ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.40 by root, Fri Nov 2 11:02:23 2007 UTC vs.
Revision 1.73 by root, Tue Nov 6 16:27:10 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
47#include <sys/wait.h>
48#include <sys/time.h>
49#include <time.h> 67#include <time.h>
50 68
69#include <signal.h>
70
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
51/**/ 76/**/
52 77
53#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
55#endif 80#endif
56 81
57#ifndef EV_USE_SELECT 82#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 83# define EV_USE_SELECT 1
59#endif 84#endif
60 85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
61#ifndef EV_USE_EPOLL 90#ifndef EV_USE_EPOLL
62# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
63#endif 106#endif
64 107
65#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
66# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
67#endif 110#endif
96#endif 139#endif
97 140
98#define expect_false(expr) expect ((expr) != 0, 0) 141#define expect_false(expr) expect ((expr) != 0, 0)
99#define expect_true(expr) expect ((expr) != 0, 1) 142#define expect_true(expr) expect ((expr) != 0, 1)
100 143
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI)
146
101typedef struct ev_watcher *W; 147typedef struct ev_watcher *W;
102typedef struct ev_watcher_list *WL; 148typedef struct ev_watcher_list *WL;
103typedef struct ev_watcher_time *WT; 149typedef struct ev_watcher_time *WT;
104 150
105static ev_tstamp now_floor, now, diff; /* monotonic clock */ 151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
106ev_tstamp ev_now;
107int ev_method;
108 152
109static int have_monotonic; /* runtime */ 153#include "ev_win32.c"
110
111static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
112static void (*method_modify)(int fd, int oev, int nev);
113static void (*method_poll)(ev_tstamp timeout);
114 154
115/*****************************************************************************/ 155/*****************************************************************************/
116 156
117ev_tstamp 157static void (*syserr_cb)(const char *msg);
158
159void ev_set_syserr_cb (void (*cb)(const char *msg))
160{
161 syserr_cb = cb;
162}
163
164static void
165syserr (const char *msg)
166{
167 if (!msg)
168 msg = "(libev) system error";
169
170 if (syserr_cb)
171 syserr_cb (msg);
172 else
173 {
174 perror (msg);
175 abort ();
176 }
177}
178
179static void *(*alloc)(void *ptr, long size);
180
181void ev_set_allocator (void *(*cb)(void *ptr, long size))
182{
183 alloc = cb;
184}
185
186static void *
187ev_realloc (void *ptr, long size)
188{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190
191 if (!ptr && size)
192 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort ();
195 }
196
197 return ptr;
198}
199
200#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0)
202
203/*****************************************************************************/
204
205typedef struct
206{
207 WL head;
208 unsigned char events;
209 unsigned char reify;
210} ANFD;
211
212typedef struct
213{
214 W w;
215 int events;
216} ANPENDING;
217
218#if EV_MULTIPLICITY
219
220struct ev_loop
221{
222# define VAR(name,decl) decl;
223# include "ev_vars.h"
224};
225# undef VAR
226# include "ev_wrap.h"
227
228#else
229
230# define VAR(name,decl) static decl;
231# include "ev_vars.h"
232# undef VAR
233
234#endif
235
236/*****************************************************************************/
237
238inline ev_tstamp
118ev_time (void) 239ev_time (void)
119{ 240{
120#if EV_USE_REALTIME 241#if EV_USE_REALTIME
121 struct timespec ts; 242 struct timespec ts;
122 clock_gettime (CLOCK_REALTIME, &ts); 243 clock_gettime (CLOCK_REALTIME, &ts);
126 gettimeofday (&tv, 0); 247 gettimeofday (&tv, 0);
127 return tv.tv_sec + tv.tv_usec * 1e-6; 248 return tv.tv_sec + tv.tv_usec * 1e-6;
128#endif 249#endif
129} 250}
130 251
131static ev_tstamp 252inline ev_tstamp
132get_clock (void) 253get_clock (void)
133{ 254{
134#if EV_USE_MONOTONIC 255#if EV_USE_MONOTONIC
135 if (expect_true (have_monotonic)) 256 if (expect_true (have_monotonic))
136 { 257 {
141#endif 262#endif
142 263
143 return ev_time (); 264 return ev_time ();
144} 265}
145 266
267ev_tstamp
268ev_now (EV_P)
269{
270 return rt_now;
271}
272
146#define array_roundsize(base,n) ((n) | 4 & ~3) 273#define array_roundsize(base,n) ((n) | 4 & ~3)
147 274
148#define array_needsize(base,cur,cnt,init) \ 275#define array_needsize(base,cur,cnt,init) \
149 if (expect_false ((cnt) > cur)) \ 276 if (expect_false ((cnt) > cur)) \
150 { \ 277 { \
151 int newcnt = cur; \ 278 int newcnt = cur; \
152 do \ 279 do \
153 { \ 280 { \
154 newcnt = array_roundsize (base, newcnt << 1); \ 281 newcnt = array_roundsize (base, newcnt << 1); \
155 } \ 282 } \
156 while ((cnt) > newcnt); \ 283 while ((cnt) > newcnt); \
157 \ 284 \
158 base = realloc (base, sizeof (*base) * (newcnt)); \ 285 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
159 init (base + cur, newcnt - cur); \ 286 init (base + cur, newcnt - cur); \
160 cur = newcnt; \ 287 cur = newcnt; \
161 } 288 }
289
290#define array_slim(stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 }
297
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302
303#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
162 305
163/*****************************************************************************/ 306/*****************************************************************************/
164
165typedef struct
166{
167 struct ev_io *head;
168 unsigned char events;
169 unsigned char reify;
170} ANFD;
171
172static ANFD *anfds;
173static int anfdmax;
174 307
175static void 308static void
176anfds_init (ANFD *base, int count) 309anfds_init (ANFD *base, int count)
177{ 310{
178 while (count--) 311 while (count--)
183 316
184 ++base; 317 ++base;
185 } 318 }
186} 319}
187 320
188typedef struct
189{
190 W w;
191 int events;
192} ANPENDING;
193
194static ANPENDING *pendings;
195static int pendingmax, pendingcnt;
196
197static void 321static void
198event (W w, int events) 322event (EV_P_ W w, int events)
199{ 323{
200 if (w->pending) 324 if (w->pending)
201 { 325 {
202 pendings [w->pending - 1].events |= events; 326 pendings [ABSPRI (w)][w->pending - 1].events |= events;
203 return; 327 return;
204 } 328 }
205 329
206 w->pending = ++pendingcnt; 330 w->pending = ++pendingcnt [ABSPRI (w)];
207 array_needsize (pendings, pendingmax, pendingcnt, ); 331 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
208 pendings [pendingcnt - 1].w = w; 332 pendings [ABSPRI (w)][w->pending - 1].w = w;
209 pendings [pendingcnt - 1].events = events; 333 pendings [ABSPRI (w)][w->pending - 1].events = events;
210} 334}
211 335
212static void 336static void
213queue_events (W *events, int eventcnt, int type) 337queue_events (EV_P_ W *events, int eventcnt, int type)
214{ 338{
215 int i; 339 int i;
216 340
217 for (i = 0; i < eventcnt; ++i) 341 for (i = 0; i < eventcnt; ++i)
218 event (events [i], type); 342 event (EV_A_ events [i], type);
219} 343}
220 344
221static void 345static void
222fd_event (int fd, int events) 346fd_event (EV_P_ int fd, int events)
223{ 347{
224 ANFD *anfd = anfds + fd; 348 ANFD *anfd = anfds + fd;
225 struct ev_io *w; 349 struct ev_io *w;
226 350
227 for (w = anfd->head; w; w = w->next) 351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
228 { 352 {
229 int ev = w->events & events; 353 int ev = w->events & events;
230 354
231 if (ev) 355 if (ev)
232 event ((W)w, ev); 356 event (EV_A_ (W)w, ev);
233 } 357 }
234} 358}
235 359
236/*****************************************************************************/ 360/*****************************************************************************/
237 361
238static int *fdchanges;
239static int fdchangemax, fdchangecnt;
240
241static void 362static void
242fd_reify (void) 363fd_reify (EV_P)
243{ 364{
244 int i; 365 int i;
245 366
246 for (i = 0; i < fdchangecnt; ++i) 367 for (i = 0; i < fdchangecnt; ++i)
247 { 368 {
249 ANFD *anfd = anfds + fd; 370 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 371 struct ev_io *w;
251 372
252 int events = 0; 373 int events = 0;
253 374
254 for (w = anfd->head; w; w = w->next) 375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
255 events |= w->events; 376 events |= w->events;
256 377
257 anfd->reify = 0; 378 anfd->reify = 0;
258 379
259 if (anfd->events != events)
260 {
261 method_modify (fd, anfd->events, events); 380 method_modify (EV_A_ fd, anfd->events, events);
262 anfd->events = events; 381 anfd->events = events;
263 }
264 } 382 }
265 383
266 fdchangecnt = 0; 384 fdchangecnt = 0;
267} 385}
268 386
269static void 387static void
270fd_change (int fd) 388fd_change (EV_P_ int fd)
271{ 389{
272 if (anfds [fd].reify || fdchangecnt < 0) 390 if (anfds [fd].reify)
273 return; 391 return;
274 392
275 anfds [fd].reify = 1; 393 anfds [fd].reify = 1;
276 394
277 ++fdchangecnt; 395 ++fdchangecnt;
278 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 396 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void));
279 fdchanges [fdchangecnt - 1] = fd; 397 fdchanges [fdchangecnt - 1] = fd;
280} 398}
281 399
400static void
401fd_kill (EV_P_ int fd)
402{
403 struct ev_io *w;
404
405 while ((w = (struct ev_io *)anfds [fd].head))
406 {
407 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 }
410}
411
412static int
413fd_valid (int fd)
414{
415#ifdef WIN32
416 return !!win32_get_osfhandle (fd);
417#else
418 return fcntl (fd, F_GETFD) != -1;
419#endif
420}
421
282/* called on EBADF to verify fds */ 422/* called on EBADF to verify fds */
283static void 423static void
284fd_recheck (void) 424fd_ebadf (EV_P)
285{ 425{
286 int fd; 426 int fd;
287 427
288 for (fd = 0; fd < anfdmax; ++fd) 428 for (fd = 0; fd < anfdmax; ++fd)
289 if (anfds [fd].events) 429 if (anfds [fd].events)
290 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 430 if (!fd_valid (fd) == -1 && errno == EBADF)
291 while (anfds [fd].head) 431 fd_kill (EV_A_ fd);
432}
433
434/* called on ENOMEM in select/poll to kill some fds and retry */
435static void
436fd_enomem (EV_P)
437{
438 int fd;
439
440 for (fd = anfdmax; fd--; )
441 if (anfds [fd].events)
292 { 442 {
293 ev_io_stop (anfds [fd].head); 443 fd_kill (EV_A_ fd);
294 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 444 return;
295 } 445 }
446}
447
448/* usually called after fork if method needs to re-arm all fds from scratch */
449static void
450fd_rearm_all (EV_P)
451{
452 int fd;
453
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events)
457 {
458 anfds [fd].events = 0;
459 fd_change (EV_A_ fd);
460 }
296} 461}
297 462
298/*****************************************************************************/ 463/*****************************************************************************/
299 464
300static struct ev_timer **timers;
301static int timermax, timercnt;
302
303static struct ev_periodic **periodics;
304static int periodicmax, periodiccnt;
305
306static void 465static void
307upheap (WT *timers, int k) 466upheap (WT *heap, int k)
308{ 467{
309 WT w = timers [k]; 468 WT w = heap [k];
310 469
311 while (k && timers [k >> 1]->at > w->at) 470 while (k && heap [k >> 1]->at > w->at)
312 { 471 {
313 timers [k] = timers [k >> 1]; 472 heap [k] = heap [k >> 1];
314 timers [k]->active = k + 1; 473 ((W)heap [k])->active = k + 1;
315 k >>= 1; 474 k >>= 1;
316 } 475 }
317 476
318 timers [k] = w; 477 heap [k] = w;
319 timers [k]->active = k + 1; 478 ((W)heap [k])->active = k + 1;
320 479
321} 480}
322 481
323static void 482static void
324downheap (WT *timers, int N, int k) 483downheap (WT *heap, int N, int k)
325{ 484{
326 WT w = timers [k]; 485 WT w = heap [k];
327 486
328 while (k < (N >> 1)) 487 while (k < (N >> 1))
329 { 488 {
330 int j = k << 1; 489 int j = k << 1;
331 490
332 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
333 ++j; 492 ++j;
334 493
335 if (w->at <= timers [j]->at) 494 if (w->at <= heap [j]->at)
336 break; 495 break;
337 496
338 timers [k] = timers [j]; 497 heap [k] = heap [j];
339 timers [k]->active = k + 1; 498 ((W)heap [k])->active = k + 1;
340 k = j; 499 k = j;
341 } 500 }
342 501
343 timers [k] = w; 502 heap [k] = w;
344 timers [k]->active = k + 1; 503 ((W)heap [k])->active = k + 1;
345} 504}
346 505
347/*****************************************************************************/ 506/*****************************************************************************/
348 507
349typedef struct 508typedef struct
350{ 509{
351 struct ev_signal *head; 510 WL head;
352 sig_atomic_t volatile gotsig; 511 sig_atomic_t volatile gotsig;
353} ANSIG; 512} ANSIG;
354 513
355static ANSIG *signals; 514static ANSIG *signals;
356static int signalmax; 515static int signalmax;
372} 531}
373 532
374static void 533static void
375sighandler (int signum) 534sighandler (int signum)
376{ 535{
536#if WIN32
537 signal (signum, sighandler);
538#endif
539
377 signals [signum - 1].gotsig = 1; 540 signals [signum - 1].gotsig = 1;
378 541
379 if (!gotsig) 542 if (!gotsig)
380 { 543 {
544 int old_errno = errno;
381 gotsig = 1; 545 gotsig = 1;
382 write (sigpipe [1], &signum, 1); 546 write (sigpipe [1], &signum, 1);
547 errno = old_errno;
383 } 548 }
384} 549}
385 550
386static void 551static void
387sigcb (struct ev_io *iow, int revents) 552sigcb (EV_P_ struct ev_io *iow, int revents)
388{ 553{
389 struct ev_signal *w; 554 WL w;
390 int signum; 555 int signum;
391 556
392 read (sigpipe [0], &revents, 1); 557 read (sigpipe [0], &revents, 1);
393 gotsig = 0; 558 gotsig = 0;
394 559
396 if (signals [signum].gotsig) 561 if (signals [signum].gotsig)
397 { 562 {
398 signals [signum].gotsig = 0; 563 signals [signum].gotsig = 0;
399 564
400 for (w = signals [signum].head; w; w = w->next) 565 for (w = signals [signum].head; w; w = w->next)
401 event ((W)w, EV_SIGNAL); 566 event (EV_A_ (W)w, EV_SIGNAL);
402 } 567 }
403} 568}
404 569
405static void 570static void
406siginit (void) 571siginit (EV_P)
407{ 572{
573#ifndef WIN32
408 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 574 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
409 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 575 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
410 576
411 /* rather than sort out wether we really need nb, set it */ 577 /* rather than sort out wether we really need nb, set it */
412 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 578 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
413 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 579 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
580#endif
414 581
415 ev_io_set (&sigev, sigpipe [0], EV_READ); 582 ev_io_set (&sigev, sigpipe [0], EV_READ);
416 ev_io_start (&sigev); 583 ev_io_start (EV_A_ &sigev);
584 ev_unref (EV_A); /* child watcher should not keep loop alive */
417} 585}
418 586
419/*****************************************************************************/ 587/*****************************************************************************/
420 588
421static struct ev_idle **idles;
422static int idlemax, idlecnt;
423
424static struct ev_prepare **prepares;
425static int preparemax, preparecnt;
426
427static struct ev_check **checks;
428static int checkmax, checkcnt;
429
430/*****************************************************************************/
431
432static struct ev_child *childs [PID_HASHSIZE]; 589static struct ev_child *childs [PID_HASHSIZE];
590
591#ifndef WIN32
592
433static struct ev_signal childev; 593static struct ev_signal childev;
434 594
435#ifndef WCONTINUED 595#ifndef WCONTINUED
436# define WCONTINUED 0 596# define WCONTINUED 0
437#endif 597#endif
438 598
439static void 599static void
440childcb (struct ev_signal *sw, int revents) 600child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
441{ 601{
442 struct ev_child *w; 602 struct ev_child *w;
603
604 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
605 if (w->pid == pid || !w->pid)
606 {
607 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
608 w->rpid = pid;
609 w->rstatus = status;
610 event (EV_A_ (W)w, EV_CHILD);
611 }
612}
613
614static void
615childcb (EV_P_ struct ev_signal *sw, int revents)
616{
443 int pid, status; 617 int pid, status;
444 618
445 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 619 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
446 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 620 {
447 if (w->pid == pid || !w->pid) 621 /* make sure we are called again until all childs have been reaped */
448 { 622 event (EV_A_ (W)sw, EV_SIGNAL);
449 w->status = status; 623
450 event ((W)w, EV_CHILD); 624 child_reap (EV_A_ sw, pid, pid, status);
451 } 625 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
626 }
452} 627}
628
629#endif
453 630
454/*****************************************************************************/ 631/*****************************************************************************/
455 632
633#if EV_USE_KQUEUE
634# include "ev_kqueue.c"
635#endif
456#if EV_USE_EPOLL 636#if EV_USE_EPOLL
457# include "ev_epoll.c" 637# include "ev_epoll.c"
458#endif 638#endif
639#if EV_USE_POLL
640# include "ev_poll.c"
641#endif
459#if EV_USE_SELECT 642#if EV_USE_SELECT
460# include "ev_select.c" 643# include "ev_select.c"
461#endif 644#endif
462 645
463int 646int
470ev_version_minor (void) 653ev_version_minor (void)
471{ 654{
472 return EV_VERSION_MINOR; 655 return EV_VERSION_MINOR;
473} 656}
474 657
475int ev_init (int flags) 658/* return true if we are running with elevated privileges and should ignore env variables */
659static int
660enable_secure (void)
476{ 661{
662#ifdef WIN32
663 return 0;
664#else
665 return getuid () != geteuid ()
666 || getgid () != getegid ();
667#endif
668}
669
670int
671ev_method (EV_P)
672{
673 return method;
674}
675
676static void
677loop_init (EV_P_ int methods)
678{
477 if (!ev_method) 679 if (!method)
478 { 680 {
479#if EV_USE_MONOTONIC 681#if EV_USE_MONOTONIC
480 { 682 {
481 struct timespec ts; 683 struct timespec ts;
482 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 684 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
483 have_monotonic = 1; 685 have_monotonic = 1;
484 } 686 }
485#endif 687#endif
486 688
487 ev_now = ev_time (); 689 rt_now = ev_time ();
488 now = get_clock (); 690 mn_now = get_clock ();
489 now_floor = now; 691 now_floor = mn_now;
490 diff = ev_now - now; 692 rtmn_diff = rt_now - mn_now;
491 693
492 if (pipe (sigpipe)) 694 if (methods == EVMETHOD_AUTO)
493 return 0; 695 if (!enable_secure () && getenv ("LIBEV_METHODS"))
494 696 methods = atoi (getenv ("LIBEV_METHODS"));
697 else
495 ev_method = EVMETHOD_NONE; 698 methods = EVMETHOD_ANY;
699
700 method = 0;
701#if EV_USE_WIN32
702 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
703#endif
704#if EV_USE_KQUEUE
705 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
706#endif
496#if EV_USE_EPOLL 707#if EV_USE_EPOLL
497 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 708 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
709#endif
710#if EV_USE_POLL
711 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
498#endif 712#endif
499#if EV_USE_SELECT 713#if EV_USE_SELECT
500 if (ev_method == EVMETHOD_NONE) select_init (flags); 714 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
501#endif 715#endif
502 716
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 }
720}
721
722void
723loop_destroy (EV_P)
724{
725 int i;
726
727#if EV_USE_WIN32
728 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
729#endif
730#if EV_USE_KQUEUE
731 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
732#endif
733#if EV_USE_EPOLL
734 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
735#endif
736#if EV_USE_POLL
737 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
738#endif
739#if EV_USE_SELECT
740 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
741#endif
742
743 for (i = NUMPRI; i--; )
744 array_free (pending, [i]);
745
746 /* have to use the microsoft-never-gets-it-right macro */
747 array_free_microshit (fdchange);
748 array_free_microshit (timer);
749 array_free_microshit (periodic);
750 array_free_microshit (idle);
751 array_free_microshit (prepare);
752 array_free_microshit (check);
753
754 method = 0;
755}
756
757static void
758loop_fork (EV_P)
759{
760#if EV_USE_EPOLL
761 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
762#endif
763#if EV_USE_KQUEUE
764 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
765#endif
766
767 if (ev_is_active (&sigev))
768 {
769 /* default loop */
770
771 ev_ref (EV_A);
772 ev_io_stop (EV_A_ &sigev);
773 close (sigpipe [0]);
774 close (sigpipe [1]);
775
776 while (pipe (sigpipe))
777 syserr ("(libev) error creating pipe");
778
779 siginit (EV_A);
780 }
781
782 postfork = 0;
783}
784
785#if EV_MULTIPLICITY
786struct ev_loop *
787ev_loop_new (int methods)
788{
789 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
790
791 memset (loop, 0, sizeof (struct ev_loop));
792
793 loop_init (EV_A_ methods);
794
795 if (ev_method (EV_A))
796 return loop;
797
798 return 0;
799}
800
801void
802ev_loop_destroy (EV_P)
803{
804 loop_destroy (EV_A);
805 ev_free (loop);
806}
807
808void
809ev_loop_fork (EV_P)
810{
811 postfork = 1;
812}
813
814#endif
815
816#if EV_MULTIPLICITY
817struct ev_loop default_loop_struct;
818static struct ev_loop *default_loop;
819
820struct ev_loop *
821#else
822static int default_loop;
823
824int
825#endif
826ev_default_loop (int methods)
827{
828 if (sigpipe [0] == sigpipe [1])
829 if (pipe (sigpipe))
830 return 0;
831
832 if (!default_loop)
833 {
834#if EV_MULTIPLICITY
835 struct ev_loop *loop = default_loop = &default_loop_struct;
836#else
837 default_loop = 1;
838#endif
839
840 loop_init (EV_A_ methods);
841
503 if (ev_method) 842 if (ev_method (EV_A))
504 { 843 {
505 ev_watcher_init (&sigev, sigcb);
506 siginit (); 844 siginit (EV_A);
507 845
846#ifndef WIN32
508 ev_signal_init (&childev, childcb, SIGCHLD); 847 ev_signal_init (&childev, childcb, SIGCHLD);
848 ev_set_priority (&childev, EV_MAXPRI);
509 ev_signal_start (&childev); 849 ev_signal_start (EV_A_ &childev);
850 ev_unref (EV_A); /* child watcher should not keep loop alive */
851#endif
510 } 852 }
853 else
854 default_loop = 0;
511 } 855 }
512 856
513 return ev_method; 857 return default_loop;
858}
859
860void
861ev_default_destroy (void)
862{
863#if EV_MULTIPLICITY
864 struct ev_loop *loop = default_loop;
865#endif
866
867#ifndef WIN32
868 ev_ref (EV_A); /* child watcher */
869 ev_signal_stop (EV_A_ &childev);
870#endif
871
872 ev_ref (EV_A); /* signal watcher */
873 ev_io_stop (EV_A_ &sigev);
874
875 close (sigpipe [0]); sigpipe [0] = 0;
876 close (sigpipe [1]); sigpipe [1] = 0;
877
878 loop_destroy (EV_A);
879}
880
881void
882ev_default_fork (void)
883{
884#if EV_MULTIPLICITY
885 struct ev_loop *loop = default_loop;
886#endif
887
888 if (method)
889 postfork = 1;
514} 890}
515 891
516/*****************************************************************************/ 892/*****************************************************************************/
517 893
518void
519ev_fork_prepare (void)
520{
521 /* nop */
522}
523
524void
525ev_fork_parent (void)
526{
527 /* nop */
528}
529
530void
531ev_fork_child (void)
532{
533#if EV_USE_EPOLL
534 if (ev_method == EVMETHOD_EPOLL)
535 epoll_postfork_child ();
536#endif
537
538 ev_io_stop (&sigev);
539 close (sigpipe [0]);
540 close (sigpipe [1]);
541 pipe (sigpipe);
542 siginit ();
543}
544
545/*****************************************************************************/
546
547static void 894static void
548call_pending (void) 895call_pending (EV_P)
549{ 896{
897 int pri;
898
899 for (pri = NUMPRI; pri--; )
550 while (pendingcnt) 900 while (pendingcnt [pri])
551 { 901 {
552 ANPENDING *p = pendings + --pendingcnt; 902 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
553 903
554 if (p->w) 904 if (p->w)
555 { 905 {
556 p->w->pending = 0; 906 p->w->pending = 0;
557 p->w->cb (p->w, p->events); 907 p->w->cb (EV_A_ p->w, p->events);
558 } 908 }
559 } 909 }
560} 910}
561 911
562static void 912static void
563timers_reify (void) 913timers_reify (EV_P)
564{ 914{
565 while (timercnt && timers [0]->at <= now) 915 while (timercnt && ((WT)timers [0])->at <= mn_now)
566 { 916 {
567 struct ev_timer *w = timers [0]; 917 struct ev_timer *w = timers [0];
918
919 assert (("inactive timer on timer heap detected", ev_is_active (w)));
568 920
569 /* first reschedule or stop timer */ 921 /* first reschedule or stop timer */
570 if (w->repeat) 922 if (w->repeat)
571 { 923 {
572 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 924 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
573 w->at = now + w->repeat; 925 ((WT)w)->at = mn_now + w->repeat;
574 downheap ((WT *)timers, timercnt, 0); 926 downheap ((WT *)timers, timercnt, 0);
575 } 927 }
576 else 928 else
577 ev_timer_stop (w); /* nonrepeating: stop timer */ 929 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
578 930
579 event ((W)w, EV_TIMEOUT); 931 event (EV_A_ (W)w, EV_TIMEOUT);
580 } 932 }
581} 933}
582 934
583static void 935static void
584periodics_reify (void) 936periodics_reify (EV_P)
585{ 937{
586 while (periodiccnt && periodics [0]->at <= ev_now) 938 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
587 { 939 {
588 struct ev_periodic *w = periodics [0]; 940 struct ev_periodic *w = periodics [0];
941
942 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
589 943
590 /* first reschedule or stop timer */ 944 /* first reschedule or stop timer */
591 if (w->interval) 945 if (w->interval)
592 { 946 {
593 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 947 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
594 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 948 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
595 downheap ((WT *)periodics, periodiccnt, 0); 949 downheap ((WT *)periodics, periodiccnt, 0);
596 } 950 }
597 else 951 else
598 ev_periodic_stop (w); /* nonrepeating: stop timer */ 952 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
599 953
600 event ((W)w, EV_PERIODIC); 954 event (EV_A_ (W)w, EV_PERIODIC);
601 } 955 }
602} 956}
603 957
604static void 958static void
605periodics_reschedule (ev_tstamp diff) 959periodics_reschedule (EV_P)
606{ 960{
607 int i; 961 int i;
608 962
609 /* adjust periodics after time jump */ 963 /* adjust periodics after time jump */
610 for (i = 0; i < periodiccnt; ++i) 964 for (i = 0; i < periodiccnt; ++i)
611 { 965 {
612 struct ev_periodic *w = periodics [i]; 966 struct ev_periodic *w = periodics [i];
613 967
614 if (w->interval) 968 if (w->interval)
615 { 969 {
616 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 970 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
617 971
618 if (fabs (diff) >= 1e-4) 972 if (fabs (diff) >= 1e-4)
619 { 973 {
620 ev_periodic_stop (w); 974 ev_periodic_stop (EV_A_ w);
621 ev_periodic_start (w); 975 ev_periodic_start (EV_A_ w);
622 976
623 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 977 i = 0; /* restart loop, inefficient, but time jumps should be rare */
624 } 978 }
625 } 979 }
626 } 980 }
627} 981}
628 982
629static int 983inline int
630time_update_monotonic (void) 984time_update_monotonic (EV_P)
631{ 985{
632 now = get_clock (); 986 mn_now = get_clock ();
633 987
634 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 988 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
635 { 989 {
636 ev_now = now + diff; 990 rt_now = rtmn_diff + mn_now;
637 return 0; 991 return 0;
638 } 992 }
639 else 993 else
640 { 994 {
641 now_floor = now; 995 now_floor = mn_now;
642 ev_now = ev_time (); 996 rt_now = ev_time ();
643 return 1; 997 return 1;
644 } 998 }
645} 999}
646 1000
647static void 1001static void
648time_update (void) 1002time_update (EV_P)
649{ 1003{
650 int i; 1004 int i;
651 1005
652#if EV_USE_MONOTONIC 1006#if EV_USE_MONOTONIC
653 if (expect_true (have_monotonic)) 1007 if (expect_true (have_monotonic))
654 { 1008 {
655 if (time_update_monotonic ()) 1009 if (time_update_monotonic (EV_A))
656 { 1010 {
657 ev_tstamp odiff = diff; 1011 ev_tstamp odiff = rtmn_diff;
658 1012
659 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1013 for (i = 4; --i; ) /* loop a few times, before making important decisions */
660 { 1014 {
661 diff = ev_now - now; 1015 rtmn_diff = rt_now - mn_now;
662 1016
663 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1017 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
664 return; /* all is well */ 1018 return; /* all is well */
665 1019
666 ev_now = ev_time (); 1020 rt_now = ev_time ();
667 now = get_clock (); 1021 mn_now = get_clock ();
668 now_floor = now; 1022 now_floor = mn_now;
669 } 1023 }
670 1024
671 periodics_reschedule (diff - odiff); 1025 periodics_reschedule (EV_A);
672 /* no timer adjustment, as the monotonic clock doesn't jump */ 1026 /* no timer adjustment, as the monotonic clock doesn't jump */
1027 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
673 } 1028 }
674 } 1029 }
675 else 1030 else
676#endif 1031#endif
677 { 1032 {
678 ev_now = ev_time (); 1033 rt_now = ev_time ();
679 1034
680 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1035 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
681 { 1036 {
682 periodics_reschedule (ev_now - now); 1037 periodics_reschedule (EV_A);
683 1038
684 /* adjust timers. this is easy, as the offset is the same for all */ 1039 /* adjust timers. this is easy, as the offset is the same for all */
685 for (i = 0; i < timercnt; ++i) 1040 for (i = 0; i < timercnt; ++i)
686 timers [i]->at += diff; 1041 ((WT)timers [i])->at += rt_now - mn_now;
687 } 1042 }
688 1043
689 now = ev_now; 1044 mn_now = rt_now;
690 } 1045 }
691} 1046}
692 1047
693int ev_loop_done; 1048void
1049ev_ref (EV_P)
1050{
1051 ++activecnt;
1052}
694 1053
1054void
1055ev_unref (EV_P)
1056{
1057 --activecnt;
1058}
1059
1060static int loop_done;
1061
1062void
695void ev_loop (int flags) 1063ev_loop (EV_P_ int flags)
696{ 1064{
697 double block; 1065 double block;
698 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1066 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
699 1067
700 do 1068 do
701 { 1069 {
702 /* queue check watchers (and execute them) */ 1070 /* queue check watchers (and execute them) */
703 if (expect_false (preparecnt)) 1071 if (expect_false (preparecnt))
704 { 1072 {
705 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1073 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
706 call_pending (); 1074 call_pending (EV_A);
707 } 1075 }
708 1076
1077 /* we might have forked, so reify kernel state if necessary */
1078 if (expect_false (postfork))
1079 loop_fork (EV_A);
1080
709 /* update fd-related kernel structures */ 1081 /* update fd-related kernel structures */
710 fd_reify (); 1082 fd_reify (EV_A);
711 1083
712 /* calculate blocking time */ 1084 /* calculate blocking time */
713 1085
714 /* we only need this for !monotonic clockor timers, but as we basically 1086 /* we only need this for !monotonic clockor timers, but as we basically
715 always have timers, we just calculate it always */ 1087 always have timers, we just calculate it always */
716#if EV_USE_MONOTONIC 1088#if EV_USE_MONOTONIC
717 if (expect_true (have_monotonic)) 1089 if (expect_true (have_monotonic))
718 time_update_monotonic (); 1090 time_update_monotonic (EV_A);
719 else 1091 else
720#endif 1092#endif
721 { 1093 {
722 ev_now = ev_time (); 1094 rt_now = ev_time ();
723 now = ev_now; 1095 mn_now = rt_now;
724 } 1096 }
725 1097
726 if (flags & EVLOOP_NONBLOCK || idlecnt) 1098 if (flags & EVLOOP_NONBLOCK || idlecnt)
727 block = 0.; 1099 block = 0.;
728 else 1100 else
729 { 1101 {
730 block = MAX_BLOCKTIME; 1102 block = MAX_BLOCKTIME;
731 1103
732 if (timercnt) 1104 if (timercnt)
733 { 1105 {
734 ev_tstamp to = timers [0]->at - now + method_fudge; 1106 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
735 if (block > to) block = to; 1107 if (block > to) block = to;
736 } 1108 }
737 1109
738 if (periodiccnt) 1110 if (periodiccnt)
739 { 1111 {
740 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1112 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
741 if (block > to) block = to; 1113 if (block > to) block = to;
742 } 1114 }
743 1115
744 if (block < 0.) block = 0.; 1116 if (block < 0.) block = 0.;
745 } 1117 }
746 1118
747 method_poll (block); 1119 method_poll (EV_A_ block);
748 1120
749 /* update ev_now, do magic */ 1121 /* update rt_now, do magic */
750 time_update (); 1122 time_update (EV_A);
751 1123
752 /* queue pending timers and reschedule them */ 1124 /* queue pending timers and reschedule them */
753 timers_reify (); /* relative timers called last */ 1125 timers_reify (EV_A); /* relative timers called last */
754 periodics_reify (); /* absolute timers called first */ 1126 periodics_reify (EV_A); /* absolute timers called first */
755 1127
756 /* queue idle watchers unless io or timers are pending */ 1128 /* queue idle watchers unless io or timers are pending */
757 if (!pendingcnt) 1129 if (!pendingcnt)
758 queue_events ((W *)idles, idlecnt, EV_IDLE); 1130 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
759 1131
760 /* queue check watchers, to be executed first */ 1132 /* queue check watchers, to be executed first */
761 if (checkcnt) 1133 if (checkcnt)
762 queue_events ((W *)checks, checkcnt, EV_CHECK); 1134 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
763 1135
764 call_pending (); 1136 call_pending (EV_A);
765 } 1137 }
766 while (!ev_loop_done); 1138 while (activecnt && !loop_done);
767 1139
768 if (ev_loop_done != 2) 1140 if (loop_done != 2)
769 ev_loop_done = 0; 1141 loop_done = 0;
1142}
1143
1144void
1145ev_unloop (EV_P_ int how)
1146{
1147 loop_done = how;
770} 1148}
771 1149
772/*****************************************************************************/ 1150/*****************************************************************************/
773 1151
774static void 1152inline void
775wlist_add (WL *head, WL elem) 1153wlist_add (WL *head, WL elem)
776{ 1154{
777 elem->next = *head; 1155 elem->next = *head;
778 *head = elem; 1156 *head = elem;
779} 1157}
780 1158
781static void 1159inline void
782wlist_del (WL *head, WL elem) 1160wlist_del (WL *head, WL elem)
783{ 1161{
784 while (*head) 1162 while (*head)
785 { 1163 {
786 if (*head == elem) 1164 if (*head == elem)
791 1169
792 head = &(*head)->next; 1170 head = &(*head)->next;
793 } 1171 }
794} 1172}
795 1173
796static void 1174inline void
797ev_clear_pending (W w) 1175ev_clear_pending (EV_P_ W w)
798{ 1176{
799 if (w->pending) 1177 if (w->pending)
800 { 1178 {
801 pendings [w->pending - 1].w = 0; 1179 pendings [ABSPRI (w)][w->pending - 1].w = 0;
802 w->pending = 0; 1180 w->pending = 0;
803 } 1181 }
804} 1182}
805 1183
806static void 1184inline void
807ev_start (W w, int active) 1185ev_start (EV_P_ W w, int active)
808{ 1186{
1187 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1188 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1189
809 w->active = active; 1190 w->active = active;
1191 ev_ref (EV_A);
810} 1192}
811 1193
812static void 1194inline void
813ev_stop (W w) 1195ev_stop (EV_P_ W w)
814{ 1196{
1197 ev_unref (EV_A);
815 w->active = 0; 1198 w->active = 0;
816} 1199}
817 1200
818/*****************************************************************************/ 1201/*****************************************************************************/
819 1202
820void 1203void
821ev_io_start (struct ev_io *w) 1204ev_io_start (EV_P_ struct ev_io *w)
822{ 1205{
823 int fd = w->fd; 1206 int fd = w->fd;
824 1207
825 if (ev_is_active (w)) 1208 if (ev_is_active (w))
826 return; 1209 return;
827 1210
828 assert (("ev_io_start called with negative fd", fd >= 0)); 1211 assert (("ev_io_start called with negative fd", fd >= 0));
829 1212
830 ev_start ((W)w, 1); 1213 ev_start (EV_A_ (W)w, 1);
831 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1214 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
832 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1215 wlist_add ((WL *)&anfds[fd].head, (WL)w);
833 1216
834 fd_change (fd); 1217 fd_change (EV_A_ fd);
835} 1218}
836 1219
837void 1220void
838ev_io_stop (struct ev_io *w) 1221ev_io_stop (EV_P_ struct ev_io *w)
839{ 1222{
840 ev_clear_pending ((W)w); 1223 ev_clear_pending (EV_A_ (W)w);
841 if (!ev_is_active (w)) 1224 if (!ev_is_active (w))
842 return; 1225 return;
843 1226
844 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1227 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
845 ev_stop ((W)w); 1228 ev_stop (EV_A_ (W)w);
846 1229
847 fd_change (w->fd); 1230 fd_change (EV_A_ w->fd);
848} 1231}
849 1232
850void 1233void
851ev_timer_start (struct ev_timer *w) 1234ev_timer_start (EV_P_ struct ev_timer *w)
852{ 1235{
853 if (ev_is_active (w)) 1236 if (ev_is_active (w))
854 return; 1237 return;
855 1238
856 w->at += now; 1239 ((WT)w)->at += mn_now;
857 1240
858 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1241 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
859 1242
860 ev_start ((W)w, ++timercnt); 1243 ev_start (EV_A_ (W)w, ++timercnt);
861 array_needsize (timers, timermax, timercnt, ); 1244 array_needsize (timers, timermax, timercnt, (void));
862 timers [timercnt - 1] = w; 1245 timers [timercnt - 1] = w;
863 upheap ((WT *)timers, timercnt - 1); 1246 upheap ((WT *)timers, timercnt - 1);
864}
865 1247
1248 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1249}
1250
866void 1251void
867ev_timer_stop (struct ev_timer *w) 1252ev_timer_stop (EV_P_ struct ev_timer *w)
868{ 1253{
869 ev_clear_pending ((W)w); 1254 ev_clear_pending (EV_A_ (W)w);
870 if (!ev_is_active (w)) 1255 if (!ev_is_active (w))
871 return; 1256 return;
872 1257
1258 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1259
873 if (w->active < timercnt--) 1260 if (((W)w)->active < timercnt--)
874 { 1261 {
875 timers [w->active - 1] = timers [timercnt]; 1262 timers [((W)w)->active - 1] = timers [timercnt];
876 downheap ((WT *)timers, timercnt, w->active - 1); 1263 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
877 } 1264 }
878 1265
879 w->at = w->repeat; 1266 ((WT)w)->at = w->repeat;
880 1267
881 ev_stop ((W)w); 1268 ev_stop (EV_A_ (W)w);
882} 1269}
883 1270
884void 1271void
885ev_timer_again (struct ev_timer *w) 1272ev_timer_again (EV_P_ struct ev_timer *w)
886{ 1273{
887 if (ev_is_active (w)) 1274 if (ev_is_active (w))
888 { 1275 {
889 if (w->repeat) 1276 if (w->repeat)
890 { 1277 {
891 w->at = now + w->repeat; 1278 ((WT)w)->at = mn_now + w->repeat;
892 downheap ((WT *)timers, timercnt, w->active - 1); 1279 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
893 } 1280 }
894 else 1281 else
895 ev_timer_stop (w); 1282 ev_timer_stop (EV_A_ w);
896 } 1283 }
897 else if (w->repeat) 1284 else if (w->repeat)
898 ev_timer_start (w); 1285 ev_timer_start (EV_A_ w);
899} 1286}
900 1287
901void 1288void
902ev_periodic_start (struct ev_periodic *w) 1289ev_periodic_start (EV_P_ struct ev_periodic *w)
903{ 1290{
904 if (ev_is_active (w)) 1291 if (ev_is_active (w))
905 return; 1292 return;
906 1293
907 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1294 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
908 1295
909 /* this formula differs from the one in periodic_reify because we do not always round up */ 1296 /* this formula differs from the one in periodic_reify because we do not always round up */
910 if (w->interval) 1297 if (w->interval)
911 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1298 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
912 1299
913 ev_start ((W)w, ++periodiccnt); 1300 ev_start (EV_A_ (W)w, ++periodiccnt);
914 array_needsize (periodics, periodicmax, periodiccnt, ); 1301 array_needsize (periodics, periodicmax, periodiccnt, (void));
915 periodics [periodiccnt - 1] = w; 1302 periodics [periodiccnt - 1] = w;
916 upheap ((WT *)periodics, periodiccnt - 1); 1303 upheap ((WT *)periodics, periodiccnt - 1);
917}
918 1304
1305 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1306}
1307
919void 1308void
920ev_periodic_stop (struct ev_periodic *w) 1309ev_periodic_stop (EV_P_ struct ev_periodic *w)
921{ 1310{
922 ev_clear_pending ((W)w); 1311 ev_clear_pending (EV_A_ (W)w);
923 if (!ev_is_active (w)) 1312 if (!ev_is_active (w))
924 return; 1313 return;
925 1314
1315 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1316
926 if (w->active < periodiccnt--) 1317 if (((W)w)->active < periodiccnt--)
927 { 1318 {
928 periodics [w->active - 1] = periodics [periodiccnt]; 1319 periodics [((W)w)->active - 1] = periodics [periodiccnt];
929 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1320 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
930 } 1321 }
931 1322
932 ev_stop ((W)w); 1323 ev_stop (EV_A_ (W)w);
933} 1324}
934 1325
935void 1326void
936ev_signal_start (struct ev_signal *w) 1327ev_idle_start (EV_P_ struct ev_idle *w)
937{ 1328{
938 if (ev_is_active (w)) 1329 if (ev_is_active (w))
939 return; 1330 return;
940 1331
1332 ev_start (EV_A_ (W)w, ++idlecnt);
1333 array_needsize (idles, idlemax, idlecnt, (void));
1334 idles [idlecnt - 1] = w;
1335}
1336
1337void
1338ev_idle_stop (EV_P_ struct ev_idle *w)
1339{
1340 ev_clear_pending (EV_A_ (W)w);
1341 if (ev_is_active (w))
1342 return;
1343
1344 idles [((W)w)->active - 1] = idles [--idlecnt];
1345 ev_stop (EV_A_ (W)w);
1346}
1347
1348void
1349ev_prepare_start (EV_P_ struct ev_prepare *w)
1350{
1351 if (ev_is_active (w))
1352 return;
1353
1354 ev_start (EV_A_ (W)w, ++preparecnt);
1355 array_needsize (prepares, preparemax, preparecnt, (void));
1356 prepares [preparecnt - 1] = w;
1357}
1358
1359void
1360ev_prepare_stop (EV_P_ struct ev_prepare *w)
1361{
1362 ev_clear_pending (EV_A_ (W)w);
1363 if (ev_is_active (w))
1364 return;
1365
1366 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1367 ev_stop (EV_A_ (W)w);
1368}
1369
1370void
1371ev_check_start (EV_P_ struct ev_check *w)
1372{
1373 if (ev_is_active (w))
1374 return;
1375
1376 ev_start (EV_A_ (W)w, ++checkcnt);
1377 array_needsize (checks, checkmax, checkcnt, (void));
1378 checks [checkcnt - 1] = w;
1379}
1380
1381void
1382ev_check_stop (EV_P_ struct ev_check *w)
1383{
1384 ev_clear_pending (EV_A_ (W)w);
1385 if (ev_is_active (w))
1386 return;
1387
1388 checks [((W)w)->active - 1] = checks [--checkcnt];
1389 ev_stop (EV_A_ (W)w);
1390}
1391
1392#ifndef SA_RESTART
1393# define SA_RESTART 0
1394#endif
1395
1396void
1397ev_signal_start (EV_P_ struct ev_signal *w)
1398{
1399#if EV_MULTIPLICITY
1400 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1401#endif
1402 if (ev_is_active (w))
1403 return;
1404
941 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1405 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
942 1406
943 ev_start ((W)w, 1); 1407 ev_start (EV_A_ (W)w, 1);
944 array_needsize (signals, signalmax, w->signum, signals_init); 1408 array_needsize (signals, signalmax, w->signum, signals_init);
945 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1409 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
946 1410
947 if (!w->next) 1411 if (!((WL)w)->next)
948 { 1412 {
1413#if WIN32
1414 signal (w->signum, sighandler);
1415#else
949 struct sigaction sa; 1416 struct sigaction sa;
950 sa.sa_handler = sighandler; 1417 sa.sa_handler = sighandler;
951 sigfillset (&sa.sa_mask); 1418 sigfillset (&sa.sa_mask);
952 sa.sa_flags = 0; 1419 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
953 sigaction (w->signum, &sa, 0); 1420 sigaction (w->signum, &sa, 0);
1421#endif
954 } 1422 }
955} 1423}
956 1424
957void 1425void
958ev_signal_stop (struct ev_signal *w) 1426ev_signal_stop (EV_P_ struct ev_signal *w)
959{ 1427{
960 ev_clear_pending ((W)w); 1428 ev_clear_pending (EV_A_ (W)w);
961 if (!ev_is_active (w)) 1429 if (!ev_is_active (w))
962 return; 1430 return;
963 1431
964 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1432 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
965 ev_stop ((W)w); 1433 ev_stop (EV_A_ (W)w);
966 1434
967 if (!signals [w->signum - 1].head) 1435 if (!signals [w->signum - 1].head)
968 signal (w->signum, SIG_DFL); 1436 signal (w->signum, SIG_DFL);
969} 1437}
970 1438
971void 1439void
972ev_idle_start (struct ev_idle *w) 1440ev_child_start (EV_P_ struct ev_child *w)
973{ 1441{
1442#if EV_MULTIPLICITY
1443 assert (("child watchers are only supported in the default loop", loop == default_loop));
1444#endif
974 if (ev_is_active (w)) 1445 if (ev_is_active (w))
975 return; 1446 return;
976 1447
977 ev_start ((W)w, ++idlecnt); 1448 ev_start (EV_A_ (W)w, 1);
978 array_needsize (idles, idlemax, idlecnt, ); 1449 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
979 idles [idlecnt - 1] = w;
980} 1450}
981 1451
982void 1452void
983ev_idle_stop (struct ev_idle *w) 1453ev_child_stop (EV_P_ struct ev_child *w)
984{ 1454{
985 ev_clear_pending ((W)w); 1455 ev_clear_pending (EV_A_ (W)w);
986 if (ev_is_active (w)) 1456 if (ev_is_active (w))
987 return; 1457 return;
988 1458
989 idles [w->active - 1] = idles [--idlecnt];
990 ev_stop ((W)w);
991}
992
993void
994ev_prepare_start (struct ev_prepare *w)
995{
996 if (ev_is_active (w))
997 return;
998
999 ev_start ((W)w, ++preparecnt);
1000 array_needsize (prepares, preparemax, preparecnt, );
1001 prepares [preparecnt - 1] = w;
1002}
1003
1004void
1005ev_prepare_stop (struct ev_prepare *w)
1006{
1007 ev_clear_pending ((W)w);
1008 if (ev_is_active (w))
1009 return;
1010
1011 prepares [w->active - 1] = prepares [--preparecnt];
1012 ev_stop ((W)w);
1013}
1014
1015void
1016ev_check_start (struct ev_check *w)
1017{
1018 if (ev_is_active (w))
1019 return;
1020
1021 ev_start ((W)w, ++checkcnt);
1022 array_needsize (checks, checkmax, checkcnt, );
1023 checks [checkcnt - 1] = w;
1024}
1025
1026void
1027ev_check_stop (struct ev_check *w)
1028{
1029 ev_clear_pending ((W)w);
1030 if (ev_is_active (w))
1031 return;
1032
1033 checks [w->active - 1] = checks [--checkcnt];
1034 ev_stop ((W)w);
1035}
1036
1037void
1038ev_child_start (struct ev_child *w)
1039{
1040 if (ev_is_active (w))
1041 return;
1042
1043 ev_start ((W)w, 1);
1044 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1045}
1046
1047void
1048ev_child_stop (struct ev_child *w)
1049{
1050 ev_clear_pending ((W)w);
1051 if (ev_is_active (w))
1052 return;
1053
1054 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1459 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1055 ev_stop ((W)w); 1460 ev_stop (EV_A_ (W)w);
1056} 1461}
1057 1462
1058/*****************************************************************************/ 1463/*****************************************************************************/
1059 1464
1060struct ev_once 1465struct ev_once
1064 void (*cb)(int revents, void *arg); 1469 void (*cb)(int revents, void *arg);
1065 void *arg; 1470 void *arg;
1066}; 1471};
1067 1472
1068static void 1473static void
1069once_cb (struct ev_once *once, int revents) 1474once_cb (EV_P_ struct ev_once *once, int revents)
1070{ 1475{
1071 void (*cb)(int revents, void *arg) = once->cb; 1476 void (*cb)(int revents, void *arg) = once->cb;
1072 void *arg = once->arg; 1477 void *arg = once->arg;
1073 1478
1074 ev_io_stop (&once->io); 1479 ev_io_stop (EV_A_ &once->io);
1075 ev_timer_stop (&once->to); 1480 ev_timer_stop (EV_A_ &once->to);
1076 free (once); 1481 ev_free (once);
1077 1482
1078 cb (revents, arg); 1483 cb (revents, arg);
1079} 1484}
1080 1485
1081static void 1486static void
1082once_cb_io (struct ev_io *w, int revents) 1487once_cb_io (EV_P_ struct ev_io *w, int revents)
1083{ 1488{
1084 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1489 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1085} 1490}
1086 1491
1087static void 1492static void
1088once_cb_to (struct ev_timer *w, int revents) 1493once_cb_to (EV_P_ struct ev_timer *w, int revents)
1089{ 1494{
1090 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1495 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1091} 1496}
1092 1497
1093void 1498void
1094ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1499ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1095{ 1500{
1096 struct ev_once *once = malloc (sizeof (struct ev_once)); 1501 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1097 1502
1098 if (!once) 1503 if (!once)
1099 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1504 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1100 else 1505 else
1101 { 1506 {
1104 1509
1105 ev_watcher_init (&once->io, once_cb_io); 1510 ev_watcher_init (&once->io, once_cb_io);
1106 if (fd >= 0) 1511 if (fd >= 0)
1107 { 1512 {
1108 ev_io_set (&once->io, fd, events); 1513 ev_io_set (&once->io, fd, events);
1109 ev_io_start (&once->io); 1514 ev_io_start (EV_A_ &once->io);
1110 } 1515 }
1111 1516
1112 ev_watcher_init (&once->to, once_cb_to); 1517 ev_watcher_init (&once->to, once_cb_to);
1113 if (timeout >= 0.) 1518 if (timeout >= 0.)
1114 { 1519 {
1115 ev_timer_set (&once->to, timeout, 0.); 1520 ev_timer_set (&once->to, timeout, 0.);
1116 ev_timer_start (&once->to); 1521 ev_timer_start (EV_A_ &once->to);
1117 } 1522 }
1118 } 1523 }
1119} 1524}
1120 1525
1121/*****************************************************************************/
1122
1123#if 0
1124
1125struct ev_io wio;
1126
1127static void
1128sin_cb (struct ev_io *w, int revents)
1129{
1130 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1131}
1132
1133static void
1134ocb (struct ev_timer *w, int revents)
1135{
1136 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1137 ev_timer_stop (w);
1138 ev_timer_start (w);
1139}
1140
1141static void
1142scb (struct ev_signal *w, int revents)
1143{
1144 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1145 ev_io_stop (&wio);
1146 ev_io_start (&wio);
1147}
1148
1149static void
1150gcb (struct ev_signal *w, int revents)
1151{
1152 fprintf (stderr, "generic %x\n", revents);
1153
1154}
1155
1156int main (void)
1157{
1158 ev_init (0);
1159
1160 ev_io_init (&wio, sin_cb, 0, EV_READ);
1161 ev_io_start (&wio);
1162
1163 struct ev_timer t[10000];
1164
1165#if 0
1166 int i;
1167 for (i = 0; i < 10000; ++i)
1168 {
1169 struct ev_timer *w = t + i;
1170 ev_watcher_init (w, ocb, i);
1171 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1172 ev_timer_start (w);
1173 if (drand48 () < 0.5)
1174 ev_timer_stop (w);
1175 }
1176#endif
1177
1178 struct ev_timer t1;
1179 ev_timer_init (&t1, ocb, 5, 10);
1180 ev_timer_start (&t1);
1181
1182 struct ev_signal sig;
1183 ev_signal_init (&sig, scb, SIGQUIT);
1184 ev_signal_start (&sig);
1185
1186 struct ev_check cw;
1187 ev_check_init (&cw, gcb);
1188 ev_check_start (&cw);
1189
1190 struct ev_idle iw;
1191 ev_idle_init (&iw, gcb);
1192 ev_idle_start (&iw);
1193
1194 ev_loop (0);
1195
1196 return 0;
1197}
1198
1199#endif
1200
1201
1202
1203

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines