ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.73 by root, Tue Nov 6 16:27:10 2007 UTC vs.
Revision 1.97 by root, Sun Nov 11 01:53:07 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 139
140#ifdef EV_H
141# include EV_H
142#else
131#include "ev.h" 143# include "ev.h"
144#endif
132 145
133#if __GNUC__ >= 3 146#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 148# define inline inline
136#else 149#else
215 int events; 228 int events;
216} ANPENDING; 229} ANPENDING;
217 230
218#if EV_MULTIPLICITY 231#if EV_MULTIPLICITY
219 232
220struct ev_loop 233 struct ev_loop
221{ 234 {
235 ev_tstamp ev_rt_now;
222# define VAR(name,decl) decl; 236 #define VAR(name,decl) decl;
223# include "ev_vars.h" 237 #include "ev_vars.h"
224};
225# undef VAR 238 #undef VAR
239 };
226# include "ev_wrap.h" 240 #include "ev_wrap.h"
241
242 struct ev_loop default_loop_struct;
243 static struct ev_loop *default_loop;
227 244
228#else 245#else
229 246
247 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 248 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 249 #include "ev_vars.h"
232# undef VAR 250 #undef VAR
251
252 static int default_loop;
233 253
234#endif 254#endif
235 255
236/*****************************************************************************/ 256/*****************************************************************************/
237 257
238inline ev_tstamp 258ev_tstamp
239ev_time (void) 259ev_time (void)
240{ 260{
241#if EV_USE_REALTIME 261#if EV_USE_REALTIME
242 struct timespec ts; 262 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 263 clock_gettime (CLOCK_REALTIME, &ts);
262#endif 282#endif
263 283
264 return ev_time (); 284 return ev_time ();
265} 285}
266 286
287#if EV_MULTIPLICITY
267ev_tstamp 288ev_tstamp
268ev_now (EV_P) 289ev_now (EV_P)
269{ 290{
270 return rt_now; 291 return ev_rt_now;
271} 292}
293#endif
272 294
273#define array_roundsize(base,n) ((n) | 4 & ~3) 295#define array_roundsize(type,n) ((n) | 4 & ~3)
274 296
275#define array_needsize(base,cur,cnt,init) \ 297#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 298 if (expect_false ((cnt) > cur)) \
277 { \ 299 { \
278 int newcnt = cur; \ 300 int newcnt = cur; \
279 do \ 301 do \
280 { \ 302 { \
281 newcnt = array_roundsize (base, newcnt << 1); \ 303 newcnt = array_roundsize (type, newcnt << 1); \
282 } \ 304 } \
283 while ((cnt) > newcnt); \ 305 while ((cnt) > newcnt); \
284 \ 306 \
285 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 307 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \ 308 init (base + cur, newcnt - cur); \
287 cur = newcnt; \ 309 cur = newcnt; \
288 } 310 }
289 311
290#define array_slim(stem) \ 312#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 313 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 314 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 315 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 316 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 317 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 318 }
297 319
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */ 320/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */ 321/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
316 338
317 ++base; 339 ++base;
318 } 340 }
319} 341}
320 342
321static void 343void
322event (EV_P_ W w, int events) 344ev_feed_event (EV_P_ void *w, int revents)
323{ 345{
346 W w_ = (W)w;
347
324 if (w->pending) 348 if (w_->pending)
325 { 349 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 350 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
327 return; 351 return;
328 } 352 }
329 353
330 w->pending = ++pendingcnt [ABSPRI (w)]; 354 w_->pending = ++pendingcnt [ABSPRI (w_)];
331 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 355 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w; 356 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
333 pendings [ABSPRI (w)][w->pending - 1].events = events; 357 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
334} 358}
335 359
336static void 360static void
337queue_events (EV_P_ W *events, int eventcnt, int type) 361queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 362{
339 int i; 363 int i;
340 364
341 for (i = 0; i < eventcnt; ++i) 365 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 366 ev_feed_event (EV_A_ events [i], type);
343} 367}
344 368
345static void 369inline void
346fd_event (EV_P_ int fd, int events) 370fd_event (EV_P_ int fd, int revents)
347{ 371{
348 ANFD *anfd = anfds + fd; 372 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 373 struct ev_io *w;
350 374
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
352 { 376 {
353 int ev = w->events & events; 377 int ev = w->events & revents;
354 378
355 if (ev) 379 if (ev)
356 event (EV_A_ (W)w, ev); 380 ev_feed_event (EV_A_ (W)w, ev);
357 } 381 }
382}
383
384void
385ev_feed_fd_event (EV_P_ int fd, int revents)
386{
387 fd_event (EV_A_ fd, revents);
358} 388}
359 389
360/*****************************************************************************/ 390/*****************************************************************************/
361 391
362static void 392static void
391 return; 421 return;
392 422
393 anfds [fd].reify = 1; 423 anfds [fd].reify = 1;
394 424
395 ++fdchangecnt; 425 ++fdchangecnt;
396 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 426 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
397 fdchanges [fdchangecnt - 1] = fd; 427 fdchanges [fdchangecnt - 1] = fd;
398} 428}
399 429
400static void 430static void
401fd_kill (EV_P_ int fd) 431fd_kill (EV_P_ int fd)
403 struct ev_io *w; 433 struct ev_io *w;
404 434
405 while ((w = (struct ev_io *)anfds [fd].head)) 435 while ((w = (struct ev_io *)anfds [fd].head))
406 { 436 {
407 ev_io_stop (EV_A_ w); 437 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 438 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 439 }
410} 440}
411 441
412static int 442static int
413fd_valid (int fd) 443fd_valid (int fd)
501 531
502 heap [k] = w; 532 heap [k] = w;
503 ((W)heap [k])->active = k + 1; 533 ((W)heap [k])->active = k + 1;
504} 534}
505 535
536inline void
537adjustheap (WT *heap, int N, int k, ev_tstamp at)
538{
539 ev_tstamp old_at = heap [k]->at;
540 heap [k]->at = at;
541
542 if (old_at < at)
543 downheap (heap, N, k);
544 else
545 upheap (heap, k);
546}
547
506/*****************************************************************************/ 548/*****************************************************************************/
507 549
508typedef struct 550typedef struct
509{ 551{
510 WL head; 552 WL head;
541 583
542 if (!gotsig) 584 if (!gotsig)
543 { 585 {
544 int old_errno = errno; 586 int old_errno = errno;
545 gotsig = 1; 587 gotsig = 1;
588#ifdef WIN32
589 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
590#else
546 write (sigpipe [1], &signum, 1); 591 write (sigpipe [1], &signum, 1);
592#endif
547 errno = old_errno; 593 errno = old_errno;
548 } 594 }
549} 595}
550 596
597void
598ev_feed_signal_event (EV_P_ int signum)
599{
600 WL w;
601
602#if EV_MULTIPLICITY
603 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
604#endif
605
606 --signum;
607
608 if (signum < 0 || signum >= signalmax)
609 return;
610
611 signals [signum].gotsig = 0;
612
613 for (w = signals [signum].head; w; w = w->next)
614 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
615}
616
551static void 617static void
552sigcb (EV_P_ struct ev_io *iow, int revents) 618sigcb (EV_P_ struct ev_io *iow, int revents)
553{ 619{
554 WL w;
555 int signum; 620 int signum;
556 621
622#ifdef WIN32
623 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
624#else
557 read (sigpipe [0], &revents, 1); 625 read (sigpipe [0], &revents, 1);
626#endif
558 gotsig = 0; 627 gotsig = 0;
559 628
560 for (signum = signalmax; signum--; ) 629 for (signum = signalmax; signum--; )
561 if (signals [signum].gotsig) 630 if (signals [signum].gotsig)
562 { 631 ev_feed_signal_event (EV_A_ signum + 1);
563 signals [signum].gotsig = 0;
564
565 for (w = signals [signum].head; w; w = w->next)
566 event (EV_A_ (W)w, EV_SIGNAL);
567 }
568} 632}
569 633
570static void 634static void
571siginit (EV_P) 635siginit (EV_P)
572{ 636{
605 if (w->pid == pid || !w->pid) 669 if (w->pid == pid || !w->pid)
606 { 670 {
607 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 671 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
608 w->rpid = pid; 672 w->rpid = pid;
609 w->rstatus = status; 673 w->rstatus = status;
610 event (EV_A_ (W)w, EV_CHILD); 674 ev_feed_event (EV_A_ (W)w, EV_CHILD);
611 } 675 }
612} 676}
613 677
614static void 678static void
615childcb (EV_P_ struct ev_signal *sw, int revents) 679childcb (EV_P_ struct ev_signal *sw, int revents)
617 int pid, status; 681 int pid, status;
618 682
619 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 683 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
620 { 684 {
621 /* make sure we are called again until all childs have been reaped */ 685 /* make sure we are called again until all childs have been reaped */
622 event (EV_A_ (W)sw, EV_SIGNAL); 686 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
623 687
624 child_reap (EV_A_ sw, pid, pid, status); 688 child_reap (EV_A_ sw, pid, pid, status);
625 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 689 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
626 } 690 }
627} 691}
684 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 748 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
685 have_monotonic = 1; 749 have_monotonic = 1;
686 } 750 }
687#endif 751#endif
688 752
689 rt_now = ev_time (); 753 ev_rt_now = ev_time ();
690 mn_now = get_clock (); 754 mn_now = get_clock ();
691 now_floor = mn_now; 755 now_floor = mn_now;
692 rtmn_diff = rt_now - mn_now; 756 rtmn_diff = ev_rt_now - mn_now;
693 757
694 if (methods == EVMETHOD_AUTO) 758 if (methods == EVMETHOD_AUTO)
695 if (!enable_secure () && getenv ("LIBEV_METHODS")) 759 if (!enable_secure () && getenv ("LIBEV_METHODS"))
696 methods = atoi (getenv ("LIBEV_METHODS")); 760 methods = atoi (getenv ("LIBEV_METHODS"));
697 else 761 else
712#endif 776#endif
713#if EV_USE_SELECT 777#if EV_USE_SELECT
714 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 778 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
715#endif 779#endif
716 780
717 ev_watcher_init (&sigev, sigcb); 781 ev_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI); 782 ev_set_priority (&sigev, EV_MAXPRI);
719 } 783 }
720} 784}
721 785
722void 786void
744 array_free (pending, [i]); 808 array_free (pending, [i]);
745 809
746 /* have to use the microsoft-never-gets-it-right macro */ 810 /* have to use the microsoft-never-gets-it-right macro */
747 array_free_microshit (fdchange); 811 array_free_microshit (fdchange);
748 array_free_microshit (timer); 812 array_free_microshit (timer);
813#if EV_PERIODICS
749 array_free_microshit (periodic); 814 array_free_microshit (periodic);
815#endif
750 array_free_microshit (idle); 816 array_free_microshit (idle);
751 array_free_microshit (prepare); 817 array_free_microshit (prepare);
752 array_free_microshit (check); 818 array_free_microshit (check);
753 819
754 method = 0; 820 method = 0;
812} 878}
813 879
814#endif 880#endif
815 881
816#if EV_MULTIPLICITY 882#if EV_MULTIPLICITY
817struct ev_loop default_loop_struct;
818static struct ev_loop *default_loop;
819
820struct ev_loop * 883struct ev_loop *
821#else 884#else
822static int default_loop;
823
824int 885int
825#endif 886#endif
826ev_default_loop (int methods) 887ev_default_loop (int methods)
827{ 888{
828 if (sigpipe [0] == sigpipe [1]) 889 if (sigpipe [0] == sigpipe [1])
889 postfork = 1; 950 postfork = 1;
890} 951}
891 952
892/*****************************************************************************/ 953/*****************************************************************************/
893 954
955static int
956any_pending (EV_P)
957{
958 int pri;
959
960 for (pri = NUMPRI; pri--; )
961 if (pendingcnt [pri])
962 return 1;
963
964 return 0;
965}
966
894static void 967static void
895call_pending (EV_P) 968call_pending (EV_P)
896{ 969{
897 int pri; 970 int pri;
898 971
902 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 975 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
903 976
904 if (p->w) 977 if (p->w)
905 { 978 {
906 p->w->pending = 0; 979 p->w->pending = 0;
907 p->w->cb (EV_A_ p->w, p->events); 980 EV_CB_INVOKE (p->w, p->events);
908 } 981 }
909 } 982 }
910} 983}
911 984
912static void 985static void
920 993
921 /* first reschedule or stop timer */ 994 /* first reschedule or stop timer */
922 if (w->repeat) 995 if (w->repeat)
923 { 996 {
924 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 997 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
998
925 ((WT)w)->at = mn_now + w->repeat; 999 ((WT)w)->at += w->repeat;
1000 if (((WT)w)->at < mn_now)
1001 ((WT)w)->at = mn_now;
1002
926 downheap ((WT *)timers, timercnt, 0); 1003 downheap ((WT *)timers, timercnt, 0);
927 } 1004 }
928 else 1005 else
929 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1006 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
930 1007
931 event (EV_A_ (W)w, EV_TIMEOUT); 1008 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
932 } 1009 }
933} 1010}
934 1011
1012#if EV_PERIODICS
935static void 1013static void
936periodics_reify (EV_P) 1014periodics_reify (EV_P)
937{ 1015{
938 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1016 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
939 { 1017 {
940 struct ev_periodic *w = periodics [0]; 1018 struct ev_periodic *w = periodics [0];
941 1019
942 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1020 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
943 1021
944 /* first reschedule or stop timer */ 1022 /* first reschedule or stop timer */
945 if (w->interval) 1023 if (w->reschedule_cb)
946 { 1024 {
1025 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1026
1027 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1028 downheap ((WT *)periodics, periodiccnt, 0);
1029 }
1030 else if (w->interval)
1031 {
947 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1032 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
948 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1033 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
949 downheap ((WT *)periodics, periodiccnt, 0); 1034 downheap ((WT *)periodics, periodiccnt, 0);
950 } 1035 }
951 else 1036 else
952 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1037 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
953 1038
954 event (EV_A_ (W)w, EV_PERIODIC); 1039 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
955 } 1040 }
956} 1041}
957 1042
958static void 1043static void
959periodics_reschedule (EV_P) 1044periodics_reschedule (EV_P)
963 /* adjust periodics after time jump */ 1048 /* adjust periodics after time jump */
964 for (i = 0; i < periodiccnt; ++i) 1049 for (i = 0; i < periodiccnt; ++i)
965 { 1050 {
966 struct ev_periodic *w = periodics [i]; 1051 struct ev_periodic *w = periodics [i];
967 1052
1053 if (w->reschedule_cb)
1054 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
968 if (w->interval) 1055 else if (w->interval)
969 {
970 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1056 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
971
972 if (fabs (diff) >= 1e-4)
973 {
974 ev_periodic_stop (EV_A_ w);
975 ev_periodic_start (EV_A_ w);
976
977 i = 0; /* restart loop, inefficient, but time jumps should be rare */
978 }
979 }
980 } 1057 }
1058
1059 /* now rebuild the heap */
1060 for (i = periodiccnt >> 1; i--; )
1061 downheap ((WT *)periodics, periodiccnt, i);
981} 1062}
1063#endif
982 1064
983inline int 1065inline int
984time_update_monotonic (EV_P) 1066time_update_monotonic (EV_P)
985{ 1067{
986 mn_now = get_clock (); 1068 mn_now = get_clock ();
987 1069
988 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1070 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
989 { 1071 {
990 rt_now = rtmn_diff + mn_now; 1072 ev_rt_now = rtmn_diff + mn_now;
991 return 0; 1073 return 0;
992 } 1074 }
993 else 1075 else
994 { 1076 {
995 now_floor = mn_now; 1077 now_floor = mn_now;
996 rt_now = ev_time (); 1078 ev_rt_now = ev_time ();
997 return 1; 1079 return 1;
998 } 1080 }
999} 1081}
1000 1082
1001static void 1083static void
1010 { 1092 {
1011 ev_tstamp odiff = rtmn_diff; 1093 ev_tstamp odiff = rtmn_diff;
1012 1094
1013 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1095 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1014 { 1096 {
1015 rtmn_diff = rt_now - mn_now; 1097 rtmn_diff = ev_rt_now - mn_now;
1016 1098
1017 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1099 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1018 return; /* all is well */ 1100 return; /* all is well */
1019 1101
1020 rt_now = ev_time (); 1102 ev_rt_now = ev_time ();
1021 mn_now = get_clock (); 1103 mn_now = get_clock ();
1022 now_floor = mn_now; 1104 now_floor = mn_now;
1023 } 1105 }
1024 1106
1107# if EV_PERIODICS
1025 periodics_reschedule (EV_A); 1108 periodics_reschedule (EV_A);
1109# endif
1026 /* no timer adjustment, as the monotonic clock doesn't jump */ 1110 /* no timer adjustment, as the monotonic clock doesn't jump */
1027 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1111 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1028 } 1112 }
1029 } 1113 }
1030 else 1114 else
1031#endif 1115#endif
1032 { 1116 {
1033 rt_now = ev_time (); 1117 ev_rt_now = ev_time ();
1034 1118
1035 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1119 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1036 { 1120 {
1121#if EV_PERIODICS
1037 periodics_reschedule (EV_A); 1122 periodics_reschedule (EV_A);
1123#endif
1038 1124
1039 /* adjust timers. this is easy, as the offset is the same for all */ 1125 /* adjust timers. this is easy, as the offset is the same for all */
1040 for (i = 0; i < timercnt; ++i) 1126 for (i = 0; i < timercnt; ++i)
1041 ((WT)timers [i])->at += rt_now - mn_now; 1127 ((WT)timers [i])->at += ev_rt_now - mn_now;
1042 } 1128 }
1043 1129
1044 mn_now = rt_now; 1130 mn_now = ev_rt_now;
1045 } 1131 }
1046} 1132}
1047 1133
1048void 1134void
1049ev_ref (EV_P) 1135ev_ref (EV_P)
1081 /* update fd-related kernel structures */ 1167 /* update fd-related kernel structures */
1082 fd_reify (EV_A); 1168 fd_reify (EV_A);
1083 1169
1084 /* calculate blocking time */ 1170 /* calculate blocking time */
1085 1171
1086 /* we only need this for !monotonic clockor timers, but as we basically 1172 /* we only need this for !monotonic clock or timers, but as we basically
1087 always have timers, we just calculate it always */ 1173 always have timers, we just calculate it always */
1088#if EV_USE_MONOTONIC 1174#if EV_USE_MONOTONIC
1089 if (expect_true (have_monotonic)) 1175 if (expect_true (have_monotonic))
1090 time_update_monotonic (EV_A); 1176 time_update_monotonic (EV_A);
1091 else 1177 else
1092#endif 1178#endif
1093 { 1179 {
1094 rt_now = ev_time (); 1180 ev_rt_now = ev_time ();
1095 mn_now = rt_now; 1181 mn_now = ev_rt_now;
1096 } 1182 }
1097 1183
1098 if (flags & EVLOOP_NONBLOCK || idlecnt) 1184 if (flags & EVLOOP_NONBLOCK || idlecnt)
1099 block = 0.; 1185 block = 0.;
1100 else 1186 else
1105 { 1191 {
1106 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1192 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1107 if (block > to) block = to; 1193 if (block > to) block = to;
1108 } 1194 }
1109 1195
1196#if EV_PERIODICS
1110 if (periodiccnt) 1197 if (periodiccnt)
1111 { 1198 {
1112 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1199 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1113 if (block > to) block = to; 1200 if (block > to) block = to;
1114 } 1201 }
1202#endif
1115 1203
1116 if (block < 0.) block = 0.; 1204 if (block < 0.) block = 0.;
1117 } 1205 }
1118 1206
1119 method_poll (EV_A_ block); 1207 method_poll (EV_A_ block);
1120 1208
1121 /* update rt_now, do magic */ 1209 /* update ev_rt_now, do magic */
1122 time_update (EV_A); 1210 time_update (EV_A);
1123 1211
1124 /* queue pending timers and reschedule them */ 1212 /* queue pending timers and reschedule them */
1125 timers_reify (EV_A); /* relative timers called last */ 1213 timers_reify (EV_A); /* relative timers called last */
1214#if EV_PERIODICS
1126 periodics_reify (EV_A); /* absolute timers called first */ 1215 periodics_reify (EV_A); /* absolute timers called first */
1216#endif
1127 1217
1128 /* queue idle watchers unless io or timers are pending */ 1218 /* queue idle watchers unless io or timers are pending */
1129 if (!pendingcnt) 1219 if (idlecnt && !any_pending (EV_A))
1130 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1220 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1131 1221
1132 /* queue check watchers, to be executed first */ 1222 /* queue check watchers, to be executed first */
1133 if (checkcnt) 1223 if (checkcnt)
1134 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1224 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1209 return; 1299 return;
1210 1300
1211 assert (("ev_io_start called with negative fd", fd >= 0)); 1301 assert (("ev_io_start called with negative fd", fd >= 0));
1212 1302
1213 ev_start (EV_A_ (W)w, 1); 1303 ev_start (EV_A_ (W)w, 1);
1214 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1304 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1215 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1305 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1216 1306
1217 fd_change (EV_A_ fd); 1307 fd_change (EV_A_ fd);
1218} 1308}
1219 1309
1222{ 1312{
1223 ev_clear_pending (EV_A_ (W)w); 1313 ev_clear_pending (EV_A_ (W)w);
1224 if (!ev_is_active (w)) 1314 if (!ev_is_active (w))
1225 return; 1315 return;
1226 1316
1317 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1318
1227 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1319 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1228 ev_stop (EV_A_ (W)w); 1320 ev_stop (EV_A_ (W)w);
1229 1321
1230 fd_change (EV_A_ w->fd); 1322 fd_change (EV_A_ w->fd);
1231} 1323}
1239 ((WT)w)->at += mn_now; 1331 ((WT)w)->at += mn_now;
1240 1332
1241 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1333 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1242 1334
1243 ev_start (EV_A_ (W)w, ++timercnt); 1335 ev_start (EV_A_ (W)w, ++timercnt);
1244 array_needsize (timers, timermax, timercnt, (void)); 1336 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1245 timers [timercnt - 1] = w; 1337 timers [timercnt - 1] = w;
1246 upheap ((WT *)timers, timercnt - 1); 1338 upheap ((WT *)timers, timercnt - 1);
1247 1339
1248 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1340 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1249} 1341}
1261 { 1353 {
1262 timers [((W)w)->active - 1] = timers [timercnt]; 1354 timers [((W)w)->active - 1] = timers [timercnt];
1263 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1355 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1264 } 1356 }
1265 1357
1266 ((WT)w)->at = w->repeat; 1358 ((WT)w)->at -= mn_now;
1267 1359
1268 ev_stop (EV_A_ (W)w); 1360 ev_stop (EV_A_ (W)w);
1269} 1361}
1270 1362
1271void 1363void
1272ev_timer_again (EV_P_ struct ev_timer *w) 1364ev_timer_again (EV_P_ struct ev_timer *w)
1273{ 1365{
1274 if (ev_is_active (w)) 1366 if (ev_is_active (w))
1275 { 1367 {
1276 if (w->repeat) 1368 if (w->repeat)
1277 {
1278 ((WT)w)->at = mn_now + w->repeat;
1279 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1280 }
1281 else 1370 else
1282 ev_timer_stop (EV_A_ w); 1371 ev_timer_stop (EV_A_ w);
1283 } 1372 }
1284 else if (w->repeat) 1373 else if (w->repeat)
1285 ev_timer_start (EV_A_ w); 1374 ev_timer_start (EV_A_ w);
1286} 1375}
1287 1376
1377#if EV_PERIODICS
1288void 1378void
1289ev_periodic_start (EV_P_ struct ev_periodic *w) 1379ev_periodic_start (EV_P_ struct ev_periodic *w)
1290{ 1380{
1291 if (ev_is_active (w)) 1381 if (ev_is_active (w))
1292 return; 1382 return;
1293 1383
1384 if (w->reschedule_cb)
1385 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1386 else if (w->interval)
1387 {
1294 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1388 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1295
1296 /* this formula differs from the one in periodic_reify because we do not always round up */ 1389 /* this formula differs from the one in periodic_reify because we do not always round up */
1297 if (w->interval)
1298 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1390 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1391 }
1299 1392
1300 ev_start (EV_A_ (W)w, ++periodiccnt); 1393 ev_start (EV_A_ (W)w, ++periodiccnt);
1301 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1394 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1302 periodics [periodiccnt - 1] = w; 1395 periodics [periodiccnt - 1] = w;
1303 upheap ((WT *)periodics, periodiccnt - 1); 1396 upheap ((WT *)periodics, periodiccnt - 1);
1304 1397
1305 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1398 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1306} 1399}
1322 1415
1323 ev_stop (EV_A_ (W)w); 1416 ev_stop (EV_A_ (W)w);
1324} 1417}
1325 1418
1326void 1419void
1420ev_periodic_again (EV_P_ struct ev_periodic *w)
1421{
1422 /* TODO: use adjustheap and recalculation */
1423 ev_periodic_stop (EV_A_ w);
1424 ev_periodic_start (EV_A_ w);
1425}
1426#endif
1427
1428void
1327ev_idle_start (EV_P_ struct ev_idle *w) 1429ev_idle_start (EV_P_ struct ev_idle *w)
1328{ 1430{
1329 if (ev_is_active (w)) 1431 if (ev_is_active (w))
1330 return; 1432 return;
1331 1433
1332 ev_start (EV_A_ (W)w, ++idlecnt); 1434 ev_start (EV_A_ (W)w, ++idlecnt);
1333 array_needsize (idles, idlemax, idlecnt, (void)); 1435 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1334 idles [idlecnt - 1] = w; 1436 idles [idlecnt - 1] = w;
1335} 1437}
1336 1438
1337void 1439void
1338ev_idle_stop (EV_P_ struct ev_idle *w) 1440ev_idle_stop (EV_P_ struct ev_idle *w)
1350{ 1452{
1351 if (ev_is_active (w)) 1453 if (ev_is_active (w))
1352 return; 1454 return;
1353 1455
1354 ev_start (EV_A_ (W)w, ++preparecnt); 1456 ev_start (EV_A_ (W)w, ++preparecnt);
1355 array_needsize (prepares, preparemax, preparecnt, (void)); 1457 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1356 prepares [preparecnt - 1] = w; 1458 prepares [preparecnt - 1] = w;
1357} 1459}
1358 1460
1359void 1461void
1360ev_prepare_stop (EV_P_ struct ev_prepare *w) 1462ev_prepare_stop (EV_P_ struct ev_prepare *w)
1372{ 1474{
1373 if (ev_is_active (w)) 1475 if (ev_is_active (w))
1374 return; 1476 return;
1375 1477
1376 ev_start (EV_A_ (W)w, ++checkcnt); 1478 ev_start (EV_A_ (W)w, ++checkcnt);
1377 array_needsize (checks, checkmax, checkcnt, (void)); 1479 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1378 checks [checkcnt - 1] = w; 1480 checks [checkcnt - 1] = w;
1379} 1481}
1380 1482
1381void 1483void
1382ev_check_stop (EV_P_ struct ev_check *w) 1484ev_check_stop (EV_P_ struct ev_check *w)
1383{ 1485{
1384 ev_clear_pending (EV_A_ (W)w); 1486 ev_clear_pending (EV_A_ (W)w);
1385 if (ev_is_active (w)) 1487 if (!ev_is_active (w))
1386 return; 1488 return;
1387 1489
1388 checks [((W)w)->active - 1] = checks [--checkcnt]; 1490 checks [((W)w)->active - 1] = checks [--checkcnt];
1389 ev_stop (EV_A_ (W)w); 1491 ev_stop (EV_A_ (W)w);
1390} 1492}
1403 return; 1505 return;
1404 1506
1405 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1507 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1406 1508
1407 ev_start (EV_A_ (W)w, 1); 1509 ev_start (EV_A_ (W)w, 1);
1408 array_needsize (signals, signalmax, w->signum, signals_init); 1510 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1409 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1511 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1410 1512
1411 if (!((WL)w)->next) 1513 if (!((WL)w)->next)
1412 { 1514 {
1413#if WIN32 1515#if WIN32
1451 1553
1452void 1554void
1453ev_child_stop (EV_P_ struct ev_child *w) 1555ev_child_stop (EV_P_ struct ev_child *w)
1454{ 1556{
1455 ev_clear_pending (EV_A_ (W)w); 1557 ev_clear_pending (EV_A_ (W)w);
1456 if (ev_is_active (w)) 1558 if (!ev_is_active (w))
1457 return; 1559 return;
1458 1560
1459 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1561 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1460 ev_stop (EV_A_ (W)w); 1562 ev_stop (EV_A_ (W)w);
1461} 1563}
1496} 1598}
1497 1599
1498void 1600void
1499ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1601ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1500{ 1602{
1501 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1603 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1502 1604
1503 if (!once) 1605 if (!once)
1504 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1606 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1505 else 1607 else
1506 { 1608 {
1507 once->cb = cb; 1609 once->cb = cb;
1508 once->arg = arg; 1610 once->arg = arg;
1509 1611
1510 ev_watcher_init (&once->io, once_cb_io); 1612 ev_init (&once->io, once_cb_io);
1511 if (fd >= 0) 1613 if (fd >= 0)
1512 { 1614 {
1513 ev_io_set (&once->io, fd, events); 1615 ev_io_set (&once->io, fd, events);
1514 ev_io_start (EV_A_ &once->io); 1616 ev_io_start (EV_A_ &once->io);
1515 } 1617 }
1516 1618
1517 ev_watcher_init (&once->to, once_cb_to); 1619 ev_init (&once->to, once_cb_to);
1518 if (timeout >= 0.) 1620 if (timeout >= 0.)
1519 { 1621 {
1520 ev_timer_set (&once->to, timeout, 0.); 1622 ev_timer_set (&once->to, timeout, 0.);
1521 ev_timer_start (EV_A_ &once->to); 1623 ev_timer_start (EV_A_ &once->to);
1522 } 1624 }
1523 } 1625 }
1524} 1626}
1525 1627
1628#ifdef __cplusplus
1629}
1630#endif
1631

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines