ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.74 by root, Tue Nov 6 16:51:20 2007 UTC vs.
Revision 1.456 by root, Thu Jul 4 22:32:23 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
33 67
34# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
37# endif 82# endif
38 83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 99# define EV_USE_SELECT 0
41# endif 100# endif
42 101
43# if HAVE_POLL && HAVE_POLL_H 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
44# define EV_USE_POLL 1 108# define EV_USE_POLL 0
45# endif 109# endif
46 110
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 117# define EV_USE_EPOLL 0
49# endif 118# endif
50 119
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 126# define EV_USE_KQUEUE 0
53# endif 127# endif
54 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
55#endif 136# endif
56 137
57#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
58#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
59#include <fcntl.h> 169#include <fcntl.h>
60#include <stddef.h> 170#include <stddef.h>
61 171
62#include <stdio.h> 172#include <stdio.h>
63 173
64#include <assert.h> 174#include <assert.h>
65#include <errno.h> 175#include <errno.h>
66#include <sys/types.h> 176#include <sys/types.h>
67#include <time.h> 177#include <time.h>
178#include <limits.h>
68 179
69#include <signal.h> 180#include <signal.h>
70 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
71#ifndef WIN32 199#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 200# include <sys/time.h>
74# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
203#else
204# include <io.h>
205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
207# include <windows.h>
208# ifndef EV_SELECT_IS_WINSOCKET
209# define EV_SELECT_IS_WINSOCKET 1
75#endif 210# endif
76/**/ 211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
77 263
78#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
79# define EV_USE_MONOTONIC 1 268# define EV_USE_MONOTONIC 0
269# endif
270#endif
271
272#ifndef EV_USE_REALTIME
273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
281# endif
80#endif 282#endif
81 283
82#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
84#endif 286#endif
85 287
86#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 289# ifdef _WIN32
290# define EV_USE_POLL 0
291# else
292# define EV_USE_POLL EV_FEATURE_BACKENDS
293# endif
88#endif 294#endif
89 295
90#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
91# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
92#endif 302#endif
93 303
94#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
96#endif 306#endif
97 307
308#ifndef EV_USE_PORT
309# define EV_USE_PORT 0
310#endif
311
98#ifndef EV_USE_WIN32 312#ifndef EV_USE_INOTIFY
99# ifdef WIN32 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */ 314# define EV_USE_INOTIFY EV_FEATURE_OS
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else 315# else
104# define EV_USE_WIN32 0 316# define EV_USE_INOTIFY 0
105# endif 317# endif
106#endif 318#endif
107 319
320#ifndef EV_PID_HASHSIZE
321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
108#ifndef EV_USE_REALTIME 328#ifndef EV_USE_EVENTFD
109# define EV_USE_REALTIME 1 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
331# else
332# define EV_USE_EVENTFD 0
110#endif 333# endif
334#endif
111 335
112/**/ 336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362#ifdef ANDROID
363/* supposedly, android doesn't typedef fd_mask */
364# undef EV_USE_SELECT
365# define EV_USE_SELECT 0
366/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367# undef EV_USE_CLOCK_SYSCALL
368# define EV_USE_CLOCK_SYSCALL 0
369#endif
370
371/* aix's poll.h seems to cause lots of trouble */
372#ifdef _AIX
373/* AIX has a completely broken poll.h header */
374# undef EV_USE_POLL
375# define EV_USE_POLL 0
376#endif
377
378/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379/* which makes programs even slower. might work on other unices, too. */
380#if EV_USE_CLOCK_SYSCALL
381# include <sys/syscall.h>
382# ifdef SYS_clock_gettime
383# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384# undef EV_USE_MONOTONIC
385# define EV_USE_MONOTONIC 1
386# else
387# undef EV_USE_CLOCK_SYSCALL
388# define EV_USE_CLOCK_SYSCALL 0
389# endif
390#endif
391
392/* this block fixes any misconfiguration where we know we run into trouble otherwise */
113 393
114#ifndef CLOCK_MONOTONIC 394#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 395# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 396# define EV_USE_MONOTONIC 0
117#endif 397#endif
119#ifndef CLOCK_REALTIME 399#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 400# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 401# define EV_USE_REALTIME 0
122#endif 402#endif
123 403
404#if !EV_STAT_ENABLE
405# undef EV_USE_INOTIFY
406# define EV_USE_INOTIFY 0
407#endif
408
409#if !EV_USE_NANOSLEEP
410/* hp-ux has it in sys/time.h, which we unconditionally include above */
411# if !defined _WIN32 && !defined __hpux
412# include <sys/select.h>
413# endif
414#endif
415
416#if EV_USE_INOTIFY
417# include <sys/statfs.h>
418# include <sys/inotify.h>
419/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420# ifndef IN_DONT_FOLLOW
421# undef EV_USE_INOTIFY
422# define EV_USE_INOTIFY 0
423# endif
424#endif
425
426#if EV_USE_EVENTFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef EFD_NONBLOCK
430# define EFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef EFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define EFD_CLOEXEC O_CLOEXEC
435# else
436# define EFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440#endif
441
442#if EV_USE_SIGNALFD
443/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444# include <stdint.h>
445# ifndef SFD_NONBLOCK
446# define SFD_NONBLOCK O_NONBLOCK
447# endif
448# ifndef SFD_CLOEXEC
449# ifdef O_CLOEXEC
450# define SFD_CLOEXEC O_CLOEXEC
451# else
452# define SFD_CLOEXEC 02000000
453# endif
454# endif
455EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457struct signalfd_siginfo
458{
459 uint32_t ssi_signo;
460 char pad[128 - sizeof (uint32_t)];
461};
462#endif
463
124/**/ 464/**/
125 465
466#if EV_VERIFY >= 3
467# define EV_FREQUENT_CHECK ev_verify (EV_A)
468#else
469# define EV_FREQUENT_CHECK do { } while (0)
470#endif
471
472/*
473 * This is used to work around floating point rounding problems.
474 * This value is good at least till the year 4000.
475 */
476#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
478
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 479#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 480#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 481
131#include "ev.h" 482#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
132 484
485/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486/* ECB.H BEGIN */
487/*
488 * libecb - http://software.schmorp.de/pkg/libecb
489 *
490 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 * Copyright (©) 2011 Emanuele Giaquinta
492 * All rights reserved.
493 *
494 * Redistribution and use in source and binary forms, with or without modifica-
495 * tion, are permitted provided that the following conditions are met:
496 *
497 * 1. Redistributions of source code must retain the above copyright notice,
498 * this list of conditions and the following disclaimer.
499 *
500 * 2. Redistributions in binary form must reproduce the above copyright
501 * notice, this list of conditions and the following disclaimer in the
502 * documentation and/or other materials provided with the distribution.
503 *
504 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513 * OF THE POSSIBILITY OF SUCH DAMAGE.
514 */
515
516#ifndef ECB_H
517#define ECB_H
518
519/* 16 bits major, 16 bits minor */
520#define ECB_VERSION 0x00010003
521
522#ifdef _WIN32
523 typedef signed char int8_t;
524 typedef unsigned char uint8_t;
525 typedef signed short int16_t;
526 typedef unsigned short uint16_t;
527 typedef signed int int32_t;
528 typedef unsigned int uint32_t;
133#if __GNUC__ >= 3 529 #if __GNUC__
134# define expect(expr,value) __builtin_expect ((expr),(value)) 530 typedef signed long long int64_t;
135# define inline inline 531 typedef unsigned long long uint64_t;
532 #else /* _MSC_VER || __BORLANDC__ */
533 typedef signed __int64 int64_t;
534 typedef unsigned __int64 uint64_t;
535 #endif
536 #ifdef _WIN64
537 #define ECB_PTRSIZE 8
538 typedef uint64_t uintptr_t;
539 typedef int64_t intptr_t;
540 #else
541 #define ECB_PTRSIZE 4
542 typedef uint32_t uintptr_t;
543 typedef int32_t intptr_t;
544 #endif
136#else 545#else
137# define expect(expr,value) (expr) 546 #include <inttypes.h>
138# define inline static 547 #if UINTMAX_MAX > 0xffffffffU
548 #define ECB_PTRSIZE 8
549 #else
550 #define ECB_PTRSIZE 4
139#endif 551 #endif
552#endif
140 553
141#define expect_false(expr) expect ((expr) != 0, 0) 554/* work around x32 idiocy by defining proper macros */
142#define expect_true(expr) expect ((expr) != 0, 1) 555#if __x86_64 || _M_AMD64
556 #if __ILP32
557 #define ECB_AMD64_X32 1
558 #else
559 #define ECB_AMD64 1
560 #endif
561#endif
143 562
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 563/* many compilers define _GNUC_ to some versions but then only implement
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 564 * what their idiot authors think are the "more important" extensions,
565 * causing enormous grief in return for some better fake benchmark numbers.
566 * or so.
567 * we try to detect these and simply assume they are not gcc - if they have
568 * an issue with that they should have done it right in the first place.
569 */
570#ifndef ECB_GCC_VERSION
571 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
572 #define ECB_GCC_VERSION(major,minor) 0
573 #else
574 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
575 #endif
576#endif
146 577
147typedef struct ev_watcher *W; 578#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
148typedef struct ev_watcher_list *WL; 579#define ECB_C99 (__STDC_VERSION__ >= 199901L)
149typedef struct ev_watcher_time *WT; 580#define ECB_C11 (__STDC_VERSION__ >= 201112L)
581#define ECB_CPP (__cplusplus+0)
582#define ECB_CPP11 (__cplusplus >= 201103L)
150 583
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 584#if ECB_CPP
152 585 #define ECB_EXTERN_C extern "C"
153#include "ev_win32.c" 586 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
587 #define ECB_EXTERN_C_END }
588#else
589 #define ECB_EXTERN_C extern
590 #define ECB_EXTERN_C_BEG
591 #define ECB_EXTERN_C_END
592#endif
154 593
155/*****************************************************************************/ 594/*****************************************************************************/
156 595
596/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
597/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
598
599#if ECB_NO_THREADS
600 #define ECB_NO_SMP 1
601#endif
602
603#if ECB_NO_SMP
604 #define ECB_MEMORY_FENCE do { } while (0)
605#endif
606
607#ifndef ECB_MEMORY_FENCE
608 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
609 #if __i386 || __i386__
610 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
611 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
612 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
613 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
614 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
615 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
616 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
617 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
619 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
620 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
622 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
623 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
624 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
625 #elif __sparc || __sparc__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
629 #elif defined __s390__ || defined __s390x__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
631 #elif defined __mips__
632 /* GNU/Linux emulates sync on mips1 architectures, so we force it's use */
633 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
635 #elif defined __alpha__
636 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
637 #elif defined __hppa__
638 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
639 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
640 #elif defined __ia64__
641 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
642 #endif
643 #endif
644#endif
645
646#ifndef ECB_MEMORY_FENCE
647 #if ECB_GCC_VERSION(4,7)
648 /* see comment below (stdatomic.h) about the C11 memory model. */
649 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
650
651 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
652 * without risking compile time errors with other compilers. We *could*
653 * define our own ecb_clang_has_feature, but I just can't be bothered to work
654 * around this shit time and again.
655 * #elif defined __clang && __has_feature (cxx_atomic)
656 * // see comment below (stdatomic.h) about the C11 memory model.
657 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
658 */
659
660 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
661 #define ECB_MEMORY_FENCE __sync_synchronize ()
662 #elif _MSC_VER >= 1400 /* VC++ 2005 */
663 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
664 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
665 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
666 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
667 #elif defined _WIN32
668 #include <WinNT.h>
669 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
670 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
671 #include <mbarrier.h>
672 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
673 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
674 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
675 #elif __xlC__
676 #define ECB_MEMORY_FENCE __sync ()
677 #endif
678#endif
679
680#ifndef ECB_MEMORY_FENCE
681 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
682 /* we assume that these memory fences work on all variables/all memory accesses, */
683 /* not just C11 atomics and atomic accesses */
684 #include <stdatomic.h>
685 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
686 /* any fence other than seq_cst, which isn't very efficient for us. */
687 /* Why that is, we don't know - either the C11 memory model is quite useless */
688 /* for most usages, or gcc and clang have a bug */
689 /* I *currently* lean towards the latter, and inefficiently implement */
690 /* all three of ecb's fences as a seq_cst fence */
691 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
692 #endif
693#endif
694
695#ifndef ECB_MEMORY_FENCE
696 #if !ECB_AVOID_PTHREADS
697 /*
698 * if you get undefined symbol references to pthread_mutex_lock,
699 * or failure to find pthread.h, then you should implement
700 * the ECB_MEMORY_FENCE operations for your cpu/compiler
701 * OR provide pthread.h and link against the posix thread library
702 * of your system.
703 */
704 #include <pthread.h>
705 #define ECB_NEEDS_PTHREADS 1
706 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
707
708 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
709 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
710 #endif
711#endif
712
713#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
714 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
715#endif
716
717#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
718 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
719#endif
720
721/*****************************************************************************/
722
723#if __cplusplus
724 #define ecb_inline static inline
725#elif ECB_GCC_VERSION(2,5)
726 #define ecb_inline static __inline__
727#elif ECB_C99
728 #define ecb_inline static inline
729#else
730 #define ecb_inline static
731#endif
732
733#if ECB_GCC_VERSION(3,3)
734 #define ecb_restrict __restrict__
735#elif ECB_C99
736 #define ecb_restrict restrict
737#else
738 #define ecb_restrict
739#endif
740
741typedef int ecb_bool;
742
743#define ECB_CONCAT_(a, b) a ## b
744#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
745#define ECB_STRINGIFY_(a) # a
746#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
747
748#define ecb_function_ ecb_inline
749
750#if ECB_GCC_VERSION(3,1)
751 #define ecb_attribute(attrlist) __attribute__(attrlist)
752 #define ecb_is_constant(expr) __builtin_constant_p (expr)
753 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
754 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
755#else
756 #define ecb_attribute(attrlist)
757 #define ecb_is_constant(expr) 0
758 #define ecb_expect(expr,value) (expr)
759 #define ecb_prefetch(addr,rw,locality)
760#endif
761
762/* no emulation for ecb_decltype */
763#if ECB_GCC_VERSION(4,5)
764 #define ecb_decltype(x) __decltype(x)
765#elif ECB_GCC_VERSION(3,0)
766 #define ecb_decltype(x) __typeof(x)
767#endif
768
769#define ecb_noinline ecb_attribute ((__noinline__))
770#define ecb_unused ecb_attribute ((__unused__))
771#define ecb_const ecb_attribute ((__const__))
772#define ecb_pure ecb_attribute ((__pure__))
773
774#if ECB_C11
775 #define ecb_noreturn _Noreturn
776#else
777 #define ecb_noreturn ecb_attribute ((__noreturn__))
778#endif
779
780#if ECB_GCC_VERSION(4,3)
781 #define ecb_artificial ecb_attribute ((__artificial__))
782 #define ecb_hot ecb_attribute ((__hot__))
783 #define ecb_cold ecb_attribute ((__cold__))
784#else
785 #define ecb_artificial
786 #define ecb_hot
787 #define ecb_cold
788#endif
789
790/* put around conditional expressions if you are very sure that the */
791/* expression is mostly true or mostly false. note that these return */
792/* booleans, not the expression. */
793#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
794#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
795/* for compatibility to the rest of the world */
796#define ecb_likely(expr) ecb_expect_true (expr)
797#define ecb_unlikely(expr) ecb_expect_false (expr)
798
799/* count trailing zero bits and count # of one bits */
800#if ECB_GCC_VERSION(3,4)
801 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
802 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
803 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
804 #define ecb_ctz32(x) __builtin_ctz (x)
805 #define ecb_ctz64(x) __builtin_ctzll (x)
806 #define ecb_popcount32(x) __builtin_popcount (x)
807 /* no popcountll */
808#else
809 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
810 ecb_function_ int
811 ecb_ctz32 (uint32_t x)
812 {
813 int r = 0;
814
815 x &= ~x + 1; /* this isolates the lowest bit */
816
817#if ECB_branchless_on_i386
818 r += !!(x & 0xaaaaaaaa) << 0;
819 r += !!(x & 0xcccccccc) << 1;
820 r += !!(x & 0xf0f0f0f0) << 2;
821 r += !!(x & 0xff00ff00) << 3;
822 r += !!(x & 0xffff0000) << 4;
823#else
824 if (x & 0xaaaaaaaa) r += 1;
825 if (x & 0xcccccccc) r += 2;
826 if (x & 0xf0f0f0f0) r += 4;
827 if (x & 0xff00ff00) r += 8;
828 if (x & 0xffff0000) r += 16;
829#endif
830
831 return r;
832 }
833
834 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
835 ecb_function_ int
836 ecb_ctz64 (uint64_t x)
837 {
838 int shift = x & 0xffffffffU ? 0 : 32;
839 return ecb_ctz32 (x >> shift) + shift;
840 }
841
842 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
843 ecb_function_ int
844 ecb_popcount32 (uint32_t x)
845 {
846 x -= (x >> 1) & 0x55555555;
847 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
848 x = ((x >> 4) + x) & 0x0f0f0f0f;
849 x *= 0x01010101;
850
851 return x >> 24;
852 }
853
854 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
855 ecb_function_ int ecb_ld32 (uint32_t x)
856 {
857 int r = 0;
858
859 if (x >> 16) { x >>= 16; r += 16; }
860 if (x >> 8) { x >>= 8; r += 8; }
861 if (x >> 4) { x >>= 4; r += 4; }
862 if (x >> 2) { x >>= 2; r += 2; }
863 if (x >> 1) { r += 1; }
864
865 return r;
866 }
867
868 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
869 ecb_function_ int ecb_ld64 (uint64_t x)
870 {
871 int r = 0;
872
873 if (x >> 32) { x >>= 32; r += 32; }
874
875 return r + ecb_ld32 (x);
876 }
877#endif
878
879ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
880ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
881ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
882ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
883
884ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
885ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
886{
887 return ( (x * 0x0802U & 0x22110U)
888 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
889}
890
891ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
892ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
893{
894 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
895 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
896 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
897 x = ( x >> 8 ) | ( x << 8);
898
899 return x;
900}
901
902ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
903ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
904{
905 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
906 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
907 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
908 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
909 x = ( x >> 16 ) | ( x << 16);
910
911 return x;
912}
913
914/* popcount64 is only available on 64 bit cpus as gcc builtin */
915/* so for this version we are lazy */
916ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
917ecb_function_ int
918ecb_popcount64 (uint64_t x)
919{
920 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
921}
922
923ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
924ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
925ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
926ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
927ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
928ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
929ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
930ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
931
932ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
933ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
934ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
935ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
936ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
937ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
938ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
939ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
940
941#if ECB_GCC_VERSION(4,3)
942 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
943 #define ecb_bswap32(x) __builtin_bswap32 (x)
944 #define ecb_bswap64(x) __builtin_bswap64 (x)
945#else
946 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
947 ecb_function_ uint16_t
948 ecb_bswap16 (uint16_t x)
949 {
950 return ecb_rotl16 (x, 8);
951 }
952
953 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
954 ecb_function_ uint32_t
955 ecb_bswap32 (uint32_t x)
956 {
957 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
958 }
959
960 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
961 ecb_function_ uint64_t
962 ecb_bswap64 (uint64_t x)
963 {
964 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
965 }
966#endif
967
968#if ECB_GCC_VERSION(4,5)
969 #define ecb_unreachable() __builtin_unreachable ()
970#else
971 /* this seems to work fine, but gcc always emits a warning for it :/ */
972 ecb_inline void ecb_unreachable (void) ecb_noreturn;
973 ecb_inline void ecb_unreachable (void) { }
974#endif
975
976/* try to tell the compiler that some condition is definitely true */
977#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
978
979ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
980ecb_inline unsigned char
981ecb_byteorder_helper (void)
982{
983 /* the union code still generates code under pressure in gcc, */
984 /* but less than using pointers, and always seems to */
985 /* successfully return a constant. */
986 /* the reason why we have this horrible preprocessor mess */
987 /* is to avoid it in all cases, at least on common architectures */
988 /* or when using a recent enough gcc version (>= 4.6) */
989#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
990 return 0x44;
991#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
992 return 0x44;
993#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
994 return 0x11;
995#else
996 union
997 {
998 uint32_t i;
999 uint8_t c;
1000 } u = { 0x11223344 };
1001 return u.c;
1002#endif
1003}
1004
1005ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1006ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1007ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1008ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1009
1010#if ECB_GCC_VERSION(3,0) || ECB_C99
1011 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1012#else
1013 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1014#endif
1015
1016#if __cplusplus
1017 template<typename T>
1018 static inline T ecb_div_rd (T val, T div)
1019 {
1020 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1021 }
1022 template<typename T>
1023 static inline T ecb_div_ru (T val, T div)
1024 {
1025 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1026 }
1027#else
1028 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1029 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1030#endif
1031
1032#if ecb_cplusplus_does_not_suck
1033 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1034 template<typename T, int N>
1035 static inline int ecb_array_length (const T (&arr)[N])
1036 {
1037 return N;
1038 }
1039#else
1040 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1041#endif
1042
1043/*******************************************************************************/
1044/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1045
1046/* basically, everything uses "ieee pure-endian" floating point numbers */
1047/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1048#if 0 \
1049 || __i386 || __i386__ \
1050 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1051 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1052 || defined __arm__ && defined __ARM_EABI__ \
1053 || defined __s390__ || defined __s390x__ \
1054 || defined __mips__ \
1055 || defined __alpha__ \
1056 || defined __hppa__ \
1057 || defined __ia64__ \
1058 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1059 #define ECB_STDFP 1
1060 #include <string.h> /* for memcpy */
1061#else
1062 #define ECB_STDFP 0
1063 #include <math.h> /* for frexp*, ldexp* */
1064#endif
1065
1066#ifndef ECB_NO_LIBM
1067
1068 /* convert a float to ieee single/binary32 */
1069 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1070 ecb_function_ uint32_t
1071 ecb_float_to_binary32 (float x)
1072 {
1073 uint32_t r;
1074
1075 #if ECB_STDFP
1076 memcpy (&r, &x, 4);
1077 #else
1078 /* slow emulation, works for anything but -0 */
1079 uint32_t m;
1080 int e;
1081
1082 if (x == 0e0f ) return 0x00000000U;
1083 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1084 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1085 if (x != x ) return 0x7fbfffffU;
1086
1087 m = frexpf (x, &e) * 0x1000000U;
1088
1089 r = m & 0x80000000U;
1090
1091 if (r)
1092 m = -m;
1093
1094 if (e <= -126)
1095 {
1096 m &= 0xffffffU;
1097 m >>= (-125 - e);
1098 e = -126;
1099 }
1100
1101 r |= (e + 126) << 23;
1102 r |= m & 0x7fffffU;
1103 #endif
1104
1105 return r;
1106 }
1107
1108 /* converts an ieee single/binary32 to a float */
1109 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1110 ecb_function_ float
1111 ecb_binary32_to_float (uint32_t x)
1112 {
1113 float r;
1114
1115 #if ECB_STDFP
1116 memcpy (&r, &x, 4);
1117 #else
1118 /* emulation, only works for normals and subnormals and +0 */
1119 int neg = x >> 31;
1120 int e = (x >> 23) & 0xffU;
1121
1122 x &= 0x7fffffU;
1123
1124 if (e)
1125 x |= 0x800000U;
1126 else
1127 e = 1;
1128
1129 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1130 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1131
1132 r = neg ? -r : r;
1133 #endif
1134
1135 return r;
1136 }
1137
1138 /* convert a double to ieee double/binary64 */
1139 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1140 ecb_function_ uint64_t
1141 ecb_double_to_binary64 (double x)
1142 {
1143 uint64_t r;
1144
1145 #if ECB_STDFP
1146 memcpy (&r, &x, 8);
1147 #else
1148 /* slow emulation, works for anything but -0 */
1149 uint64_t m;
1150 int e;
1151
1152 if (x == 0e0 ) return 0x0000000000000000U;
1153 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1154 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1155 if (x != x ) return 0X7ff7ffffffffffffU;
1156
1157 m = frexp (x, &e) * 0x20000000000000U;
1158
1159 r = m & 0x8000000000000000;;
1160
1161 if (r)
1162 m = -m;
1163
1164 if (e <= -1022)
1165 {
1166 m &= 0x1fffffffffffffU;
1167 m >>= (-1021 - e);
1168 e = -1022;
1169 }
1170
1171 r |= ((uint64_t)(e + 1022)) << 52;
1172 r |= m & 0xfffffffffffffU;
1173 #endif
1174
1175 return r;
1176 }
1177
1178 /* converts an ieee double/binary64 to a double */
1179 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1180 ecb_function_ double
1181 ecb_binary64_to_double (uint64_t x)
1182 {
1183 double r;
1184
1185 #if ECB_STDFP
1186 memcpy (&r, &x, 8);
1187 #else
1188 /* emulation, only works for normals and subnormals and +0 */
1189 int neg = x >> 63;
1190 int e = (x >> 52) & 0x7ffU;
1191
1192 x &= 0xfffffffffffffU;
1193
1194 if (e)
1195 x |= 0x10000000000000U;
1196 else
1197 e = 1;
1198
1199 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1200 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1201
1202 r = neg ? -r : r;
1203 #endif
1204
1205 return r;
1206 }
1207
1208#endif
1209
1210#endif
1211
1212/* ECB.H END */
1213
1214#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1215/* if your architecture doesn't need memory fences, e.g. because it is
1216 * single-cpu/core, or if you use libev in a project that doesn't use libev
1217 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1218 * libev, in which cases the memory fences become nops.
1219 * alternatively, you can remove this #error and link against libpthread,
1220 * which will then provide the memory fences.
1221 */
1222# error "memory fences not defined for your architecture, please report"
1223#endif
1224
1225#ifndef ECB_MEMORY_FENCE
1226# define ECB_MEMORY_FENCE do { } while (0)
1227# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1228# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1229#endif
1230
1231#define expect_false(cond) ecb_expect_false (cond)
1232#define expect_true(cond) ecb_expect_true (cond)
1233#define noinline ecb_noinline
1234
1235#define inline_size ecb_inline
1236
1237#if EV_FEATURE_CODE
1238# define inline_speed ecb_inline
1239#else
1240# define inline_speed static noinline
1241#endif
1242
1243#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1244
1245#if EV_MINPRI == EV_MAXPRI
1246# define ABSPRI(w) (((W)w), 0)
1247#else
1248# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1249#endif
1250
1251#define EMPTY /* required for microsofts broken pseudo-c compiler */
1252#define EMPTY2(a,b) /* used to suppress some warnings */
1253
1254typedef ev_watcher *W;
1255typedef ev_watcher_list *WL;
1256typedef ev_watcher_time *WT;
1257
1258#define ev_active(w) ((W)(w))->active
1259#define ev_at(w) ((WT)(w))->at
1260
1261#if EV_USE_REALTIME
1262/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1263/* giving it a reasonably high chance of working on typical architectures */
1264static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1265#endif
1266
1267#if EV_USE_MONOTONIC
1268static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1269#endif
1270
1271#ifndef EV_FD_TO_WIN32_HANDLE
1272# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1273#endif
1274#ifndef EV_WIN32_HANDLE_TO_FD
1275# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1276#endif
1277#ifndef EV_WIN32_CLOSE_FD
1278# define EV_WIN32_CLOSE_FD(fd) close (fd)
1279#endif
1280
1281#ifdef _WIN32
1282# include "ev_win32.c"
1283#endif
1284
1285/*****************************************************************************/
1286
1287/* define a suitable floor function (only used by periodics atm) */
1288
1289#if EV_USE_FLOOR
1290# include <math.h>
1291# define ev_floor(v) floor (v)
1292#else
1293
1294#include <float.h>
1295
1296/* a floor() replacement function, should be independent of ev_tstamp type */
1297static ev_tstamp noinline
1298ev_floor (ev_tstamp v)
1299{
1300 /* the choice of shift factor is not terribly important */
1301#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1302 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1303#else
1304 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1305#endif
1306
1307 /* argument too large for an unsigned long? */
1308 if (expect_false (v >= shift))
1309 {
1310 ev_tstamp f;
1311
1312 if (v == v - 1.)
1313 return v; /* very large number */
1314
1315 f = shift * ev_floor (v * (1. / shift));
1316 return f + ev_floor (v - f);
1317 }
1318
1319 /* special treatment for negative args? */
1320 if (expect_false (v < 0.))
1321 {
1322 ev_tstamp f = -ev_floor (-v);
1323
1324 return f - (f == v ? 0 : 1);
1325 }
1326
1327 /* fits into an unsigned long */
1328 return (unsigned long)v;
1329}
1330
1331#endif
1332
1333/*****************************************************************************/
1334
1335#ifdef __linux
1336# include <sys/utsname.h>
1337#endif
1338
1339static unsigned int noinline ecb_cold
1340ev_linux_version (void)
1341{
1342#ifdef __linux
1343 unsigned int v = 0;
1344 struct utsname buf;
1345 int i;
1346 char *p = buf.release;
1347
1348 if (uname (&buf))
1349 return 0;
1350
1351 for (i = 3+1; --i; )
1352 {
1353 unsigned int c = 0;
1354
1355 for (;;)
1356 {
1357 if (*p >= '0' && *p <= '9')
1358 c = c * 10 + *p++ - '0';
1359 else
1360 {
1361 p += *p == '.';
1362 break;
1363 }
1364 }
1365
1366 v = (v << 8) | c;
1367 }
1368
1369 return v;
1370#else
1371 return 0;
1372#endif
1373}
1374
1375/*****************************************************************************/
1376
1377#if EV_AVOID_STDIO
1378static void noinline ecb_cold
1379ev_printerr (const char *msg)
1380{
1381 write (STDERR_FILENO, msg, strlen (msg));
1382}
1383#endif
1384
157static void (*syserr_cb)(const char *msg); 1385static void (*syserr_cb)(const char *msg) EV_THROW;
158 1386
1387void ecb_cold
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 1388ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
160{ 1389{
161 syserr_cb = cb; 1390 syserr_cb = cb;
162} 1391}
163 1392
164static void 1393static void noinline ecb_cold
165syserr (const char *msg) 1394ev_syserr (const char *msg)
166{ 1395{
167 if (!msg) 1396 if (!msg)
168 msg = "(libev) system error"; 1397 msg = "(libev) system error";
169 1398
170 if (syserr_cb) 1399 if (syserr_cb)
171 syserr_cb (msg); 1400 syserr_cb (msg);
172 else 1401 else
173 { 1402 {
1403#if EV_AVOID_STDIO
1404 ev_printerr (msg);
1405 ev_printerr (": ");
1406 ev_printerr (strerror (errno));
1407 ev_printerr ("\n");
1408#else
174 perror (msg); 1409 perror (msg);
1410#endif
175 abort (); 1411 abort ();
176 } 1412 }
177} 1413}
178 1414
1415static void *
1416ev_realloc_emul (void *ptr, long size) EV_THROW
1417{
1418 /* some systems, notably openbsd and darwin, fail to properly
1419 * implement realloc (x, 0) (as required by both ansi c-89 and
1420 * the single unix specification, so work around them here.
1421 * recently, also (at least) fedora and debian started breaking it,
1422 * despite documenting it otherwise.
1423 */
1424
1425 if (size)
1426 return realloc (ptr, size);
1427
1428 free (ptr);
1429 return 0;
1430}
1431
179static void *(*alloc)(void *ptr, long size); 1432static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
180 1433
1434void ecb_cold
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1435ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
182{ 1436{
183 alloc = cb; 1437 alloc = cb;
184} 1438}
185 1439
186static void * 1440inline_speed void *
187ev_realloc (void *ptr, long size) 1441ev_realloc (void *ptr, long size)
188{ 1442{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1443 ptr = alloc (ptr, size);
190 1444
191 if (!ptr && size) 1445 if (!ptr && size)
192 { 1446 {
1447#if EV_AVOID_STDIO
1448 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1449#else
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1450 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1451#endif
194 abort (); 1452 abort ();
195 } 1453 }
196 1454
197 return ptr; 1455 return ptr;
198} 1456}
200#define ev_malloc(size) ev_realloc (0, (size)) 1458#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0) 1459#define ev_free(ptr) ev_realloc ((ptr), 0)
202 1460
203/*****************************************************************************/ 1461/*****************************************************************************/
204 1462
1463/* set in reify when reification needed */
1464#define EV_ANFD_REIFY 1
1465
1466/* file descriptor info structure */
205typedef struct 1467typedef struct
206{ 1468{
207 WL head; 1469 WL head;
208 unsigned char events; 1470 unsigned char events; /* the events watched for */
1471 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1472 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
209 unsigned char reify; 1473 unsigned char unused;
1474#if EV_USE_EPOLL
1475 unsigned int egen; /* generation counter to counter epoll bugs */
1476#endif
1477#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1478 SOCKET handle;
1479#endif
1480#if EV_USE_IOCP
1481 OVERLAPPED or, ow;
1482#endif
210} ANFD; 1483} ANFD;
211 1484
1485/* stores the pending event set for a given watcher */
212typedef struct 1486typedef struct
213{ 1487{
214 W w; 1488 W w;
215 int events; 1489 int events; /* the pending event set for the given watcher */
216} ANPENDING; 1490} ANPENDING;
217 1491
1492#if EV_USE_INOTIFY
1493/* hash table entry per inotify-id */
1494typedef struct
1495{
1496 WL head;
1497} ANFS;
1498#endif
1499
1500/* Heap Entry */
1501#if EV_HEAP_CACHE_AT
1502 /* a heap element */
1503 typedef struct {
1504 ev_tstamp at;
1505 WT w;
1506 } ANHE;
1507
1508 #define ANHE_w(he) (he).w /* access watcher, read-write */
1509 #define ANHE_at(he) (he).at /* access cached at, read-only */
1510 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1511#else
1512 /* a heap element */
1513 typedef WT ANHE;
1514
1515 #define ANHE_w(he) (he)
1516 #define ANHE_at(he) (he)->at
1517 #define ANHE_at_cache(he)
1518#endif
1519
218#if EV_MULTIPLICITY 1520#if EV_MULTIPLICITY
219 1521
220struct ev_loop 1522 struct ev_loop
221{ 1523 {
1524 ev_tstamp ev_rt_now;
1525 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 1526 #define VAR(name,decl) decl;
223# include "ev_vars.h" 1527 #include "ev_vars.h"
224};
225# undef VAR 1528 #undef VAR
1529 };
226# include "ev_wrap.h" 1530 #include "ev_wrap.h"
1531
1532 static struct ev_loop default_loop_struct;
1533 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
227 1534
228#else 1535#else
229 1536
1537 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
230# define VAR(name,decl) static decl; 1538 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 1539 #include "ev_vars.h"
232# undef VAR 1540 #undef VAR
233 1541
1542 static int ev_default_loop_ptr;
1543
234#endif 1544#endif
1545
1546#if EV_FEATURE_API
1547# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1548# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1549# define EV_INVOKE_PENDING invoke_cb (EV_A)
1550#else
1551# define EV_RELEASE_CB (void)0
1552# define EV_ACQUIRE_CB (void)0
1553# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1554#endif
1555
1556#define EVBREAK_RECURSE 0x80
235 1557
236/*****************************************************************************/ 1558/*****************************************************************************/
237 1559
238inline ev_tstamp 1560#ifndef EV_HAVE_EV_TIME
1561ev_tstamp
239ev_time (void) 1562ev_time (void) EV_THROW
240{ 1563{
241#if EV_USE_REALTIME 1564#if EV_USE_REALTIME
1565 if (expect_true (have_realtime))
1566 {
242 struct timespec ts; 1567 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 1568 clock_gettime (CLOCK_REALTIME, &ts);
244 return ts.tv_sec + ts.tv_nsec * 1e-9; 1569 return ts.tv_sec + ts.tv_nsec * 1e-9;
245#else 1570 }
1571#endif
1572
246 struct timeval tv; 1573 struct timeval tv;
247 gettimeofday (&tv, 0); 1574 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 1575 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif
250} 1576}
1577#endif
251 1578
252inline ev_tstamp 1579inline_size ev_tstamp
253get_clock (void) 1580get_clock (void)
254{ 1581{
255#if EV_USE_MONOTONIC 1582#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 1583 if (expect_true (have_monotonic))
257 { 1584 {
262#endif 1589#endif
263 1590
264 return ev_time (); 1591 return ev_time ();
265} 1592}
266 1593
1594#if EV_MULTIPLICITY
267ev_tstamp 1595ev_tstamp
268ev_now (EV_P) 1596ev_now (EV_P) EV_THROW
269{ 1597{
270 return rt_now; 1598 return ev_rt_now;
271} 1599}
1600#endif
272 1601
273#define array_roundsize(type,n) ((n) | 4 & ~3) 1602void
1603ev_sleep (ev_tstamp delay) EV_THROW
1604{
1605 if (delay > 0.)
1606 {
1607#if EV_USE_NANOSLEEP
1608 struct timespec ts;
1609
1610 EV_TS_SET (ts, delay);
1611 nanosleep (&ts, 0);
1612#elif defined _WIN32
1613 Sleep ((unsigned long)(delay * 1e3));
1614#else
1615 struct timeval tv;
1616
1617 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1618 /* something not guaranteed by newer posix versions, but guaranteed */
1619 /* by older ones */
1620 EV_TV_SET (tv, delay);
1621 select (0, 0, 0, 0, &tv);
1622#endif
1623 }
1624}
1625
1626/*****************************************************************************/
1627
1628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1629
1630/* find a suitable new size for the given array, */
1631/* hopefully by rounding to a nice-to-malloc size */
1632inline_size int
1633array_nextsize (int elem, int cur, int cnt)
1634{
1635 int ncur = cur + 1;
1636
1637 do
1638 ncur <<= 1;
1639 while (cnt > ncur);
1640
1641 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1642 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1643 {
1644 ncur *= elem;
1645 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1646 ncur = ncur - sizeof (void *) * 4;
1647 ncur /= elem;
1648 }
1649
1650 return ncur;
1651}
1652
1653static void * noinline ecb_cold
1654array_realloc (int elem, void *base, int *cur, int cnt)
1655{
1656 *cur = array_nextsize (elem, *cur, cnt);
1657 return ev_realloc (base, elem * *cur);
1658}
1659
1660#define array_init_zero(base,count) \
1661 memset ((void *)(base), 0, sizeof (*(base)) * (count))
274 1662
275#define array_needsize(type,base,cur,cnt,init) \ 1663#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 1664 if (expect_false ((cnt) > (cur))) \
277 { \ 1665 { \
278 int newcnt = cur; \ 1666 int ecb_unused ocur_ = (cur); \
279 do \ 1667 (base) = (type *)array_realloc \
280 { \ 1668 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 1669 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 1670 }
289 1671
1672#if 0
290#define array_slim(type,stem) \ 1673#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1674 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 1675 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1676 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1677 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1678 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 1679 }
297 1680#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 1681
303#define array_free(stem, idx) \ 1682#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1683 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
305 1684
306/*****************************************************************************/ 1685/*****************************************************************************/
307 1686
308static void 1687/* dummy callback for pending events */
309anfds_init (ANFD *base, int count) 1688static void noinline
1689pendingcb (EV_P_ ev_prepare *w, int revents)
310{ 1690{
311 while (count--) 1691}
312 {
313 base->head = 0;
314 base->events = EV_NONE;
315 base->reify = 0;
316 1692
317 ++base; 1693void noinline
1694ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1695{
1696 W w_ = (W)w;
1697 int pri = ABSPRI (w_);
1698
1699 if (expect_false (w_->pending))
1700 pendings [pri][w_->pending - 1].events |= revents;
1701 else
318 } 1702 {
319} 1703 w_->pending = ++pendingcnt [pri];
320 1704 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
321static void 1705 pendings [pri][w_->pending - 1].w = w_;
322event (EV_P_ W w, int events)
323{
324 if (w->pending)
325 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 1706 pendings [pri][w_->pending - 1].events = revents;
327 return;
328 } 1707 }
329 1708
330 w->pending = ++pendingcnt [ABSPRI (w)]; 1709 pendingpri = NUMPRI - 1;
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w;
333 pendings [ABSPRI (w)][w->pending - 1].events = events;
334} 1710}
335 1711
336static void 1712inline_speed void
1713feed_reverse (EV_P_ W w)
1714{
1715 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1716 rfeeds [rfeedcnt++] = w;
1717}
1718
1719inline_size void
1720feed_reverse_done (EV_P_ int revents)
1721{
1722 do
1723 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1724 while (rfeedcnt);
1725}
1726
1727inline_speed void
337queue_events (EV_P_ W *events, int eventcnt, int type) 1728queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 1729{
339 int i; 1730 int i;
340 1731
341 for (i = 0; i < eventcnt; ++i) 1732 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 1733 ev_feed_event (EV_A_ events [i], type);
343} 1734}
344 1735
345static void 1736/*****************************************************************************/
1737
1738inline_speed void
346fd_event (EV_P_ int fd, int events) 1739fd_event_nocheck (EV_P_ int fd, int revents)
347{ 1740{
348 ANFD *anfd = anfds + fd; 1741 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 1742 ev_io *w;
350 1743
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1744 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
352 { 1745 {
353 int ev = w->events & events; 1746 int ev = w->events & revents;
354 1747
355 if (ev) 1748 if (ev)
356 event (EV_A_ (W)w, ev); 1749 ev_feed_event (EV_A_ (W)w, ev);
357 } 1750 }
358} 1751}
359 1752
360/*****************************************************************************/ 1753/* do not submit kernel events for fds that have reify set */
1754/* because that means they changed while we were polling for new events */
1755inline_speed void
1756fd_event (EV_P_ int fd, int revents)
1757{
1758 ANFD *anfd = anfds + fd;
361 1759
362static void 1760 if (expect_true (!anfd->reify))
1761 fd_event_nocheck (EV_A_ fd, revents);
1762}
1763
1764void
1765ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1766{
1767 if (fd >= 0 && fd < anfdmax)
1768 fd_event_nocheck (EV_A_ fd, revents);
1769}
1770
1771/* make sure the external fd watch events are in-sync */
1772/* with the kernel/libev internal state */
1773inline_size void
363fd_reify (EV_P) 1774fd_reify (EV_P)
364{ 1775{
365 int i; 1776 int i;
366 1777
1778#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
367 for (i = 0; i < fdchangecnt; ++i) 1779 for (i = 0; i < fdchangecnt; ++i)
368 { 1780 {
369 int fd = fdchanges [i]; 1781 int fd = fdchanges [i];
370 ANFD *anfd = anfds + fd; 1782 ANFD *anfd = anfds + fd;
1783
1784 if (anfd->reify & EV__IOFDSET && anfd->head)
1785 {
1786 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1787
1788 if (handle != anfd->handle)
1789 {
1790 unsigned long arg;
1791
1792 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1793
1794 /* handle changed, but fd didn't - we need to do it in two steps */
1795 backend_modify (EV_A_ fd, anfd->events, 0);
1796 anfd->events = 0;
1797 anfd->handle = handle;
1798 }
1799 }
1800 }
1801#endif
1802
1803 for (i = 0; i < fdchangecnt; ++i)
1804 {
1805 int fd = fdchanges [i];
1806 ANFD *anfd = anfds + fd;
371 struct ev_io *w; 1807 ev_io *w;
372 1808
373 int events = 0; 1809 unsigned char o_events = anfd->events;
1810 unsigned char o_reify = anfd->reify;
374 1811
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
376 events |= w->events;
377
378 anfd->reify = 0; 1812 anfd->reify = 0;
379 1813
380 method_modify (EV_A_ fd, anfd->events, events); 1814 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1815 {
381 anfd->events = events; 1816 anfd->events = 0;
1817
1818 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1819 anfd->events |= (unsigned char)w->events;
1820
1821 if (o_events != anfd->events)
1822 o_reify = EV__IOFDSET; /* actually |= */
1823 }
1824
1825 if (o_reify & EV__IOFDSET)
1826 backend_modify (EV_A_ fd, o_events, anfd->events);
382 } 1827 }
383 1828
384 fdchangecnt = 0; 1829 fdchangecnt = 0;
385} 1830}
386 1831
387static void 1832/* something about the given fd changed */
1833inline_size void
388fd_change (EV_P_ int fd) 1834fd_change (EV_P_ int fd, int flags)
389{ 1835{
390 if (anfds [fd].reify) 1836 unsigned char reify = anfds [fd].reify;
391 return;
392
393 anfds [fd].reify = 1; 1837 anfds [fd].reify |= flags;
394 1838
1839 if (expect_true (!reify))
1840 {
395 ++fdchangecnt; 1841 ++fdchangecnt;
396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1842 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
397 fdchanges [fdchangecnt - 1] = fd; 1843 fdchanges [fdchangecnt - 1] = fd;
1844 }
398} 1845}
399 1846
400static void 1847/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1848inline_speed void ecb_cold
401fd_kill (EV_P_ int fd) 1849fd_kill (EV_P_ int fd)
402{ 1850{
403 struct ev_io *w; 1851 ev_io *w;
404 1852
405 while ((w = (struct ev_io *)anfds [fd].head)) 1853 while ((w = (ev_io *)anfds [fd].head))
406 { 1854 {
407 ev_io_stop (EV_A_ w); 1855 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1856 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 1857 }
410} 1858}
411 1859
412static int 1860/* check whether the given fd is actually valid, for error recovery */
1861inline_size int ecb_cold
413fd_valid (int fd) 1862fd_valid (int fd)
414{ 1863{
415#ifdef WIN32 1864#ifdef _WIN32
416 return !!win32_get_osfhandle (fd); 1865 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
417#else 1866#else
418 return fcntl (fd, F_GETFD) != -1; 1867 return fcntl (fd, F_GETFD) != -1;
419#endif 1868#endif
420} 1869}
421 1870
422/* called on EBADF to verify fds */ 1871/* called on EBADF to verify fds */
423static void 1872static void noinline ecb_cold
424fd_ebadf (EV_P) 1873fd_ebadf (EV_P)
425{ 1874{
426 int fd; 1875 int fd;
427 1876
428 for (fd = 0; fd < anfdmax; ++fd) 1877 for (fd = 0; fd < anfdmax; ++fd)
429 if (anfds [fd].events) 1878 if (anfds [fd].events)
430 if (!fd_valid (fd) == -1 && errno == EBADF) 1879 if (!fd_valid (fd) && errno == EBADF)
431 fd_kill (EV_A_ fd); 1880 fd_kill (EV_A_ fd);
432} 1881}
433 1882
434/* called on ENOMEM in select/poll to kill some fds and retry */ 1883/* called on ENOMEM in select/poll to kill some fds and retry */
435static void 1884static void noinline ecb_cold
436fd_enomem (EV_P) 1885fd_enomem (EV_P)
437{ 1886{
438 int fd; 1887 int fd;
439 1888
440 for (fd = anfdmax; fd--; ) 1889 for (fd = anfdmax; fd--; )
441 if (anfds [fd].events) 1890 if (anfds [fd].events)
442 { 1891 {
443 fd_kill (EV_A_ fd); 1892 fd_kill (EV_A_ fd);
444 return; 1893 break;
445 } 1894 }
446} 1895}
447 1896
448/* usually called after fork if method needs to re-arm all fds from scratch */ 1897/* usually called after fork if backend needs to re-arm all fds from scratch */
449static void 1898static void noinline
450fd_rearm_all (EV_P) 1899fd_rearm_all (EV_P)
451{ 1900{
452 int fd; 1901 int fd;
453 1902
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd) 1903 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events) 1904 if (anfds [fd].events)
457 { 1905 {
458 anfds [fd].events = 0; 1906 anfds [fd].events = 0;
459 fd_change (EV_A_ fd); 1907 anfds [fd].emask = 0;
1908 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
460 } 1909 }
461} 1910}
462 1911
1912/* used to prepare libev internal fd's */
1913/* this is not fork-safe */
1914inline_speed void
1915fd_intern (int fd)
1916{
1917#ifdef _WIN32
1918 unsigned long arg = 1;
1919 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1920#else
1921 fcntl (fd, F_SETFD, FD_CLOEXEC);
1922 fcntl (fd, F_SETFL, O_NONBLOCK);
1923#endif
1924}
1925
463/*****************************************************************************/ 1926/*****************************************************************************/
464 1927
1928/*
1929 * the heap functions want a real array index. array index 0 is guaranteed to not
1930 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1931 * the branching factor of the d-tree.
1932 */
1933
1934/*
1935 * at the moment we allow libev the luxury of two heaps,
1936 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1937 * which is more cache-efficient.
1938 * the difference is about 5% with 50000+ watchers.
1939 */
1940#if EV_USE_4HEAP
1941
1942#define DHEAP 4
1943#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1944#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1945#define UPHEAP_DONE(p,k) ((p) == (k))
1946
1947/* away from the root */
1948inline_speed void
1949downheap (ANHE *heap, int N, int k)
1950{
1951 ANHE he = heap [k];
1952 ANHE *E = heap + N + HEAP0;
1953
1954 for (;;)
1955 {
1956 ev_tstamp minat;
1957 ANHE *minpos;
1958 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1959
1960 /* find minimum child */
1961 if (expect_true (pos + DHEAP - 1 < E))
1962 {
1963 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1964 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1965 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1966 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1967 }
1968 else if (pos < E)
1969 {
1970 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1971 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1972 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1973 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1974 }
1975 else
1976 break;
1977
1978 if (ANHE_at (he) <= minat)
1979 break;
1980
1981 heap [k] = *minpos;
1982 ev_active (ANHE_w (*minpos)) = k;
1983
1984 k = minpos - heap;
1985 }
1986
1987 heap [k] = he;
1988 ev_active (ANHE_w (he)) = k;
1989}
1990
1991#else /* 4HEAP */
1992
1993#define HEAP0 1
1994#define HPARENT(k) ((k) >> 1)
1995#define UPHEAP_DONE(p,k) (!(p))
1996
1997/* away from the root */
1998inline_speed void
1999downheap (ANHE *heap, int N, int k)
2000{
2001 ANHE he = heap [k];
2002
2003 for (;;)
2004 {
2005 int c = k << 1;
2006
2007 if (c >= N + HEAP0)
2008 break;
2009
2010 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2011 ? 1 : 0;
2012
2013 if (ANHE_at (he) <= ANHE_at (heap [c]))
2014 break;
2015
2016 heap [k] = heap [c];
2017 ev_active (ANHE_w (heap [k])) = k;
2018
2019 k = c;
2020 }
2021
2022 heap [k] = he;
2023 ev_active (ANHE_w (he)) = k;
2024}
2025#endif
2026
2027/* towards the root */
2028inline_speed void
2029upheap (ANHE *heap, int k)
2030{
2031 ANHE he = heap [k];
2032
2033 for (;;)
2034 {
2035 int p = HPARENT (k);
2036
2037 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2038 break;
2039
2040 heap [k] = heap [p];
2041 ev_active (ANHE_w (heap [k])) = k;
2042 k = p;
2043 }
2044
2045 heap [k] = he;
2046 ev_active (ANHE_w (he)) = k;
2047}
2048
2049/* move an element suitably so it is in a correct place */
2050inline_size void
2051adjustheap (ANHE *heap, int N, int k)
2052{
2053 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2054 upheap (heap, k);
2055 else
2056 downheap (heap, N, k);
2057}
2058
2059/* rebuild the heap: this function is used only once and executed rarely */
2060inline_size void
2061reheap (ANHE *heap, int N)
2062{
2063 int i;
2064
2065 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2066 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2067 for (i = 0; i < N; ++i)
2068 upheap (heap, i + HEAP0);
2069}
2070
2071/*****************************************************************************/
2072
2073/* associate signal watchers to a signal signal */
2074typedef struct
2075{
2076 EV_ATOMIC_T pending;
2077#if EV_MULTIPLICITY
2078 EV_P;
2079#endif
2080 WL head;
2081} ANSIG;
2082
2083static ANSIG signals [EV_NSIG - 1];
2084
2085/*****************************************************************************/
2086
2087#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2088
2089static void noinline ecb_cold
2090evpipe_init (EV_P)
2091{
2092 if (!ev_is_active (&pipe_w))
2093 {
2094 int fds [2];
2095
2096# if EV_USE_EVENTFD
2097 fds [0] = -1;
2098 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2099 if (fds [1] < 0 && errno == EINVAL)
2100 fds [1] = eventfd (0, 0);
2101
2102 if (fds [1] < 0)
2103# endif
2104 {
2105 while (pipe (fds))
2106 ev_syserr ("(libev) error creating signal/async pipe");
2107
2108 fd_intern (fds [0]);
2109 }
2110
2111 evpipe [0] = fds [0];
2112
2113 if (evpipe [1] < 0)
2114 evpipe [1] = fds [1]; /* first call, set write fd */
2115 else
2116 {
2117 /* on subsequent calls, do not change evpipe [1] */
2118 /* so that evpipe_write can always rely on its value. */
2119 /* this branch does not do anything sensible on windows, */
2120 /* so must not be executed on windows */
2121
2122 dup2 (fds [1], evpipe [1]);
2123 close (fds [1]);
2124 }
2125
2126 fd_intern (evpipe [1]);
2127
2128 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2129 ev_io_start (EV_A_ &pipe_w);
2130 ev_unref (EV_A); /* watcher should not keep loop alive */
2131 }
2132}
2133
2134inline_speed void
2135evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2136{
2137 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2138
2139 if (expect_true (*flag))
2140 return;
2141
2142 *flag = 1;
2143 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2144
2145 pipe_write_skipped = 1;
2146
2147 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2148
2149 if (pipe_write_wanted)
2150 {
2151 int old_errno;
2152
2153 pipe_write_skipped = 0;
2154 ECB_MEMORY_FENCE_RELEASE;
2155
2156 old_errno = errno; /* save errno because write will clobber it */
2157
2158#if EV_USE_EVENTFD
2159 if (evpipe [0] < 0)
2160 {
2161 uint64_t counter = 1;
2162 write (evpipe [1], &counter, sizeof (uint64_t));
2163 }
2164 else
2165#endif
2166 {
2167#ifdef _WIN32
2168 WSABUF buf;
2169 DWORD sent;
2170 buf.buf = &buf;
2171 buf.len = 1;
2172 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2173#else
2174 write (evpipe [1], &(evpipe [1]), 1);
2175#endif
2176 }
2177
2178 errno = old_errno;
2179 }
2180}
2181
2182/* called whenever the libev signal pipe */
2183/* got some events (signal, async) */
465static void 2184static void
466upheap (WT *heap, int k) 2185pipecb (EV_P_ ev_io *iow, int revents)
467{ 2186{
468 WT w = heap [k]; 2187 int i;
469 2188
470 while (k && heap [k >> 1]->at > w->at) 2189 if (revents & EV_READ)
471 {
472 heap [k] = heap [k >> 1];
473 ((W)heap [k])->active = k + 1;
474 k >>= 1;
475 } 2190 {
2191#if EV_USE_EVENTFD
2192 if (evpipe [0] < 0)
2193 {
2194 uint64_t counter;
2195 read (evpipe [1], &counter, sizeof (uint64_t));
2196 }
2197 else
2198#endif
2199 {
2200 char dummy[4];
2201#ifdef _WIN32
2202 WSABUF buf;
2203 DWORD recvd;
2204 DWORD flags = 0;
2205 buf.buf = dummy;
2206 buf.len = sizeof (dummy);
2207 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2208#else
2209 read (evpipe [0], &dummy, sizeof (dummy));
2210#endif
2211 }
2212 }
476 2213
477 heap [k] = w; 2214 pipe_write_skipped = 0;
478 ((W)heap [k])->active = k + 1;
479 2215
2216 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2217
2218#if EV_SIGNAL_ENABLE
2219 if (sig_pending)
2220 {
2221 sig_pending = 0;
2222
2223 ECB_MEMORY_FENCE;
2224
2225 for (i = EV_NSIG - 1; i--; )
2226 if (expect_false (signals [i].pending))
2227 ev_feed_signal_event (EV_A_ i + 1);
2228 }
2229#endif
2230
2231#if EV_ASYNC_ENABLE
2232 if (async_pending)
2233 {
2234 async_pending = 0;
2235
2236 ECB_MEMORY_FENCE;
2237
2238 for (i = asynccnt; i--; )
2239 if (asyncs [i]->sent)
2240 {
2241 asyncs [i]->sent = 0;
2242 ECB_MEMORY_FENCE_RELEASE;
2243 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2244 }
2245 }
2246#endif
2247}
2248
2249/*****************************************************************************/
2250
2251void
2252ev_feed_signal (int signum) EV_THROW
2253{
2254#if EV_MULTIPLICITY
2255 EV_P;
2256 ECB_MEMORY_FENCE_ACQUIRE;
2257 EV_A = signals [signum - 1].loop;
2258
2259 if (!EV_A)
2260 return;
2261#endif
2262
2263 signals [signum - 1].pending = 1;
2264 evpipe_write (EV_A_ &sig_pending);
480} 2265}
481 2266
482static void 2267static void
483downheap (WT *heap, int N, int k) 2268ev_sighandler (int signum)
484{ 2269{
485 WT w = heap [k]; 2270#ifdef _WIN32
2271 signal (signum, ev_sighandler);
2272#endif
486 2273
487 while (k < (N >> 1)) 2274 ev_feed_signal (signum);
488 { 2275}
489 int j = k << 1;
490 2276
491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 2277void noinline
492 ++j; 2278ev_feed_signal_event (EV_P_ int signum) EV_THROW
2279{
2280 WL w;
493 2281
494 if (w->at <= heap [j]->at) 2282 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2283 return;
2284
2285 --signum;
2286
2287#if EV_MULTIPLICITY
2288 /* it is permissible to try to feed a signal to the wrong loop */
2289 /* or, likely more useful, feeding a signal nobody is waiting for */
2290
2291 if (expect_false (signals [signum].loop != EV_A))
2292 return;
2293#endif
2294
2295 signals [signum].pending = 0;
2296 ECB_MEMORY_FENCE_RELEASE;
2297
2298 for (w = signals [signum].head; w; w = w->next)
2299 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2300}
2301
2302#if EV_USE_SIGNALFD
2303static void
2304sigfdcb (EV_P_ ev_io *iow, int revents)
2305{
2306 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2307
2308 for (;;)
2309 {
2310 ssize_t res = read (sigfd, si, sizeof (si));
2311
2312 /* not ISO-C, as res might be -1, but works with SuS */
2313 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2314 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2315
2316 if (res < (ssize_t)sizeof (si))
495 break; 2317 break;
496
497 heap [k] = heap [j];
498 ((W)heap [k])->active = k + 1;
499 k = j;
500 } 2318 }
501
502 heap [k] = w;
503 ((W)heap [k])->active = k + 1;
504} 2319}
2320#endif
2321
2322#endif
505 2323
506/*****************************************************************************/ 2324/*****************************************************************************/
507 2325
508typedef struct 2326#if EV_CHILD_ENABLE
509{ 2327static WL childs [EV_PID_HASHSIZE];
510 WL head;
511 sig_atomic_t volatile gotsig;
512} ANSIG;
513 2328
514static ANSIG *signals;
515static int signalmax;
516
517static int sigpipe [2];
518static sig_atomic_t volatile gotsig;
519static struct ev_io sigev;
520
521static void
522signals_init (ANSIG *base, int count)
523{
524 while (count--)
525 {
526 base->head = 0;
527 base->gotsig = 0;
528
529 ++base;
530 }
531}
532
533static void
534sighandler (int signum)
535{
536#if WIN32
537 signal (signum, sighandler);
538#endif
539
540 signals [signum - 1].gotsig = 1;
541
542 if (!gotsig)
543 {
544 int old_errno = errno;
545 gotsig = 1;
546 write (sigpipe [1], &signum, 1);
547 errno = old_errno;
548 }
549}
550
551static void
552sigcb (EV_P_ struct ev_io *iow, int revents)
553{
554 WL w;
555 int signum;
556
557 read (sigpipe [0], &revents, 1);
558 gotsig = 0;
559
560 for (signum = signalmax; signum--; )
561 if (signals [signum].gotsig)
562 {
563 signals [signum].gotsig = 0;
564
565 for (w = signals [signum].head; w; w = w->next)
566 event (EV_A_ (W)w, EV_SIGNAL);
567 }
568}
569
570static void
571siginit (EV_P)
572{
573#ifndef WIN32
574 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
575 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
576
577 /* rather than sort out wether we really need nb, set it */
578 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
579 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
580#endif
581
582 ev_io_set (&sigev, sigpipe [0], EV_READ);
583 ev_io_start (EV_A_ &sigev);
584 ev_unref (EV_A); /* child watcher should not keep loop alive */
585}
586
587/*****************************************************************************/
588
589static struct ev_child *childs [PID_HASHSIZE];
590
591#ifndef WIN32
592
593static struct ev_signal childev; 2329static ev_signal childev;
2330
2331#ifndef WIFCONTINUED
2332# define WIFCONTINUED(status) 0
2333#endif
2334
2335/* handle a single child status event */
2336inline_speed void
2337child_reap (EV_P_ int chain, int pid, int status)
2338{
2339 ev_child *w;
2340 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2341
2342 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2343 {
2344 if ((w->pid == pid || !w->pid)
2345 && (!traced || (w->flags & 1)))
2346 {
2347 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2348 w->rpid = pid;
2349 w->rstatus = status;
2350 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2351 }
2352 }
2353}
594 2354
595#ifndef WCONTINUED 2355#ifndef WCONTINUED
596# define WCONTINUED 0 2356# define WCONTINUED 0
597#endif 2357#endif
598 2358
2359/* called on sigchld etc., calls waitpid */
599static void 2360static void
600child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
601{
602 struct ev_child *w;
603
604 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
605 if (w->pid == pid || !w->pid)
606 {
607 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
608 w->rpid = pid;
609 w->rstatus = status;
610 event (EV_A_ (W)w, EV_CHILD);
611 }
612}
613
614static void
615childcb (EV_P_ struct ev_signal *sw, int revents) 2361childcb (EV_P_ ev_signal *sw, int revents)
616{ 2362{
617 int pid, status; 2363 int pid, status;
618 2364
2365 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
619 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2366 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
620 { 2367 if (!WCONTINUED
2368 || errno != EINVAL
2369 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2370 return;
2371
621 /* make sure we are called again until all childs have been reaped */ 2372 /* make sure we are called again until all children have been reaped */
2373 /* we need to do it this way so that the callback gets called before we continue */
622 event (EV_A_ (W)sw, EV_SIGNAL); 2374 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
623 2375
624 child_reap (EV_A_ sw, pid, pid, status); 2376 child_reap (EV_A_ pid, pid, status);
2377 if ((EV_PID_HASHSIZE) > 1)
625 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2378 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
626 }
627} 2379}
628 2380
629#endif 2381#endif
630 2382
631/*****************************************************************************/ 2383/*****************************************************************************/
632 2384
2385#if EV_USE_IOCP
2386# include "ev_iocp.c"
2387#endif
2388#if EV_USE_PORT
2389# include "ev_port.c"
2390#endif
633#if EV_USE_KQUEUE 2391#if EV_USE_KQUEUE
634# include "ev_kqueue.c" 2392# include "ev_kqueue.c"
635#endif 2393#endif
636#if EV_USE_EPOLL 2394#if EV_USE_EPOLL
637# include "ev_epoll.c" 2395# include "ev_epoll.c"
641#endif 2399#endif
642#if EV_USE_SELECT 2400#if EV_USE_SELECT
643# include "ev_select.c" 2401# include "ev_select.c"
644#endif 2402#endif
645 2403
646int 2404int ecb_cold
647ev_version_major (void) 2405ev_version_major (void) EV_THROW
648{ 2406{
649 return EV_VERSION_MAJOR; 2407 return EV_VERSION_MAJOR;
650} 2408}
651 2409
652int 2410int ecb_cold
653ev_version_minor (void) 2411ev_version_minor (void) EV_THROW
654{ 2412{
655 return EV_VERSION_MINOR; 2413 return EV_VERSION_MINOR;
656} 2414}
657 2415
658/* return true if we are running with elevated privileges and should ignore env variables */ 2416/* return true if we are running with elevated privileges and should ignore env variables */
659static int 2417int inline_size ecb_cold
660enable_secure (void) 2418enable_secure (void)
661{ 2419{
662#ifdef WIN32 2420#ifdef _WIN32
663 return 0; 2421 return 0;
664#else 2422#else
665 return getuid () != geteuid () 2423 return getuid () != geteuid ()
666 || getgid () != getegid (); 2424 || getgid () != getegid ();
667#endif 2425#endif
668} 2426}
669 2427
2428unsigned int ecb_cold
2429ev_supported_backends (void) EV_THROW
2430{
2431 unsigned int flags = 0;
2432
2433 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2434 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2435 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2436 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2437 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2438
2439 return flags;
2440}
2441
2442unsigned int ecb_cold
2443ev_recommended_backends (void) EV_THROW
2444{
2445 unsigned int flags = ev_supported_backends ();
2446
2447#ifndef __NetBSD__
2448 /* kqueue is borked on everything but netbsd apparently */
2449 /* it usually doesn't work correctly on anything but sockets and pipes */
2450 flags &= ~EVBACKEND_KQUEUE;
2451#endif
2452#ifdef __APPLE__
2453 /* only select works correctly on that "unix-certified" platform */
2454 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2455 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2456#endif
2457#ifdef __FreeBSD__
2458 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2459#endif
2460
2461 return flags;
2462}
2463
2464unsigned int ecb_cold
2465ev_embeddable_backends (void) EV_THROW
2466{
2467 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2468
2469 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2470 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2471 flags &= ~EVBACKEND_EPOLL;
2472
2473 return flags;
2474}
2475
2476unsigned int
2477ev_backend (EV_P) EV_THROW
2478{
2479 return backend;
2480}
2481
2482#if EV_FEATURE_API
2483unsigned int
2484ev_iteration (EV_P) EV_THROW
2485{
2486 return loop_count;
2487}
2488
2489unsigned int
2490ev_depth (EV_P) EV_THROW
2491{
2492 return loop_depth;
2493}
2494
2495void
2496ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2497{
2498 io_blocktime = interval;
2499}
2500
2501void
2502ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2503{
2504 timeout_blocktime = interval;
2505}
2506
2507void
2508ev_set_userdata (EV_P_ void *data) EV_THROW
2509{
2510 userdata = data;
2511}
2512
2513void *
2514ev_userdata (EV_P) EV_THROW
2515{
2516 return userdata;
2517}
2518
2519void
2520ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2521{
2522 invoke_cb = invoke_pending_cb;
2523}
2524
2525void
2526ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2527{
2528 release_cb = release;
2529 acquire_cb = acquire;
2530}
2531#endif
2532
2533/* initialise a loop structure, must be zero-initialised */
2534static void noinline ecb_cold
2535loop_init (EV_P_ unsigned int flags) EV_THROW
2536{
2537 if (!backend)
2538 {
2539 origflags = flags;
2540
2541#if EV_USE_REALTIME
2542 if (!have_realtime)
2543 {
2544 struct timespec ts;
2545
2546 if (!clock_gettime (CLOCK_REALTIME, &ts))
2547 have_realtime = 1;
2548 }
2549#endif
2550
2551#if EV_USE_MONOTONIC
2552 if (!have_monotonic)
2553 {
2554 struct timespec ts;
2555
2556 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2557 have_monotonic = 1;
2558 }
2559#endif
2560
2561 /* pid check not overridable via env */
2562#ifndef _WIN32
2563 if (flags & EVFLAG_FORKCHECK)
2564 curpid = getpid ();
2565#endif
2566
2567 if (!(flags & EVFLAG_NOENV)
2568 && !enable_secure ()
2569 && getenv ("LIBEV_FLAGS"))
2570 flags = atoi (getenv ("LIBEV_FLAGS"));
2571
2572 ev_rt_now = ev_time ();
2573 mn_now = get_clock ();
2574 now_floor = mn_now;
2575 rtmn_diff = ev_rt_now - mn_now;
2576#if EV_FEATURE_API
2577 invoke_cb = ev_invoke_pending;
2578#endif
2579
2580 io_blocktime = 0.;
2581 timeout_blocktime = 0.;
2582 backend = 0;
2583 backend_fd = -1;
2584 sig_pending = 0;
2585#if EV_ASYNC_ENABLE
2586 async_pending = 0;
2587#endif
2588 pipe_write_skipped = 0;
2589 pipe_write_wanted = 0;
2590 evpipe [0] = -1;
2591 evpipe [1] = -1;
2592#if EV_USE_INOTIFY
2593 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2594#endif
2595#if EV_USE_SIGNALFD
2596 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2597#endif
2598
2599 if (!(flags & EVBACKEND_MASK))
2600 flags |= ev_recommended_backends ();
2601
2602#if EV_USE_IOCP
2603 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2604#endif
2605#if EV_USE_PORT
2606 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2607#endif
2608#if EV_USE_KQUEUE
2609 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2610#endif
2611#if EV_USE_EPOLL
2612 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2613#endif
2614#if EV_USE_POLL
2615 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2616#endif
2617#if EV_USE_SELECT
2618 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2619#endif
2620
2621 ev_prepare_init (&pending_w, pendingcb);
2622
2623#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2624 ev_init (&pipe_w, pipecb);
2625 ev_set_priority (&pipe_w, EV_MAXPRI);
2626#endif
2627 }
2628}
2629
2630/* free up a loop structure */
2631void ecb_cold
2632ev_loop_destroy (EV_P)
2633{
2634 int i;
2635
2636#if EV_MULTIPLICITY
2637 /* mimic free (0) */
2638 if (!EV_A)
2639 return;
2640#endif
2641
2642#if EV_CLEANUP_ENABLE
2643 /* queue cleanup watchers (and execute them) */
2644 if (expect_false (cleanupcnt))
2645 {
2646 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2647 EV_INVOKE_PENDING;
2648 }
2649#endif
2650
2651#if EV_CHILD_ENABLE
2652 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2653 {
2654 ev_ref (EV_A); /* child watcher */
2655 ev_signal_stop (EV_A_ &childev);
2656 }
2657#endif
2658
2659 if (ev_is_active (&pipe_w))
2660 {
2661 /*ev_ref (EV_A);*/
2662 /*ev_io_stop (EV_A_ &pipe_w);*/
2663
2664 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2665 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2666 }
2667
2668#if EV_USE_SIGNALFD
2669 if (ev_is_active (&sigfd_w))
2670 close (sigfd);
2671#endif
2672
2673#if EV_USE_INOTIFY
2674 if (fs_fd >= 0)
2675 close (fs_fd);
2676#endif
2677
2678 if (backend_fd >= 0)
2679 close (backend_fd);
2680
2681#if EV_USE_IOCP
2682 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2683#endif
2684#if EV_USE_PORT
2685 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2686#endif
2687#if EV_USE_KQUEUE
2688 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2689#endif
2690#if EV_USE_EPOLL
2691 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2692#endif
2693#if EV_USE_POLL
2694 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2695#endif
2696#if EV_USE_SELECT
2697 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2698#endif
2699
2700 for (i = NUMPRI; i--; )
2701 {
2702 array_free (pending, [i]);
2703#if EV_IDLE_ENABLE
2704 array_free (idle, [i]);
2705#endif
2706 }
2707
2708 ev_free (anfds); anfds = 0; anfdmax = 0;
2709
2710 /* have to use the microsoft-never-gets-it-right macro */
2711 array_free (rfeed, EMPTY);
2712 array_free (fdchange, EMPTY);
2713 array_free (timer, EMPTY);
2714#if EV_PERIODIC_ENABLE
2715 array_free (periodic, EMPTY);
2716#endif
2717#if EV_FORK_ENABLE
2718 array_free (fork, EMPTY);
2719#endif
2720#if EV_CLEANUP_ENABLE
2721 array_free (cleanup, EMPTY);
2722#endif
2723 array_free (prepare, EMPTY);
2724 array_free (check, EMPTY);
2725#if EV_ASYNC_ENABLE
2726 array_free (async, EMPTY);
2727#endif
2728
2729 backend = 0;
2730
2731#if EV_MULTIPLICITY
2732 if (ev_is_default_loop (EV_A))
2733#endif
2734 ev_default_loop_ptr = 0;
2735#if EV_MULTIPLICITY
2736 else
2737 ev_free (EV_A);
2738#endif
2739}
2740
2741#if EV_USE_INOTIFY
2742inline_size void infy_fork (EV_P);
2743#endif
2744
2745inline_size void
2746loop_fork (EV_P)
2747{
2748#if EV_USE_PORT
2749 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2750#endif
2751#if EV_USE_KQUEUE
2752 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2753#endif
2754#if EV_USE_EPOLL
2755 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2756#endif
2757#if EV_USE_INOTIFY
2758 infy_fork (EV_A);
2759#endif
2760
2761#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2762 if (ev_is_active (&pipe_w))
2763 {
2764 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2765
2766 ev_ref (EV_A);
2767 ev_io_stop (EV_A_ &pipe_w);
2768
2769 if (evpipe [0] >= 0)
2770 EV_WIN32_CLOSE_FD (evpipe [0]);
2771
2772 evpipe_init (EV_A);
2773 /* iterate over everything, in case we missed something before */
2774 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2775 }
2776#endif
2777
2778 postfork = 0;
2779}
2780
2781#if EV_MULTIPLICITY
2782
2783struct ev_loop * ecb_cold
2784ev_loop_new (unsigned int flags) EV_THROW
2785{
2786 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2787
2788 memset (EV_A, 0, sizeof (struct ev_loop));
2789 loop_init (EV_A_ flags);
2790
2791 if (ev_backend (EV_A))
2792 return EV_A;
2793
2794 ev_free (EV_A);
2795 return 0;
2796}
2797
2798#endif /* multiplicity */
2799
2800#if EV_VERIFY
2801static void noinline ecb_cold
2802verify_watcher (EV_P_ W w)
2803{
2804 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2805
2806 if (w->pending)
2807 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2808}
2809
2810static void noinline ecb_cold
2811verify_heap (EV_P_ ANHE *heap, int N)
2812{
2813 int i;
2814
2815 for (i = HEAP0; i < N + HEAP0; ++i)
2816 {
2817 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2818 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2819 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2820
2821 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2822 }
2823}
2824
2825static void noinline ecb_cold
2826array_verify (EV_P_ W *ws, int cnt)
2827{
2828 while (cnt--)
2829 {
2830 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2831 verify_watcher (EV_A_ ws [cnt]);
2832 }
2833}
2834#endif
2835
2836#if EV_FEATURE_API
2837void ecb_cold
2838ev_verify (EV_P) EV_THROW
2839{
2840#if EV_VERIFY
2841 int i;
2842 WL w, w2;
2843
2844 assert (activecnt >= -1);
2845
2846 assert (fdchangemax >= fdchangecnt);
2847 for (i = 0; i < fdchangecnt; ++i)
2848 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2849
2850 assert (anfdmax >= 0);
2851 for (i = 0; i < anfdmax; ++i)
2852 {
2853 int j = 0;
2854
2855 for (w = w2 = anfds [i].head; w; w = w->next)
2856 {
2857 verify_watcher (EV_A_ (W)w);
2858
2859 if (j++ & 1)
2860 {
2861 assert (("libev: io watcher list contains a loop", w != w2));
2862 w2 = w2->next;
2863 }
2864
2865 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2866 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2867 }
2868 }
2869
2870 assert (timermax >= timercnt);
2871 verify_heap (EV_A_ timers, timercnt);
2872
2873#if EV_PERIODIC_ENABLE
2874 assert (periodicmax >= periodiccnt);
2875 verify_heap (EV_A_ periodics, periodiccnt);
2876#endif
2877
2878 for (i = NUMPRI; i--; )
2879 {
2880 assert (pendingmax [i] >= pendingcnt [i]);
2881#if EV_IDLE_ENABLE
2882 assert (idleall >= 0);
2883 assert (idlemax [i] >= idlecnt [i]);
2884 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2885#endif
2886 }
2887
2888#if EV_FORK_ENABLE
2889 assert (forkmax >= forkcnt);
2890 array_verify (EV_A_ (W *)forks, forkcnt);
2891#endif
2892
2893#if EV_CLEANUP_ENABLE
2894 assert (cleanupmax >= cleanupcnt);
2895 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2896#endif
2897
2898#if EV_ASYNC_ENABLE
2899 assert (asyncmax >= asynccnt);
2900 array_verify (EV_A_ (W *)asyncs, asynccnt);
2901#endif
2902
2903#if EV_PREPARE_ENABLE
2904 assert (preparemax >= preparecnt);
2905 array_verify (EV_A_ (W *)prepares, preparecnt);
2906#endif
2907
2908#if EV_CHECK_ENABLE
2909 assert (checkmax >= checkcnt);
2910 array_verify (EV_A_ (W *)checks, checkcnt);
2911#endif
2912
2913# if 0
2914#if EV_CHILD_ENABLE
2915 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2916 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2917#endif
2918# endif
2919#endif
2920}
2921#endif
2922
2923#if EV_MULTIPLICITY
2924struct ev_loop * ecb_cold
2925#else
670int 2926int
671ev_method (EV_P) 2927#endif
2928ev_default_loop (unsigned int flags) EV_THROW
672{ 2929{
673 return method; 2930 if (!ev_default_loop_ptr)
674}
675
676static void
677loop_init (EV_P_ int methods)
678{
679 if (!method)
680 {
681#if EV_USE_MONOTONIC
682 { 2931 {
683 struct timespec ts;
684 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
685 have_monotonic = 1;
686 }
687#endif
688
689 rt_now = ev_time ();
690 mn_now = get_clock ();
691 now_floor = mn_now;
692 rtmn_diff = rt_now - mn_now;
693
694 if (methods == EVMETHOD_AUTO)
695 if (!enable_secure () && getenv ("LIBEV_METHODS"))
696 methods = atoi (getenv ("LIBEV_METHODS"));
697 else
698 methods = EVMETHOD_ANY;
699
700 method = 0;
701#if EV_USE_WIN32
702 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
703#endif
704#if EV_USE_KQUEUE
705 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
706#endif
707#if EV_USE_EPOLL
708 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
709#endif
710#if EV_USE_POLL
711 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
712#endif
713#if EV_USE_SELECT
714 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
715#endif
716
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 }
720}
721
722void
723loop_destroy (EV_P)
724{
725 int i;
726
727#if EV_USE_WIN32
728 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
729#endif
730#if EV_USE_KQUEUE
731 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
732#endif
733#if EV_USE_EPOLL
734 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
735#endif
736#if EV_USE_POLL
737 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
738#endif
739#if EV_USE_SELECT
740 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
741#endif
742
743 for (i = NUMPRI; i--; )
744 array_free (pending, [i]);
745
746 /* have to use the microsoft-never-gets-it-right macro */
747 array_free_microshit (fdchange);
748 array_free_microshit (timer);
749 array_free_microshit (periodic);
750 array_free_microshit (idle);
751 array_free_microshit (prepare);
752 array_free_microshit (check);
753
754 method = 0;
755}
756
757static void
758loop_fork (EV_P)
759{
760#if EV_USE_EPOLL
761 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
762#endif
763#if EV_USE_KQUEUE
764 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
765#endif
766
767 if (ev_is_active (&sigev))
768 {
769 /* default loop */
770
771 ev_ref (EV_A);
772 ev_io_stop (EV_A_ &sigev);
773 close (sigpipe [0]);
774 close (sigpipe [1]);
775
776 while (pipe (sigpipe))
777 syserr ("(libev) error creating pipe");
778
779 siginit (EV_A);
780 }
781
782 postfork = 0;
783}
784
785#if EV_MULTIPLICITY 2932#if EV_MULTIPLICITY
786struct ev_loop * 2933 EV_P = ev_default_loop_ptr = &default_loop_struct;
787ev_loop_new (int methods)
788{
789 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
790
791 memset (loop, 0, sizeof (struct ev_loop));
792
793 loop_init (EV_A_ methods);
794
795 if (ev_method (EV_A))
796 return loop;
797
798 return 0;
799}
800
801void
802ev_loop_destroy (EV_P)
803{
804 loop_destroy (EV_A);
805 ev_free (loop);
806}
807
808void
809ev_loop_fork (EV_P)
810{
811 postfork = 1;
812}
813
814#endif
815
816#if EV_MULTIPLICITY
817struct ev_loop default_loop_struct;
818static struct ev_loop *default_loop;
819
820struct ev_loop *
821#else 2934#else
822static int default_loop;
823
824int
825#endif
826ev_default_loop (int methods)
827{
828 if (sigpipe [0] == sigpipe [1])
829 if (pipe (sigpipe))
830 return 0;
831
832 if (!default_loop)
833 {
834#if EV_MULTIPLICITY
835 struct ev_loop *loop = default_loop = &default_loop_struct;
836#else
837 default_loop = 1; 2935 ev_default_loop_ptr = 1;
838#endif 2936#endif
839 2937
840 loop_init (EV_A_ methods); 2938 loop_init (EV_A_ flags);
841 2939
842 if (ev_method (EV_A)) 2940 if (ev_backend (EV_A))
843 { 2941 {
844 siginit (EV_A); 2942#if EV_CHILD_ENABLE
845
846#ifndef WIN32
847 ev_signal_init (&childev, childcb, SIGCHLD); 2943 ev_signal_init (&childev, childcb, SIGCHLD);
848 ev_set_priority (&childev, EV_MAXPRI); 2944 ev_set_priority (&childev, EV_MAXPRI);
849 ev_signal_start (EV_A_ &childev); 2945 ev_signal_start (EV_A_ &childev);
850 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2946 ev_unref (EV_A); /* child watcher should not keep loop alive */
851#endif 2947#endif
852 } 2948 }
853 else 2949 else
854 default_loop = 0; 2950 ev_default_loop_ptr = 0;
855 } 2951 }
856 2952
857 return default_loop; 2953 return ev_default_loop_ptr;
858} 2954}
859 2955
860void 2956void
861ev_default_destroy (void) 2957ev_loop_fork (EV_P) EV_THROW
862{ 2958{
863#if EV_MULTIPLICITY 2959 postfork = 1;
864 struct ev_loop *loop = default_loop;
865#endif
866
867#ifndef WIN32
868 ev_ref (EV_A); /* child watcher */
869 ev_signal_stop (EV_A_ &childev);
870#endif
871
872 ev_ref (EV_A); /* signal watcher */
873 ev_io_stop (EV_A_ &sigev);
874
875 close (sigpipe [0]); sigpipe [0] = 0;
876 close (sigpipe [1]); sigpipe [1] = 0;
877
878 loop_destroy (EV_A);
879} 2960}
2961
2962/*****************************************************************************/
880 2963
881void 2964void
882ev_default_fork (void) 2965ev_invoke (EV_P_ void *w, int revents)
883{ 2966{
884#if EV_MULTIPLICITY 2967 EV_CB_INVOKE ((W)w, revents);
885 struct ev_loop *loop = default_loop;
886#endif
887
888 if (method)
889 postfork = 1;
890} 2968}
891 2969
892/*****************************************************************************/ 2970unsigned int
893 2971ev_pending_count (EV_P) EV_THROW
894static void
895call_pending (EV_P)
896{ 2972{
897 int pri; 2973 int pri;
2974 unsigned int count = 0;
898 2975
899 for (pri = NUMPRI; pri--; ) 2976 for (pri = NUMPRI; pri--; )
2977 count += pendingcnt [pri];
2978
2979 return count;
2980}
2981
2982void noinline
2983ev_invoke_pending (EV_P)
2984{
2985 pendingpri = NUMPRI;
2986
2987 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2988 {
2989 --pendingpri;
2990
900 while (pendingcnt [pri]) 2991 while (pendingcnt [pendingpri])
901 {
902 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
903
904 if (p->w)
905 {
906 p->w->pending = 0;
907 p->w->cb (EV_A_ p->w, p->events);
908 }
909 }
910}
911
912static void
913timers_reify (EV_P)
914{
915 while (timercnt && ((WT)timers [0])->at <= mn_now)
916 {
917 struct ev_timer *w = timers [0];
918
919 assert (("inactive timer on timer heap detected", ev_is_active (w)));
920
921 /* first reschedule or stop timer */
922 if (w->repeat)
923 { 2992 {
924 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2993 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
925 ((WT)w)->at = mn_now + w->repeat; 2994
926 downheap ((WT *)timers, timercnt, 0); 2995 p->w->pending = 0;
2996 EV_CB_INVOKE (p->w, p->events);
2997 EV_FREQUENT_CHECK;
927 } 2998 }
928 else
929 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
930
931 event (EV_A_ (W)w, EV_TIMEOUT);
932 }
933}
934
935static void
936periodics_reify (EV_P)
937{
938 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
939 { 2999 }
940 struct ev_periodic *w = periodics [0]; 3000}
941 3001
942 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 3002#if EV_IDLE_ENABLE
3003/* make idle watchers pending. this handles the "call-idle */
3004/* only when higher priorities are idle" logic */
3005inline_size void
3006idle_reify (EV_P)
3007{
3008 if (expect_false (idleall))
3009 {
3010 int pri;
943 3011
944 /* first reschedule or stop timer */ 3012 for (pri = NUMPRI; pri--; )
945 if (w->interval)
946 { 3013 {
947 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 3014 if (pendingcnt [pri])
948 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 3015 break;
949 downheap ((WT *)periodics, periodiccnt, 0);
950 }
951 else
952 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
953 3016
954 event (EV_A_ (W)w, EV_PERIODIC); 3017 if (idlecnt [pri])
955 }
956}
957
958static void
959periodics_reschedule (EV_P)
960{
961 int i;
962
963 /* adjust periodics after time jump */
964 for (i = 0; i < periodiccnt; ++i)
965 {
966 struct ev_periodic *w = periodics [i];
967
968 if (w->interval)
969 {
970 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
971
972 if (fabs (diff) >= 1e-4)
973 { 3018 {
974 ev_periodic_stop (EV_A_ w); 3019 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
975 ev_periodic_start (EV_A_ w); 3020 break;
976
977 i = 0; /* restart loop, inefficient, but time jumps should be rare */
978 } 3021 }
979 } 3022 }
980 } 3023 }
981} 3024}
3025#endif
982 3026
983inline int 3027/* make timers pending */
984time_update_monotonic (EV_P) 3028inline_size void
3029timers_reify (EV_P)
985{ 3030{
986 mn_now = get_clock (); 3031 EV_FREQUENT_CHECK;
987 3032
988 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3033 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
989 {
990 rt_now = rtmn_diff + mn_now;
991 return 0;
992 } 3034 {
993 else 3035 do
3036 {
3037 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3038
3039 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3040
3041 /* first reschedule or stop timer */
3042 if (w->repeat)
3043 {
3044 ev_at (w) += w->repeat;
3045 if (ev_at (w) < mn_now)
3046 ev_at (w) = mn_now;
3047
3048 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3049
3050 ANHE_at_cache (timers [HEAP0]);
3051 downheap (timers, timercnt, HEAP0);
3052 }
3053 else
3054 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3055
3056 EV_FREQUENT_CHECK;
3057 feed_reverse (EV_A_ (W)w);
3058 }
3059 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3060
3061 feed_reverse_done (EV_A_ EV_TIMER);
994 { 3062 }
995 now_floor = mn_now; 3063}
996 rt_now = ev_time (); 3064
997 return 1; 3065#if EV_PERIODIC_ENABLE
3066
3067static void noinline
3068periodic_recalc (EV_P_ ev_periodic *w)
3069{
3070 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3071 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3072
3073 /* the above almost always errs on the low side */
3074 while (at <= ev_rt_now)
998 } 3075 {
999} 3076 ev_tstamp nat = at + w->interval;
1000 3077
1001static void 3078 /* when resolution fails us, we use ev_rt_now */
1002time_update (EV_P) 3079 if (expect_false (nat == at))
3080 {
3081 at = ev_rt_now;
3082 break;
3083 }
3084
3085 at = nat;
3086 }
3087
3088 ev_at (w) = at;
3089}
3090
3091/* make periodics pending */
3092inline_size void
3093periodics_reify (EV_P)
3094{
3095 EV_FREQUENT_CHECK;
3096
3097 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3098 {
3099 do
3100 {
3101 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3102
3103 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3104
3105 /* first reschedule or stop timer */
3106 if (w->reschedule_cb)
3107 {
3108 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3109
3110 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3111
3112 ANHE_at_cache (periodics [HEAP0]);
3113 downheap (periodics, periodiccnt, HEAP0);
3114 }
3115 else if (w->interval)
3116 {
3117 periodic_recalc (EV_A_ w);
3118 ANHE_at_cache (periodics [HEAP0]);
3119 downheap (periodics, periodiccnt, HEAP0);
3120 }
3121 else
3122 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3123
3124 EV_FREQUENT_CHECK;
3125 feed_reverse (EV_A_ (W)w);
3126 }
3127 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3128
3129 feed_reverse_done (EV_A_ EV_PERIODIC);
3130 }
3131}
3132
3133/* simply recalculate all periodics */
3134/* TODO: maybe ensure that at least one event happens when jumping forward? */
3135static void noinline ecb_cold
3136periodics_reschedule (EV_P)
1003{ 3137{
1004 int i; 3138 int i;
1005 3139
3140 /* adjust periodics after time jump */
3141 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3142 {
3143 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3144
3145 if (w->reschedule_cb)
3146 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3147 else if (w->interval)
3148 periodic_recalc (EV_A_ w);
3149
3150 ANHE_at_cache (periodics [i]);
3151 }
3152
3153 reheap (periodics, periodiccnt);
3154}
3155#endif
3156
3157/* adjust all timers by a given offset */
3158static void noinline ecb_cold
3159timers_reschedule (EV_P_ ev_tstamp adjust)
3160{
3161 int i;
3162
3163 for (i = 0; i < timercnt; ++i)
3164 {
3165 ANHE *he = timers + i + HEAP0;
3166 ANHE_w (*he)->at += adjust;
3167 ANHE_at_cache (*he);
3168 }
3169}
3170
3171/* fetch new monotonic and realtime times from the kernel */
3172/* also detect if there was a timejump, and act accordingly */
3173inline_speed void
3174time_update (EV_P_ ev_tstamp max_block)
3175{
1006#if EV_USE_MONOTONIC 3176#if EV_USE_MONOTONIC
1007 if (expect_true (have_monotonic)) 3177 if (expect_true (have_monotonic))
1008 { 3178 {
1009 if (time_update_monotonic (EV_A)) 3179 int i;
3180 ev_tstamp odiff = rtmn_diff;
3181
3182 mn_now = get_clock ();
3183
3184 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3185 /* interpolate in the meantime */
3186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1010 { 3187 {
1011 ev_tstamp odiff = rtmn_diff; 3188 ev_rt_now = rtmn_diff + mn_now;
3189 return;
3190 }
1012 3191
3192 now_floor = mn_now;
3193 ev_rt_now = ev_time ();
3194
1013 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 3195 /* loop a few times, before making important decisions.
3196 * on the choice of "4": one iteration isn't enough,
3197 * in case we get preempted during the calls to
3198 * ev_time and get_clock. a second call is almost guaranteed
3199 * to succeed in that case, though. and looping a few more times
3200 * doesn't hurt either as we only do this on time-jumps or
3201 * in the unlikely event of having been preempted here.
3202 */
3203 for (i = 4; --i; )
1014 { 3204 {
3205 ev_tstamp diff;
1015 rtmn_diff = rt_now - mn_now; 3206 rtmn_diff = ev_rt_now - mn_now;
1016 3207
1017 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3208 diff = odiff - rtmn_diff;
3209
3210 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1018 return; /* all is well */ 3211 return; /* all is well */
1019 3212
1020 rt_now = ev_time (); 3213 ev_rt_now = ev_time ();
1021 mn_now = get_clock (); 3214 mn_now = get_clock ();
1022 now_floor = mn_now; 3215 now_floor = mn_now;
1023 } 3216 }
1024 3217
3218 /* no timer adjustment, as the monotonic clock doesn't jump */
3219 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3220# if EV_PERIODIC_ENABLE
3221 periodics_reschedule (EV_A);
3222# endif
3223 }
3224 else
3225#endif
3226 {
3227 ev_rt_now = ev_time ();
3228
3229 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3230 {
3231 /* adjust timers. this is easy, as the offset is the same for all of them */
3232 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3233#if EV_PERIODIC_ENABLE
1025 periodics_reschedule (EV_A); 3234 periodics_reschedule (EV_A);
1026 /* no timer adjustment, as the monotonic clock doesn't jump */ 3235#endif
1027 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1028 } 3236 }
1029 }
1030 else
1031#endif
1032 {
1033 rt_now = ev_time ();
1034 3237
1035 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1036 {
1037 periodics_reschedule (EV_A);
1038
1039 /* adjust timers. this is easy, as the offset is the same for all */
1040 for (i = 0; i < timercnt; ++i)
1041 ((WT)timers [i])->at += rt_now - mn_now;
1042 }
1043
1044 mn_now = rt_now; 3238 mn_now = ev_rt_now;
1045 } 3239 }
1046} 3240}
1047 3241
1048void 3242int
1049ev_ref (EV_P)
1050{
1051 ++activecnt;
1052}
1053
1054void
1055ev_unref (EV_P)
1056{
1057 --activecnt;
1058}
1059
1060static int loop_done;
1061
1062void
1063ev_loop (EV_P_ int flags) 3243ev_run (EV_P_ int flags)
1064{ 3244{
1065 double block; 3245#if EV_FEATURE_API
1066 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3246 ++loop_depth;
3247#endif
3248
3249 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3250
3251 loop_done = EVBREAK_CANCEL;
3252
3253 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1067 3254
1068 do 3255 do
1069 { 3256 {
3257#if EV_VERIFY >= 2
3258 ev_verify (EV_A);
3259#endif
3260
3261#ifndef _WIN32
3262 if (expect_false (curpid)) /* penalise the forking check even more */
3263 if (expect_false (getpid () != curpid))
3264 {
3265 curpid = getpid ();
3266 postfork = 1;
3267 }
3268#endif
3269
3270#if EV_FORK_ENABLE
3271 /* we might have forked, so queue fork handlers */
3272 if (expect_false (postfork))
3273 if (forkcnt)
3274 {
3275 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3276 EV_INVOKE_PENDING;
3277 }
3278#endif
3279
3280#if EV_PREPARE_ENABLE
1070 /* queue check watchers (and execute them) */ 3281 /* queue prepare watchers (and execute them) */
1071 if (expect_false (preparecnt)) 3282 if (expect_false (preparecnt))
1072 { 3283 {
1073 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3284 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1074 call_pending (EV_A); 3285 EV_INVOKE_PENDING;
1075 } 3286 }
3287#endif
3288
3289 if (expect_false (loop_done))
3290 break;
1076 3291
1077 /* we might have forked, so reify kernel state if necessary */ 3292 /* we might have forked, so reify kernel state if necessary */
1078 if (expect_false (postfork)) 3293 if (expect_false (postfork))
1079 loop_fork (EV_A); 3294 loop_fork (EV_A);
1080 3295
1081 /* update fd-related kernel structures */ 3296 /* update fd-related kernel structures */
1082 fd_reify (EV_A); 3297 fd_reify (EV_A);
1083 3298
1084 /* calculate blocking time */ 3299 /* calculate blocking time */
3300 {
3301 ev_tstamp waittime = 0.;
3302 ev_tstamp sleeptime = 0.;
1085 3303
1086 /* we only need this for !monotonic clockor timers, but as we basically 3304 /* remember old timestamp for io_blocktime calculation */
1087 always have timers, we just calculate it always */ 3305 ev_tstamp prev_mn_now = mn_now;
1088#if EV_USE_MONOTONIC 3306
1089 if (expect_true (have_monotonic)) 3307 /* update time to cancel out callback processing overhead */
1090 time_update_monotonic (EV_A); 3308 time_update (EV_A_ 1e100);
1091 else 3309
1092#endif 3310 /* from now on, we want a pipe-wake-up */
3311 pipe_write_wanted = 1;
3312
3313 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3314
3315 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1093 { 3316 {
1094 rt_now = ev_time ();
1095 mn_now = rt_now;
1096 }
1097
1098 if (flags & EVLOOP_NONBLOCK || idlecnt)
1099 block = 0.;
1100 else
1101 {
1102 block = MAX_BLOCKTIME; 3317 waittime = MAX_BLOCKTIME;
1103 3318
1104 if (timercnt) 3319 if (timercnt)
1105 { 3320 {
1106 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3321 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1107 if (block > to) block = to; 3322 if (waittime > to) waittime = to;
1108 } 3323 }
1109 3324
3325#if EV_PERIODIC_ENABLE
1110 if (periodiccnt) 3326 if (periodiccnt)
1111 { 3327 {
1112 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 3328 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1113 if (block > to) block = to; 3329 if (waittime > to) waittime = to;
1114 } 3330 }
3331#endif
1115 3332
1116 if (block < 0.) block = 0.; 3333 /* don't let timeouts decrease the waittime below timeout_blocktime */
3334 if (expect_false (waittime < timeout_blocktime))
3335 waittime = timeout_blocktime;
3336
3337 /* at this point, we NEED to wait, so we have to ensure */
3338 /* to pass a minimum nonzero value to the backend */
3339 if (expect_false (waittime < backend_mintime))
3340 waittime = backend_mintime;
3341
3342 /* extra check because io_blocktime is commonly 0 */
3343 if (expect_false (io_blocktime))
3344 {
3345 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3346
3347 if (sleeptime > waittime - backend_mintime)
3348 sleeptime = waittime - backend_mintime;
3349
3350 if (expect_true (sleeptime > 0.))
3351 {
3352 ev_sleep (sleeptime);
3353 waittime -= sleeptime;
3354 }
3355 }
1117 } 3356 }
1118 3357
1119 method_poll (EV_A_ block); 3358#if EV_FEATURE_API
3359 ++loop_count;
3360#endif
3361 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3362 backend_poll (EV_A_ waittime);
3363 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1120 3364
3365 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3366
3367 ECB_MEMORY_FENCE_ACQUIRE;
3368 if (pipe_write_skipped)
3369 {
3370 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3371 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3372 }
3373
3374
1121 /* update rt_now, do magic */ 3375 /* update ev_rt_now, do magic */
1122 time_update (EV_A); 3376 time_update (EV_A_ waittime + sleeptime);
3377 }
1123 3378
1124 /* queue pending timers and reschedule them */ 3379 /* queue pending timers and reschedule them */
1125 timers_reify (EV_A); /* relative timers called last */ 3380 timers_reify (EV_A); /* relative timers called last */
3381#if EV_PERIODIC_ENABLE
1126 periodics_reify (EV_A); /* absolute timers called first */ 3382 periodics_reify (EV_A); /* absolute timers called first */
3383#endif
1127 3384
3385#if EV_IDLE_ENABLE
1128 /* queue idle watchers unless io or timers are pending */ 3386 /* queue idle watchers unless other events are pending */
1129 if (!pendingcnt) 3387 idle_reify (EV_A);
1130 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3388#endif
1131 3389
3390#if EV_CHECK_ENABLE
1132 /* queue check watchers, to be executed first */ 3391 /* queue check watchers, to be executed first */
1133 if (checkcnt) 3392 if (expect_false (checkcnt))
1134 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3393 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3394#endif
1135 3395
1136 call_pending (EV_A); 3396 EV_INVOKE_PENDING;
1137 } 3397 }
1138 while (activecnt && !loop_done); 3398 while (expect_true (
3399 activecnt
3400 && !loop_done
3401 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3402 ));
1139 3403
1140 if (loop_done != 2) 3404 if (loop_done == EVBREAK_ONE)
1141 loop_done = 0; 3405 loop_done = EVBREAK_CANCEL;
3406
3407#if EV_FEATURE_API
3408 --loop_depth;
3409#endif
3410
3411 return activecnt;
1142} 3412}
1143 3413
1144void 3414void
1145ev_unloop (EV_P_ int how) 3415ev_break (EV_P_ int how) EV_THROW
1146{ 3416{
1147 loop_done = how; 3417 loop_done = how;
1148} 3418}
1149 3419
3420void
3421ev_ref (EV_P) EV_THROW
3422{
3423 ++activecnt;
3424}
3425
3426void
3427ev_unref (EV_P) EV_THROW
3428{
3429 --activecnt;
3430}
3431
3432void
3433ev_now_update (EV_P) EV_THROW
3434{
3435 time_update (EV_A_ 1e100);
3436}
3437
3438void
3439ev_suspend (EV_P) EV_THROW
3440{
3441 ev_now_update (EV_A);
3442}
3443
3444void
3445ev_resume (EV_P) EV_THROW
3446{
3447 ev_tstamp mn_prev = mn_now;
3448
3449 ev_now_update (EV_A);
3450 timers_reschedule (EV_A_ mn_now - mn_prev);
3451#if EV_PERIODIC_ENABLE
3452 /* TODO: really do this? */
3453 periodics_reschedule (EV_A);
3454#endif
3455}
3456
1150/*****************************************************************************/ 3457/*****************************************************************************/
3458/* singly-linked list management, used when the expected list length is short */
1151 3459
1152inline void 3460inline_size void
1153wlist_add (WL *head, WL elem) 3461wlist_add (WL *head, WL elem)
1154{ 3462{
1155 elem->next = *head; 3463 elem->next = *head;
1156 *head = elem; 3464 *head = elem;
1157} 3465}
1158 3466
1159inline void 3467inline_size void
1160wlist_del (WL *head, WL elem) 3468wlist_del (WL *head, WL elem)
1161{ 3469{
1162 while (*head) 3470 while (*head)
1163 { 3471 {
1164 if (*head == elem) 3472 if (expect_true (*head == elem))
1165 { 3473 {
1166 *head = elem->next; 3474 *head = elem->next;
1167 return; 3475 break;
1168 } 3476 }
1169 3477
1170 head = &(*head)->next; 3478 head = &(*head)->next;
1171 } 3479 }
1172} 3480}
1173 3481
3482/* internal, faster, version of ev_clear_pending */
1174inline void 3483inline_speed void
1175ev_clear_pending (EV_P_ W w) 3484clear_pending (EV_P_ W w)
1176{ 3485{
1177 if (w->pending) 3486 if (w->pending)
1178 { 3487 {
1179 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3488 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1180 w->pending = 0; 3489 w->pending = 0;
1181 } 3490 }
1182} 3491}
1183 3492
3493int
3494ev_clear_pending (EV_P_ void *w) EV_THROW
3495{
3496 W w_ = (W)w;
3497 int pending = w_->pending;
3498
3499 if (expect_true (pending))
3500 {
3501 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3502 p->w = (W)&pending_w;
3503 w_->pending = 0;
3504 return p->events;
3505 }
3506 else
3507 return 0;
3508}
3509
1184inline void 3510inline_size void
3511pri_adjust (EV_P_ W w)
3512{
3513 int pri = ev_priority (w);
3514 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3515 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3516 ev_set_priority (w, pri);
3517}
3518
3519inline_speed void
1185ev_start (EV_P_ W w, int active) 3520ev_start (EV_P_ W w, int active)
1186{ 3521{
1187 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3522 pri_adjust (EV_A_ w);
1188 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1189
1190 w->active = active; 3523 w->active = active;
1191 ev_ref (EV_A); 3524 ev_ref (EV_A);
1192} 3525}
1193 3526
1194inline void 3527inline_size void
1195ev_stop (EV_P_ W w) 3528ev_stop (EV_P_ W w)
1196{ 3529{
1197 ev_unref (EV_A); 3530 ev_unref (EV_A);
1198 w->active = 0; 3531 w->active = 0;
1199} 3532}
1200 3533
1201/*****************************************************************************/ 3534/*****************************************************************************/
1202 3535
1203void 3536void noinline
1204ev_io_start (EV_P_ struct ev_io *w) 3537ev_io_start (EV_P_ ev_io *w) EV_THROW
1205{ 3538{
1206 int fd = w->fd; 3539 int fd = w->fd;
1207 3540
1208 if (ev_is_active (w)) 3541 if (expect_false (ev_is_active (w)))
1209 return; 3542 return;
1210 3543
1211 assert (("ev_io_start called with negative fd", fd >= 0)); 3544 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3545 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3546
3547 EV_FREQUENT_CHECK;
1212 3548
1213 ev_start (EV_A_ (W)w, 1); 3549 ev_start (EV_A_ (W)w, 1);
1214 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3550 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1215 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3551 wlist_add (&anfds[fd].head, (WL)w);
1216 3552
1217 fd_change (EV_A_ fd); 3553 /* common bug, apparently */
1218} 3554 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1219 3555
1220void 3556 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3557 w->events &= ~EV__IOFDSET;
3558
3559 EV_FREQUENT_CHECK;
3560}
3561
3562void noinline
1221ev_io_stop (EV_P_ struct ev_io *w) 3563ev_io_stop (EV_P_ ev_io *w) EV_THROW
1222{ 3564{
1223 ev_clear_pending (EV_A_ (W)w); 3565 clear_pending (EV_A_ (W)w);
1224 if (!ev_is_active (w)) 3566 if (expect_false (!ev_is_active (w)))
1225 return; 3567 return;
1226 3568
3569 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3570
3571 EV_FREQUENT_CHECK;
3572
1227 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3573 wlist_del (&anfds[w->fd].head, (WL)w);
1228 ev_stop (EV_A_ (W)w); 3574 ev_stop (EV_A_ (W)w);
1229 3575
1230 fd_change (EV_A_ w->fd); 3576 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1231}
1232 3577
1233void 3578 EV_FREQUENT_CHECK;
3579}
3580
3581void noinline
1234ev_timer_start (EV_P_ struct ev_timer *w) 3582ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1235{ 3583{
1236 if (ev_is_active (w)) 3584 if (expect_false (ev_is_active (w)))
1237 return; 3585 return;
1238 3586
1239 ((WT)w)->at += mn_now; 3587 ev_at (w) += mn_now;
1240 3588
1241 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3589 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1242 3590
3591 EV_FREQUENT_CHECK;
3592
3593 ++timercnt;
1243 ev_start (EV_A_ (W)w, ++timercnt); 3594 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1244 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 3595 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1245 timers [timercnt - 1] = w; 3596 ANHE_w (timers [ev_active (w)]) = (WT)w;
1246 upheap ((WT *)timers, timercnt - 1); 3597 ANHE_at_cache (timers [ev_active (w)]);
3598 upheap (timers, ev_active (w));
1247 3599
3600 EV_FREQUENT_CHECK;
3601
1248 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3602 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1249} 3603}
1250 3604
1251void 3605void noinline
1252ev_timer_stop (EV_P_ struct ev_timer *w) 3606ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1253{ 3607{
1254 ev_clear_pending (EV_A_ (W)w); 3608 clear_pending (EV_A_ (W)w);
1255 if (!ev_is_active (w)) 3609 if (expect_false (!ev_is_active (w)))
1256 return; 3610 return;
1257 3611
3612 EV_FREQUENT_CHECK;
3613
3614 {
3615 int active = ev_active (w);
3616
1258 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3617 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1259 3618
1260 if (((W)w)->active < timercnt--) 3619 --timercnt;
3620
3621 if (expect_true (active < timercnt + HEAP0))
1261 { 3622 {
1262 timers [((W)w)->active - 1] = timers [timercnt]; 3623 timers [active] = timers [timercnt + HEAP0];
1263 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3624 adjustheap (timers, timercnt, active);
1264 } 3625 }
3626 }
1265 3627
1266 ((WT)w)->at = w->repeat; 3628 ev_at (w) -= mn_now;
1267 3629
1268 ev_stop (EV_A_ (W)w); 3630 ev_stop (EV_A_ (W)w);
1269}
1270 3631
1271void 3632 EV_FREQUENT_CHECK;
3633}
3634
3635void noinline
1272ev_timer_again (EV_P_ struct ev_timer *w) 3636ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1273{ 3637{
3638 EV_FREQUENT_CHECK;
3639
3640 clear_pending (EV_A_ (W)w);
3641
1274 if (ev_is_active (w)) 3642 if (ev_is_active (w))
1275 { 3643 {
1276 if (w->repeat) 3644 if (w->repeat)
1277 { 3645 {
1278 ((WT)w)->at = mn_now + w->repeat; 3646 ev_at (w) = mn_now + w->repeat;
1279 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3647 ANHE_at_cache (timers [ev_active (w)]);
3648 adjustheap (timers, timercnt, ev_active (w));
1280 } 3649 }
1281 else 3650 else
1282 ev_timer_stop (EV_A_ w); 3651 ev_timer_stop (EV_A_ w);
1283 } 3652 }
1284 else if (w->repeat) 3653 else if (w->repeat)
3654 {
3655 ev_at (w) = w->repeat;
1285 ev_timer_start (EV_A_ w); 3656 ev_timer_start (EV_A_ w);
1286} 3657 }
1287 3658
1288void 3659 EV_FREQUENT_CHECK;
3660}
3661
3662ev_tstamp
3663ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3664{
3665 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3666}
3667
3668#if EV_PERIODIC_ENABLE
3669void noinline
1289ev_periodic_start (EV_P_ struct ev_periodic *w) 3670ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1290{ 3671{
1291 if (ev_is_active (w)) 3672 if (expect_false (ev_is_active (w)))
1292 return; 3673 return;
1293 3674
3675 if (w->reschedule_cb)
3676 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3677 else if (w->interval)
3678 {
1294 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3679 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3680 periodic_recalc (EV_A_ w);
3681 }
3682 else
3683 ev_at (w) = w->offset;
1295 3684
1296 /* this formula differs from the one in periodic_reify because we do not always round up */ 3685 EV_FREQUENT_CHECK;
1297 if (w->interval)
1298 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1299 3686
3687 ++periodiccnt;
1300 ev_start (EV_A_ (W)w, ++periodiccnt); 3688 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1301 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 3689 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1302 periodics [periodiccnt - 1] = w; 3690 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1303 upheap ((WT *)periodics, periodiccnt - 1); 3691 ANHE_at_cache (periodics [ev_active (w)]);
3692 upheap (periodics, ev_active (w));
1304 3693
3694 EV_FREQUENT_CHECK;
3695
1305 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3696 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1306} 3697}
1307 3698
1308void 3699void noinline
1309ev_periodic_stop (EV_P_ struct ev_periodic *w) 3700ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1310{ 3701{
1311 ev_clear_pending (EV_A_ (W)w); 3702 clear_pending (EV_A_ (W)w);
1312 if (!ev_is_active (w)) 3703 if (expect_false (!ev_is_active (w)))
1313 return; 3704 return;
1314 3705
3706 EV_FREQUENT_CHECK;
3707
3708 {
3709 int active = ev_active (w);
3710
1315 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3711 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1316 3712
1317 if (((W)w)->active < periodiccnt--) 3713 --periodiccnt;
3714
3715 if (expect_true (active < periodiccnt + HEAP0))
1318 { 3716 {
1319 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3717 periodics [active] = periodics [periodiccnt + HEAP0];
1320 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3718 adjustheap (periodics, periodiccnt, active);
1321 } 3719 }
3720 }
1322 3721
1323 ev_stop (EV_A_ (W)w); 3722 ev_stop (EV_A_ (W)w);
1324}
1325 3723
1326void 3724 EV_FREQUENT_CHECK;
1327ev_idle_start (EV_P_ struct ev_idle *w)
1328{
1329 if (ev_is_active (w))
1330 return;
1331
1332 ev_start (EV_A_ (W)w, ++idlecnt);
1333 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1334 idles [idlecnt - 1] = w;
1335} 3725}
1336 3726
1337void 3727void noinline
1338ev_idle_stop (EV_P_ struct ev_idle *w) 3728ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1339{ 3729{
1340 ev_clear_pending (EV_A_ (W)w); 3730 /* TODO: use adjustheap and recalculation */
1341 if (ev_is_active (w))
1342 return;
1343
1344 idles [((W)w)->active - 1] = idles [--idlecnt];
1345 ev_stop (EV_A_ (W)w); 3731 ev_periodic_stop (EV_A_ w);
3732 ev_periodic_start (EV_A_ w);
1346} 3733}
1347 3734#endif
1348void
1349ev_prepare_start (EV_P_ struct ev_prepare *w)
1350{
1351 if (ev_is_active (w))
1352 return;
1353
1354 ev_start (EV_A_ (W)w, ++preparecnt);
1355 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1356 prepares [preparecnt - 1] = w;
1357}
1358
1359void
1360ev_prepare_stop (EV_P_ struct ev_prepare *w)
1361{
1362 ev_clear_pending (EV_A_ (W)w);
1363 if (ev_is_active (w))
1364 return;
1365
1366 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1367 ev_stop (EV_A_ (W)w);
1368}
1369
1370void
1371ev_check_start (EV_P_ struct ev_check *w)
1372{
1373 if (ev_is_active (w))
1374 return;
1375
1376 ev_start (EV_A_ (W)w, ++checkcnt);
1377 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1378 checks [checkcnt - 1] = w;
1379}
1380
1381void
1382ev_check_stop (EV_P_ struct ev_check *w)
1383{
1384 ev_clear_pending (EV_A_ (W)w);
1385 if (ev_is_active (w))
1386 return;
1387
1388 checks [((W)w)->active - 1] = checks [--checkcnt];
1389 ev_stop (EV_A_ (W)w);
1390}
1391 3735
1392#ifndef SA_RESTART 3736#ifndef SA_RESTART
1393# define SA_RESTART 0 3737# define SA_RESTART 0
1394#endif 3738#endif
1395 3739
3740#if EV_SIGNAL_ENABLE
3741
3742void noinline
3743ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3744{
3745 if (expect_false (ev_is_active (w)))
3746 return;
3747
3748 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3749
3750#if EV_MULTIPLICITY
3751 assert (("libev: a signal must not be attached to two different loops",
3752 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3753
3754 signals [w->signum - 1].loop = EV_A;
3755 ECB_MEMORY_FENCE_RELEASE;
3756#endif
3757
3758 EV_FREQUENT_CHECK;
3759
3760#if EV_USE_SIGNALFD
3761 if (sigfd == -2)
3762 {
3763 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3764 if (sigfd < 0 && errno == EINVAL)
3765 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3766
3767 if (sigfd >= 0)
3768 {
3769 fd_intern (sigfd); /* doing it twice will not hurt */
3770
3771 sigemptyset (&sigfd_set);
3772
3773 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3774 ev_set_priority (&sigfd_w, EV_MAXPRI);
3775 ev_io_start (EV_A_ &sigfd_w);
3776 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3777 }
3778 }
3779
3780 if (sigfd >= 0)
3781 {
3782 /* TODO: check .head */
3783 sigaddset (&sigfd_set, w->signum);
3784 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3785
3786 signalfd (sigfd, &sigfd_set, 0);
3787 }
3788#endif
3789
3790 ev_start (EV_A_ (W)w, 1);
3791 wlist_add (&signals [w->signum - 1].head, (WL)w);
3792
3793 if (!((WL)w)->next)
3794# if EV_USE_SIGNALFD
3795 if (sigfd < 0) /*TODO*/
3796# endif
3797 {
3798# ifdef _WIN32
3799 evpipe_init (EV_A);
3800
3801 signal (w->signum, ev_sighandler);
3802# else
3803 struct sigaction sa;
3804
3805 evpipe_init (EV_A);
3806
3807 sa.sa_handler = ev_sighandler;
3808 sigfillset (&sa.sa_mask);
3809 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3810 sigaction (w->signum, &sa, 0);
3811
3812 if (origflags & EVFLAG_NOSIGMASK)
3813 {
3814 sigemptyset (&sa.sa_mask);
3815 sigaddset (&sa.sa_mask, w->signum);
3816 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3817 }
3818#endif
3819 }
3820
3821 EV_FREQUENT_CHECK;
3822}
3823
3824void noinline
3825ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3826{
3827 clear_pending (EV_A_ (W)w);
3828 if (expect_false (!ev_is_active (w)))
3829 return;
3830
3831 EV_FREQUENT_CHECK;
3832
3833 wlist_del (&signals [w->signum - 1].head, (WL)w);
3834 ev_stop (EV_A_ (W)w);
3835
3836 if (!signals [w->signum - 1].head)
3837 {
3838#if EV_MULTIPLICITY
3839 signals [w->signum - 1].loop = 0; /* unattach from signal */
3840#endif
3841#if EV_USE_SIGNALFD
3842 if (sigfd >= 0)
3843 {
3844 sigset_t ss;
3845
3846 sigemptyset (&ss);
3847 sigaddset (&ss, w->signum);
3848 sigdelset (&sigfd_set, w->signum);
3849
3850 signalfd (sigfd, &sigfd_set, 0);
3851 sigprocmask (SIG_UNBLOCK, &ss, 0);
3852 }
3853 else
3854#endif
3855 signal (w->signum, SIG_DFL);
3856 }
3857
3858 EV_FREQUENT_CHECK;
3859}
3860
3861#endif
3862
3863#if EV_CHILD_ENABLE
3864
1396void 3865void
1397ev_signal_start (EV_P_ struct ev_signal *w) 3866ev_child_start (EV_P_ ev_child *w) EV_THROW
1398{ 3867{
1399#if EV_MULTIPLICITY 3868#if EV_MULTIPLICITY
1400 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3869 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1401#endif 3870#endif
1402 if (ev_is_active (w)) 3871 if (expect_false (ev_is_active (w)))
1403 return; 3872 return;
1404 3873
1405 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3874 EV_FREQUENT_CHECK;
1406 3875
1407 ev_start (EV_A_ (W)w, 1); 3876 ev_start (EV_A_ (W)w, 1);
1408 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3877 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1409 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1410 3878
1411 if (!((WL)w)->next) 3879 EV_FREQUENT_CHECK;
3880}
3881
3882void
3883ev_child_stop (EV_P_ ev_child *w) EV_THROW
3884{
3885 clear_pending (EV_A_ (W)w);
3886 if (expect_false (!ev_is_active (w)))
3887 return;
3888
3889 EV_FREQUENT_CHECK;
3890
3891 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3892 ev_stop (EV_A_ (W)w);
3893
3894 EV_FREQUENT_CHECK;
3895}
3896
3897#endif
3898
3899#if EV_STAT_ENABLE
3900
3901# ifdef _WIN32
3902# undef lstat
3903# define lstat(a,b) _stati64 (a,b)
3904# endif
3905
3906#define DEF_STAT_INTERVAL 5.0074891
3907#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3908#define MIN_STAT_INTERVAL 0.1074891
3909
3910static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3911
3912#if EV_USE_INOTIFY
3913
3914/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3915# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3916
3917static void noinline
3918infy_add (EV_P_ ev_stat *w)
3919{
3920 w->wd = inotify_add_watch (fs_fd, w->path,
3921 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3922 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3923 | IN_DONT_FOLLOW | IN_MASK_ADD);
3924
3925 if (w->wd >= 0)
3926 {
3927 struct statfs sfs;
3928
3929 /* now local changes will be tracked by inotify, but remote changes won't */
3930 /* unless the filesystem is known to be local, we therefore still poll */
3931 /* also do poll on <2.6.25, but with normal frequency */
3932
3933 if (!fs_2625)
3934 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3935 else if (!statfs (w->path, &sfs)
3936 && (sfs.f_type == 0x1373 /* devfs */
3937 || sfs.f_type == 0x4006 /* fat */
3938 || sfs.f_type == 0x4d44 /* msdos */
3939 || sfs.f_type == 0xEF53 /* ext2/3 */
3940 || sfs.f_type == 0x72b6 /* jffs2 */
3941 || sfs.f_type == 0x858458f6 /* ramfs */
3942 || sfs.f_type == 0x5346544e /* ntfs */
3943 || sfs.f_type == 0x3153464a /* jfs */
3944 || sfs.f_type == 0x9123683e /* btrfs */
3945 || sfs.f_type == 0x52654973 /* reiser3 */
3946 || sfs.f_type == 0x01021994 /* tmpfs */
3947 || sfs.f_type == 0x58465342 /* xfs */))
3948 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3949 else
3950 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1412 { 3951 }
1413#if WIN32 3952 else
1414 signal (w->signum, sighandler); 3953 {
3954 /* can't use inotify, continue to stat */
3955 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3956
3957 /* if path is not there, monitor some parent directory for speedup hints */
3958 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3959 /* but an efficiency issue only */
3960 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3961 {
3962 char path [4096];
3963 strcpy (path, w->path);
3964
3965 do
3966 {
3967 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3968 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3969
3970 char *pend = strrchr (path, '/');
3971
3972 if (!pend || pend == path)
3973 break;
3974
3975 *pend = 0;
3976 w->wd = inotify_add_watch (fs_fd, path, mask);
3977 }
3978 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3979 }
3980 }
3981
3982 if (w->wd >= 0)
3983 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3984
3985 /* now re-arm timer, if required */
3986 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3987 ev_timer_again (EV_A_ &w->timer);
3988 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3989}
3990
3991static void noinline
3992infy_del (EV_P_ ev_stat *w)
3993{
3994 int slot;
3995 int wd = w->wd;
3996
3997 if (wd < 0)
3998 return;
3999
4000 w->wd = -2;
4001 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4002 wlist_del (&fs_hash [slot].head, (WL)w);
4003
4004 /* remove this watcher, if others are watching it, they will rearm */
4005 inotify_rm_watch (fs_fd, wd);
4006}
4007
4008static void noinline
4009infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4010{
4011 if (slot < 0)
4012 /* overflow, need to check for all hash slots */
4013 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4014 infy_wd (EV_A_ slot, wd, ev);
4015 else
4016 {
4017 WL w_;
4018
4019 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4020 {
4021 ev_stat *w = (ev_stat *)w_;
4022 w_ = w_->next; /* lets us remove this watcher and all before it */
4023
4024 if (w->wd == wd || wd == -1)
4025 {
4026 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4027 {
4028 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4029 w->wd = -1;
4030 infy_add (EV_A_ w); /* re-add, no matter what */
4031 }
4032
4033 stat_timer_cb (EV_A_ &w->timer, 0);
4034 }
4035 }
4036 }
4037}
4038
4039static void
4040infy_cb (EV_P_ ev_io *w, int revents)
4041{
4042 char buf [EV_INOTIFY_BUFSIZE];
4043 int ofs;
4044 int len = read (fs_fd, buf, sizeof (buf));
4045
4046 for (ofs = 0; ofs < len; )
4047 {
4048 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4049 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4050 ofs += sizeof (struct inotify_event) + ev->len;
4051 }
4052}
4053
4054inline_size void ecb_cold
4055ev_check_2625 (EV_P)
4056{
4057 /* kernels < 2.6.25 are borked
4058 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4059 */
4060 if (ev_linux_version () < 0x020619)
4061 return;
4062
4063 fs_2625 = 1;
4064}
4065
4066inline_size int
4067infy_newfd (void)
4068{
4069#if defined IN_CLOEXEC && defined IN_NONBLOCK
4070 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4071 if (fd >= 0)
4072 return fd;
4073#endif
4074 return inotify_init ();
4075}
4076
4077inline_size void
4078infy_init (EV_P)
4079{
4080 if (fs_fd != -2)
4081 return;
4082
4083 fs_fd = -1;
4084
4085 ev_check_2625 (EV_A);
4086
4087 fs_fd = infy_newfd ();
4088
4089 if (fs_fd >= 0)
4090 {
4091 fd_intern (fs_fd);
4092 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4093 ev_set_priority (&fs_w, EV_MAXPRI);
4094 ev_io_start (EV_A_ &fs_w);
4095 ev_unref (EV_A);
4096 }
4097}
4098
4099inline_size void
4100infy_fork (EV_P)
4101{
4102 int slot;
4103
4104 if (fs_fd < 0)
4105 return;
4106
4107 ev_ref (EV_A);
4108 ev_io_stop (EV_A_ &fs_w);
4109 close (fs_fd);
4110 fs_fd = infy_newfd ();
4111
4112 if (fs_fd >= 0)
4113 {
4114 fd_intern (fs_fd);
4115 ev_io_set (&fs_w, fs_fd, EV_READ);
4116 ev_io_start (EV_A_ &fs_w);
4117 ev_unref (EV_A);
4118 }
4119
4120 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4121 {
4122 WL w_ = fs_hash [slot].head;
4123 fs_hash [slot].head = 0;
4124
4125 while (w_)
4126 {
4127 ev_stat *w = (ev_stat *)w_;
4128 w_ = w_->next; /* lets us add this watcher */
4129
4130 w->wd = -1;
4131
4132 if (fs_fd >= 0)
4133 infy_add (EV_A_ w); /* re-add, no matter what */
4134 else
4135 {
4136 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4137 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4138 ev_timer_again (EV_A_ &w->timer);
4139 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4140 }
4141 }
4142 }
4143}
4144
4145#endif
4146
4147#ifdef _WIN32
4148# define EV_LSTAT(p,b) _stati64 (p, b)
1415#else 4149#else
1416 struct sigaction sa; 4150# define EV_LSTAT(p,b) lstat (p, b)
1417 sa.sa_handler = sighandler;
1418 sigfillset (&sa.sa_mask);
1419 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1420 sigaction (w->signum, &sa, 0);
1421#endif 4151#endif
1422 }
1423}
1424 4152
1425void 4153void
1426ev_signal_stop (EV_P_ struct ev_signal *w) 4154ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1427{ 4155{
1428 ev_clear_pending (EV_A_ (W)w); 4156 if (lstat (w->path, &w->attr) < 0)
1429 if (!ev_is_active (w)) 4157 w->attr.st_nlink = 0;
4158 else if (!w->attr.st_nlink)
4159 w->attr.st_nlink = 1;
4160}
4161
4162static void noinline
4163stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4164{
4165 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4166
4167 ev_statdata prev = w->attr;
4168 ev_stat_stat (EV_A_ w);
4169
4170 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4171 if (
4172 prev.st_dev != w->attr.st_dev
4173 || prev.st_ino != w->attr.st_ino
4174 || prev.st_mode != w->attr.st_mode
4175 || prev.st_nlink != w->attr.st_nlink
4176 || prev.st_uid != w->attr.st_uid
4177 || prev.st_gid != w->attr.st_gid
4178 || prev.st_rdev != w->attr.st_rdev
4179 || prev.st_size != w->attr.st_size
4180 || prev.st_atime != w->attr.st_atime
4181 || prev.st_mtime != w->attr.st_mtime
4182 || prev.st_ctime != w->attr.st_ctime
4183 ) {
4184 /* we only update w->prev on actual differences */
4185 /* in case we test more often than invoke the callback, */
4186 /* to ensure that prev is always different to attr */
4187 w->prev = prev;
4188
4189 #if EV_USE_INOTIFY
4190 if (fs_fd >= 0)
4191 {
4192 infy_del (EV_A_ w);
4193 infy_add (EV_A_ w);
4194 ev_stat_stat (EV_A_ w); /* avoid race... */
4195 }
4196 #endif
4197
4198 ev_feed_event (EV_A_ w, EV_STAT);
4199 }
4200}
4201
4202void
4203ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4204{
4205 if (expect_false (ev_is_active (w)))
1430 return; 4206 return;
1431 4207
1432 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4208 ev_stat_stat (EV_A_ w);
4209
4210 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4211 w->interval = MIN_STAT_INTERVAL;
4212
4213 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4214 ev_set_priority (&w->timer, ev_priority (w));
4215
4216#if EV_USE_INOTIFY
4217 infy_init (EV_A);
4218
4219 if (fs_fd >= 0)
4220 infy_add (EV_A_ w);
4221 else
4222#endif
4223 {
4224 ev_timer_again (EV_A_ &w->timer);
4225 ev_unref (EV_A);
4226 }
4227
4228 ev_start (EV_A_ (W)w, 1);
4229
4230 EV_FREQUENT_CHECK;
4231}
4232
4233void
4234ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4235{
4236 clear_pending (EV_A_ (W)w);
4237 if (expect_false (!ev_is_active (w)))
4238 return;
4239
4240 EV_FREQUENT_CHECK;
4241
4242#if EV_USE_INOTIFY
4243 infy_del (EV_A_ w);
4244#endif
4245
4246 if (ev_is_active (&w->timer))
4247 {
4248 ev_ref (EV_A);
4249 ev_timer_stop (EV_A_ &w->timer);
4250 }
4251
1433 ev_stop (EV_A_ (W)w); 4252 ev_stop (EV_A_ (W)w);
1434 4253
1435 if (!signals [w->signum - 1].head) 4254 EV_FREQUENT_CHECK;
1436 signal (w->signum, SIG_DFL);
1437} 4255}
4256#endif
1438 4257
4258#if EV_IDLE_ENABLE
1439void 4259void
1440ev_child_start (EV_P_ struct ev_child *w) 4260ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1441{ 4261{
1442#if EV_MULTIPLICITY
1443 assert (("child watchers are only supported in the default loop", loop == default_loop));
1444#endif
1445 if (ev_is_active (w)) 4262 if (expect_false (ev_is_active (w)))
1446 return; 4263 return;
1447 4264
4265 pri_adjust (EV_A_ (W)w);
4266
4267 EV_FREQUENT_CHECK;
4268
4269 {
4270 int active = ++idlecnt [ABSPRI (w)];
4271
4272 ++idleall;
4273 ev_start (EV_A_ (W)w, active);
4274
4275 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4276 idles [ABSPRI (w)][active - 1] = w;
4277 }
4278
4279 EV_FREQUENT_CHECK;
4280}
4281
4282void
4283ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4284{
4285 clear_pending (EV_A_ (W)w);
4286 if (expect_false (!ev_is_active (w)))
4287 return;
4288
4289 EV_FREQUENT_CHECK;
4290
4291 {
4292 int active = ev_active (w);
4293
4294 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4295 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4296
4297 ev_stop (EV_A_ (W)w);
4298 --idleall;
4299 }
4300
4301 EV_FREQUENT_CHECK;
4302}
4303#endif
4304
4305#if EV_PREPARE_ENABLE
4306void
4307ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4308{
4309 if (expect_false (ev_is_active (w)))
4310 return;
4311
4312 EV_FREQUENT_CHECK;
4313
4314 ev_start (EV_A_ (W)w, ++preparecnt);
4315 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4316 prepares [preparecnt - 1] = w;
4317
4318 EV_FREQUENT_CHECK;
4319}
4320
4321void
4322ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4323{
4324 clear_pending (EV_A_ (W)w);
4325 if (expect_false (!ev_is_active (w)))
4326 return;
4327
4328 EV_FREQUENT_CHECK;
4329
4330 {
4331 int active = ev_active (w);
4332
4333 prepares [active - 1] = prepares [--preparecnt];
4334 ev_active (prepares [active - 1]) = active;
4335 }
4336
4337 ev_stop (EV_A_ (W)w);
4338
4339 EV_FREQUENT_CHECK;
4340}
4341#endif
4342
4343#if EV_CHECK_ENABLE
4344void
4345ev_check_start (EV_P_ ev_check *w) EV_THROW
4346{
4347 if (expect_false (ev_is_active (w)))
4348 return;
4349
4350 EV_FREQUENT_CHECK;
4351
4352 ev_start (EV_A_ (W)w, ++checkcnt);
4353 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4354 checks [checkcnt - 1] = w;
4355
4356 EV_FREQUENT_CHECK;
4357}
4358
4359void
4360ev_check_stop (EV_P_ ev_check *w) EV_THROW
4361{
4362 clear_pending (EV_A_ (W)w);
4363 if (expect_false (!ev_is_active (w)))
4364 return;
4365
4366 EV_FREQUENT_CHECK;
4367
4368 {
4369 int active = ev_active (w);
4370
4371 checks [active - 1] = checks [--checkcnt];
4372 ev_active (checks [active - 1]) = active;
4373 }
4374
4375 ev_stop (EV_A_ (W)w);
4376
4377 EV_FREQUENT_CHECK;
4378}
4379#endif
4380
4381#if EV_EMBED_ENABLE
4382void noinline
4383ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4384{
4385 ev_run (w->other, EVRUN_NOWAIT);
4386}
4387
4388static void
4389embed_io_cb (EV_P_ ev_io *io, int revents)
4390{
4391 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4392
4393 if (ev_cb (w))
4394 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4395 else
4396 ev_run (w->other, EVRUN_NOWAIT);
4397}
4398
4399static void
4400embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4401{
4402 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4403
4404 {
4405 EV_P = w->other;
4406
4407 while (fdchangecnt)
4408 {
4409 fd_reify (EV_A);
4410 ev_run (EV_A_ EVRUN_NOWAIT);
4411 }
4412 }
4413}
4414
4415static void
4416embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4417{
4418 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4419
4420 ev_embed_stop (EV_A_ w);
4421
4422 {
4423 EV_P = w->other;
4424
4425 ev_loop_fork (EV_A);
4426 ev_run (EV_A_ EVRUN_NOWAIT);
4427 }
4428
4429 ev_embed_start (EV_A_ w);
4430}
4431
4432#if 0
4433static void
4434embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4435{
4436 ev_idle_stop (EV_A_ idle);
4437}
4438#endif
4439
4440void
4441ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4442{
4443 if (expect_false (ev_is_active (w)))
4444 return;
4445
4446 {
4447 EV_P = w->other;
4448 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4449 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4450 }
4451
4452 EV_FREQUENT_CHECK;
4453
4454 ev_set_priority (&w->io, ev_priority (w));
4455 ev_io_start (EV_A_ &w->io);
4456
4457 ev_prepare_init (&w->prepare, embed_prepare_cb);
4458 ev_set_priority (&w->prepare, EV_MINPRI);
4459 ev_prepare_start (EV_A_ &w->prepare);
4460
4461 ev_fork_init (&w->fork, embed_fork_cb);
4462 ev_fork_start (EV_A_ &w->fork);
4463
4464 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4465
1448 ev_start (EV_A_ (W)w, 1); 4466 ev_start (EV_A_ (W)w, 1);
1449 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4467
4468 EV_FREQUENT_CHECK;
1450} 4469}
1451 4470
1452void 4471void
1453ev_child_stop (EV_P_ struct ev_child *w) 4472ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
1454{ 4473{
1455 ev_clear_pending (EV_A_ (W)w); 4474 clear_pending (EV_A_ (W)w);
1456 if (ev_is_active (w)) 4475 if (expect_false (!ev_is_active (w)))
1457 return; 4476 return;
1458 4477
1459 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4478 EV_FREQUENT_CHECK;
4479
4480 ev_io_stop (EV_A_ &w->io);
4481 ev_prepare_stop (EV_A_ &w->prepare);
4482 ev_fork_stop (EV_A_ &w->fork);
4483
1460 ev_stop (EV_A_ (W)w); 4484 ev_stop (EV_A_ (W)w);
4485
4486 EV_FREQUENT_CHECK;
1461} 4487}
4488#endif
4489
4490#if EV_FORK_ENABLE
4491void
4492ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4493{
4494 if (expect_false (ev_is_active (w)))
4495 return;
4496
4497 EV_FREQUENT_CHECK;
4498
4499 ev_start (EV_A_ (W)w, ++forkcnt);
4500 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4501 forks [forkcnt - 1] = w;
4502
4503 EV_FREQUENT_CHECK;
4504}
4505
4506void
4507ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4508{
4509 clear_pending (EV_A_ (W)w);
4510 if (expect_false (!ev_is_active (w)))
4511 return;
4512
4513 EV_FREQUENT_CHECK;
4514
4515 {
4516 int active = ev_active (w);
4517
4518 forks [active - 1] = forks [--forkcnt];
4519 ev_active (forks [active - 1]) = active;
4520 }
4521
4522 ev_stop (EV_A_ (W)w);
4523
4524 EV_FREQUENT_CHECK;
4525}
4526#endif
4527
4528#if EV_CLEANUP_ENABLE
4529void
4530ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4531{
4532 if (expect_false (ev_is_active (w)))
4533 return;
4534
4535 EV_FREQUENT_CHECK;
4536
4537 ev_start (EV_A_ (W)w, ++cleanupcnt);
4538 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4539 cleanups [cleanupcnt - 1] = w;
4540
4541 /* cleanup watchers should never keep a refcount on the loop */
4542 ev_unref (EV_A);
4543 EV_FREQUENT_CHECK;
4544}
4545
4546void
4547ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4548{
4549 clear_pending (EV_A_ (W)w);
4550 if (expect_false (!ev_is_active (w)))
4551 return;
4552
4553 EV_FREQUENT_CHECK;
4554 ev_ref (EV_A);
4555
4556 {
4557 int active = ev_active (w);
4558
4559 cleanups [active - 1] = cleanups [--cleanupcnt];
4560 ev_active (cleanups [active - 1]) = active;
4561 }
4562
4563 ev_stop (EV_A_ (W)w);
4564
4565 EV_FREQUENT_CHECK;
4566}
4567#endif
4568
4569#if EV_ASYNC_ENABLE
4570void
4571ev_async_start (EV_P_ ev_async *w) EV_THROW
4572{
4573 if (expect_false (ev_is_active (w)))
4574 return;
4575
4576 w->sent = 0;
4577
4578 evpipe_init (EV_A);
4579
4580 EV_FREQUENT_CHECK;
4581
4582 ev_start (EV_A_ (W)w, ++asynccnt);
4583 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4584 asyncs [asynccnt - 1] = w;
4585
4586 EV_FREQUENT_CHECK;
4587}
4588
4589void
4590ev_async_stop (EV_P_ ev_async *w) EV_THROW
4591{
4592 clear_pending (EV_A_ (W)w);
4593 if (expect_false (!ev_is_active (w)))
4594 return;
4595
4596 EV_FREQUENT_CHECK;
4597
4598 {
4599 int active = ev_active (w);
4600
4601 asyncs [active - 1] = asyncs [--asynccnt];
4602 ev_active (asyncs [active - 1]) = active;
4603 }
4604
4605 ev_stop (EV_A_ (W)w);
4606
4607 EV_FREQUENT_CHECK;
4608}
4609
4610void
4611ev_async_send (EV_P_ ev_async *w) EV_THROW
4612{
4613 w->sent = 1;
4614 evpipe_write (EV_A_ &async_pending);
4615}
4616#endif
1462 4617
1463/*****************************************************************************/ 4618/*****************************************************************************/
1464 4619
1465struct ev_once 4620struct ev_once
1466{ 4621{
1467 struct ev_io io; 4622 ev_io io;
1468 struct ev_timer to; 4623 ev_timer to;
1469 void (*cb)(int revents, void *arg); 4624 void (*cb)(int revents, void *arg);
1470 void *arg; 4625 void *arg;
1471}; 4626};
1472 4627
1473static void 4628static void
1474once_cb (EV_P_ struct ev_once *once, int revents) 4629once_cb (EV_P_ struct ev_once *once, int revents)
1475{ 4630{
1476 void (*cb)(int revents, void *arg) = once->cb; 4631 void (*cb)(int revents, void *arg) = once->cb;
1477 void *arg = once->arg; 4632 void *arg = once->arg;
1478 4633
1479 ev_io_stop (EV_A_ &once->io); 4634 ev_io_stop (EV_A_ &once->io);
1480 ev_timer_stop (EV_A_ &once->to); 4635 ev_timer_stop (EV_A_ &once->to);
1481 ev_free (once); 4636 ev_free (once);
1482 4637
1483 cb (revents, arg); 4638 cb (revents, arg);
1484} 4639}
1485 4640
1486static void 4641static void
1487once_cb_io (EV_P_ struct ev_io *w, int revents) 4642once_cb_io (EV_P_ ev_io *w, int revents)
1488{ 4643{
1489 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4644 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4645
4646 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1490} 4647}
1491 4648
1492static void 4649static void
1493once_cb_to (EV_P_ struct ev_timer *w, int revents) 4650once_cb_to (EV_P_ ev_timer *w, int revents)
1494{ 4651{
1495 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4652 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4653
4654 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1496} 4655}
1497 4656
1498void 4657void
1499ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4658ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1500{ 4659{
1501 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4660 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1502 4661
1503 if (!once) 4662 if (expect_false (!once))
4663 {
1504 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4664 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1505 else 4665 return;
1506 { 4666 }
4667
1507 once->cb = cb; 4668 once->cb = cb;
1508 once->arg = arg; 4669 once->arg = arg;
1509 4670
1510 ev_watcher_init (&once->io, once_cb_io); 4671 ev_init (&once->io, once_cb_io);
1511 if (fd >= 0) 4672 if (fd >= 0)
4673 {
4674 ev_io_set (&once->io, fd, events);
4675 ev_io_start (EV_A_ &once->io);
4676 }
4677
4678 ev_init (&once->to, once_cb_to);
4679 if (timeout >= 0.)
4680 {
4681 ev_timer_set (&once->to, timeout, 0.);
4682 ev_timer_start (EV_A_ &once->to);
4683 }
4684}
4685
4686/*****************************************************************************/
4687
4688#if EV_WALK_ENABLE
4689void ecb_cold
4690ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4691{
4692 int i, j;
4693 ev_watcher_list *wl, *wn;
4694
4695 if (types & (EV_IO | EV_EMBED))
4696 for (i = 0; i < anfdmax; ++i)
4697 for (wl = anfds [i].head; wl; )
1512 { 4698 {
1513 ev_io_set (&once->io, fd, events); 4699 wn = wl->next;
1514 ev_io_start (EV_A_ &once->io); 4700
4701#if EV_EMBED_ENABLE
4702 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4703 {
4704 if (types & EV_EMBED)
4705 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4706 }
4707 else
4708#endif
4709#if EV_USE_INOTIFY
4710 if (ev_cb ((ev_io *)wl) == infy_cb)
4711 ;
4712 else
4713#endif
4714 if ((ev_io *)wl != &pipe_w)
4715 if (types & EV_IO)
4716 cb (EV_A_ EV_IO, wl);
4717
4718 wl = wn;
1515 } 4719 }
1516 4720
1517 ev_watcher_init (&once->to, once_cb_to); 4721 if (types & (EV_TIMER | EV_STAT))
1518 if (timeout >= 0.) 4722 for (i = timercnt + HEAP0; i-- > HEAP0; )
4723#if EV_STAT_ENABLE
4724 /*TODO: timer is not always active*/
4725 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1519 { 4726 {
1520 ev_timer_set (&once->to, timeout, 0.); 4727 if (types & EV_STAT)
1521 ev_timer_start (EV_A_ &once->to); 4728 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1522 } 4729 }
1523 } 4730 else
1524} 4731#endif
4732 if (types & EV_TIMER)
4733 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1525 4734
4735#if EV_PERIODIC_ENABLE
4736 if (types & EV_PERIODIC)
4737 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4738 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4739#endif
4740
4741#if EV_IDLE_ENABLE
4742 if (types & EV_IDLE)
4743 for (j = NUMPRI; j--; )
4744 for (i = idlecnt [j]; i--; )
4745 cb (EV_A_ EV_IDLE, idles [j][i]);
4746#endif
4747
4748#if EV_FORK_ENABLE
4749 if (types & EV_FORK)
4750 for (i = forkcnt; i--; )
4751 if (ev_cb (forks [i]) != embed_fork_cb)
4752 cb (EV_A_ EV_FORK, forks [i]);
4753#endif
4754
4755#if EV_ASYNC_ENABLE
4756 if (types & EV_ASYNC)
4757 for (i = asynccnt; i--; )
4758 cb (EV_A_ EV_ASYNC, asyncs [i]);
4759#endif
4760
4761#if EV_PREPARE_ENABLE
4762 if (types & EV_PREPARE)
4763 for (i = preparecnt; i--; )
4764# if EV_EMBED_ENABLE
4765 if (ev_cb (prepares [i]) != embed_prepare_cb)
4766# endif
4767 cb (EV_A_ EV_PREPARE, prepares [i]);
4768#endif
4769
4770#if EV_CHECK_ENABLE
4771 if (types & EV_CHECK)
4772 for (i = checkcnt; i--; )
4773 cb (EV_A_ EV_CHECK, checks [i]);
4774#endif
4775
4776#if EV_SIGNAL_ENABLE
4777 if (types & EV_SIGNAL)
4778 for (i = 0; i < EV_NSIG - 1; ++i)
4779 for (wl = signals [i].head; wl; )
4780 {
4781 wn = wl->next;
4782 cb (EV_A_ EV_SIGNAL, wl);
4783 wl = wn;
4784 }
4785#endif
4786
4787#if EV_CHILD_ENABLE
4788 if (types & EV_CHILD)
4789 for (i = (EV_PID_HASHSIZE); i--; )
4790 for (wl = childs [i]; wl; )
4791 {
4792 wn = wl->next;
4793 cb (EV_A_ EV_CHILD, wl);
4794 wl = wn;
4795 }
4796#endif
4797/* EV_STAT 0x00001000 /* stat data changed */
4798/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4799}
4800#endif
4801
4802#if EV_MULTIPLICITY
4803 #include "ev_wrap.h"
4804#endif
4805

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines