#endif 121#endif
111 122
112/**/ 123/**/
124
125/* darwin simply cannot be helped */
126#ifdef __APPLE__
127# undef EV_USE_POLL
128# undef EV_USE_KQUEUE
129#endif
113 130
114#ifndef CLOCK_MONOTONIC 131#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 132# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 133# define EV_USE_MONOTONIC 0
117#endif 134#endif
118 135
119#ifndef CLOCK_REALTIME 136#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 137# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 138# define EV_USE_REALTIME 0
139#endif
140
141#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h>
122#endif 143#endif
123 144
124/**/ 145/**/
125 146
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 151
152#ifdef EV_H
153# include EV_H
154#else
131#include "ev.h" 155# include "ev.h"
156#endif
132 157
133#if __GNUC__ >= 3 158#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 159# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 160# define inline inline
136#else 161#else
142#define expect_true(expr) expect ((expr) != 0, 1) 167#define expect_true(expr) expect ((expr) != 0, 1)
143 168
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 170#define ABSPRI(w) ((w)->priority - EV_MINPRI)
146 171
172#define EMPTY /* required for microsofts broken pseudo-c compiler */
173
147typedef struct ev_watcher *W; 174typedef struct ev_watcher *W;
148typedef struct ev_watcher_list *WL; 175typedef struct ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 176typedef struct ev_watcher_time *WT;
150 177
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 178static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 179
180#ifdef _WIN32
153#include "ev_win32.c" 181# include "ev_win32.c"
182#endif
154 183
155/*****************************************************************************/ 184/*****************************************************************************/
156 185
157static void (*syserr_cb)(const char *msg); 186static void (*syserr_cb)(const char *msg);
158 187
205typedef struct 234typedef struct
206{ 235{
207 WL head; 236 WL head;
208 unsigned char events; 237 unsigned char events;
209 unsigned char reify; 238 unsigned char reify;
239#if EV_SELECT_IS_WINSOCKET
240 SOCKET handle;
241#endif
210} ANFD; 242} ANFD;
211 243
212typedef struct 244typedef struct
213{ 245{
214 W w; 246 W w;
215 int events; 247 int events;
216} ANPENDING; 248} ANPENDING;
217 249
218#if EV_MULTIPLICITY 250#if EV_MULTIPLICITY
219 251
220struct ev_loop 252 struct ev_loop
221{ 253 {
254 ev_tstamp ev_rt_now;
255 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 256 #define VAR(name,decl) decl;
223# include "ev_vars.h" 257 #include "ev_vars.h"
224};
225# undef VAR 258 #undef VAR
259 };
226# include "ev_wrap.h" 260 #include "ev_wrap.h"
261
262 struct ev_loop default_loop_struct;
263 static struct ev_loop *default_loop;
227 264
228#else 265#else
229 266
267 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 268 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 269 #include "ev_vars.h"
232# undef VAR 270 #undef VAR
271
272 static int default_loop;
233 273
234#endif 274#endif
235 275
236/*****************************************************************************/ 276/*****************************************************************************/
237 277
238inline ev_tstamp 278ev_tstamp
239ev_time (void) 279ev_time (void)
240{ 280{
241#if EV_USE_REALTIME 281#if EV_USE_REALTIME
242 struct timespec ts; 282 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 283 clock_gettime (CLOCK_REALTIME, &ts);
262#endif 302#endif
263 303
264 return ev_time (); 304 return ev_time ();
265} 305}
266 306
307#if EV_MULTIPLICITY
267ev_tstamp 308ev_tstamp
268ev_now (EV_P) 309ev_now (EV_P)
269{ 310{
270 return rt_now; 311 return ev_rt_now;
271} 312}
313#endif
272 314
273#define array_roundsize(base,n) ((n) | 4 & ~3) 315#define array_roundsize(type,n) (((n) | 4) & ~3)
274 316
275#define array_needsize(base,cur,cnt,init) \ 317#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 318 if (expect_false ((cnt) > cur)) \
277 { \ 319 { \
278 int newcnt = cur; \ 320 int newcnt = cur; \
279 do \ 321 do \
280 { \ 322 { \
281 newcnt = array_roundsize (base, newcnt << 1); \ 323 newcnt = array_roundsize (type, newcnt << 1); \
282 } \ 324 } \
283 while ((cnt) > newcnt); \ 325 while ((cnt) > newcnt); \
284 \ 326 \
285 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 327 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \ 328 init (base + cur, newcnt - cur); \
287 cur = newcnt; \ 329 cur = newcnt; \
288 } 330 }
289 331
290#define array_slim(stem) \ 332#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 333 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 334 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 335 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 336 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 337 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 338 }
297
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 339
303#define array_free(stem, idx) \ 340#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 341 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
305 342
306/*****************************************************************************/ 343/*****************************************************************************/
316 353
317 ++base; 354 ++base;
318 } 355 }
319} 356}
320 357
321static void 358void
322event (EV_P_ W w, int events) 359ev_feed_event (EV_P_ void *w, int revents)
323{ 360{
361 W w_ = (W)w;
362
324 if (w->pending) 363 if (w_->pending)
325 { 364 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 365 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
327 return; 366 return;
328 } 367 }
329 368
330 w->pending = ++pendingcnt [ABSPRI (w)]; 369 w_->pending = ++pendingcnt [ABSPRI (w_)];
331 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 370 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w; 371 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
333 pendings [ABSPRI (w)][w->pending - 1].events = events; 372 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
334} 373}
335 374
336static void 375static void
337queue_events (EV_P_ W *events, int eventcnt, int type) 376queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 377{
339 int i; 378 int i;
340 379
341 for (i = 0; i < eventcnt; ++i) 380 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 381 ev_feed_event (EV_A_ events [i], type);
343} 382}
344 383
345static void 384inline void
346fd_event (EV_P_ int fd, int events) 385fd_event (EV_P_ int fd, int revents)
347{ 386{
348 ANFD *anfd = anfds + fd; 387 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 388 struct ev_io *w;
350 389
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 390 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
352 { 391 {
353 int ev = w->events & events; 392 int ev = w->events & revents;
354 393
355 if (ev) 394 if (ev)
356 event (EV_A_ (W)w, ev); 395 ev_feed_event (EV_A_ (W)w, ev);
357 } 396 }
397}
398
399void
400ev_feed_fd_event (EV_P_ int fd, int revents)
401{
402 fd_event (EV_A_ fd, revents);
358} 403}
359 404
360/*****************************************************************************/ 405/*****************************************************************************/
361 406
362static void 407static void
373 int events = 0; 418 int events = 0;
374 419
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 420 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
376 events |= w->events; 421 events |= w->events;
377 422
423#if EV_SELECT_IS_WINSOCKET
424 if (events)
425 {
426 unsigned long argp;
427 anfd->handle = _get_osfhandle (fd);
428 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
429 }
430#endif
431
378 anfd->reify = 0; 432 anfd->reify = 0;
379 433
380 method_modify (EV_A_ fd, anfd->events, events); 434 method_modify (EV_A_ fd, anfd->events, events);
381 anfd->events = events; 435 anfd->events = events;
382 } 436 }
391 return; 445 return;
392 446
393 anfds [fd].reify = 1; 447 anfds [fd].reify = 1;
394 448
395 ++fdchangecnt; 449 ++fdchangecnt;
396 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 450 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
397 fdchanges [fdchangecnt - 1] = fd; 451 fdchanges [fdchangecnt - 1] = fd;
398} 452}
399 453
400static void 454static void
401fd_kill (EV_P_ int fd) 455fd_kill (EV_P_ int fd)
403 struct ev_io *w; 457 struct ev_io *w;
404 458
405 while ((w = (struct ev_io *)anfds [fd].head)) 459 while ((w = (struct ev_io *)anfds [fd].head))
406 { 460 {
407 ev_io_stop (EV_A_ w); 461 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 462 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 463 }
410} 464}
411 465
412static int 466static int
413fd_valid (int fd) 467fd_valid (int fd)
414{ 468{
415#ifdef WIN32 469#ifdef _WIN32
416 return !!win32_get_osfhandle (fd); 470 return _get_osfhandle (fd) != -1;
417#else 471#else
418 return fcntl (fd, F_GETFD) != -1; 472 return fcntl (fd, F_GETFD) != -1;
419#endif 473#endif
420} 474}
421 475
501 555
502 heap [k] = w; 556 heap [k] = w;
503 ((W)heap [k])->active = k + 1; 557 ((W)heap [k])->active = k + 1;
504} 558}
505 559
560inline void
561adjustheap (WT *heap, int N, int k)
562{
563 upheap (heap, k);
564 downheap (heap, N, k);
565}
566
506/*****************************************************************************/ 567/*****************************************************************************/
507 568
508typedef struct 569typedef struct
509{ 570{
510 WL head; 571 WL head;
531} 592}
532 593
533static void 594static void
534sighandler (int signum) 595sighandler (int signum)
535{ 596{
536#if WIN32 597#if _WIN32
537 signal (signum, sighandler); 598 signal (signum, sighandler);
538#endif 599#endif
539 600
540 signals [signum - 1].gotsig = 1; 601 signals [signum - 1].gotsig = 1;
541 602
546 write (sigpipe [1], &signum, 1); 607 write (sigpipe [1], &signum, 1);
547 errno = old_errno; 608 errno = old_errno;
548 } 609 }
549} 610}
550 611
612void
613ev_feed_signal_event (EV_P_ int signum)
614{
615 WL w;
616
617#if EV_MULTIPLICITY
618 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
619#endif
620
621 --signum;
622
623 if (signum < 0 || signum >= signalmax)
624 return;
625
626 signals [signum].gotsig = 0;
627
628 for (w = signals [signum].head; w; w = w->next)
629 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
630}
631
551static void 632static void
552sigcb (EV_P_ struct ev_io *iow, int revents) 633sigcb (EV_P_ struct ev_io *iow, int revents)
553{ 634{
554 WL w;
555 int signum; 635 int signum;
556 636
557 read (sigpipe [0], &revents, 1); 637 read (sigpipe [0], &revents, 1);
558 gotsig = 0; 638 gotsig = 0;
559 639
560 for (signum = signalmax; signum--; ) 640 for (signum = signalmax; signum--; )
561 if (signals [signum].gotsig) 641 if (signals [signum].gotsig)
562 { 642 ev_feed_signal_event (EV_A_ signum + 1);
563 signals [signum].gotsig = 0; 643}
564 644
565 for (w = signals [signum].head; w; w = w->next) 645inline void
566 event (EV_A_ (W)w, EV_SIGNAL); 646fd_intern (int fd)
567 } 647{
648#ifdef _WIN32
649 int arg = 1;
650 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
651#else
652 fcntl (fd, F_SETFD, FD_CLOEXEC);
653 fcntl (fd, F_SETFL, O_NONBLOCK);
654#endif
568} 655}
569 656
570static void 657static void
571siginit (EV_P) 658siginit (EV_P)
572{ 659{
573#ifndef WIN32 660 fd_intern (sigpipe [0]);
574 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 661 fd_intern (sigpipe [1]);
575 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
576
577 /* rather than sort out wether we really need nb, set it */
578 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
579 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
580#endif
581 662
582 ev_io_set (&sigev, sigpipe [0], EV_READ); 663 ev_io_set (&sigev, sigpipe [0], EV_READ);
583 ev_io_start (EV_A_ &sigev); 664 ev_io_start (EV_A_ &sigev);
584 ev_unref (EV_A); /* child watcher should not keep loop alive */ 665 ev_unref (EV_A); /* child watcher should not keep loop alive */
585} 666}
586 667
587/*****************************************************************************/ 668/*****************************************************************************/
588 669
589static struct ev_child *childs [PID_HASHSIZE]; 670static struct ev_child *childs [PID_HASHSIZE];
590 671
591#ifndef WIN32 672#ifndef _WIN32
592 673
593static struct ev_signal childev; 674static struct ev_signal childev;
594 675
595#ifndef WCONTINUED 676#ifndef WCONTINUED
596# define WCONTINUED 0 677# define WCONTINUED 0
605 if (w->pid == pid || !w->pid) 686 if (w->pid == pid || !w->pid)
606 { 687 {
607 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 688 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
608 w->rpid = pid; 689 w->rpid = pid;
609 w->rstatus = status; 690 w->rstatus = status;
610 event (EV_A_ (W)w, EV_CHILD); 691 ev_feed_event (EV_A_ (W)w, EV_CHILD);
611 } 692 }
612} 693}
613 694
614static void 695static void
615childcb (EV_P_ struct ev_signal *sw, int revents) 696childcb (EV_P_ struct ev_signal *sw, int revents)
617 int pid, status; 698 int pid, status;
618 699
619 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 700 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
620 { 701 {
621 /* make sure we are called again until all childs have been reaped */ 702 /* make sure we are called again until all childs have been reaped */
622 event (EV_A_ (W)sw, EV_SIGNAL); 703 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
623 704
624 child_reap (EV_A_ sw, pid, pid, status); 705 child_reap (EV_A_ sw, pid, pid, status);
625 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 706 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
626 } 707 }
627} 708}
657 738
658/* return true if we are running with elevated privileges and should ignore env variables */ 739/* return true if we are running with elevated privileges and should ignore env variables */
659static int 740static int
660enable_secure (void) 741enable_secure (void)
661{ 742{
662#ifdef WIN32 743#ifdef _WIN32
663 return 0; 744 return 0;
664#else 745#else
665 return getuid () != geteuid () 746 return getuid () != geteuid ()
666 || getgid () != getegid (); 747 || getgid () != getegid ();
667#endif 748#endif
672{ 753{
673 return method; 754 return method;
674} 755}
675 756
676static void 757static void
677loop_init (EV_P_ int methods) 758loop_init (EV_P_ unsigned int flags)
678{ 759{
679 if (!method) 760 if (!method)
680 { 761 {
681#if EV_USE_MONOTONIC 762#if EV_USE_MONOTONIC
682 { 763 {
684 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 765 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
685 have_monotonic = 1; 766 have_monotonic = 1;
686 } 767 }
687#endif 768#endif
688 769
689 rt_now = ev_time (); 770 ev_rt_now = ev_time ();
690 mn_now = get_clock (); 771 mn_now = get_clock ();
691 now_floor = mn_now; 772 now_floor = mn_now;
692 rtmn_diff = rt_now - mn_now; 773 rtmn_diff = ev_rt_now - mn_now;
693 774
694 if (methods == EVMETHOD_AUTO) 775 if (!(flags & EVMETHOD_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS"))
695 if (!enable_secure () && getenv ("LIBEV_METHODS"))
696 methods = atoi (getenv ("LIBEV_METHODS")); 776 flags = atoi (getenv ("LIBEV_FLAGS"));
697 else 777
698 methods = EVMETHOD_ANY; 778 if (!(flags & 0x0000ffff))
779 flags |= 0x0000ffff;
699 780
700 method = 0; 781 method = 0;
701#if EV_USE_WIN32
702 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
703#endif
704#if EV_USE_KQUEUE 782#if EV_USE_KQUEUE
705 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 783 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
706#endif 784#endif
707#if EV_USE_EPOLL 785#if EV_USE_EPOLL
708 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 786 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
709#endif 787#endif
710#if EV_USE_POLL 788#if EV_USE_POLL
711 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 789 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
712#endif 790#endif
713#if EV_USE_SELECT 791#if EV_USE_SELECT
714 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 792 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
715#endif 793#endif
716 794
717 ev_watcher_init (&sigev, sigcb); 795 ev_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI); 796 ev_set_priority (&sigev, EV_MAXPRI);
719 } 797 }
720} 798}
721 799
722void 800void
723loop_destroy (EV_P) 801loop_destroy (EV_P)
724{ 802{
725 int i; 803 int i;
726 804
727#if EV_USE_WIN32
728 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
729#endif
730#if EV_USE_KQUEUE 805#if EV_USE_KQUEUE
731 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 806 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
732#endif 807#endif
733#if EV_USE_EPOLL 808#if EV_USE_EPOLL
734 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 809 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
742 817
743 for (i = NUMPRI; i--; ) 818 for (i = NUMPRI; i--; )
744 array_free (pending, [i]); 819 array_free (pending, [i]);
745 820
746 /* have to use the microsoft-never-gets-it-right macro */ 821 /* have to use the microsoft-never-gets-it-right macro */
747 array_free_microshit (fdchange); 822 array_free (fdchange, EMPTY);
748 array_free_microshit (timer); 823 array_free (timer, EMPTY);
749 array_free_microshit (periodic); 824#if EV_PERIODICS
750 array_free_microshit (idle); 825 array_free (periodic, EMPTY);
751 array_free_microshit (prepare); 826#endif
752 array_free_microshit (check); 827 array_free (idle, EMPTY);
828 array_free (prepare, EMPTY);
829 array_free (check, EMPTY);
753 830
754 method = 0; 831 method = 0;
755} 832}
756 833
757static void 834static void
782 postfork = 0; 859 postfork = 0;
783} 860}
784 861
785#if EV_MULTIPLICITY 862#if EV_MULTIPLICITY
786struct ev_loop * 863struct ev_loop *
787ev_loop_new (int methods) 864ev_loop_new (unsigned int flags)
788{ 865{
789 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 866 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
790 867
791 memset (loop, 0, sizeof (struct ev_loop)); 868 memset (loop, 0, sizeof (struct ev_loop));
792 869
793 loop_init (EV_A_ methods); 870 loop_init (EV_A_ flags);
794 871
795 if (ev_method (EV_A)) 872 if (ev_method (EV_A))
796 return loop; 873 return loop;
797 874
798 return 0; 875 return 0;
812} 889}
813 890
814#endif 891#endif
815 892
816#if EV_MULTIPLICITY 893#if EV_MULTIPLICITY
817struct ev_loop default_loop_struct;
818static struct ev_loop *default_loop;
819
820struct ev_loop * 894struct ev_loop *
821#else 895#else
822static int default_loop;
823
824int 896int
825#endif 897#endif
826ev_default_loop (int methods) 898ev_default_loop (unsigned int flags)
827{ 899{
828 if (sigpipe [0] == sigpipe [1]) 900 if (sigpipe [0] == sigpipe [1])
829 if (pipe (sigpipe)) 901 if (pipe (sigpipe))
830 return 0; 902 return 0;
831 903
841 913
842 if (ev_method (EV_A)) 914 if (ev_method (EV_A))
843 { 915 {
844 siginit (EV_A); 916 siginit (EV_A);
845 917
846#ifndef WIN32 918#ifndef _WIN32
847 ev_signal_init (&childev, childcb, SIGCHLD); 919 ev_signal_init (&childev, childcb, SIGCHLD);
848 ev_set_priority (&childev, EV_MAXPRI); 920 ev_set_priority (&childev, EV_MAXPRI);
849 ev_signal_start (EV_A_ &childev); 921 ev_signal_start (EV_A_ &childev);
850 ev_unref (EV_A); /* child watcher should not keep loop alive */ 922 ev_unref (EV_A); /* child watcher should not keep loop alive */
851#endif 923#endif
862{ 934{
863#if EV_MULTIPLICITY 935#if EV_MULTIPLICITY
864 struct ev_loop *loop = default_loop; 936 struct ev_loop *loop = default_loop;
865#endif 937#endif
866 938
867#ifndef WIN32 939#ifndef _WIN32
868 ev_ref (EV_A); /* child watcher */ 940 ev_ref (EV_A); /* child watcher */
869 ev_signal_stop (EV_A_ &childev); 941 ev_signal_stop (EV_A_ &childev);
870#endif 942#endif
871 943
872 ev_ref (EV_A); /* signal watcher */ 944 ev_ref (EV_A); /* signal watcher */
888 if (method) 960 if (method)
889 postfork = 1; 961 postfork = 1;
890} 962}
891 963
892/*****************************************************************************/ 964/*****************************************************************************/
965
966static int
967any_pending (EV_P)
968{
969 int pri;
970
971 for (pri = NUMPRI; pri--; )
972 if (pendingcnt [pri])
973 return 1;
974
975 return 0;
976}
893 977
894static void 978static void
895call_pending (EV_P) 979call_pending (EV_P)
896{ 980{
897 int pri; 981 int pri;
902 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 986 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
903 987
904 if (p->w) 988 if (p->w)
905 { 989 {
906 p->w->pending = 0; 990 p->w->pending = 0;
907 p->w->cb (EV_A_ p->w, p->events); 991 EV_CB_INVOKE (p->w, p->events);
908 } 992 }
909 } 993 }
910} 994}
911 995
912static void 996static void
920 1004
921 /* first reschedule or stop timer */ 1005 /* first reschedule or stop timer */
922 if (w->repeat) 1006 if (w->repeat)
923 { 1007 {
924 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1008 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1009
925 ((WT)w)->at = mn_now + w->repeat; 1010 ((WT)w)->at += w->repeat;
1011 if (((WT)w)->at < mn_now)
1012 ((WT)w)->at = mn_now;
1013
926 downheap ((WT *)timers, timercnt, 0); 1014 downheap ((WT *)timers, timercnt, 0);
927 } 1015 }
928 else 1016 else
929 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1017 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
930 1018
931 event (EV_A_ (W)w, EV_TIMEOUT); 1019 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
932 } 1020 }
933} 1021}
934 1022
1023#if EV_PERIODICS
935static void 1024static void
936periodics_reify (EV_P) 1025periodics_reify (EV_P)
937{ 1026{
938 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1027 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
939 { 1028 {
940 struct ev_periodic *w = periodics [0]; 1029 struct ev_periodic *w = periodics [0];
941 1030
942 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1031 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
943 1032
944 /* first reschedule or stop timer */ 1033 /* first reschedule or stop timer */
945 if (w->interval) 1034 if (w->reschedule_cb)
946 { 1035 {
1036 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1037 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1038 downheap ((WT *)periodics, periodiccnt, 0);
1039 }
1040 else if (w->interval)
1041 {
947 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1042 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
948 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1043 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
949 downheap ((WT *)periodics, periodiccnt, 0); 1044 downheap ((WT *)periodics, periodiccnt, 0);
950 } 1045 }
951 else 1046 else
952 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1047 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
953 1048
954 event (EV_A_ (W)w, EV_PERIODIC); 1049 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
955 } 1050 }
956} 1051}
957 1052
958static void 1053static void
959periodics_reschedule (EV_P) 1054periodics_reschedule (EV_P)
963 /* adjust periodics after time jump */ 1058 /* adjust periodics after time jump */
964 for (i = 0; i < periodiccnt; ++i) 1059 for (i = 0; i < periodiccnt; ++i)
965 { 1060 {
966 struct ev_periodic *w = periodics [i]; 1061 struct ev_periodic *w = periodics [i];
967 1062
1063 if (w->reschedule_cb)
1064 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
968 if (w->interval) 1065 else if (w->interval)
969 {
970 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1066 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
971
972 if (fabs (diff) >= 1e-4)
973 {
974 ev_periodic_stop (EV_A_ w);
975 ev_periodic_start (EV_A_ w);
976
977 i = 0; /* restart loop, inefficient, but time jumps should be rare */
978 }
979 }
980 } 1067 }
1068
1069 /* now rebuild the heap */
1070 for (i = periodiccnt >> 1; i--; )
1071 downheap ((WT *)periodics, periodiccnt, i);
981} 1072}
1073#endif
982 1074
983inline int 1075inline int
984time_update_monotonic (EV_P) 1076time_update_monotonic (EV_P)
985{ 1077{
986 mn_now = get_clock (); 1078 mn_now = get_clock ();
987 1079
988 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1080 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
989 { 1081 {
990 rt_now = rtmn_diff + mn_now; 1082 ev_rt_now = rtmn_diff + mn_now;
991 return 0; 1083 return 0;
992 } 1084 }
993 else 1085 else
994 { 1086 {
995 now_floor = mn_now; 1087 now_floor = mn_now;
996 rt_now = ev_time (); 1088 ev_rt_now = ev_time ();
997 return 1; 1089 return 1;
998 } 1090 }
999} 1091}
1000 1092
1001static void 1093static void
1010 { 1102 {
1011 ev_tstamp odiff = rtmn_diff; 1103 ev_tstamp odiff = rtmn_diff;
1012 1104
1013 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1105 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1014 { 1106 {
1015 rtmn_diff = rt_now - mn_now; 1107 rtmn_diff = ev_rt_now - mn_now;
1016 1108
1017 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1109 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1018 return; /* all is well */ 1110 return; /* all is well */
1019 1111
1020 rt_now = ev_time (); 1112 ev_rt_now = ev_time ();
1021 mn_now = get_clock (); 1113 mn_now = get_clock ();
1022 now_floor = mn_now; 1114 now_floor = mn_now;
1023 } 1115 }
1024 1116
1117# if EV_PERIODICS
1025 periodics_reschedule (EV_A); 1118 periodics_reschedule (EV_A);
1119# endif
1026 /* no timer adjustment, as the monotonic clock doesn't jump */ 1120 /* no timer adjustment, as the monotonic clock doesn't jump */
1027 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1121 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1028 } 1122 }
1029 } 1123 }
1030 else 1124 else
1031#endif 1125#endif
1032 { 1126 {
1033 rt_now = ev_time (); 1127 ev_rt_now = ev_time ();
1034 1128
1035 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1129 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1036 { 1130 {
1131#if EV_PERIODICS
1037 periodics_reschedule (EV_A); 1132 periodics_reschedule (EV_A);
1133#endif
1038 1134
1039 /* adjust timers. this is easy, as the offset is the same for all */ 1135 /* adjust timers. this is easy, as the offset is the same for all */
1040 for (i = 0; i < timercnt; ++i) 1136 for (i = 0; i < timercnt; ++i)
1041 ((WT)timers [i])->at += rt_now - mn_now; 1137 ((WT)timers [i])->at += ev_rt_now - mn_now;
1042 } 1138 }
1043 1139
1044 mn_now = rt_now; 1140 mn_now = ev_rt_now;
1045 } 1141 }
1046} 1142}
1047 1143
1048void 1144void
1049ev_ref (EV_P) 1145ev_ref (EV_P)
1081 /* update fd-related kernel structures */ 1177 /* update fd-related kernel structures */
1082 fd_reify (EV_A); 1178 fd_reify (EV_A);
1083 1179
1084 /* calculate blocking time */ 1180 /* calculate blocking time */
1085 1181
1086 /* we only need this for !monotonic clockor timers, but as we basically 1182 /* we only need this for !monotonic clock or timers, but as we basically
1087 always have timers, we just calculate it always */ 1183 always have timers, we just calculate it always */
1088#if EV_USE_MONOTONIC 1184#if EV_USE_MONOTONIC
1089 if (expect_true (have_monotonic)) 1185 if (expect_true (have_monotonic))
1090 time_update_monotonic (EV_A); 1186 time_update_monotonic (EV_A);
1091 else 1187 else
1092#endif 1188#endif
1093 { 1189 {
1094 rt_now = ev_time (); 1190 ev_rt_now = ev_time ();
1095 mn_now = rt_now; 1191 mn_now = ev_rt_now;
1096 } 1192 }
1097 1193
1098 if (flags & EVLOOP_NONBLOCK || idlecnt) 1194 if (flags & EVLOOP_NONBLOCK || idlecnt)
1099 block = 0.; 1195 block = 0.;
1100 else 1196 else
1105 { 1201 {
1106 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1202 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1107 if (block > to) block = to; 1203 if (block > to) block = to;
1108 } 1204 }
1109 1205
1206#if EV_PERIODICS
1110 if (periodiccnt) 1207 if (periodiccnt)
1111 { 1208 {
1112 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1209 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1113 if (block > to) block = to; 1210 if (block > to) block = to;
1114 } 1211 }
1212#endif
1115 1213
1116 if (block < 0.) block = 0.; 1214 if (block < 0.) block = 0.;
1117 } 1215 }
1118 1216
1119 method_poll (EV_A_ block); 1217 method_poll (EV_A_ block);
1120 1218
1121 /* update rt_now, do magic */ 1219 /* update ev_rt_now, do magic */
1122 time_update (EV_A); 1220 time_update (EV_A);
1123 1221
1124 /* queue pending timers and reschedule them */ 1222 /* queue pending timers and reschedule them */
1125 timers_reify (EV_A); /* relative timers called last */ 1223 timers_reify (EV_A); /* relative timers called last */
1224#if EV_PERIODICS
1126 periodics_reify (EV_A); /* absolute timers called first */ 1225 periodics_reify (EV_A); /* absolute timers called first */
1226#endif
1127 1227
1128 /* queue idle watchers unless io or timers are pending */ 1228 /* queue idle watchers unless io or timers are pending */
1129 if (!pendingcnt) 1229 if (idlecnt && !any_pending (EV_A))
1130 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1230 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1131 1231
1132 /* queue check watchers, to be executed first */ 1232 /* queue check watchers, to be executed first */
1133 if (checkcnt) 1233 if (checkcnt)
1134 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1234 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1209 return; 1309 return;
1210 1310
1211 assert (("ev_io_start called with negative fd", fd >= 0)); 1311 assert (("ev_io_start called with negative fd", fd >= 0));
1212 1312
1213 ev_start (EV_A_ (W)w, 1); 1313 ev_start (EV_A_ (W)w, 1);
1214 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1314 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1215 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1315 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1216 1316
1217 fd_change (EV_A_ fd); 1317 fd_change (EV_A_ fd);
1218} 1318}
1219 1319
1222{ 1322{
1223 ev_clear_pending (EV_A_ (W)w); 1323 ev_clear_pending (EV_A_ (W)w);
1224 if (!ev_is_active (w)) 1324 if (!ev_is_active (w))
1225 return; 1325 return;
1226 1326
1327 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1328
1227 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1329 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1228 ev_stop (EV_A_ (W)w); 1330 ev_stop (EV_A_ (W)w);
1229 1331
1230 fd_change (EV_A_ w->fd); 1332 fd_change (EV_A_ w->fd);
1231} 1333}
1239 ((WT)w)->at += mn_now; 1341 ((WT)w)->at += mn_now;
1240 1342
1241 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1343 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1242 1344
1243 ev_start (EV_A_ (W)w, ++timercnt); 1345 ev_start (EV_A_ (W)w, ++timercnt);
1244 array_needsize (timers, timermax, timercnt, (void)); 1346 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1245 timers [timercnt - 1] = w; 1347 timers [timercnt - 1] = w;
1246 upheap ((WT *)timers, timercnt - 1); 1348 upheap ((WT *)timers, timercnt - 1);
1247 1349
1248 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1249} 1351}
1258 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1360 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1259 1361
1260 if (((W)w)->active < timercnt--) 1362 if (((W)w)->active < timercnt--)
1261 { 1363 {
1262 timers [((W)w)->active - 1] = timers [timercnt]; 1364 timers [((W)w)->active - 1] = timers [timercnt];
1263 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1264 } 1366 }
1265 1367
1266 ((WT)w)->at = w->repeat; 1368 ((WT)w)->at -= mn_now;
1267 1369
1268 ev_stop (EV_A_ (W)w); 1370 ev_stop (EV_A_ (W)w);
1269} 1371}
1270 1372
1271void 1373void
1274 if (ev_is_active (w)) 1376 if (ev_is_active (w))
1275 { 1377 {
1276 if (w->repeat) 1378 if (w->repeat)
1277 { 1379 {
1278 ((WT)w)->at = mn_now + w->repeat; 1380 ((WT)w)->at = mn_now + w->repeat;
1279 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1381 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1280 } 1382 }
1281 else 1383 else
1282 ev_timer_stop (EV_A_ w); 1384 ev_timer_stop (EV_A_ w);
1283 } 1385 }
1284 else if (w->repeat) 1386 else if (w->repeat)
1285 ev_timer_start (EV_A_ w); 1387 ev_timer_start (EV_A_ w);
1286} 1388}
1287 1389
1390#if EV_PERIODICS
1288void 1391void
1289ev_periodic_start (EV_P_ struct ev_periodic *w) 1392ev_periodic_start (EV_P_ struct ev_periodic *w)
1290{ 1393{
1291 if (ev_is_active (w)) 1394 if (ev_is_active (w))
1292 return; 1395 return;
1293 1396
1397 if (w->reschedule_cb)
1398 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1399 else if (w->interval)
1400 {
1294 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1401 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1295
1296 /* this formula differs from the one in periodic_reify because we do not always round up */ 1402 /* this formula differs from the one in periodic_reify because we do not always round up */
1297 if (w->interval)
1298 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1403 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1404 }
1299 1405
1300 ev_start (EV_A_ (W)w, ++periodiccnt); 1406 ev_start (EV_A_ (W)w, ++periodiccnt);
1301 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1407 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1302 periodics [periodiccnt - 1] = w; 1408 periodics [periodiccnt - 1] = w;
1303 upheap ((WT *)periodics, periodiccnt - 1); 1409 upheap ((WT *)periodics, periodiccnt - 1);
1304 1410
1305 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1411 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1306} 1412}
1315 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1421 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1316 1422
1317 if (((W)w)->active < periodiccnt--) 1423 if (((W)w)->active < periodiccnt--)
1318 { 1424 {
1319 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1425 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1320 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1426 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1321 } 1427 }
1322 1428
1323 ev_stop (EV_A_ (W)w); 1429 ev_stop (EV_A_ (W)w);
1324} 1430}
1325 1431
1326void 1432void
1433ev_periodic_again (EV_P_ struct ev_periodic *w)
1434{
1435 /* TODO: use adjustheap and recalculation */
1436 ev_periodic_stop (EV_A_ w);
1437 ev_periodic_start (EV_A_ w);
1438}
1439#endif
1440
1441void
1327ev_idle_start (EV_P_ struct ev_idle *w) 1442ev_idle_start (EV_P_ struct ev_idle *w)
1328{ 1443{
1329 if (ev_is_active (w)) 1444 if (ev_is_active (w))
1330 return; 1445 return;
1331 1446
1332 ev_start (EV_A_ (W)w, ++idlecnt); 1447 ev_start (EV_A_ (W)w, ++idlecnt);
1333 array_needsize (idles, idlemax, idlecnt, (void)); 1448 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1334 idles [idlecnt - 1] = w; 1449 idles [idlecnt - 1] = w;
1335} 1450}
1336 1451
1337void 1452void
1338ev_idle_stop (EV_P_ struct ev_idle *w) 1453ev_idle_stop (EV_P_ struct ev_idle *w)
1339{ 1454{
1340 ev_clear_pending (EV_A_ (W)w); 1455 ev_clear_pending (EV_A_ (W)w);
1341 if (ev_is_active (w)) 1456 if (!ev_is_active (w))
1342 return; 1457 return;
1343 1458
1344 idles [((W)w)->active - 1] = idles [--idlecnt]; 1459 idles [((W)w)->active - 1] = idles [--idlecnt];
1345 ev_stop (EV_A_ (W)w); 1460 ev_stop (EV_A_ (W)w);
1346} 1461}
1350{ 1465{
1351 if (ev_is_active (w)) 1466 if (ev_is_active (w))
1352 return; 1467 return;
1353 1468
1354 ev_start (EV_A_ (W)w, ++preparecnt); 1469 ev_start (EV_A_ (W)w, ++preparecnt);
1355 array_needsize (prepares, preparemax, preparecnt, (void)); 1470 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1356 prepares [preparecnt - 1] = w; 1471 prepares [preparecnt - 1] = w;
1357} 1472}
1358 1473
1359void 1474void
1360ev_prepare_stop (EV_P_ struct ev_prepare *w) 1475ev_prepare_stop (EV_P_ struct ev_prepare *w)
1361{ 1476{
1362 ev_clear_pending (EV_A_ (W)w); 1477 ev_clear_pending (EV_A_ (W)w);
1363 if (ev_is_active (w)) 1478 if (!ev_is_active (w))
1364 return; 1479 return;
1365 1480
1366 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1481 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1367 ev_stop (EV_A_ (W)w); 1482 ev_stop (EV_A_ (W)w);
1368} 1483}
1372{ 1487{
1373 if (ev_is_active (w)) 1488 if (ev_is_active (w))
1374 return; 1489 return;
1375 1490
1376 ev_start (EV_A_ (W)w, ++checkcnt); 1491 ev_start (EV_A_ (W)w, ++checkcnt);
1377 array_needsize (checks, checkmax, checkcnt, (void)); 1492 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1378 checks [checkcnt - 1] = w; 1493 checks [checkcnt - 1] = w;
1379} 1494}
1380 1495
1381void 1496void
1382ev_check_stop (EV_P_ struct ev_check *w) 1497ev_check_stop (EV_P_ struct ev_check *w)
1383{ 1498{
1384 ev_clear_pending (EV_A_ (W)w); 1499 ev_clear_pending (EV_A_ (W)w);
1385 if (ev_is_active (w)) 1500 if (!ev_is_active (w))
1386 return; 1501 return;
1387 1502
1388 checks [((W)w)->active - 1] = checks [--checkcnt]; 1503 checks [((W)w)->active - 1] = checks [--checkcnt];
1389 ev_stop (EV_A_ (W)w); 1504 ev_stop (EV_A_ (W)w);
1390} 1505}
1403 return; 1518 return;
1404 1519
1405 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1520 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1406 1521
1407 ev_start (EV_A_ (W)w, 1); 1522 ev_start (EV_A_ (W)w, 1);
1408 array_needsize (signals, signalmax, w->signum, signals_init); 1523 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1409 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1524 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1410 1525
1411 if (!((WL)w)->next) 1526 if (!((WL)w)->next)
1412 { 1527 {
1413#if WIN32 1528#if _WIN32
1414 signal (w->signum, sighandler); 1529 signal (w->signum, sighandler);
1415#else 1530#else
1416 struct sigaction sa; 1531 struct sigaction sa;
1417 sa.sa_handler = sighandler; 1532 sa.sa_handler = sighandler;
1418 sigfillset (&sa.sa_mask); 1533 sigfillset (&sa.sa_mask);
1451 1566
1452void 1567void
1453ev_child_stop (EV_P_ struct ev_child *w) 1568ev_child_stop (EV_P_ struct ev_child *w)
1454{ 1569{
1455 ev_clear_pending (EV_A_ (W)w); 1570 ev_clear_pending (EV_A_ (W)w);
1456 if (ev_is_active (w)) 1571 if (!ev_is_active (w))
1457 return; 1572 return;
1458 1573
1459 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1574 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1460 ev_stop (EV_A_ (W)w); 1575 ev_stop (EV_A_ (W)w);
1461} 1576}
1496} 1611}
1497 1612
1498void 1613void
1499ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1614ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1500{ 1615{
1501 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1616 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1502 1617
1503 if (!once) 1618 if (!once)
1504 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1619 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1505 else 1620 else
1506 { 1621 {
1507 once->cb = cb; 1622 once->cb = cb;
1508 once->arg = arg; 1623 once->arg = arg;
1509 1624
1510 ev_watcher_init (&once->io, once_cb_io); 1625 ev_init (&once->io, once_cb_io);
1511 if (fd >= 0) 1626 if (fd >= 0)
1512 { 1627 {
1513 ev_io_set (&once->io, fd, events); 1628 ev_io_set (&once->io, fd, events);
1514 ev_io_start (EV_A_ &once->io); 1629 ev_io_start (EV_A_ &once->io);
1515 } 1630 }
1516 1631
1517 ev_watcher_init (&once->to, once_cb_to); 1632 ev_init (&once->to, once_cb_to);
1518 if (timeout >= 0.) 1633 if (timeout >= 0.)
1519 { 1634 {
1520 ev_timer_set (&once->to, timeout, 0.); 1635 ev_timer_set (&once->to, timeout, 0.);
1521 ev_timer_start (EV_A_ &once->to); 1636 ev_timer_start (EV_A_ &once->to);
1522 } 1637 }
1523 } 1638 }
1524} 1639}
1525 1640
1641#ifdef __cplusplus
1642}
1643#endif
1644

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines