ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.73 by root, Tue Nov 6 16:27:10 2007 UTC vs.
Revision 1.117 by ayin, Thu Nov 15 17:15:56 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
66#include <sys/types.h> 75#include <sys/types.h>
67#include <time.h> 76#include <time.h>
68 77
69#include <signal.h> 78#include <signal.h>
70 79
71#ifndef WIN32 80#ifndef _WIN32
72# include <unistd.h> 81# include <unistd.h>
73# include <sys/time.h> 82# include <sys/time.h>
74# include <sys/wait.h> 83# include <sys/wait.h>
84#else
85# define WIN32_LEAN_AND_MEAN
86# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1
75#endif 89# endif
90#endif
91
76/**/ 92/**/
77 93
78#ifndef EV_USE_MONOTONIC 94#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 95# define EV_USE_MONOTONIC 1
80#endif 96#endif
81 97
82#ifndef EV_USE_SELECT 98#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 99# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
84#endif 101#endif
85 102
86#ifndef EV_USE_POLL 103#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 104# ifdef _WIN32
105# define EV_USE_POLL 0
106# else
107# define EV_USE_POLL 1
108# endif
88#endif 109#endif
89 110
90#ifndef EV_USE_EPOLL 111#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0 112# define EV_USE_EPOLL 0
92#endif 113#endif
93 114
94#ifndef EV_USE_KQUEUE 115#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 116# define EV_USE_KQUEUE 0
96#endif 117#endif
97 118
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME 119#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1 120# define EV_USE_REALTIME 1
110#endif 121#endif
111 122
112/**/ 123/**/
124
125/* darwin simply cannot be helped */
126#ifdef __APPLE__
127# undef EV_USE_POLL
128# undef EV_USE_KQUEUE
129#endif
113 130
114#ifndef CLOCK_MONOTONIC 131#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 132# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 133# define EV_USE_MONOTONIC 0
117#endif 134#endif
118 135
119#ifndef CLOCK_REALTIME 136#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 137# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 138# define EV_USE_REALTIME 0
139#endif
140
141#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h>
122#endif 143#endif
123 144
124/**/ 145/**/
125 146
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 151
152#ifdef EV_H
153# include EV_H
154#else
131#include "ev.h" 155# include "ev.h"
156#endif
132 157
133#if __GNUC__ >= 3 158#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 159# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 160# define inline inline
136#else 161#else
142#define expect_true(expr) expect ((expr) != 0, 1) 167#define expect_true(expr) expect ((expr) != 0, 1)
143 168
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 170#define ABSPRI(w) ((w)->priority - EV_MINPRI)
146 171
172#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
173#define EMPTY2(a,b) /* used to suppress some warnings */
174
147typedef struct ev_watcher *W; 175typedef struct ev_watcher *W;
148typedef struct ev_watcher_list *WL; 176typedef struct ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 177typedef struct ev_watcher_time *WT;
150 178
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 179static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 180
181#ifdef _WIN32
153#include "ev_win32.c" 182# include "ev_win32.c"
183#endif
154 184
155/*****************************************************************************/ 185/*****************************************************************************/
156 186
157static void (*syserr_cb)(const char *msg); 187static void (*syserr_cb)(const char *msg);
158 188
205typedef struct 235typedef struct
206{ 236{
207 WL head; 237 WL head;
208 unsigned char events; 238 unsigned char events;
209 unsigned char reify; 239 unsigned char reify;
240#if EV_SELECT_IS_WINSOCKET
241 SOCKET handle;
242#endif
210} ANFD; 243} ANFD;
211 244
212typedef struct 245typedef struct
213{ 246{
214 W w; 247 W w;
215 int events; 248 int events;
216} ANPENDING; 249} ANPENDING;
217 250
218#if EV_MULTIPLICITY 251#if EV_MULTIPLICITY
219 252
220struct ev_loop 253 struct ev_loop
221{ 254 {
255 ev_tstamp ev_rt_now;
256 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 257 #define VAR(name,decl) decl;
223# include "ev_vars.h" 258 #include "ev_vars.h"
224};
225# undef VAR 259 #undef VAR
260 };
226# include "ev_wrap.h" 261 #include "ev_wrap.h"
262
263 static struct ev_loop default_loop_struct;
264 struct ev_loop *ev_default_loop_ptr;
227 265
228#else 266#else
229 267
268 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 269 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 270 #include "ev_vars.h"
232# undef VAR 271 #undef VAR
272
273 static int ev_default_loop_ptr;
233 274
234#endif 275#endif
235 276
236/*****************************************************************************/ 277/*****************************************************************************/
237 278
238inline ev_tstamp 279ev_tstamp
239ev_time (void) 280ev_time (void)
240{ 281{
241#if EV_USE_REALTIME 282#if EV_USE_REALTIME
242 struct timespec ts; 283 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 284 clock_gettime (CLOCK_REALTIME, &ts);
262#endif 303#endif
263 304
264 return ev_time (); 305 return ev_time ();
265} 306}
266 307
308#if EV_MULTIPLICITY
267ev_tstamp 309ev_tstamp
268ev_now (EV_P) 310ev_now (EV_P)
269{ 311{
270 return rt_now; 312 return ev_rt_now;
271} 313}
314#endif
272 315
273#define array_roundsize(base,n) ((n) | 4 & ~3) 316#define array_roundsize(type,n) (((n) | 4) & ~3)
274 317
275#define array_needsize(base,cur,cnt,init) \ 318#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 319 if (expect_false ((cnt) > cur)) \
277 { \ 320 { \
278 int newcnt = cur; \ 321 int newcnt = cur; \
279 do \ 322 do \
280 { \ 323 { \
281 newcnt = array_roundsize (base, newcnt << 1); \ 324 newcnt = array_roundsize (type, newcnt << 1); \
282 } \ 325 } \
283 while ((cnt) > newcnt); \ 326 while ((cnt) > newcnt); \
284 \ 327 \
285 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 328 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \ 329 init (base + cur, newcnt - cur); \
287 cur = newcnt; \ 330 cur = newcnt; \
288 } 331 }
289 332
290#define array_slim(stem) \ 333#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 334 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 335 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 336 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 337 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 338 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 339 }
297
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 340
303#define array_free(stem, idx) \ 341#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 342 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
305 343
306/*****************************************************************************/ 344/*****************************************************************************/
316 354
317 ++base; 355 ++base;
318 } 356 }
319} 357}
320 358
321static void 359void
322event (EV_P_ W w, int events) 360ev_feed_event (EV_P_ void *w, int revents)
323{ 361{
362 W w_ = (W)w;
363
324 if (w->pending) 364 if (w_->pending)
325 { 365 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 366 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
327 return; 367 return;
328 } 368 }
329 369
330 w->pending = ++pendingcnt [ABSPRI (w)]; 370 w_->pending = ++pendingcnt [ABSPRI (w_)];
331 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 371 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
332 pendings [ABSPRI (w)][w->pending - 1].w = w; 372 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
333 pendings [ABSPRI (w)][w->pending - 1].events = events; 373 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
334} 374}
335 375
336static void 376static void
337queue_events (EV_P_ W *events, int eventcnt, int type) 377queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 378{
339 int i; 379 int i;
340 380
341 for (i = 0; i < eventcnt; ++i) 381 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 382 ev_feed_event (EV_A_ events [i], type);
343} 383}
344 384
345static void 385inline void
346fd_event (EV_P_ int fd, int events) 386fd_event (EV_P_ int fd, int revents)
347{ 387{
348 ANFD *anfd = anfds + fd; 388 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 389 struct ev_io *w;
350 390
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 391 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
352 { 392 {
353 int ev = w->events & events; 393 int ev = w->events & revents;
354 394
355 if (ev) 395 if (ev)
356 event (EV_A_ (W)w, ev); 396 ev_feed_event (EV_A_ (W)w, ev);
357 } 397 }
398}
399
400void
401ev_feed_fd_event (EV_P_ int fd, int revents)
402{
403 fd_event (EV_A_ fd, revents);
358} 404}
359 405
360/*****************************************************************************/ 406/*****************************************************************************/
361 407
362static void 408static void
373 int events = 0; 419 int events = 0;
374 420
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 421 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
376 events |= w->events; 422 events |= w->events;
377 423
424#if EV_SELECT_IS_WINSOCKET
425 if (events)
426 {
427 unsigned long argp;
428 anfd->handle = _get_osfhandle (fd);
429 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
430 }
431#endif
432
378 anfd->reify = 0; 433 anfd->reify = 0;
379 434
380 method_modify (EV_A_ fd, anfd->events, events); 435 method_modify (EV_A_ fd, anfd->events, events);
381 anfd->events = events; 436 anfd->events = events;
382 } 437 }
391 return; 446 return;
392 447
393 anfds [fd].reify = 1; 448 anfds [fd].reify = 1;
394 449
395 ++fdchangecnt; 450 ++fdchangecnt;
396 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 451 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
397 fdchanges [fdchangecnt - 1] = fd; 452 fdchanges [fdchangecnt - 1] = fd;
398} 453}
399 454
400static void 455static void
401fd_kill (EV_P_ int fd) 456fd_kill (EV_P_ int fd)
403 struct ev_io *w; 458 struct ev_io *w;
404 459
405 while ((w = (struct ev_io *)anfds [fd].head)) 460 while ((w = (struct ev_io *)anfds [fd].head))
406 { 461 {
407 ev_io_stop (EV_A_ w); 462 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 463 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 464 }
410} 465}
411 466
412static int 467static int
413fd_valid (int fd) 468fd_valid (int fd)
414{ 469{
415#ifdef WIN32 470#ifdef _WIN32
416 return !!win32_get_osfhandle (fd); 471 return _get_osfhandle (fd) != -1;
417#else 472#else
418 return fcntl (fd, F_GETFD) != -1; 473 return fcntl (fd, F_GETFD) != -1;
419#endif 474#endif
420} 475}
421 476
501 556
502 heap [k] = w; 557 heap [k] = w;
503 ((W)heap [k])->active = k + 1; 558 ((W)heap [k])->active = k + 1;
504} 559}
505 560
561inline void
562adjustheap (WT *heap, int N, int k)
563{
564 upheap (heap, k);
565 downheap (heap, N, k);
566}
567
506/*****************************************************************************/ 568/*****************************************************************************/
507 569
508typedef struct 570typedef struct
509{ 571{
510 WL head; 572 WL head;
531} 593}
532 594
533static void 595static void
534sighandler (int signum) 596sighandler (int signum)
535{ 597{
536#if WIN32 598#if _WIN32
537 signal (signum, sighandler); 599 signal (signum, sighandler);
538#endif 600#endif
539 601
540 signals [signum - 1].gotsig = 1; 602 signals [signum - 1].gotsig = 1;
541 603
546 write (sigpipe [1], &signum, 1); 608 write (sigpipe [1], &signum, 1);
547 errno = old_errno; 609 errno = old_errno;
548 } 610 }
549} 611}
550 612
613void
614ev_feed_signal_event (EV_P_ int signum)
615{
616 WL w;
617
618#if EV_MULTIPLICITY
619 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
620#endif
621
622 --signum;
623
624 if (signum < 0 || signum >= signalmax)
625 return;
626
627 signals [signum].gotsig = 0;
628
629 for (w = signals [signum].head; w; w = w->next)
630 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
631}
632
551static void 633static void
552sigcb (EV_P_ struct ev_io *iow, int revents) 634sigcb (EV_P_ struct ev_io *iow, int revents)
553{ 635{
554 WL w;
555 int signum; 636 int signum;
556 637
557 read (sigpipe [0], &revents, 1); 638 read (sigpipe [0], &revents, 1);
558 gotsig = 0; 639 gotsig = 0;
559 640
560 for (signum = signalmax; signum--; ) 641 for (signum = signalmax; signum--; )
561 if (signals [signum].gotsig) 642 if (signals [signum].gotsig)
562 { 643 ev_feed_signal_event (EV_A_ signum + 1);
563 signals [signum].gotsig = 0; 644}
564 645
565 for (w = signals [signum].head; w; w = w->next) 646inline void
566 event (EV_A_ (W)w, EV_SIGNAL); 647fd_intern (int fd)
567 } 648{
649#ifdef _WIN32
650 int arg = 1;
651 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
652#else
653 fcntl (fd, F_SETFD, FD_CLOEXEC);
654 fcntl (fd, F_SETFL, O_NONBLOCK);
655#endif
568} 656}
569 657
570static void 658static void
571siginit (EV_P) 659siginit (EV_P)
572{ 660{
573#ifndef WIN32 661 fd_intern (sigpipe [0]);
574 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 662 fd_intern (sigpipe [1]);
575 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
576
577 /* rather than sort out wether we really need nb, set it */
578 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
579 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
580#endif
581 663
582 ev_io_set (&sigev, sigpipe [0], EV_READ); 664 ev_io_set (&sigev, sigpipe [0], EV_READ);
583 ev_io_start (EV_A_ &sigev); 665 ev_io_start (EV_A_ &sigev);
584 ev_unref (EV_A); /* child watcher should not keep loop alive */ 666 ev_unref (EV_A); /* child watcher should not keep loop alive */
585} 667}
586 668
587/*****************************************************************************/ 669/*****************************************************************************/
588 670
589static struct ev_child *childs [PID_HASHSIZE]; 671static struct ev_child *childs [PID_HASHSIZE];
590 672
591#ifndef WIN32 673#ifndef _WIN32
592 674
593static struct ev_signal childev; 675static struct ev_signal childev;
594 676
595#ifndef WCONTINUED 677#ifndef WCONTINUED
596# define WCONTINUED 0 678# define WCONTINUED 0
605 if (w->pid == pid || !w->pid) 687 if (w->pid == pid || !w->pid)
606 { 688 {
607 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 689 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
608 w->rpid = pid; 690 w->rpid = pid;
609 w->rstatus = status; 691 w->rstatus = status;
610 event (EV_A_ (W)w, EV_CHILD); 692 ev_feed_event (EV_A_ (W)w, EV_CHILD);
611 } 693 }
612} 694}
613 695
614static void 696static void
615childcb (EV_P_ struct ev_signal *sw, int revents) 697childcb (EV_P_ struct ev_signal *sw, int revents)
617 int pid, status; 699 int pid, status;
618 700
619 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 701 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
620 { 702 {
621 /* make sure we are called again until all childs have been reaped */ 703 /* make sure we are called again until all childs have been reaped */
622 event (EV_A_ (W)sw, EV_SIGNAL); 704 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
623 705
624 child_reap (EV_A_ sw, pid, pid, status); 706 child_reap (EV_A_ sw, pid, pid, status);
625 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 707 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
626 } 708 }
627} 709}
657 739
658/* return true if we are running with elevated privileges and should ignore env variables */ 740/* return true if we are running with elevated privileges and should ignore env variables */
659static int 741static int
660enable_secure (void) 742enable_secure (void)
661{ 743{
662#ifdef WIN32 744#ifdef _WIN32
663 return 0; 745 return 0;
664#else 746#else
665 return getuid () != geteuid () 747 return getuid () != geteuid ()
666 || getgid () != getegid (); 748 || getgid () != getegid ();
667#endif 749#endif
668} 750}
669 751
670int 752unsigned int
671ev_method (EV_P) 753ev_method (EV_P)
672{ 754{
673 return method; 755 return method;
674} 756}
675 757
676static void 758static void
677loop_init (EV_P_ int methods) 759loop_init (EV_P_ unsigned int flags)
678{ 760{
679 if (!method) 761 if (!method)
680 { 762 {
681#if EV_USE_MONOTONIC 763#if EV_USE_MONOTONIC
682 { 764 {
684 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 766 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
685 have_monotonic = 1; 767 have_monotonic = 1;
686 } 768 }
687#endif 769#endif
688 770
689 rt_now = ev_time (); 771 ev_rt_now = ev_time ();
690 mn_now = get_clock (); 772 mn_now = get_clock ();
691 now_floor = mn_now; 773 now_floor = mn_now;
692 rtmn_diff = rt_now - mn_now; 774 rtmn_diff = ev_rt_now - mn_now;
693 775
694 if (methods == EVMETHOD_AUTO) 776 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS"))
695 if (!enable_secure () && getenv ("LIBEV_METHODS"))
696 methods = atoi (getenv ("LIBEV_METHODS")); 777 flags = atoi (getenv ("LIBEV_FLAGS"));
697 else 778
698 methods = EVMETHOD_ANY; 779 if (!(flags & 0x0000ffff))
780 flags |= 0x0000ffff;
699 781
700 method = 0; 782 method = 0;
701#if EV_USE_WIN32
702 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
703#endif
704#if EV_USE_KQUEUE 783#if EV_USE_KQUEUE
705 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 784 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
706#endif 785#endif
707#if EV_USE_EPOLL 786#if EV_USE_EPOLL
708 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 787 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
709#endif 788#endif
710#if EV_USE_POLL 789#if EV_USE_POLL
711 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 790 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
712#endif 791#endif
713#if EV_USE_SELECT 792#if EV_USE_SELECT
714 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 793 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
715#endif 794#endif
716 795
717 ev_watcher_init (&sigev, sigcb); 796 ev_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI); 797 ev_set_priority (&sigev, EV_MAXPRI);
719 } 798 }
720} 799}
721 800
722void 801void
723loop_destroy (EV_P) 802loop_destroy (EV_P)
724{ 803{
725 int i; 804 int i;
726 805
727#if EV_USE_WIN32
728 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
729#endif
730#if EV_USE_KQUEUE 806#if EV_USE_KQUEUE
731 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 807 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
732#endif 808#endif
733#if EV_USE_EPOLL 809#if EV_USE_EPOLL
734 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 810 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
742 818
743 for (i = NUMPRI; i--; ) 819 for (i = NUMPRI; i--; )
744 array_free (pending, [i]); 820 array_free (pending, [i]);
745 821
746 /* have to use the microsoft-never-gets-it-right macro */ 822 /* have to use the microsoft-never-gets-it-right macro */
747 array_free_microshit (fdchange); 823 array_free (fdchange, EMPTY0);
748 array_free_microshit (timer); 824 array_free (timer, EMPTY0);
749 array_free_microshit (periodic); 825#if EV_PERIODICS
750 array_free_microshit (idle); 826 array_free (periodic, EMPTY0);
751 array_free_microshit (prepare); 827#endif
752 array_free_microshit (check); 828 array_free (idle, EMPTY0);
829 array_free (prepare, EMPTY0);
830 array_free (check, EMPTY0);
753 831
754 method = 0; 832 method = 0;
755} 833}
756 834
757static void 835static void
782 postfork = 0; 860 postfork = 0;
783} 861}
784 862
785#if EV_MULTIPLICITY 863#if EV_MULTIPLICITY
786struct ev_loop * 864struct ev_loop *
787ev_loop_new (int methods) 865ev_loop_new (unsigned int flags)
788{ 866{
789 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 867 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
790 868
791 memset (loop, 0, sizeof (struct ev_loop)); 869 memset (loop, 0, sizeof (struct ev_loop));
792 870
793 loop_init (EV_A_ methods); 871 loop_init (EV_A_ flags);
794 872
795 if (ev_method (EV_A)) 873 if (ev_method (EV_A))
796 return loop; 874 return loop;
797 875
798 return 0; 876 return 0;
812} 890}
813 891
814#endif 892#endif
815 893
816#if EV_MULTIPLICITY 894#if EV_MULTIPLICITY
817struct ev_loop default_loop_struct;
818static struct ev_loop *default_loop;
819
820struct ev_loop * 895struct ev_loop *
896ev_default_loop_ (unsigned int flags)
821#else 897#else
822static int default_loop;
823
824int 898int
899ev_default_loop (unsigned int flags)
825#endif 900#endif
826ev_default_loop (int methods)
827{ 901{
828 if (sigpipe [0] == sigpipe [1]) 902 if (sigpipe [0] == sigpipe [1])
829 if (pipe (sigpipe)) 903 if (pipe (sigpipe))
830 return 0; 904 return 0;
831 905
832 if (!default_loop) 906 if (!ev_default_loop_ptr)
833 { 907 {
834#if EV_MULTIPLICITY 908#if EV_MULTIPLICITY
835 struct ev_loop *loop = default_loop = &default_loop_struct; 909 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
836#else 910#else
837 default_loop = 1; 911 ev_default_loop_ptr = 1;
838#endif 912#endif
839 913
840 loop_init (EV_A_ methods); 914 loop_init (EV_A_ flags);
841 915
842 if (ev_method (EV_A)) 916 if (ev_method (EV_A))
843 { 917 {
844 siginit (EV_A); 918 siginit (EV_A);
845 919
846#ifndef WIN32 920#ifndef _WIN32
847 ev_signal_init (&childev, childcb, SIGCHLD); 921 ev_signal_init (&childev, childcb, SIGCHLD);
848 ev_set_priority (&childev, EV_MAXPRI); 922 ev_set_priority (&childev, EV_MAXPRI);
849 ev_signal_start (EV_A_ &childev); 923 ev_signal_start (EV_A_ &childev);
850 ev_unref (EV_A); /* child watcher should not keep loop alive */ 924 ev_unref (EV_A); /* child watcher should not keep loop alive */
851#endif 925#endif
852 } 926 }
853 else 927 else
854 default_loop = 0; 928 ev_default_loop_ptr = 0;
855 } 929 }
856 930
857 return default_loop; 931 return ev_default_loop_ptr;
858} 932}
859 933
860void 934void
861ev_default_destroy (void) 935ev_default_destroy (void)
862{ 936{
863#if EV_MULTIPLICITY 937#if EV_MULTIPLICITY
864 struct ev_loop *loop = default_loop; 938 struct ev_loop *loop = ev_default_loop_ptr;
865#endif 939#endif
866 940
867#ifndef WIN32 941#ifndef _WIN32
868 ev_ref (EV_A); /* child watcher */ 942 ev_ref (EV_A); /* child watcher */
869 ev_signal_stop (EV_A_ &childev); 943 ev_signal_stop (EV_A_ &childev);
870#endif 944#endif
871 945
872 ev_ref (EV_A); /* signal watcher */ 946 ev_ref (EV_A); /* signal watcher */
880 954
881void 955void
882ev_default_fork (void) 956ev_default_fork (void)
883{ 957{
884#if EV_MULTIPLICITY 958#if EV_MULTIPLICITY
885 struct ev_loop *loop = default_loop; 959 struct ev_loop *loop = ev_default_loop_ptr;
886#endif 960#endif
887 961
888 if (method) 962 if (method)
889 postfork = 1; 963 postfork = 1;
890} 964}
891 965
892/*****************************************************************************/ 966/*****************************************************************************/
967
968static int
969any_pending (EV_P)
970{
971 int pri;
972
973 for (pri = NUMPRI; pri--; )
974 if (pendingcnt [pri])
975 return 1;
976
977 return 0;
978}
893 979
894static void 980static void
895call_pending (EV_P) 981call_pending (EV_P)
896{ 982{
897 int pri; 983 int pri;
902 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 988 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
903 989
904 if (p->w) 990 if (p->w)
905 { 991 {
906 p->w->pending = 0; 992 p->w->pending = 0;
907 p->w->cb (EV_A_ p->w, p->events); 993 EV_CB_INVOKE (p->w, p->events);
908 } 994 }
909 } 995 }
910} 996}
911 997
912static void 998static void
920 1006
921 /* first reschedule or stop timer */ 1007 /* first reschedule or stop timer */
922 if (w->repeat) 1008 if (w->repeat)
923 { 1009 {
924 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1010 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1011
925 ((WT)w)->at = mn_now + w->repeat; 1012 ((WT)w)->at += w->repeat;
1013 if (((WT)w)->at < mn_now)
1014 ((WT)w)->at = mn_now;
1015
926 downheap ((WT *)timers, timercnt, 0); 1016 downheap ((WT *)timers, timercnt, 0);
927 } 1017 }
928 else 1018 else
929 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1019 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
930 1020
931 event (EV_A_ (W)w, EV_TIMEOUT); 1021 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
932 } 1022 }
933} 1023}
934 1024
1025#if EV_PERIODICS
935static void 1026static void
936periodics_reify (EV_P) 1027periodics_reify (EV_P)
937{ 1028{
938 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1029 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
939 { 1030 {
940 struct ev_periodic *w = periodics [0]; 1031 struct ev_periodic *w = periodics [0];
941 1032
942 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1033 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
943 1034
944 /* first reschedule or stop timer */ 1035 /* first reschedule or stop timer */
945 if (w->interval) 1036 if (w->reschedule_cb)
946 { 1037 {
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1039 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1040 downheap ((WT *)periodics, periodiccnt, 0);
1041 }
1042 else if (w->interval)
1043 {
947 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1044 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
948 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1045 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
949 downheap ((WT *)periodics, periodiccnt, 0); 1046 downheap ((WT *)periodics, periodiccnt, 0);
950 } 1047 }
951 else 1048 else
952 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1049 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
953 1050
954 event (EV_A_ (W)w, EV_PERIODIC); 1051 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
955 } 1052 }
956} 1053}
957 1054
958static void 1055static void
959periodics_reschedule (EV_P) 1056periodics_reschedule (EV_P)
963 /* adjust periodics after time jump */ 1060 /* adjust periodics after time jump */
964 for (i = 0; i < periodiccnt; ++i) 1061 for (i = 0; i < periodiccnt; ++i)
965 { 1062 {
966 struct ev_periodic *w = periodics [i]; 1063 struct ev_periodic *w = periodics [i];
967 1064
1065 if (w->reschedule_cb)
1066 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
968 if (w->interval) 1067 else if (w->interval)
969 {
970 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1068 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
971
972 if (fabs (diff) >= 1e-4)
973 {
974 ev_periodic_stop (EV_A_ w);
975 ev_periodic_start (EV_A_ w);
976
977 i = 0; /* restart loop, inefficient, but time jumps should be rare */
978 }
979 }
980 } 1069 }
1070
1071 /* now rebuild the heap */
1072 for (i = periodiccnt >> 1; i--; )
1073 downheap ((WT *)periodics, periodiccnt, i);
981} 1074}
1075#endif
982 1076
983inline int 1077inline int
984time_update_monotonic (EV_P) 1078time_update_monotonic (EV_P)
985{ 1079{
986 mn_now = get_clock (); 1080 mn_now = get_clock ();
987 1081
988 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1082 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
989 { 1083 {
990 rt_now = rtmn_diff + mn_now; 1084 ev_rt_now = rtmn_diff + mn_now;
991 return 0; 1085 return 0;
992 } 1086 }
993 else 1087 else
994 { 1088 {
995 now_floor = mn_now; 1089 now_floor = mn_now;
996 rt_now = ev_time (); 1090 ev_rt_now = ev_time ();
997 return 1; 1091 return 1;
998 } 1092 }
999} 1093}
1000 1094
1001static void 1095static void
1010 { 1104 {
1011 ev_tstamp odiff = rtmn_diff; 1105 ev_tstamp odiff = rtmn_diff;
1012 1106
1013 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1107 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1014 { 1108 {
1015 rtmn_diff = rt_now - mn_now; 1109 rtmn_diff = ev_rt_now - mn_now;
1016 1110
1017 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1111 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1018 return; /* all is well */ 1112 return; /* all is well */
1019 1113
1020 rt_now = ev_time (); 1114 ev_rt_now = ev_time ();
1021 mn_now = get_clock (); 1115 mn_now = get_clock ();
1022 now_floor = mn_now; 1116 now_floor = mn_now;
1023 } 1117 }
1024 1118
1119# if EV_PERIODICS
1025 periodics_reschedule (EV_A); 1120 periodics_reschedule (EV_A);
1121# endif
1026 /* no timer adjustment, as the monotonic clock doesn't jump */ 1122 /* no timer adjustment, as the monotonic clock doesn't jump */
1027 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1123 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1028 } 1124 }
1029 } 1125 }
1030 else 1126 else
1031#endif 1127#endif
1032 { 1128 {
1033 rt_now = ev_time (); 1129 ev_rt_now = ev_time ();
1034 1130
1035 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1131 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1036 { 1132 {
1133#if EV_PERIODICS
1037 periodics_reschedule (EV_A); 1134 periodics_reschedule (EV_A);
1135#endif
1038 1136
1039 /* adjust timers. this is easy, as the offset is the same for all */ 1137 /* adjust timers. this is easy, as the offset is the same for all */
1040 for (i = 0; i < timercnt; ++i) 1138 for (i = 0; i < timercnt; ++i)
1041 ((WT)timers [i])->at += rt_now - mn_now; 1139 ((WT)timers [i])->at += ev_rt_now - mn_now;
1042 } 1140 }
1043 1141
1044 mn_now = rt_now; 1142 mn_now = ev_rt_now;
1045 } 1143 }
1046} 1144}
1047 1145
1048void 1146void
1049ev_ref (EV_P) 1147ev_ref (EV_P)
1063ev_loop (EV_P_ int flags) 1161ev_loop (EV_P_ int flags)
1064{ 1162{
1065 double block; 1163 double block;
1066 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1164 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1067 1165
1068 do 1166 while (activecnt)
1069 { 1167 {
1070 /* queue check watchers (and execute them) */ 1168 /* queue check watchers (and execute them) */
1071 if (expect_false (preparecnt)) 1169 if (expect_false (preparecnt))
1072 { 1170 {
1073 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1171 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1081 /* update fd-related kernel structures */ 1179 /* update fd-related kernel structures */
1082 fd_reify (EV_A); 1180 fd_reify (EV_A);
1083 1181
1084 /* calculate blocking time */ 1182 /* calculate blocking time */
1085 1183
1086 /* we only need this for !monotonic clockor timers, but as we basically 1184 /* we only need this for !monotonic clock or timers, but as we basically
1087 always have timers, we just calculate it always */ 1185 always have timers, we just calculate it always */
1088#if EV_USE_MONOTONIC 1186#if EV_USE_MONOTONIC
1089 if (expect_true (have_monotonic)) 1187 if (expect_true (have_monotonic))
1090 time_update_monotonic (EV_A); 1188 time_update_monotonic (EV_A);
1091 else 1189 else
1092#endif 1190#endif
1093 { 1191 {
1094 rt_now = ev_time (); 1192 ev_rt_now = ev_time ();
1095 mn_now = rt_now; 1193 mn_now = ev_rt_now;
1096 } 1194 }
1097 1195
1098 if (flags & EVLOOP_NONBLOCK || idlecnt) 1196 if (flags & EVLOOP_NONBLOCK || idlecnt)
1099 block = 0.; 1197 block = 0.;
1100 else 1198 else
1105 { 1203 {
1106 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1204 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1107 if (block > to) block = to; 1205 if (block > to) block = to;
1108 } 1206 }
1109 1207
1208#if EV_PERIODICS
1110 if (periodiccnt) 1209 if (periodiccnt)
1111 { 1210 {
1112 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1211 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1113 if (block > to) block = to; 1212 if (block > to) block = to;
1114 } 1213 }
1214#endif
1115 1215
1116 if (block < 0.) block = 0.; 1216 if (block < 0.) block = 0.;
1117 } 1217 }
1118 1218
1119 method_poll (EV_A_ block); 1219 method_poll (EV_A_ block);
1120 1220
1121 /* update rt_now, do magic */ 1221 /* update ev_rt_now, do magic */
1122 time_update (EV_A); 1222 time_update (EV_A);
1123 1223
1124 /* queue pending timers and reschedule them */ 1224 /* queue pending timers and reschedule them */
1125 timers_reify (EV_A); /* relative timers called last */ 1225 timers_reify (EV_A); /* relative timers called last */
1226#if EV_PERIODICS
1126 periodics_reify (EV_A); /* absolute timers called first */ 1227 periodics_reify (EV_A); /* absolute timers called first */
1228#endif
1127 1229
1128 /* queue idle watchers unless io or timers are pending */ 1230 /* queue idle watchers unless io or timers are pending */
1129 if (!pendingcnt) 1231 if (idlecnt && !any_pending (EV_A))
1130 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1232 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1131 1233
1132 /* queue check watchers, to be executed first */ 1234 /* queue check watchers, to be executed first */
1133 if (checkcnt) 1235 if (checkcnt)
1134 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1236 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1135 1237
1136 call_pending (EV_A); 1238 call_pending (EV_A);
1239
1240 if (loop_done)
1241 break;
1137 } 1242 }
1138 while (activecnt && !loop_done);
1139 1243
1140 if (loop_done != 2) 1244 if (loop_done != 2)
1141 loop_done = 0; 1245 loop_done = 0;
1142} 1246}
1143 1247
1209 return; 1313 return;
1210 1314
1211 assert (("ev_io_start called with negative fd", fd >= 0)); 1315 assert (("ev_io_start called with negative fd", fd >= 0));
1212 1316
1213 ev_start (EV_A_ (W)w, 1); 1317 ev_start (EV_A_ (W)w, 1);
1214 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1318 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1215 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1319 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1216 1320
1217 fd_change (EV_A_ fd); 1321 fd_change (EV_A_ fd);
1218} 1322}
1219 1323
1222{ 1326{
1223 ev_clear_pending (EV_A_ (W)w); 1327 ev_clear_pending (EV_A_ (W)w);
1224 if (!ev_is_active (w)) 1328 if (!ev_is_active (w))
1225 return; 1329 return;
1226 1330
1331 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1332
1227 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1333 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1228 ev_stop (EV_A_ (W)w); 1334 ev_stop (EV_A_ (W)w);
1229 1335
1230 fd_change (EV_A_ w->fd); 1336 fd_change (EV_A_ w->fd);
1231} 1337}
1239 ((WT)w)->at += mn_now; 1345 ((WT)w)->at += mn_now;
1240 1346
1241 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1347 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1242 1348
1243 ev_start (EV_A_ (W)w, ++timercnt); 1349 ev_start (EV_A_ (W)w, ++timercnt);
1244 array_needsize (timers, timermax, timercnt, (void)); 1350 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1245 timers [timercnt - 1] = w; 1351 timers [timercnt - 1] = w;
1246 upheap ((WT *)timers, timercnt - 1); 1352 upheap ((WT *)timers, timercnt - 1);
1247 1353
1248 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1354 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1249} 1355}
1258 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1364 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1259 1365
1260 if (((W)w)->active < timercnt--) 1366 if (((W)w)->active < timercnt--)
1261 { 1367 {
1262 timers [((W)w)->active - 1] = timers [timercnt]; 1368 timers [((W)w)->active - 1] = timers [timercnt];
1263 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1264 } 1370 }
1265 1371
1266 ((WT)w)->at = w->repeat; 1372 ((WT)w)->at -= mn_now;
1267 1373
1268 ev_stop (EV_A_ (W)w); 1374 ev_stop (EV_A_ (W)w);
1269} 1375}
1270 1376
1271void 1377void
1274 if (ev_is_active (w)) 1380 if (ev_is_active (w))
1275 { 1381 {
1276 if (w->repeat) 1382 if (w->repeat)
1277 { 1383 {
1278 ((WT)w)->at = mn_now + w->repeat; 1384 ((WT)w)->at = mn_now + w->repeat;
1279 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1385 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1280 } 1386 }
1281 else 1387 else
1282 ev_timer_stop (EV_A_ w); 1388 ev_timer_stop (EV_A_ w);
1283 } 1389 }
1284 else if (w->repeat) 1390 else if (w->repeat)
1391 {
1392 w->at = w->repeat;
1285 ev_timer_start (EV_A_ w); 1393 ev_timer_start (EV_A_ w);
1394 }
1286} 1395}
1287 1396
1397#if EV_PERIODICS
1288void 1398void
1289ev_periodic_start (EV_P_ struct ev_periodic *w) 1399ev_periodic_start (EV_P_ struct ev_periodic *w)
1290{ 1400{
1291 if (ev_is_active (w)) 1401 if (ev_is_active (w))
1292 return; 1402 return;
1293 1403
1404 if (w->reschedule_cb)
1405 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1406 else if (w->interval)
1407 {
1294 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1408 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1295
1296 /* this formula differs from the one in periodic_reify because we do not always round up */ 1409 /* this formula differs from the one in periodic_reify because we do not always round up */
1297 if (w->interval)
1298 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1410 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1411 }
1299 1412
1300 ev_start (EV_A_ (W)w, ++periodiccnt); 1413 ev_start (EV_A_ (W)w, ++periodiccnt);
1301 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1414 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1302 periodics [periodiccnt - 1] = w; 1415 periodics [periodiccnt - 1] = w;
1303 upheap ((WT *)periodics, periodiccnt - 1); 1416 upheap ((WT *)periodics, periodiccnt - 1);
1304 1417
1305 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1418 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1306} 1419}
1315 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1428 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1316 1429
1317 if (((W)w)->active < periodiccnt--) 1430 if (((W)w)->active < periodiccnt--)
1318 { 1431 {
1319 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1432 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1320 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1433 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1321 } 1434 }
1322 1435
1323 ev_stop (EV_A_ (W)w); 1436 ev_stop (EV_A_ (W)w);
1324} 1437}
1325 1438
1326void 1439void
1440ev_periodic_again (EV_P_ struct ev_periodic *w)
1441{
1442 /* TODO: use adjustheap and recalculation */
1443 ev_periodic_stop (EV_A_ w);
1444 ev_periodic_start (EV_A_ w);
1445}
1446#endif
1447
1448void
1327ev_idle_start (EV_P_ struct ev_idle *w) 1449ev_idle_start (EV_P_ struct ev_idle *w)
1328{ 1450{
1329 if (ev_is_active (w)) 1451 if (ev_is_active (w))
1330 return; 1452 return;
1331 1453
1332 ev_start (EV_A_ (W)w, ++idlecnt); 1454 ev_start (EV_A_ (W)w, ++idlecnt);
1333 array_needsize (idles, idlemax, idlecnt, (void)); 1455 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1334 idles [idlecnt - 1] = w; 1456 idles [idlecnt - 1] = w;
1335} 1457}
1336 1458
1337void 1459void
1338ev_idle_stop (EV_P_ struct ev_idle *w) 1460ev_idle_stop (EV_P_ struct ev_idle *w)
1339{ 1461{
1340 ev_clear_pending (EV_A_ (W)w); 1462 ev_clear_pending (EV_A_ (W)w);
1341 if (ev_is_active (w)) 1463 if (!ev_is_active (w))
1342 return; 1464 return;
1343 1465
1344 idles [((W)w)->active - 1] = idles [--idlecnt]; 1466 idles [((W)w)->active - 1] = idles [--idlecnt];
1345 ev_stop (EV_A_ (W)w); 1467 ev_stop (EV_A_ (W)w);
1346} 1468}
1350{ 1472{
1351 if (ev_is_active (w)) 1473 if (ev_is_active (w))
1352 return; 1474 return;
1353 1475
1354 ev_start (EV_A_ (W)w, ++preparecnt); 1476 ev_start (EV_A_ (W)w, ++preparecnt);
1355 array_needsize (prepares, preparemax, preparecnt, (void)); 1477 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1356 prepares [preparecnt - 1] = w; 1478 prepares [preparecnt - 1] = w;
1357} 1479}
1358 1480
1359void 1481void
1360ev_prepare_stop (EV_P_ struct ev_prepare *w) 1482ev_prepare_stop (EV_P_ struct ev_prepare *w)
1361{ 1483{
1362 ev_clear_pending (EV_A_ (W)w); 1484 ev_clear_pending (EV_A_ (W)w);
1363 if (ev_is_active (w)) 1485 if (!ev_is_active (w))
1364 return; 1486 return;
1365 1487
1366 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1488 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1367 ev_stop (EV_A_ (W)w); 1489 ev_stop (EV_A_ (W)w);
1368} 1490}
1372{ 1494{
1373 if (ev_is_active (w)) 1495 if (ev_is_active (w))
1374 return; 1496 return;
1375 1497
1376 ev_start (EV_A_ (W)w, ++checkcnt); 1498 ev_start (EV_A_ (W)w, ++checkcnt);
1377 array_needsize (checks, checkmax, checkcnt, (void)); 1499 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1378 checks [checkcnt - 1] = w; 1500 checks [checkcnt - 1] = w;
1379} 1501}
1380 1502
1381void 1503void
1382ev_check_stop (EV_P_ struct ev_check *w) 1504ev_check_stop (EV_P_ struct ev_check *w)
1383{ 1505{
1384 ev_clear_pending (EV_A_ (W)w); 1506 ev_clear_pending (EV_A_ (W)w);
1385 if (ev_is_active (w)) 1507 if (!ev_is_active (w))
1386 return; 1508 return;
1387 1509
1388 checks [((W)w)->active - 1] = checks [--checkcnt]; 1510 checks [((W)w)->active - 1] = checks [--checkcnt];
1389 ev_stop (EV_A_ (W)w); 1511 ev_stop (EV_A_ (W)w);
1390} 1512}
1395 1517
1396void 1518void
1397ev_signal_start (EV_P_ struct ev_signal *w) 1519ev_signal_start (EV_P_ struct ev_signal *w)
1398{ 1520{
1399#if EV_MULTIPLICITY 1521#if EV_MULTIPLICITY
1400 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1522 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1401#endif 1523#endif
1402 if (ev_is_active (w)) 1524 if (ev_is_active (w))
1403 return; 1525 return;
1404 1526
1405 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1527 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1406 1528
1407 ev_start (EV_A_ (W)w, 1); 1529 ev_start (EV_A_ (W)w, 1);
1408 array_needsize (signals, signalmax, w->signum, signals_init); 1530 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1409 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1531 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1410 1532
1411 if (!((WL)w)->next) 1533 if (!((WL)w)->next)
1412 { 1534 {
1413#if WIN32 1535#if _WIN32
1414 signal (w->signum, sighandler); 1536 signal (w->signum, sighandler);
1415#else 1537#else
1416 struct sigaction sa; 1538 struct sigaction sa;
1417 sa.sa_handler = sighandler; 1539 sa.sa_handler = sighandler;
1418 sigfillset (&sa.sa_mask); 1540 sigfillset (&sa.sa_mask);
1438 1560
1439void 1561void
1440ev_child_start (EV_P_ struct ev_child *w) 1562ev_child_start (EV_P_ struct ev_child *w)
1441{ 1563{
1442#if EV_MULTIPLICITY 1564#if EV_MULTIPLICITY
1443 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1565 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1444#endif 1566#endif
1445 if (ev_is_active (w)) 1567 if (ev_is_active (w))
1446 return; 1568 return;
1447 1569
1448 ev_start (EV_A_ (W)w, 1); 1570 ev_start (EV_A_ (W)w, 1);
1451 1573
1452void 1574void
1453ev_child_stop (EV_P_ struct ev_child *w) 1575ev_child_stop (EV_P_ struct ev_child *w)
1454{ 1576{
1455 ev_clear_pending (EV_A_ (W)w); 1577 ev_clear_pending (EV_A_ (W)w);
1456 if (ev_is_active (w)) 1578 if (!ev_is_active (w))
1457 return; 1579 return;
1458 1580
1459 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1581 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1460 ev_stop (EV_A_ (W)w); 1582 ev_stop (EV_A_ (W)w);
1461} 1583}
1496} 1618}
1497 1619
1498void 1620void
1499ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1621ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1500{ 1622{
1501 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1623 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1502 1624
1503 if (!once) 1625 if (!once)
1504 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1505 else 1627 else
1506 { 1628 {
1507 once->cb = cb; 1629 once->cb = cb;
1508 once->arg = arg; 1630 once->arg = arg;
1509 1631
1510 ev_watcher_init (&once->io, once_cb_io); 1632 ev_init (&once->io, once_cb_io);
1511 if (fd >= 0) 1633 if (fd >= 0)
1512 { 1634 {
1513 ev_io_set (&once->io, fd, events); 1635 ev_io_set (&once->io, fd, events);
1514 ev_io_start (EV_A_ &once->io); 1636 ev_io_start (EV_A_ &once->io);
1515 } 1637 }
1516 1638
1517 ev_watcher_init (&once->to, once_cb_to); 1639 ev_init (&once->to, once_cb_to);
1518 if (timeout >= 0.) 1640 if (timeout >= 0.)
1519 { 1641 {
1520 ev_timer_set (&once->to, timeout, 0.); 1642 ev_timer_set (&once->to, timeout, 0.);
1521 ev_timer_start (EV_A_ &once->to); 1643 ev_timer_start (EV_A_ &once->to);
1522 } 1644 }
1523 } 1645 }
1524} 1646}
1525 1647
1648#ifdef __cplusplus
1649}
1650#endif
1651

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines