ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.74 by root, Tue Nov 6 16:51:20 2007 UTC vs.
Revision 1.493 by root, Sun Jun 23 02:02:24 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
33 67
34# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
37# endif 82# endif
38 83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 99# define EV_USE_SELECT 0
41# endif 100# endif
42 101
43# if HAVE_POLL && HAVE_POLL_H 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
44# define EV_USE_POLL 1 108# define EV_USE_POLL 0
45# endif 109# endif
46 110
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 117# define EV_USE_EPOLL 0
49# endif 118# endif
50 119
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# if HAVE_LINUX_AIO_ABI_H
52# define EV_USE_KQUEUE 1 121# ifndef EV_USE_LINUXAIO
122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
53# endif 127# endif
54 128
129# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130# ifndef EV_USE_KQUEUE
131# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_KQUEUE
135# define EV_USE_KQUEUE 0
55#endif 136# endif
137
138# if HAVE_PORT_H && HAVE_PORT_CREATE
139# ifndef EV_USE_PORT
140# define EV_USE_PORT EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_PORT
144# define EV_USE_PORT 0
145# endif
56 146
57#include <math.h> 147# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148# ifndef EV_USE_INOTIFY
149# define EV_USE_INOTIFY EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_INOTIFY
153# define EV_USE_INOTIFY 0
154# endif
155
156# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157# ifndef EV_USE_SIGNALFD
158# define EV_USE_SIGNALFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_SIGNALFD
162# define EV_USE_SIGNALFD 0
163# endif
164
165# if HAVE_EVENTFD
166# ifndef EV_USE_EVENTFD
167# define EV_USE_EVENTFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_EVENTFD
171# define EV_USE_EVENTFD 0
172# endif
173
174#endif
175
176/* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184#define _DARWIN_UNLIMITED_SELECT 1
185
58#include <stdlib.h> 186#include <stdlib.h>
187#include <string.h>
59#include <fcntl.h> 188#include <fcntl.h>
60#include <stddef.h> 189#include <stddef.h>
61 190
62#include <stdio.h> 191#include <stdio.h>
63 192
64#include <assert.h> 193#include <assert.h>
65#include <errno.h> 194#include <errno.h>
66#include <sys/types.h> 195#include <sys/types.h>
67#include <time.h> 196#include <time.h>
197#include <limits.h>
68 198
69#include <signal.h> 199#include <signal.h>
70 200
201#ifdef EV_H
202# include EV_H
203#else
204# include "ev.h"
205#endif
206
207#if EV_NO_THREADS
208# undef EV_NO_SMP
209# define EV_NO_SMP 1
210# undef ECB_NO_THREADS
211# define ECB_NO_THREADS 1
212#endif
213#if EV_NO_SMP
214# undef EV_NO_SMP
215# define ECB_NO_SMP 1
216#endif
217
71#ifndef WIN32 218#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 219# include <sys/time.h>
74# include <sys/wait.h> 220# include <sys/wait.h>
221# include <unistd.h>
222#else
223# include <io.h>
224# define WIN32_LEAN_AND_MEAN
225# include <winsock2.h>
226# include <windows.h>
227# ifndef EV_SELECT_IS_WINSOCKET
228# define EV_SELECT_IS_WINSOCKET 1
75#endif 229# endif
76/**/ 230# undef EV_AVOID_STDIO
231#endif
232
233/* this block tries to deduce configuration from header-defined symbols and defaults */
234
235/* try to deduce the maximum number of signals on this platform */
236#if defined EV_NSIG
237/* use what's provided */
238#elif defined NSIG
239# define EV_NSIG (NSIG)
240#elif defined _NSIG
241# define EV_NSIG (_NSIG)
242#elif defined SIGMAX
243# define EV_NSIG (SIGMAX+1)
244#elif defined SIG_MAX
245# define EV_NSIG (SIG_MAX+1)
246#elif defined _SIG_MAX
247# define EV_NSIG (_SIG_MAX+1)
248#elif defined MAXSIG
249# define EV_NSIG (MAXSIG+1)
250#elif defined MAX_SIG
251# define EV_NSIG (MAX_SIG+1)
252#elif defined SIGARRAYSIZE
253# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254#elif defined _sys_nsig
255# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256#else
257# define EV_NSIG (8 * sizeof (sigset_t) + 1)
258#endif
259
260#ifndef EV_USE_FLOOR
261# define EV_USE_FLOOR 0
262#endif
263
264#ifndef EV_USE_CLOCK_SYSCALL
265# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267# else
268# define EV_USE_CLOCK_SYSCALL 0
269# endif
270#endif
271
272#if !(_POSIX_TIMERS > 0)
273# ifndef EV_USE_MONOTONIC
274# define EV_USE_MONOTONIC 0
275# endif
276# ifndef EV_USE_REALTIME
277# define EV_USE_REALTIME 0
278# endif
279#endif
77 280
78#ifndef EV_USE_MONOTONIC 281#ifndef EV_USE_MONOTONIC
282# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283# define EV_USE_MONOTONIC EV_FEATURE_OS
284# else
79# define EV_USE_MONOTONIC 1 285# define EV_USE_MONOTONIC 0
286# endif
287#endif
288
289#ifndef EV_USE_REALTIME
290# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291#endif
292
293#ifndef EV_USE_NANOSLEEP
294# if _POSIX_C_SOURCE >= 199309L
295# define EV_USE_NANOSLEEP EV_FEATURE_OS
296# else
297# define EV_USE_NANOSLEEP 0
298# endif
80#endif 299#endif
81 300
82#ifndef EV_USE_SELECT 301#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 302# define EV_USE_SELECT EV_FEATURE_BACKENDS
84#endif 303#endif
85 304
86#ifndef EV_USE_POLL 305#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 306# ifdef _WIN32
307# define EV_USE_POLL 0
308# else
309# define EV_USE_POLL EV_FEATURE_BACKENDS
310# endif
88#endif 311#endif
89 312
90#ifndef EV_USE_EPOLL 313#ifndef EV_USE_EPOLL
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315# define EV_USE_EPOLL EV_FEATURE_BACKENDS
316# else
91# define EV_USE_EPOLL 0 317# define EV_USE_EPOLL 0
318# endif
92#endif 319#endif
93 320
94#ifndef EV_USE_KQUEUE 321#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 322# define EV_USE_KQUEUE 0
96#endif 323#endif
97 324
325#ifndef EV_USE_PORT
326# define EV_USE_PORT 0
327#endif
328
98#ifndef EV_USE_WIN32 329#ifndef EV_USE_LINUXAIO
99# ifdef WIN32 330# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1 331# define EV_USE_LINUXAIO 1
103# else 332# else
104# define EV_USE_WIN32 0 333# define EV_USE_LINUXAIO 0
105# endif 334# endif
106#endif 335#endif
107 336
108#ifndef EV_USE_REALTIME 337#ifndef EV_USE_INOTIFY
109# define EV_USE_REALTIME 1 338# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
339# define EV_USE_INOTIFY EV_FEATURE_OS
340# else
341# define EV_USE_INOTIFY 0
110#endif 342# endif
343#endif
111 344
112/**/ 345#ifndef EV_PID_HASHSIZE
346# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
347#endif
348
349#ifndef EV_INOTIFY_HASHSIZE
350# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
351#endif
352
353#ifndef EV_USE_EVENTFD
354# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
355# define EV_USE_EVENTFD EV_FEATURE_OS
356# else
357# define EV_USE_EVENTFD 0
358# endif
359#endif
360
361#ifndef EV_USE_SIGNALFD
362# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363# define EV_USE_SIGNALFD EV_FEATURE_OS
364# else
365# define EV_USE_SIGNALFD 0
366# endif
367#endif
368
369#if 0 /* debugging */
370# define EV_VERIFY 3
371# define EV_USE_4HEAP 1
372# define EV_HEAP_CACHE_AT 1
373#endif
374
375#ifndef EV_VERIFY
376# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
377#endif
378
379#ifndef EV_USE_4HEAP
380# define EV_USE_4HEAP EV_FEATURE_DATA
381#endif
382
383#ifndef EV_HEAP_CACHE_AT
384# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
385#endif
386
387#ifdef __ANDROID__
388/* supposedly, android doesn't typedef fd_mask */
389# undef EV_USE_SELECT
390# define EV_USE_SELECT 0
391/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
392# undef EV_USE_CLOCK_SYSCALL
393# define EV_USE_CLOCK_SYSCALL 0
394#endif
395
396/* aix's poll.h seems to cause lots of trouble */
397#ifdef _AIX
398/* AIX has a completely broken poll.h header */
399# undef EV_USE_POLL
400# define EV_USE_POLL 0
401#endif
402
403/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
404/* which makes programs even slower. might work on other unices, too. */
405#if EV_USE_CLOCK_SYSCALL
406# include <sys/syscall.h>
407# ifdef SYS_clock_gettime
408# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
409# undef EV_USE_MONOTONIC
410# define EV_USE_MONOTONIC 1
411# else
412# undef EV_USE_CLOCK_SYSCALL
413# define EV_USE_CLOCK_SYSCALL 0
414# endif
415#endif
416
417/* this block fixes any misconfiguration where we know we run into trouble otherwise */
113 418
114#ifndef CLOCK_MONOTONIC 419#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 420# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 421# define EV_USE_MONOTONIC 0
117#endif 422#endif
119#ifndef CLOCK_REALTIME 424#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 425# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 426# define EV_USE_REALTIME 0
122#endif 427#endif
123 428
429#if !EV_STAT_ENABLE
430# undef EV_USE_INOTIFY
431# define EV_USE_INOTIFY 0
432#endif
433
434#if !EV_USE_NANOSLEEP
435/* hp-ux has it in sys/time.h, which we unconditionally include above */
436# if !defined _WIN32 && !defined __hpux
437# include <sys/select.h>
438# endif
439#endif
440
441#if EV_USE_LINUXAIO
442# include <sys/syscall.h>
443# if !SYS_io_getevents || !EV_USE_EPOLL
444# undef EV_USE_LINUXAIO
445# define EV_USE_LINUXAIO 0
446# endif
447#endif
448
449#if EV_USE_INOTIFY
450# include <sys/statfs.h>
451# include <sys/inotify.h>
452/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
453# ifndef IN_DONT_FOLLOW
454# undef EV_USE_INOTIFY
455# define EV_USE_INOTIFY 0
456# endif
457#endif
458
459#if EV_USE_EVENTFD
460/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
461# include <stdint.h>
462# ifndef EFD_NONBLOCK
463# define EFD_NONBLOCK O_NONBLOCK
464# endif
465# ifndef EFD_CLOEXEC
466# ifdef O_CLOEXEC
467# define EFD_CLOEXEC O_CLOEXEC
468# else
469# define EFD_CLOEXEC 02000000
470# endif
471# endif
472EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
473#endif
474
475#if EV_USE_SIGNALFD
476/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
477# include <stdint.h>
478# ifndef SFD_NONBLOCK
479# define SFD_NONBLOCK O_NONBLOCK
480# endif
481# ifndef SFD_CLOEXEC
482# ifdef O_CLOEXEC
483# define SFD_CLOEXEC O_CLOEXEC
484# else
485# define SFD_CLOEXEC 02000000
486# endif
487# endif
488EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
489
490struct signalfd_siginfo
491{
492 uint32_t ssi_signo;
493 char pad[128 - sizeof (uint32_t)];
494};
495#endif
496
124/**/ 497/**/
125 498
499#if EV_VERIFY >= 3
500# define EV_FREQUENT_CHECK ev_verify (EV_A)
501#else
502# define EV_FREQUENT_CHECK do { } while (0)
503#endif
504
505/*
506 * This is used to work around floating point rounding problems.
507 * This value is good at least till the year 4000.
508 */
509#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
510/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
511
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 512#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 513#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 514
131#include "ev.h" 515#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
516#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
132 517
518/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
519/* ECB.H BEGIN */
520/*
521 * libecb - http://software.schmorp.de/pkg/libecb
522 *
523 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
524 * Copyright (©) 2011 Emanuele Giaquinta
525 * All rights reserved.
526 *
527 * Redistribution and use in source and binary forms, with or without modifica-
528 * tion, are permitted provided that the following conditions are met:
529 *
530 * 1. Redistributions of source code must retain the above copyright notice,
531 * this list of conditions and the following disclaimer.
532 *
533 * 2. Redistributions in binary form must reproduce the above copyright
534 * notice, this list of conditions and the following disclaimer in the
535 * documentation and/or other materials provided with the distribution.
536 *
537 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
538 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
539 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
540 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
541 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
542 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
543 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
544 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
545 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
546 * OF THE POSSIBILITY OF SUCH DAMAGE.
547 *
548 * Alternatively, the contents of this file may be used under the terms of
549 * the GNU General Public License ("GPL") version 2 or any later version,
550 * in which case the provisions of the GPL are applicable instead of
551 * the above. If you wish to allow the use of your version of this file
552 * only under the terms of the GPL and not to allow others to use your
553 * version of this file under the BSD license, indicate your decision
554 * by deleting the provisions above and replace them with the notice
555 * and other provisions required by the GPL. If you do not delete the
556 * provisions above, a recipient may use your version of this file under
557 * either the BSD or the GPL.
558 */
559
560#ifndef ECB_H
561#define ECB_H
562
563/* 16 bits major, 16 bits minor */
564#define ECB_VERSION 0x00010005
565
566#ifdef _WIN32
567 typedef signed char int8_t;
568 typedef unsigned char uint8_t;
569 typedef signed short int16_t;
570 typedef unsigned short uint16_t;
571 typedef signed int int32_t;
572 typedef unsigned int uint32_t;
133#if __GNUC__ >= 3 573 #if __GNUC__
134# define expect(expr,value) __builtin_expect ((expr),(value)) 574 typedef signed long long int64_t;
135# define inline inline 575 typedef unsigned long long uint64_t;
136#else 576 #else /* _MSC_VER || __BORLANDC__ */
137# define expect(expr,value) (expr) 577 typedef signed __int64 int64_t;
138# define inline static 578 typedef unsigned __int64 uint64_t;
139#endif 579 #endif
580 #ifdef _WIN64
581 #define ECB_PTRSIZE 8
582 typedef uint64_t uintptr_t;
583 typedef int64_t intptr_t;
584 #else
585 #define ECB_PTRSIZE 4
586 typedef uint32_t uintptr_t;
587 typedef int32_t intptr_t;
588 #endif
589#else
590 #include <inttypes.h>
591 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
592 #define ECB_PTRSIZE 8
593 #else
594 #define ECB_PTRSIZE 4
595 #endif
596#endif
140 597
141#define expect_false(expr) expect ((expr) != 0, 0) 598#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
142#define expect_true(expr) expect ((expr) != 0, 1) 599#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
143 600
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 601/* work around x32 idiocy by defining proper macros */
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 602#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
603 #if _ILP32
604 #define ECB_AMD64_X32 1
605 #else
606 #define ECB_AMD64 1
607 #endif
608#endif
146 609
147typedef struct ev_watcher *W; 610/* many compilers define _GNUC_ to some versions but then only implement
148typedef struct ev_watcher_list *WL; 611 * what their idiot authors think are the "more important" extensions,
149typedef struct ev_watcher_time *WT; 612 * causing enormous grief in return for some better fake benchmark numbers.
613 * or so.
614 * we try to detect these and simply assume they are not gcc - if they have
615 * an issue with that they should have done it right in the first place.
616 */
617#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
618 #define ECB_GCC_VERSION(major,minor) 0
619#else
620 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
621#endif
150 622
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 623#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
152 624
153#include "ev_win32.c" 625#if __clang__ && defined __has_builtin
626 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
627#else
628 #define ECB_CLANG_BUILTIN(x) 0
629#endif
630
631#if __clang__ && defined __has_extension
632 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
633#else
634 #define ECB_CLANG_EXTENSION(x) 0
635#endif
636
637#define ECB_CPP (__cplusplus+0)
638#define ECB_CPP11 (__cplusplus >= 201103L)
639#define ECB_CPP14 (__cplusplus >= 201402L)
640#define ECB_CPP17 (__cplusplus >= 201703L)
641
642#if ECB_CPP
643 #define ECB_C 0
644 #define ECB_STDC_VERSION 0
645#else
646 #define ECB_C 1
647 #define ECB_STDC_VERSION __STDC_VERSION__
648#endif
649
650#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
651#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
652#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
653
654#if ECB_CPP
655 #define ECB_EXTERN_C extern "C"
656 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
657 #define ECB_EXTERN_C_END }
658#else
659 #define ECB_EXTERN_C extern
660 #define ECB_EXTERN_C_BEG
661 #define ECB_EXTERN_C_END
662#endif
154 663
155/*****************************************************************************/ 664/*****************************************************************************/
156 665
666/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
667/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
668
669#if ECB_NO_THREADS
670 #define ECB_NO_SMP 1
671#endif
672
673#if ECB_NO_SMP
674 #define ECB_MEMORY_FENCE do { } while (0)
675#endif
676
677/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
678#if __xlC__ && ECB_CPP
679 #include <builtins.h>
680#endif
681
682#if 1400 <= _MSC_VER
683 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
684#endif
685
686#ifndef ECB_MEMORY_FENCE
687 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
688 #if __i386 || __i386__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
690 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
691 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
692 #elif ECB_GCC_AMD64
693 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
694 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
695 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
696 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
698 #elif defined __ARM_ARCH_2__ \
699 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
700 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
701 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
702 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
703 || defined __ARM_ARCH_5TEJ__
704 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
705 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
706 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
707 || defined __ARM_ARCH_6T2__
708 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
709 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
710 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
711 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
712 #elif __aarch64__
713 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
714 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
715 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
716 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
717 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
718 #elif defined __s390__ || defined __s390x__
719 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
720 #elif defined __mips__
721 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
722 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
723 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
724 #elif defined __alpha__
725 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
726 #elif defined __hppa__
727 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
728 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
729 #elif defined __ia64__
730 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
731 #elif defined __m68k__
732 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
733 #elif defined __m88k__
734 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
735 #elif defined __sh__
736 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
737 #endif
738 #endif
739#endif
740
741#ifndef ECB_MEMORY_FENCE
742 #if ECB_GCC_VERSION(4,7)
743 /* see comment below (stdatomic.h) about the C11 memory model. */
744 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
745 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
746 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
747
748 #elif ECB_CLANG_EXTENSION(c_atomic)
749 /* see comment below (stdatomic.h) about the C11 memory model. */
750 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
751 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
752 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
753
754 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
755 #define ECB_MEMORY_FENCE __sync_synchronize ()
756 #elif _MSC_VER >= 1500 /* VC++ 2008 */
757 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
758 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
759 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
760 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
761 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
762 #elif _MSC_VER >= 1400 /* VC++ 2005 */
763 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
764 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
765 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
766 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
767 #elif defined _WIN32
768 #include <WinNT.h>
769 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
770 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
771 #include <mbarrier.h>
772 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
773 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
774 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
775 #elif __xlC__
776 #define ECB_MEMORY_FENCE __sync ()
777 #endif
778#endif
779
780#ifndef ECB_MEMORY_FENCE
781 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
782 /* we assume that these memory fences work on all variables/all memory accesses, */
783 /* not just C11 atomics and atomic accesses */
784 #include <stdatomic.h>
785 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
786 /* any fence other than seq_cst, which isn't very efficient for us. */
787 /* Why that is, we don't know - either the C11 memory model is quite useless */
788 /* for most usages, or gcc and clang have a bug */
789 /* I *currently* lean towards the latter, and inefficiently implement */
790 /* all three of ecb's fences as a seq_cst fence */
791 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
792 /* for all __atomic_thread_fence's except seq_cst */
793 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
794 #endif
795#endif
796
797#ifndef ECB_MEMORY_FENCE
798 #if !ECB_AVOID_PTHREADS
799 /*
800 * if you get undefined symbol references to pthread_mutex_lock,
801 * or failure to find pthread.h, then you should implement
802 * the ECB_MEMORY_FENCE operations for your cpu/compiler
803 * OR provide pthread.h and link against the posix thread library
804 * of your system.
805 */
806 #include <pthread.h>
807 #define ECB_NEEDS_PTHREADS 1
808 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
809
810 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
811 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
812 #endif
813#endif
814
815#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
816 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
817#endif
818
819#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
820 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
821#endif
822
823/*****************************************************************************/
824
825#if ECB_CPP
826 #define ecb_inline static inline
827#elif ECB_GCC_VERSION(2,5)
828 #define ecb_inline static __inline__
829#elif ECB_C99
830 #define ecb_inline static inline
831#else
832 #define ecb_inline static
833#endif
834
835#if ECB_GCC_VERSION(3,3)
836 #define ecb_restrict __restrict__
837#elif ECB_C99
838 #define ecb_restrict restrict
839#else
840 #define ecb_restrict
841#endif
842
843typedef int ecb_bool;
844
845#define ECB_CONCAT_(a, b) a ## b
846#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
847#define ECB_STRINGIFY_(a) # a
848#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
849#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
850
851#define ecb_function_ ecb_inline
852
853#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
854 #define ecb_attribute(attrlist) __attribute__ (attrlist)
855#else
856 #define ecb_attribute(attrlist)
857#endif
858
859#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
860 #define ecb_is_constant(expr) __builtin_constant_p (expr)
861#else
862 /* possible C11 impl for integral types
863 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
864 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
865
866 #define ecb_is_constant(expr) 0
867#endif
868
869#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
870 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
871#else
872 #define ecb_expect(expr,value) (expr)
873#endif
874
875#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
876 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
877#else
878 #define ecb_prefetch(addr,rw,locality)
879#endif
880
881/* no emulation for ecb_decltype */
882#if ECB_CPP11
883 // older implementations might have problems with decltype(x)::type, work around it
884 template<class T> struct ecb_decltype_t { typedef T type; };
885 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
886#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
887 #define ecb_decltype(x) __typeof__ (x)
888#endif
889
890#if _MSC_VER >= 1300
891 #define ecb_deprecated __declspec (deprecated)
892#else
893 #define ecb_deprecated ecb_attribute ((__deprecated__))
894#endif
895
896#if _MSC_VER >= 1500
897 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
898#elif ECB_GCC_VERSION(4,5)
899 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
900#else
901 #define ecb_deprecated_message(msg) ecb_deprecated
902#endif
903
904#if _MSC_VER >= 1400
905 #define ecb_noinline __declspec (noinline)
906#else
907 #define ecb_noinline ecb_attribute ((__noinline__))
908#endif
909
910#define ecb_unused ecb_attribute ((__unused__))
911#define ecb_const ecb_attribute ((__const__))
912#define ecb_pure ecb_attribute ((__pure__))
913
914#if ECB_C11 || __IBMC_NORETURN
915 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
916 #define ecb_noreturn _Noreturn
917#elif ECB_CPP11
918 #define ecb_noreturn [[noreturn]]
919#elif _MSC_VER >= 1200
920 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
921 #define ecb_noreturn __declspec (noreturn)
922#else
923 #define ecb_noreturn ecb_attribute ((__noreturn__))
924#endif
925
926#if ECB_GCC_VERSION(4,3)
927 #define ecb_artificial ecb_attribute ((__artificial__))
928 #define ecb_hot ecb_attribute ((__hot__))
929 #define ecb_cold ecb_attribute ((__cold__))
930#else
931 #define ecb_artificial
932 #define ecb_hot
933 #define ecb_cold
934#endif
935
936/* put around conditional expressions if you are very sure that the */
937/* expression is mostly true or mostly false. note that these return */
938/* booleans, not the expression. */
939#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
940#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
941/* for compatibility to the rest of the world */
942#define ecb_likely(expr) ecb_expect_true (expr)
943#define ecb_unlikely(expr) ecb_expect_false (expr)
944
945/* count trailing zero bits and count # of one bits */
946#if ECB_GCC_VERSION(3,4) \
947 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
948 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
949 && ECB_CLANG_BUILTIN(__builtin_popcount))
950 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
951 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
952 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
953 #define ecb_ctz32(x) __builtin_ctz (x)
954 #define ecb_ctz64(x) __builtin_ctzll (x)
955 #define ecb_popcount32(x) __builtin_popcount (x)
956 /* no popcountll */
957#else
958 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
959 ecb_function_ ecb_const int
960 ecb_ctz32 (uint32_t x)
961 {
962#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
963 unsigned long r;
964 _BitScanForward (&r, x);
965 return (int)r;
966#else
967 int r = 0;
968
969 x &= ~x + 1; /* this isolates the lowest bit */
970
971#if ECB_branchless_on_i386
972 r += !!(x & 0xaaaaaaaa) << 0;
973 r += !!(x & 0xcccccccc) << 1;
974 r += !!(x & 0xf0f0f0f0) << 2;
975 r += !!(x & 0xff00ff00) << 3;
976 r += !!(x & 0xffff0000) << 4;
977#else
978 if (x & 0xaaaaaaaa) r += 1;
979 if (x & 0xcccccccc) r += 2;
980 if (x & 0xf0f0f0f0) r += 4;
981 if (x & 0xff00ff00) r += 8;
982 if (x & 0xffff0000) r += 16;
983#endif
984
985 return r;
986#endif
987 }
988
989 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
990 ecb_function_ ecb_const int
991 ecb_ctz64 (uint64_t x)
992 {
993#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
994 unsigned long r;
995 _BitScanForward64 (&r, x);
996 return (int)r;
997#else
998 int shift = x & 0xffffffff ? 0 : 32;
999 return ecb_ctz32 (x >> shift) + shift;
1000#endif
1001 }
1002
1003 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1004 ecb_function_ ecb_const int
1005 ecb_popcount32 (uint32_t x)
1006 {
1007 x -= (x >> 1) & 0x55555555;
1008 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1009 x = ((x >> 4) + x) & 0x0f0f0f0f;
1010 x *= 0x01010101;
1011
1012 return x >> 24;
1013 }
1014
1015 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1016 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1017 {
1018#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1019 unsigned long r;
1020 _BitScanReverse (&r, x);
1021 return (int)r;
1022#else
1023 int r = 0;
1024
1025 if (x >> 16) { x >>= 16; r += 16; }
1026 if (x >> 8) { x >>= 8; r += 8; }
1027 if (x >> 4) { x >>= 4; r += 4; }
1028 if (x >> 2) { x >>= 2; r += 2; }
1029 if (x >> 1) { r += 1; }
1030
1031 return r;
1032#endif
1033 }
1034
1035 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1036 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1037 {
1038#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1039 unsigned long r;
1040 _BitScanReverse64 (&r, x);
1041 return (int)r;
1042#else
1043 int r = 0;
1044
1045 if (x >> 32) { x >>= 32; r += 32; }
1046
1047 return r + ecb_ld32 (x);
1048#endif
1049 }
1050#endif
1051
1052ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1053ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1054ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1055ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1056
1057ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1058ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1059{
1060 return ( (x * 0x0802U & 0x22110U)
1061 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1062}
1063
1064ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1065ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1066{
1067 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1068 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1069 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1070 x = ( x >> 8 ) | ( x << 8);
1071
1072 return x;
1073}
1074
1075ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1076ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1077{
1078 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1079 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1080 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1081 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1082 x = ( x >> 16 ) | ( x << 16);
1083
1084 return x;
1085}
1086
1087/* popcount64 is only available on 64 bit cpus as gcc builtin */
1088/* so for this version we are lazy */
1089ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1090ecb_function_ ecb_const int
1091ecb_popcount64 (uint64_t x)
1092{
1093 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1094}
1095
1096ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1097ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1098ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1099ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1100ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1101ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1102ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1103ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1104
1105ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1106ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1107ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1108ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1109ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1110ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1111ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1112ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1113
1114#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1115 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1116 #define ecb_bswap16(x) __builtin_bswap16 (x)
1117 #else
1118 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1119 #endif
1120 #define ecb_bswap32(x) __builtin_bswap32 (x)
1121 #define ecb_bswap64(x) __builtin_bswap64 (x)
1122#elif _MSC_VER
1123 #include <stdlib.h>
1124 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1125 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1126 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1127#else
1128 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1129 ecb_function_ ecb_const uint16_t
1130 ecb_bswap16 (uint16_t x)
1131 {
1132 return ecb_rotl16 (x, 8);
1133 }
1134
1135 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1136 ecb_function_ ecb_const uint32_t
1137 ecb_bswap32 (uint32_t x)
1138 {
1139 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1140 }
1141
1142 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1143 ecb_function_ ecb_const uint64_t
1144 ecb_bswap64 (uint64_t x)
1145 {
1146 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1147 }
1148#endif
1149
1150#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1151 #define ecb_unreachable() __builtin_unreachable ()
1152#else
1153 /* this seems to work fine, but gcc always emits a warning for it :/ */
1154 ecb_inline ecb_noreturn void ecb_unreachable (void);
1155 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1156#endif
1157
1158/* try to tell the compiler that some condition is definitely true */
1159#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1160
1161ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1162ecb_inline ecb_const uint32_t
1163ecb_byteorder_helper (void)
1164{
1165 /* the union code still generates code under pressure in gcc, */
1166 /* but less than using pointers, and always seems to */
1167 /* successfully return a constant. */
1168 /* the reason why we have this horrible preprocessor mess */
1169 /* is to avoid it in all cases, at least on common architectures */
1170 /* or when using a recent enough gcc version (>= 4.6) */
1171#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1172 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1173 #define ECB_LITTLE_ENDIAN 1
1174 return 0x44332211;
1175#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1176 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1177 #define ECB_BIG_ENDIAN 1
1178 return 0x11223344;
1179#else
1180 union
1181 {
1182 uint8_t c[4];
1183 uint32_t u;
1184 } u = { 0x11, 0x22, 0x33, 0x44 };
1185 return u.u;
1186#endif
1187}
1188
1189ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1190ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1191ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1192ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1193
1194#if ECB_GCC_VERSION(3,0) || ECB_C99
1195 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1196#else
1197 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1198#endif
1199
1200#if ECB_CPP
1201 template<typename T>
1202 static inline T ecb_div_rd (T val, T div)
1203 {
1204 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1205 }
1206 template<typename T>
1207 static inline T ecb_div_ru (T val, T div)
1208 {
1209 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1210 }
1211#else
1212 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1213 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1214#endif
1215
1216#if ecb_cplusplus_does_not_suck
1217 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1218 template<typename T, int N>
1219 static inline int ecb_array_length (const T (&arr)[N])
1220 {
1221 return N;
1222 }
1223#else
1224 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1225#endif
1226
1227ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1228ecb_function_ ecb_const uint32_t
1229ecb_binary16_to_binary32 (uint32_t x)
1230{
1231 unsigned int s = (x & 0x8000) << (31 - 15);
1232 int e = (x >> 10) & 0x001f;
1233 unsigned int m = x & 0x03ff;
1234
1235 if (ecb_expect_false (e == 31))
1236 /* infinity or NaN */
1237 e = 255 - (127 - 15);
1238 else if (ecb_expect_false (!e))
1239 {
1240 if (ecb_expect_true (!m))
1241 /* zero, handled by code below by forcing e to 0 */
1242 e = 0 - (127 - 15);
1243 else
1244 {
1245 /* subnormal, renormalise */
1246 unsigned int s = 10 - ecb_ld32 (m);
1247
1248 m = (m << s) & 0x3ff; /* mask implicit bit */
1249 e -= s - 1;
1250 }
1251 }
1252
1253 /* e and m now are normalised, or zero, (or inf or nan) */
1254 e += 127 - 15;
1255
1256 return s | (e << 23) | (m << (23 - 10));
1257}
1258
1259ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1260ecb_function_ ecb_const uint16_t
1261ecb_binary32_to_binary16 (uint32_t x)
1262{
1263 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1264 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1265 unsigned int m = x & 0x007fffff;
1266
1267 x &= 0x7fffffff;
1268
1269 /* if it's within range of binary16 normals, use fast path */
1270 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1271 {
1272 /* mantissa round-to-even */
1273 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1274
1275 /* handle overflow */
1276 if (ecb_expect_false (m >= 0x00800000))
1277 {
1278 m >>= 1;
1279 e += 1;
1280 }
1281
1282 return s | (e << 10) | (m >> (23 - 10));
1283 }
1284
1285 /* handle large numbers and infinity */
1286 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1287 return s | 0x7c00;
1288
1289 /* handle zero, subnormals and small numbers */
1290 if (ecb_expect_true (x < 0x38800000))
1291 {
1292 /* zero */
1293 if (ecb_expect_true (!x))
1294 return s;
1295
1296 /* handle subnormals */
1297
1298 /* too small, will be zero */
1299 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1300 return s;
1301
1302 m |= 0x00800000; /* make implicit bit explicit */
1303
1304 /* very tricky - we need to round to the nearest e (+10) bit value */
1305 {
1306 unsigned int bits = 14 - e;
1307 unsigned int half = (1 << (bits - 1)) - 1;
1308 unsigned int even = (m >> bits) & 1;
1309
1310 /* if this overflows, we will end up with a normalised number */
1311 m = (m + half + even) >> bits;
1312 }
1313
1314 return s | m;
1315 }
1316
1317 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1318 m >>= 13;
1319
1320 return s | 0x7c00 | m | !m;
1321}
1322
1323/*******************************************************************************/
1324/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1325
1326/* basically, everything uses "ieee pure-endian" floating point numbers */
1327/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1328#if 0 \
1329 || __i386 || __i386__ \
1330 || ECB_GCC_AMD64 \
1331 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1332 || defined __s390__ || defined __s390x__ \
1333 || defined __mips__ \
1334 || defined __alpha__ \
1335 || defined __hppa__ \
1336 || defined __ia64__ \
1337 || defined __m68k__ \
1338 || defined __m88k__ \
1339 || defined __sh__ \
1340 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1341 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1342 || defined __aarch64__
1343 #define ECB_STDFP 1
1344 #include <string.h> /* for memcpy */
1345#else
1346 #define ECB_STDFP 0
1347#endif
1348
1349#ifndef ECB_NO_LIBM
1350
1351 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1352
1353 /* only the oldest of old doesn't have this one. solaris. */
1354 #ifdef INFINITY
1355 #define ECB_INFINITY INFINITY
1356 #else
1357 #define ECB_INFINITY HUGE_VAL
1358 #endif
1359
1360 #ifdef NAN
1361 #define ECB_NAN NAN
1362 #else
1363 #define ECB_NAN ECB_INFINITY
1364 #endif
1365
1366 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1367 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1368 #define ecb_frexpf(x,e) frexpf ((x), (e))
1369 #else
1370 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1371 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1372 #endif
1373
1374 /* convert a float to ieee single/binary32 */
1375 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1376 ecb_function_ ecb_const uint32_t
1377 ecb_float_to_binary32 (float x)
1378 {
1379 uint32_t r;
1380
1381 #if ECB_STDFP
1382 memcpy (&r, &x, 4);
1383 #else
1384 /* slow emulation, works for anything but -0 */
1385 uint32_t m;
1386 int e;
1387
1388 if (x == 0e0f ) return 0x00000000U;
1389 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1390 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1391 if (x != x ) return 0x7fbfffffU;
1392
1393 m = ecb_frexpf (x, &e) * 0x1000000U;
1394
1395 r = m & 0x80000000U;
1396
1397 if (r)
1398 m = -m;
1399
1400 if (e <= -126)
1401 {
1402 m &= 0xffffffU;
1403 m >>= (-125 - e);
1404 e = -126;
1405 }
1406
1407 r |= (e + 126) << 23;
1408 r |= m & 0x7fffffU;
1409 #endif
1410
1411 return r;
1412 }
1413
1414 /* converts an ieee single/binary32 to a float */
1415 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1416 ecb_function_ ecb_const float
1417 ecb_binary32_to_float (uint32_t x)
1418 {
1419 float r;
1420
1421 #if ECB_STDFP
1422 memcpy (&r, &x, 4);
1423 #else
1424 /* emulation, only works for normals and subnormals and +0 */
1425 int neg = x >> 31;
1426 int e = (x >> 23) & 0xffU;
1427
1428 x &= 0x7fffffU;
1429
1430 if (e)
1431 x |= 0x800000U;
1432 else
1433 e = 1;
1434
1435 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1436 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1437
1438 r = neg ? -r : r;
1439 #endif
1440
1441 return r;
1442 }
1443
1444 /* convert a double to ieee double/binary64 */
1445 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1446 ecb_function_ ecb_const uint64_t
1447 ecb_double_to_binary64 (double x)
1448 {
1449 uint64_t r;
1450
1451 #if ECB_STDFP
1452 memcpy (&r, &x, 8);
1453 #else
1454 /* slow emulation, works for anything but -0 */
1455 uint64_t m;
1456 int e;
1457
1458 if (x == 0e0 ) return 0x0000000000000000U;
1459 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1460 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1461 if (x != x ) return 0X7ff7ffffffffffffU;
1462
1463 m = frexp (x, &e) * 0x20000000000000U;
1464
1465 r = m & 0x8000000000000000;;
1466
1467 if (r)
1468 m = -m;
1469
1470 if (e <= -1022)
1471 {
1472 m &= 0x1fffffffffffffU;
1473 m >>= (-1021 - e);
1474 e = -1022;
1475 }
1476
1477 r |= ((uint64_t)(e + 1022)) << 52;
1478 r |= m & 0xfffffffffffffU;
1479 #endif
1480
1481 return r;
1482 }
1483
1484 /* converts an ieee double/binary64 to a double */
1485 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1486 ecb_function_ ecb_const double
1487 ecb_binary64_to_double (uint64_t x)
1488 {
1489 double r;
1490
1491 #if ECB_STDFP
1492 memcpy (&r, &x, 8);
1493 #else
1494 /* emulation, only works for normals and subnormals and +0 */
1495 int neg = x >> 63;
1496 int e = (x >> 52) & 0x7ffU;
1497
1498 x &= 0xfffffffffffffU;
1499
1500 if (e)
1501 x |= 0x10000000000000U;
1502 else
1503 e = 1;
1504
1505 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1506 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1507
1508 r = neg ? -r : r;
1509 #endif
1510
1511 return r;
1512 }
1513
1514 /* convert a float to ieee half/binary16 */
1515 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1516 ecb_function_ ecb_const uint16_t
1517 ecb_float_to_binary16 (float x)
1518 {
1519 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1520 }
1521
1522 /* convert an ieee half/binary16 to float */
1523 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1524 ecb_function_ ecb_const float
1525 ecb_binary16_to_float (uint16_t x)
1526 {
1527 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1528 }
1529
1530#endif
1531
1532#endif
1533
1534/* ECB.H END */
1535
1536#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1537/* if your architecture doesn't need memory fences, e.g. because it is
1538 * single-cpu/core, or if you use libev in a project that doesn't use libev
1539 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1540 * libev, in which cases the memory fences become nops.
1541 * alternatively, you can remove this #error and link against libpthread,
1542 * which will then provide the memory fences.
1543 */
1544# error "memory fences not defined for your architecture, please report"
1545#endif
1546
1547#ifndef ECB_MEMORY_FENCE
1548# define ECB_MEMORY_FENCE do { } while (0)
1549# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1550# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1551#endif
1552
1553#define expect_false(cond) ecb_expect_false (cond)
1554#define expect_true(cond) ecb_expect_true (cond)
1555#define noinline ecb_noinline
1556
1557#define inline_size ecb_inline
1558
1559#if EV_FEATURE_CODE
1560# define inline_speed ecb_inline
1561#else
1562# define inline_speed noinline static
1563#endif
1564
1565#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1566
1567#if EV_MINPRI == EV_MAXPRI
1568# define ABSPRI(w) (((W)w), 0)
1569#else
1570# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1571#endif
1572
1573#define EMPTY /* required for microsofts broken pseudo-c compiler */
1574
1575typedef ev_watcher *W;
1576typedef ev_watcher_list *WL;
1577typedef ev_watcher_time *WT;
1578
1579#define ev_active(w) ((W)(w))->active
1580#define ev_at(w) ((WT)(w))->at
1581
1582#if EV_USE_REALTIME
1583/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1584/* giving it a reasonably high chance of working on typical architectures */
1585static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1586#endif
1587
1588#if EV_USE_MONOTONIC
1589static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1590#endif
1591
1592#ifndef EV_FD_TO_WIN32_HANDLE
1593# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1594#endif
1595#ifndef EV_WIN32_HANDLE_TO_FD
1596# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1597#endif
1598#ifndef EV_WIN32_CLOSE_FD
1599# define EV_WIN32_CLOSE_FD(fd) close (fd)
1600#endif
1601
1602#ifdef _WIN32
1603# include "ev_win32.c"
1604#endif
1605
1606/*****************************************************************************/
1607
1608#if EV_USE_LINUXAIO
1609# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1610#endif
1611
1612/* define a suitable floor function (only used by periodics atm) */
1613
1614#if EV_USE_FLOOR
1615# include <math.h>
1616# define ev_floor(v) floor (v)
1617#else
1618
1619#include <float.h>
1620
1621/* a floor() replacement function, should be independent of ev_tstamp type */
1622noinline
1623static ev_tstamp
1624ev_floor (ev_tstamp v)
1625{
1626 /* the choice of shift factor is not terribly important */
1627#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1628 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1629#else
1630 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1631#endif
1632
1633 /* argument too large for an unsigned long? */
1634 if (expect_false (v >= shift))
1635 {
1636 ev_tstamp f;
1637
1638 if (v == v - 1.)
1639 return v; /* very large number */
1640
1641 f = shift * ev_floor (v * (1. / shift));
1642 return f + ev_floor (v - f);
1643 }
1644
1645 /* special treatment for negative args? */
1646 if (expect_false (v < 0.))
1647 {
1648 ev_tstamp f = -ev_floor (-v);
1649
1650 return f - (f == v ? 0 : 1);
1651 }
1652
1653 /* fits into an unsigned long */
1654 return (unsigned long)v;
1655}
1656
1657#endif
1658
1659/*****************************************************************************/
1660
1661#ifdef __linux
1662# include <sys/utsname.h>
1663#endif
1664
1665noinline ecb_cold
1666static unsigned int
1667ev_linux_version (void)
1668{
1669#ifdef __linux
1670 unsigned int v = 0;
1671 struct utsname buf;
1672 int i;
1673 char *p = buf.release;
1674
1675 if (uname (&buf))
1676 return 0;
1677
1678 for (i = 3+1; --i; )
1679 {
1680 unsigned int c = 0;
1681
1682 for (;;)
1683 {
1684 if (*p >= '0' && *p <= '9')
1685 c = c * 10 + *p++ - '0';
1686 else
1687 {
1688 p += *p == '.';
1689 break;
1690 }
1691 }
1692
1693 v = (v << 8) | c;
1694 }
1695
1696 return v;
1697#else
1698 return 0;
1699#endif
1700}
1701
1702/*****************************************************************************/
1703
1704#if EV_AVOID_STDIO
1705noinline ecb_cold
1706static void
1707ev_printerr (const char *msg)
1708{
1709 write (STDERR_FILENO, msg, strlen (msg));
1710}
1711#endif
1712
157static void (*syserr_cb)(const char *msg); 1713static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
158 1714
1715ecb_cold
1716void
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 1717ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
160{ 1718{
161 syserr_cb = cb; 1719 syserr_cb = cb;
162} 1720}
163 1721
1722noinline ecb_cold
164static void 1723static void
165syserr (const char *msg) 1724ev_syserr (const char *msg)
166{ 1725{
167 if (!msg) 1726 if (!msg)
168 msg = "(libev) system error"; 1727 msg = "(libev) system error";
169 1728
170 if (syserr_cb) 1729 if (syserr_cb)
171 syserr_cb (msg); 1730 syserr_cb (msg);
172 else 1731 else
173 { 1732 {
1733#if EV_AVOID_STDIO
1734 ev_printerr (msg);
1735 ev_printerr (": ");
1736 ev_printerr (strerror (errno));
1737 ev_printerr ("\n");
1738#else
174 perror (msg); 1739 perror (msg);
1740#endif
175 abort (); 1741 abort ();
176 } 1742 }
177} 1743}
178 1744
179static void *(*alloc)(void *ptr, long size); 1745static void *
1746ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1747{
1748 /* some systems, notably openbsd and darwin, fail to properly
1749 * implement realloc (x, 0) (as required by both ansi c-89 and
1750 * the single unix specification, so work around them here.
1751 * recently, also (at least) fedora and debian started breaking it,
1752 * despite documenting it otherwise.
1753 */
180 1754
1755 if (size)
1756 return realloc (ptr, size);
1757
1758 free (ptr);
1759 return 0;
1760}
1761
1762static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1763
1764ecb_cold
1765void
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1766ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
182{ 1767{
183 alloc = cb; 1768 alloc = cb;
184} 1769}
185 1770
186static void * 1771inline_speed void *
187ev_realloc (void *ptr, long size) 1772ev_realloc (void *ptr, long size)
188{ 1773{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1774 ptr = alloc (ptr, size);
190 1775
191 if (!ptr && size) 1776 if (!ptr && size)
192 { 1777 {
1778#if EV_AVOID_STDIO
1779 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1780#else
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1781 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1782#endif
194 abort (); 1783 abort ();
195 } 1784 }
196 1785
197 return ptr; 1786 return ptr;
198} 1787}
200#define ev_malloc(size) ev_realloc (0, (size)) 1789#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0) 1790#define ev_free(ptr) ev_realloc ((ptr), 0)
202 1791
203/*****************************************************************************/ 1792/*****************************************************************************/
204 1793
1794/* set in reify when reification needed */
1795#define EV_ANFD_REIFY 1
1796
1797/* file descriptor info structure */
205typedef struct 1798typedef struct
206{ 1799{
207 WL head; 1800 WL head;
208 unsigned char events; 1801 unsigned char events; /* the events watched for */
1802 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1803 unsigned char emask; /* some backends store the actual kernel mask in here */
209 unsigned char reify; 1804 unsigned char unused;
1805#if EV_USE_EPOLL
1806 unsigned int egen; /* generation counter to counter epoll bugs */
1807#endif
1808#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1809 SOCKET handle;
1810#endif
1811#if EV_USE_IOCP
1812 OVERLAPPED or, ow;
1813#endif
210} ANFD; 1814} ANFD;
211 1815
1816/* stores the pending event set for a given watcher */
212typedef struct 1817typedef struct
213{ 1818{
214 W w; 1819 W w;
215 int events; 1820 int events; /* the pending event set for the given watcher */
216} ANPENDING; 1821} ANPENDING;
217 1822
1823#if EV_USE_INOTIFY
1824/* hash table entry per inotify-id */
1825typedef struct
1826{
1827 WL head;
1828} ANFS;
1829#endif
1830
1831/* Heap Entry */
1832#if EV_HEAP_CACHE_AT
1833 /* a heap element */
1834 typedef struct {
1835 ev_tstamp at;
1836 WT w;
1837 } ANHE;
1838
1839 #define ANHE_w(he) (he).w /* access watcher, read-write */
1840 #define ANHE_at(he) (he).at /* access cached at, read-only */
1841 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1842#else
1843 /* a heap element */
1844 typedef WT ANHE;
1845
1846 #define ANHE_w(he) (he)
1847 #define ANHE_at(he) (he)->at
1848 #define ANHE_at_cache(he)
1849#endif
1850
218#if EV_MULTIPLICITY 1851#if EV_MULTIPLICITY
219 1852
220struct ev_loop 1853 struct ev_loop
221{ 1854 {
1855 ev_tstamp ev_rt_now;
1856 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 1857 #define VAR(name,decl) decl;
223# include "ev_vars.h" 1858 #include "ev_vars.h"
224};
225# undef VAR 1859 #undef VAR
1860 };
226# include "ev_wrap.h" 1861 #include "ev_wrap.h"
227 1862
228#else 1863 static struct ev_loop default_loop_struct;
1864 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
229 1865
1866#else
1867
1868 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
230# define VAR(name,decl) static decl; 1869 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 1870 #include "ev_vars.h"
232# undef VAR 1871 #undef VAR
233 1872
1873 static int ev_default_loop_ptr;
1874
234#endif 1875#endif
1876
1877#if EV_FEATURE_API
1878# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1879# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1880# define EV_INVOKE_PENDING invoke_cb (EV_A)
1881#else
1882# define EV_RELEASE_CB (void)0
1883# define EV_ACQUIRE_CB (void)0
1884# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1885#endif
1886
1887#define EVBREAK_RECURSE 0x80
235 1888
236/*****************************************************************************/ 1889/*****************************************************************************/
237 1890
238inline ev_tstamp 1891#ifndef EV_HAVE_EV_TIME
239ev_time (void) 1892ev_tstamp
1893ev_time (void) EV_NOEXCEPT
240{ 1894{
241#if EV_USE_REALTIME 1895#if EV_USE_REALTIME
1896 if (expect_true (have_realtime))
1897 {
242 struct timespec ts; 1898 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 1899 clock_gettime (CLOCK_REALTIME, &ts);
244 return ts.tv_sec + ts.tv_nsec * 1e-9; 1900 return ts.tv_sec + ts.tv_nsec * 1e-9;
245#else 1901 }
1902#endif
1903
246 struct timeval tv; 1904 struct timeval tv;
247 gettimeofday (&tv, 0); 1905 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 1906 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif
250} 1907}
1908#endif
251 1909
252inline ev_tstamp 1910inline_size ev_tstamp
253get_clock (void) 1911get_clock (void)
254{ 1912{
255#if EV_USE_MONOTONIC 1913#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 1914 if (expect_true (have_monotonic))
257 { 1915 {
262#endif 1920#endif
263 1921
264 return ev_time (); 1922 return ev_time ();
265} 1923}
266 1924
1925#if EV_MULTIPLICITY
267ev_tstamp 1926ev_tstamp
268ev_now (EV_P) 1927ev_now (EV_P) EV_NOEXCEPT
269{ 1928{
270 return rt_now; 1929 return ev_rt_now;
271} 1930}
1931#endif
272 1932
273#define array_roundsize(type,n) ((n) | 4 & ~3) 1933void
1934ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1935{
1936 if (delay > 0.)
1937 {
1938#if EV_USE_NANOSLEEP
1939 struct timespec ts;
1940
1941 EV_TS_SET (ts, delay);
1942 nanosleep (&ts, 0);
1943#elif defined _WIN32
1944 /* maybe this should round up, as ms is very low resolution */
1945 /* compared to select (µs) or nanosleep (ns) */
1946 Sleep ((unsigned long)(delay * 1e3));
1947#else
1948 struct timeval tv;
1949
1950 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1951 /* something not guaranteed by newer posix versions, but guaranteed */
1952 /* by older ones */
1953 EV_TV_SET (tv, delay);
1954 select (0, 0, 0, 0, &tv);
1955#endif
1956 }
1957}
1958
1959/*****************************************************************************/
1960
1961#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1962
1963/* find a suitable new size for the given array, */
1964/* hopefully by rounding to a nice-to-malloc size */
1965inline_size int
1966array_nextsize (int elem, int cur, int cnt)
1967{
1968 int ncur = cur + 1;
1969
1970 do
1971 ncur <<= 1;
1972 while (cnt > ncur);
1973
1974 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1975 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1976 {
1977 ncur *= elem;
1978 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1979 ncur = ncur - sizeof (void *) * 4;
1980 ncur /= elem;
1981 }
1982
1983 return ncur;
1984}
1985
1986noinline ecb_cold
1987static void *
1988array_realloc (int elem, void *base, int *cur, int cnt)
1989{
1990 *cur = array_nextsize (elem, *cur, cnt);
1991 return ev_realloc (base, elem * *cur);
1992}
1993
1994#define array_needsize_noinit(base,count)
1995
1996#define array_needsize_zerofill(base,count) \
1997 memset ((void *)(base), 0, sizeof (*(base)) * (count))
274 1998
275#define array_needsize(type,base,cur,cnt,init) \ 1999#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 2000 if (expect_false ((cnt) > (cur))) \
277 { \ 2001 { \
278 int newcnt = cur; \ 2002 ecb_unused int ocur_ = (cur); \
279 do \ 2003 (base) = (type *)array_realloc \
280 { \ 2004 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 2005 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 2006 }
289 2007
2008#if 0
290#define array_slim(type,stem) \ 2009#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2010 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 2011 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 2012 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 2013 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2014 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 2015 }
297 2016#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 2017
303#define array_free(stem, idx) \ 2018#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2019 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
305 2020
306/*****************************************************************************/ 2021/*****************************************************************************/
307 2022
2023/* dummy callback for pending events */
2024noinline
308static void 2025static void
309anfds_init (ANFD *base, int count) 2026pendingcb (EV_P_ ev_prepare *w, int revents)
310{ 2027{
311 while (count--) 2028}
312 {
313 base->head = 0;
314 base->events = EV_NONE;
315 base->reify = 0;
316 2029
317 ++base; 2030noinline
2031void
2032ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2033{
2034 W w_ = (W)w;
2035 int pri = ABSPRI (w_);
2036
2037 if (expect_false (w_->pending))
2038 pendings [pri][w_->pending - 1].events |= revents;
2039 else
318 } 2040 {
319} 2041 w_->pending = ++pendingcnt [pri];
320 2042 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
321static void 2043 pendings [pri][w_->pending - 1].w = w_;
322event (EV_P_ W w, int events)
323{
324 if (w->pending)
325 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 2044 pendings [pri][w_->pending - 1].events = revents;
327 return;
328 } 2045 }
329 2046
330 w->pending = ++pendingcnt [ABSPRI (w)]; 2047 pendingpri = NUMPRI - 1;
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w;
333 pendings [ABSPRI (w)][w->pending - 1].events = events;
334} 2048}
335 2049
336static void 2050inline_speed void
2051feed_reverse (EV_P_ W w)
2052{
2053 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2054 rfeeds [rfeedcnt++] = w;
2055}
2056
2057inline_size void
2058feed_reverse_done (EV_P_ int revents)
2059{
2060 do
2061 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2062 while (rfeedcnt);
2063}
2064
2065inline_speed void
337queue_events (EV_P_ W *events, int eventcnt, int type) 2066queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 2067{
339 int i; 2068 int i;
340 2069
341 for (i = 0; i < eventcnt; ++i) 2070 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 2071 ev_feed_event (EV_A_ events [i], type);
343} 2072}
344 2073
345static void 2074/*****************************************************************************/
2075
2076inline_speed void
346fd_event (EV_P_ int fd, int events) 2077fd_event_nocheck (EV_P_ int fd, int revents)
347{ 2078{
348 ANFD *anfd = anfds + fd; 2079 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 2080 ev_io *w;
350 2081
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 2082 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
352 { 2083 {
353 int ev = w->events & events; 2084 int ev = w->events & revents;
354 2085
355 if (ev) 2086 if (ev)
356 event (EV_A_ (W)w, ev); 2087 ev_feed_event (EV_A_ (W)w, ev);
357 } 2088 }
358} 2089}
359 2090
360/*****************************************************************************/ 2091/* do not submit kernel events for fds that have reify set */
2092/* because that means they changed while we were polling for new events */
2093inline_speed void
2094fd_event (EV_P_ int fd, int revents)
2095{
2096 ANFD *anfd = anfds + fd;
361 2097
362static void 2098 if (expect_true (!anfd->reify))
2099 fd_event_nocheck (EV_A_ fd, revents);
2100}
2101
2102void
2103ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2104{
2105 if (fd >= 0 && fd < anfdmax)
2106 fd_event_nocheck (EV_A_ fd, revents);
2107}
2108
2109/* make sure the external fd watch events are in-sync */
2110/* with the kernel/libev internal state */
2111inline_size void
363fd_reify (EV_P) 2112fd_reify (EV_P)
364{ 2113{
365 int i; 2114 int i;
366 2115
2116#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
367 for (i = 0; i < fdchangecnt; ++i) 2117 for (i = 0; i < fdchangecnt; ++i)
368 { 2118 {
369 int fd = fdchanges [i]; 2119 int fd = fdchanges [i];
370 ANFD *anfd = anfds + fd; 2120 ANFD *anfd = anfds + fd;
2121
2122 if (anfd->reify & EV__IOFDSET && anfd->head)
2123 {
2124 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2125
2126 if (handle != anfd->handle)
2127 {
2128 unsigned long arg;
2129
2130 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2131
2132 /* handle changed, but fd didn't - we need to do it in two steps */
2133 backend_modify (EV_A_ fd, anfd->events, 0);
2134 anfd->events = 0;
2135 anfd->handle = handle;
2136 }
2137 }
2138 }
2139#endif
2140
2141 for (i = 0; i < fdchangecnt; ++i)
2142 {
2143 int fd = fdchanges [i];
2144 ANFD *anfd = anfds + fd;
371 struct ev_io *w; 2145 ev_io *w;
372 2146
373 int events = 0; 2147 unsigned char o_events = anfd->events;
2148 unsigned char o_reify = anfd->reify;
374 2149
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
376 events |= w->events;
377
378 anfd->reify = 0; 2150 anfd->reify = 0;
379 2151
380 method_modify (EV_A_ fd, anfd->events, events); 2152 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2153 {
381 anfd->events = events; 2154 anfd->events = 0;
2155
2156 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2157 anfd->events |= (unsigned char)w->events;
2158
2159 if (o_events != anfd->events)
2160 o_reify = EV__IOFDSET; /* actually |= */
2161 }
2162
2163 if (o_reify & EV__IOFDSET)
2164 backend_modify (EV_A_ fd, o_events, anfd->events);
382 } 2165 }
383 2166
384 fdchangecnt = 0; 2167 fdchangecnt = 0;
385} 2168}
386 2169
387static void 2170/* something about the given fd changed */
2171inline_size
2172void
388fd_change (EV_P_ int fd) 2173fd_change (EV_P_ int fd, int flags)
389{ 2174{
390 if (anfds [fd].reify) 2175 unsigned char reify = anfds [fd].reify;
391 return;
392
393 anfds [fd].reify = 1; 2176 anfds [fd].reify |= flags;
394 2177
2178 if (expect_true (!reify))
2179 {
395 ++fdchangecnt; 2180 ++fdchangecnt;
396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 2181 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
397 fdchanges [fdchangecnt - 1] = fd; 2182 fdchanges [fdchangecnt - 1] = fd;
2183 }
398} 2184}
399 2185
400static void 2186/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2187inline_speed ecb_cold void
401fd_kill (EV_P_ int fd) 2188fd_kill (EV_P_ int fd)
402{ 2189{
403 struct ev_io *w; 2190 ev_io *w;
404 2191
405 while ((w = (struct ev_io *)anfds [fd].head)) 2192 while ((w = (ev_io *)anfds [fd].head))
406 { 2193 {
407 ev_io_stop (EV_A_ w); 2194 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2195 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 2196 }
410} 2197}
411 2198
412static int 2199/* check whether the given fd is actually valid, for error recovery */
2200inline_size ecb_cold int
413fd_valid (int fd) 2201fd_valid (int fd)
414{ 2202{
415#ifdef WIN32 2203#ifdef _WIN32
416 return !!win32_get_osfhandle (fd); 2204 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
417#else 2205#else
418 return fcntl (fd, F_GETFD) != -1; 2206 return fcntl (fd, F_GETFD) != -1;
419#endif 2207#endif
420} 2208}
421 2209
422/* called on EBADF to verify fds */ 2210/* called on EBADF to verify fds */
2211noinline ecb_cold
423static void 2212static void
424fd_ebadf (EV_P) 2213fd_ebadf (EV_P)
425{ 2214{
426 int fd; 2215 int fd;
427 2216
428 for (fd = 0; fd < anfdmax; ++fd) 2217 for (fd = 0; fd < anfdmax; ++fd)
429 if (anfds [fd].events) 2218 if (anfds [fd].events)
430 if (!fd_valid (fd) == -1 && errno == EBADF) 2219 if (!fd_valid (fd) && errno == EBADF)
431 fd_kill (EV_A_ fd); 2220 fd_kill (EV_A_ fd);
432} 2221}
433 2222
434/* called on ENOMEM in select/poll to kill some fds and retry */ 2223/* called on ENOMEM in select/poll to kill some fds and retry */
2224noinline ecb_cold
435static void 2225static void
436fd_enomem (EV_P) 2226fd_enomem (EV_P)
437{ 2227{
438 int fd; 2228 int fd;
439 2229
440 for (fd = anfdmax; fd--; ) 2230 for (fd = anfdmax; fd--; )
441 if (anfds [fd].events) 2231 if (anfds [fd].events)
442 { 2232 {
443 fd_kill (EV_A_ fd); 2233 fd_kill (EV_A_ fd);
444 return; 2234 break;
445 } 2235 }
446} 2236}
447 2237
448/* usually called after fork if method needs to re-arm all fds from scratch */ 2238/* usually called after fork if backend needs to re-arm all fds from scratch */
2239noinline
449static void 2240static void
450fd_rearm_all (EV_P) 2241fd_rearm_all (EV_P)
451{ 2242{
452 int fd; 2243 int fd;
453 2244
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd) 2245 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events) 2246 if (anfds [fd].events)
457 { 2247 {
458 anfds [fd].events = 0; 2248 anfds [fd].events = 0;
459 fd_change (EV_A_ fd); 2249 anfds [fd].emask = 0;
2250 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
460 } 2251 }
461} 2252}
462 2253
2254/* used to prepare libev internal fd's */
2255/* this is not fork-safe */
2256inline_speed void
2257fd_intern (int fd)
2258{
2259#ifdef _WIN32
2260 unsigned long arg = 1;
2261 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2262#else
2263 fcntl (fd, F_SETFD, FD_CLOEXEC);
2264 fcntl (fd, F_SETFL, O_NONBLOCK);
2265#endif
2266}
2267
463/*****************************************************************************/ 2268/*****************************************************************************/
464 2269
2270/*
2271 * the heap functions want a real array index. array index 0 is guaranteed to not
2272 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2273 * the branching factor of the d-tree.
2274 */
2275
2276/*
2277 * at the moment we allow libev the luxury of two heaps,
2278 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2279 * which is more cache-efficient.
2280 * the difference is about 5% with 50000+ watchers.
2281 */
2282#if EV_USE_4HEAP
2283
2284#define DHEAP 4
2285#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2286#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2287#define UPHEAP_DONE(p,k) ((p) == (k))
2288
2289/* away from the root */
2290inline_speed void
2291downheap (ANHE *heap, int N, int k)
2292{
2293 ANHE he = heap [k];
2294 ANHE *E = heap + N + HEAP0;
2295
2296 for (;;)
2297 {
2298 ev_tstamp minat;
2299 ANHE *minpos;
2300 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2301
2302 /* find minimum child */
2303 if (expect_true (pos + DHEAP - 1 < E))
2304 {
2305 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2306 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2307 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2308 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2309 }
2310 else if (pos < E)
2311 {
2312 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2313 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2314 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2315 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2316 }
2317 else
2318 break;
2319
2320 if (ANHE_at (he) <= minat)
2321 break;
2322
2323 heap [k] = *minpos;
2324 ev_active (ANHE_w (*minpos)) = k;
2325
2326 k = minpos - heap;
2327 }
2328
2329 heap [k] = he;
2330 ev_active (ANHE_w (he)) = k;
2331}
2332
2333#else /* 4HEAP */
2334
2335#define HEAP0 1
2336#define HPARENT(k) ((k) >> 1)
2337#define UPHEAP_DONE(p,k) (!(p))
2338
2339/* away from the root */
2340inline_speed void
2341downheap (ANHE *heap, int N, int k)
2342{
2343 ANHE he = heap [k];
2344
2345 for (;;)
2346 {
2347 int c = k << 1;
2348
2349 if (c >= N + HEAP0)
2350 break;
2351
2352 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2353 ? 1 : 0;
2354
2355 if (ANHE_at (he) <= ANHE_at (heap [c]))
2356 break;
2357
2358 heap [k] = heap [c];
2359 ev_active (ANHE_w (heap [k])) = k;
2360
2361 k = c;
2362 }
2363
2364 heap [k] = he;
2365 ev_active (ANHE_w (he)) = k;
2366}
2367#endif
2368
2369/* towards the root */
2370inline_speed void
2371upheap (ANHE *heap, int k)
2372{
2373 ANHE he = heap [k];
2374
2375 for (;;)
2376 {
2377 int p = HPARENT (k);
2378
2379 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2380 break;
2381
2382 heap [k] = heap [p];
2383 ev_active (ANHE_w (heap [k])) = k;
2384 k = p;
2385 }
2386
2387 heap [k] = he;
2388 ev_active (ANHE_w (he)) = k;
2389}
2390
2391/* move an element suitably so it is in a correct place */
2392inline_size void
2393adjustheap (ANHE *heap, int N, int k)
2394{
2395 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2396 upheap (heap, k);
2397 else
2398 downheap (heap, N, k);
2399}
2400
2401/* rebuild the heap: this function is used only once and executed rarely */
2402inline_size void
2403reheap (ANHE *heap, int N)
2404{
2405 int i;
2406
2407 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2408 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2409 for (i = 0; i < N; ++i)
2410 upheap (heap, i + HEAP0);
2411}
2412
2413/*****************************************************************************/
2414
2415/* associate signal watchers to a signal signal */
2416typedef struct
2417{
2418 EV_ATOMIC_T pending;
2419#if EV_MULTIPLICITY
2420 EV_P;
2421#endif
2422 WL head;
2423} ANSIG;
2424
2425static ANSIG signals [EV_NSIG - 1];
2426
2427/*****************************************************************************/
2428
2429#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2430
2431noinline ecb_cold
465static void 2432static void
466upheap (WT *heap, int k) 2433evpipe_init (EV_P)
467{ 2434{
468 WT w = heap [k]; 2435 if (!ev_is_active (&pipe_w))
469
470 while (k && heap [k >> 1]->at > w->at)
471 {
472 heap [k] = heap [k >> 1];
473 ((W)heap [k])->active = k + 1;
474 k >>= 1;
475 } 2436 {
2437 int fds [2];
476 2438
477 heap [k] = w; 2439# if EV_USE_EVENTFD
478 ((W)heap [k])->active = k + 1; 2440 fds [0] = -1;
2441 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2442 if (fds [1] < 0 && errno == EINVAL)
2443 fds [1] = eventfd (0, 0);
479 2444
480} 2445 if (fds [1] < 0)
2446# endif
2447 {
2448 while (pipe (fds))
2449 ev_syserr ("(libev) error creating signal/async pipe");
481 2450
2451 fd_intern (fds [0]);
2452 }
2453
2454 evpipe [0] = fds [0];
2455
2456 if (evpipe [1] < 0)
2457 evpipe [1] = fds [1]; /* first call, set write fd */
2458 else
2459 {
2460 /* on subsequent calls, do not change evpipe [1] */
2461 /* so that evpipe_write can always rely on its value. */
2462 /* this branch does not do anything sensible on windows, */
2463 /* so must not be executed on windows */
2464
2465 dup2 (fds [1], evpipe [1]);
2466 close (fds [1]);
2467 }
2468
2469 fd_intern (evpipe [1]);
2470
2471 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2472 ev_io_start (EV_A_ &pipe_w);
2473 ev_unref (EV_A); /* watcher should not keep loop alive */
2474 }
2475}
2476
2477inline_speed void
2478evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2479{
2480 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2481
2482 if (expect_true (*flag))
2483 return;
2484
2485 *flag = 1;
2486 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2487
2488 pipe_write_skipped = 1;
2489
2490 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2491
2492 if (pipe_write_wanted)
2493 {
2494 int old_errno;
2495
2496 pipe_write_skipped = 0;
2497 ECB_MEMORY_FENCE_RELEASE;
2498
2499 old_errno = errno; /* save errno because write will clobber it */
2500
2501#if EV_USE_EVENTFD
2502 if (evpipe [0] < 0)
2503 {
2504 uint64_t counter = 1;
2505 write (evpipe [1], &counter, sizeof (uint64_t));
2506 }
2507 else
2508#endif
2509 {
2510#ifdef _WIN32
2511 WSABUF buf;
2512 DWORD sent;
2513 buf.buf = (char *)&buf;
2514 buf.len = 1;
2515 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2516#else
2517 write (evpipe [1], &(evpipe [1]), 1);
2518#endif
2519 }
2520
2521 errno = old_errno;
2522 }
2523}
2524
2525/* called whenever the libev signal pipe */
2526/* got some events (signal, async) */
482static void 2527static void
483downheap (WT *heap, int N, int k) 2528pipecb (EV_P_ ev_io *iow, int revents)
484{ 2529{
485 WT w = heap [k]; 2530 int i;
486 2531
487 while (k < (N >> 1)) 2532 if (revents & EV_READ)
2533 {
2534#if EV_USE_EVENTFD
2535 if (evpipe [0] < 0)
2536 {
2537 uint64_t counter;
2538 read (evpipe [1], &counter, sizeof (uint64_t));
2539 }
2540 else
2541#endif
2542 {
2543 char dummy[4];
2544#ifdef _WIN32
2545 WSABUF buf;
2546 DWORD recvd;
2547 DWORD flags = 0;
2548 buf.buf = dummy;
2549 buf.len = sizeof (dummy);
2550 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2551#else
2552 read (evpipe [0], &dummy, sizeof (dummy));
2553#endif
2554 }
488 { 2555 }
489 int j = k << 1;
490 2556
491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 2557 pipe_write_skipped = 0;
492 ++j;
493 2558
494 if (w->at <= heap [j]->at) 2559 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2560
2561#if EV_SIGNAL_ENABLE
2562 if (sig_pending)
2563 {
2564 sig_pending = 0;
2565
2566 ECB_MEMORY_FENCE;
2567
2568 for (i = EV_NSIG - 1; i--; )
2569 if (expect_false (signals [i].pending))
2570 ev_feed_signal_event (EV_A_ i + 1);
2571 }
2572#endif
2573
2574#if EV_ASYNC_ENABLE
2575 if (async_pending)
2576 {
2577 async_pending = 0;
2578
2579 ECB_MEMORY_FENCE;
2580
2581 for (i = asynccnt; i--; )
2582 if (asyncs [i]->sent)
2583 {
2584 asyncs [i]->sent = 0;
2585 ECB_MEMORY_FENCE_RELEASE;
2586 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2587 }
2588 }
2589#endif
2590}
2591
2592/*****************************************************************************/
2593
2594void
2595ev_feed_signal (int signum) EV_NOEXCEPT
2596{
2597#if EV_MULTIPLICITY
2598 EV_P;
2599 ECB_MEMORY_FENCE_ACQUIRE;
2600 EV_A = signals [signum - 1].loop;
2601
2602 if (!EV_A)
2603 return;
2604#endif
2605
2606 signals [signum - 1].pending = 1;
2607 evpipe_write (EV_A_ &sig_pending);
2608}
2609
2610static void
2611ev_sighandler (int signum)
2612{
2613#ifdef _WIN32
2614 signal (signum, ev_sighandler);
2615#endif
2616
2617 ev_feed_signal (signum);
2618}
2619
2620noinline
2621void
2622ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2623{
2624 WL w;
2625
2626 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2627 return;
2628
2629 --signum;
2630
2631#if EV_MULTIPLICITY
2632 /* it is permissible to try to feed a signal to the wrong loop */
2633 /* or, likely more useful, feeding a signal nobody is waiting for */
2634
2635 if (expect_false (signals [signum].loop != EV_A))
2636 return;
2637#endif
2638
2639 signals [signum].pending = 0;
2640 ECB_MEMORY_FENCE_RELEASE;
2641
2642 for (w = signals [signum].head; w; w = w->next)
2643 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2644}
2645
2646#if EV_USE_SIGNALFD
2647static void
2648sigfdcb (EV_P_ ev_io *iow, int revents)
2649{
2650 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2651
2652 for (;;)
2653 {
2654 ssize_t res = read (sigfd, si, sizeof (si));
2655
2656 /* not ISO-C, as res might be -1, but works with SuS */
2657 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2658 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2659
2660 if (res < (ssize_t)sizeof (si))
495 break; 2661 break;
496
497 heap [k] = heap [j];
498 ((W)heap [k])->active = k + 1;
499 k = j;
500 } 2662 }
501
502 heap [k] = w;
503 ((W)heap [k])->active = k + 1;
504} 2663}
2664#endif
2665
2666#endif
505 2667
506/*****************************************************************************/ 2668/*****************************************************************************/
507 2669
508typedef struct 2670#if EV_CHILD_ENABLE
509{ 2671static WL childs [EV_PID_HASHSIZE];
510 WL head;
511 sig_atomic_t volatile gotsig;
512} ANSIG;
513 2672
514static ANSIG *signals;
515static int signalmax;
516
517static int sigpipe [2];
518static sig_atomic_t volatile gotsig;
519static struct ev_io sigev;
520
521static void
522signals_init (ANSIG *base, int count)
523{
524 while (count--)
525 {
526 base->head = 0;
527 base->gotsig = 0;
528
529 ++base;
530 }
531}
532
533static void
534sighandler (int signum)
535{
536#if WIN32
537 signal (signum, sighandler);
538#endif
539
540 signals [signum - 1].gotsig = 1;
541
542 if (!gotsig)
543 {
544 int old_errno = errno;
545 gotsig = 1;
546 write (sigpipe [1], &signum, 1);
547 errno = old_errno;
548 }
549}
550
551static void
552sigcb (EV_P_ struct ev_io *iow, int revents)
553{
554 WL w;
555 int signum;
556
557 read (sigpipe [0], &revents, 1);
558 gotsig = 0;
559
560 for (signum = signalmax; signum--; )
561 if (signals [signum].gotsig)
562 {
563 signals [signum].gotsig = 0;
564
565 for (w = signals [signum].head; w; w = w->next)
566 event (EV_A_ (W)w, EV_SIGNAL);
567 }
568}
569
570static void
571siginit (EV_P)
572{
573#ifndef WIN32
574 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
575 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
576
577 /* rather than sort out wether we really need nb, set it */
578 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
579 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
580#endif
581
582 ev_io_set (&sigev, sigpipe [0], EV_READ);
583 ev_io_start (EV_A_ &sigev);
584 ev_unref (EV_A); /* child watcher should not keep loop alive */
585}
586
587/*****************************************************************************/
588
589static struct ev_child *childs [PID_HASHSIZE];
590
591#ifndef WIN32
592
593static struct ev_signal childev; 2673static ev_signal childev;
2674
2675#ifndef WIFCONTINUED
2676# define WIFCONTINUED(status) 0
2677#endif
2678
2679/* handle a single child status event */
2680inline_speed void
2681child_reap (EV_P_ int chain, int pid, int status)
2682{
2683 ev_child *w;
2684 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2685
2686 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2687 {
2688 if ((w->pid == pid || !w->pid)
2689 && (!traced || (w->flags & 1)))
2690 {
2691 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2692 w->rpid = pid;
2693 w->rstatus = status;
2694 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2695 }
2696 }
2697}
594 2698
595#ifndef WCONTINUED 2699#ifndef WCONTINUED
596# define WCONTINUED 0 2700# define WCONTINUED 0
597#endif 2701#endif
598 2702
2703/* called on sigchld etc., calls waitpid */
599static void 2704static void
600child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
601{
602 struct ev_child *w;
603
604 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
605 if (w->pid == pid || !w->pid)
606 {
607 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
608 w->rpid = pid;
609 w->rstatus = status;
610 event (EV_A_ (W)w, EV_CHILD);
611 }
612}
613
614static void
615childcb (EV_P_ struct ev_signal *sw, int revents) 2705childcb (EV_P_ ev_signal *sw, int revents)
616{ 2706{
617 int pid, status; 2707 int pid, status;
618 2708
2709 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
619 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2710 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
620 { 2711 if (!WCONTINUED
2712 || errno != EINVAL
2713 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2714 return;
2715
621 /* make sure we are called again until all childs have been reaped */ 2716 /* make sure we are called again until all children have been reaped */
2717 /* we need to do it this way so that the callback gets called before we continue */
622 event (EV_A_ (W)sw, EV_SIGNAL); 2718 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
623 2719
624 child_reap (EV_A_ sw, pid, pid, status); 2720 child_reap (EV_A_ pid, pid, status);
2721 if ((EV_PID_HASHSIZE) > 1)
625 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2722 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
626 }
627} 2723}
628 2724
629#endif 2725#endif
630 2726
631/*****************************************************************************/ 2727/*****************************************************************************/
632 2728
2729#if EV_USE_IOCP
2730# include "ev_iocp.c"
2731#endif
2732#if EV_USE_PORT
2733# include "ev_port.c"
2734#endif
633#if EV_USE_KQUEUE 2735#if EV_USE_KQUEUE
634# include "ev_kqueue.c" 2736# include "ev_kqueue.c"
635#endif 2737#endif
636#if EV_USE_EPOLL 2738#if EV_USE_EPOLL
637# include "ev_epoll.c" 2739# include "ev_epoll.c"
638#endif 2740#endif
2741#if EV_USE_LINUXAIO
2742# include "ev_linuxaio.c"
2743#endif
639#if EV_USE_POLL 2744#if EV_USE_POLL
640# include "ev_poll.c" 2745# include "ev_poll.c"
641#endif 2746#endif
642#if EV_USE_SELECT 2747#if EV_USE_SELECT
643# include "ev_select.c" 2748# include "ev_select.c"
644#endif 2749#endif
645 2750
646int 2751ecb_cold int
647ev_version_major (void) 2752ev_version_major (void) EV_NOEXCEPT
648{ 2753{
649 return EV_VERSION_MAJOR; 2754 return EV_VERSION_MAJOR;
650} 2755}
651 2756
652int 2757ecb_cold int
653ev_version_minor (void) 2758ev_version_minor (void) EV_NOEXCEPT
654{ 2759{
655 return EV_VERSION_MINOR; 2760 return EV_VERSION_MINOR;
656} 2761}
657 2762
658/* return true if we are running with elevated privileges and should ignore env variables */ 2763/* return true if we are running with elevated privileges and should ignore env variables */
659static int 2764inline_size ecb_cold int
660enable_secure (void) 2765enable_secure (void)
661{ 2766{
662#ifdef WIN32 2767#ifdef _WIN32
663 return 0; 2768 return 0;
664#else 2769#else
665 return getuid () != geteuid () 2770 return getuid () != geteuid ()
666 || getgid () != getegid (); 2771 || getgid () != getegid ();
667#endif 2772#endif
668} 2773}
669 2774
2775ecb_cold
2776unsigned int
2777ev_supported_backends (void) EV_NOEXCEPT
2778{
2779 unsigned int flags = 0;
2780
2781 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2782 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2783 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2784 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2785 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2786 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2787
2788 return flags;
2789}
2790
2791ecb_cold
2792unsigned int
2793ev_recommended_backends (void) EV_NOEXCEPT
2794{
2795 unsigned int flags = ev_supported_backends ();
2796
2797#ifndef __NetBSD__
2798 /* kqueue is borked on everything but netbsd apparently */
2799 /* it usually doesn't work correctly on anything but sockets and pipes */
2800 flags &= ~EVBACKEND_KQUEUE;
2801#endif
2802#ifdef __APPLE__
2803 /* only select works correctly on that "unix-certified" platform */
2804 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2805 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2806#endif
2807#ifdef __FreeBSD__
2808 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2809#endif
2810
2811 /* TODO: linuxaio is very experimental */
2812 flags &= ~EVBACKEND_LINUXAIO;
2813
2814 return flags;
2815}
2816
2817ecb_cold
2818unsigned int
2819ev_embeddable_backends (void) EV_NOEXCEPT
2820{
2821 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2822
2823 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2824 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2825 flags &= ~EVBACKEND_EPOLL;
2826
2827 return flags;
2828}
2829
2830unsigned int
2831ev_backend (EV_P) EV_NOEXCEPT
2832{
2833 return backend;
2834}
2835
2836#if EV_FEATURE_API
2837unsigned int
2838ev_iteration (EV_P) EV_NOEXCEPT
2839{
2840 return loop_count;
2841}
2842
2843unsigned int
2844ev_depth (EV_P) EV_NOEXCEPT
2845{
2846 return loop_depth;
2847}
2848
2849void
2850ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2851{
2852 io_blocktime = interval;
2853}
2854
2855void
2856ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2857{
2858 timeout_blocktime = interval;
2859}
2860
2861void
2862ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2863{
2864 userdata = data;
2865}
2866
2867void *
2868ev_userdata (EV_P) EV_NOEXCEPT
2869{
2870 return userdata;
2871}
2872
2873void
2874ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2875{
2876 invoke_cb = invoke_pending_cb;
2877}
2878
2879void
2880ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2881{
2882 release_cb = release;
2883 acquire_cb = acquire;
2884}
2885#endif
2886
2887/* initialise a loop structure, must be zero-initialised */
2888noinline ecb_cold
2889static void
2890loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
2891{
2892 if (!backend)
2893 {
2894 origflags = flags;
2895
2896#if EV_USE_REALTIME
2897 if (!have_realtime)
2898 {
2899 struct timespec ts;
2900
2901 if (!clock_gettime (CLOCK_REALTIME, &ts))
2902 have_realtime = 1;
2903 }
2904#endif
2905
2906#if EV_USE_MONOTONIC
2907 if (!have_monotonic)
2908 {
2909 struct timespec ts;
2910
2911 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2912 have_monotonic = 1;
2913 }
2914#endif
2915
2916 /* pid check not overridable via env */
2917#ifndef _WIN32
2918 if (flags & EVFLAG_FORKCHECK)
2919 curpid = getpid ();
2920#endif
2921
2922 if (!(flags & EVFLAG_NOENV)
2923 && !enable_secure ()
2924 && getenv ("LIBEV_FLAGS"))
2925 flags = atoi (getenv ("LIBEV_FLAGS"));
2926
2927 ev_rt_now = ev_time ();
2928 mn_now = get_clock ();
2929 now_floor = mn_now;
2930 rtmn_diff = ev_rt_now - mn_now;
2931#if EV_FEATURE_API
2932 invoke_cb = ev_invoke_pending;
2933#endif
2934
2935 io_blocktime = 0.;
2936 timeout_blocktime = 0.;
2937 backend = 0;
2938 backend_fd = -1;
2939 sig_pending = 0;
2940#if EV_ASYNC_ENABLE
2941 async_pending = 0;
2942#endif
2943 pipe_write_skipped = 0;
2944 pipe_write_wanted = 0;
2945 evpipe [0] = -1;
2946 evpipe [1] = -1;
2947#if EV_USE_INOTIFY
2948 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2949#endif
2950#if EV_USE_SIGNALFD
2951 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2952#endif
2953
2954 if (!(flags & EVBACKEND_MASK))
2955 flags |= ev_recommended_backends ();
2956
2957#if EV_USE_IOCP
2958 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2959#endif
2960#if EV_USE_PORT
2961 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2962#endif
2963#if EV_USE_KQUEUE
2964 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2965#endif
2966#if EV_USE_LINUXAIO
2967 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
2968#endif
2969#if EV_USE_EPOLL
2970 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2971#endif
2972#if EV_USE_POLL
2973 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2974#endif
2975#if EV_USE_SELECT
2976 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
2977#endif
2978
2979 ev_prepare_init (&pending_w, pendingcb);
2980
2981#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2982 ev_init (&pipe_w, pipecb);
2983 ev_set_priority (&pipe_w, EV_MAXPRI);
2984#endif
2985 }
2986}
2987
2988/* free up a loop structure */
2989ecb_cold
2990void
2991ev_loop_destroy (EV_P)
2992{
2993 int i;
2994
2995#if EV_MULTIPLICITY
2996 /* mimic free (0) */
2997 if (!EV_A)
2998 return;
2999#endif
3000
3001#if EV_CLEANUP_ENABLE
3002 /* queue cleanup watchers (and execute them) */
3003 if (expect_false (cleanupcnt))
3004 {
3005 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3006 EV_INVOKE_PENDING;
3007 }
3008#endif
3009
3010#if EV_CHILD_ENABLE
3011 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3012 {
3013 ev_ref (EV_A); /* child watcher */
3014 ev_signal_stop (EV_A_ &childev);
3015 }
3016#endif
3017
3018 if (ev_is_active (&pipe_w))
3019 {
3020 /*ev_ref (EV_A);*/
3021 /*ev_io_stop (EV_A_ &pipe_w);*/
3022
3023 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3024 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3025 }
3026
3027#if EV_USE_SIGNALFD
3028 if (ev_is_active (&sigfd_w))
3029 close (sigfd);
3030#endif
3031
3032#if EV_USE_INOTIFY
3033 if (fs_fd >= 0)
3034 close (fs_fd);
3035#endif
3036
3037 if (backend_fd >= 0)
3038 close (backend_fd);
3039
3040#if EV_USE_IOCP
3041 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3042#endif
3043#if EV_USE_PORT
3044 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3045#endif
3046#if EV_USE_KQUEUE
3047 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3048#endif
3049#if EV_USE_LINUXAIO
3050 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3051#endif
3052#if EV_USE_EPOLL
3053 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3054#endif
3055#if EV_USE_POLL
3056 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3057#endif
3058#if EV_USE_SELECT
3059 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3060#endif
3061
3062 for (i = NUMPRI; i--; )
3063 {
3064 array_free (pending, [i]);
3065#if EV_IDLE_ENABLE
3066 array_free (idle, [i]);
3067#endif
3068 }
3069
3070 ev_free (anfds); anfds = 0; anfdmax = 0;
3071
3072 /* have to use the microsoft-never-gets-it-right macro */
3073 array_free (rfeed, EMPTY);
3074 array_free (fdchange, EMPTY);
3075 array_free (timer, EMPTY);
3076#if EV_PERIODIC_ENABLE
3077 array_free (periodic, EMPTY);
3078#endif
3079#if EV_FORK_ENABLE
3080 array_free (fork, EMPTY);
3081#endif
3082#if EV_CLEANUP_ENABLE
3083 array_free (cleanup, EMPTY);
3084#endif
3085 array_free (prepare, EMPTY);
3086 array_free (check, EMPTY);
3087#if EV_ASYNC_ENABLE
3088 array_free (async, EMPTY);
3089#endif
3090
3091 backend = 0;
3092
3093#if EV_MULTIPLICITY
3094 if (ev_is_default_loop (EV_A))
3095#endif
3096 ev_default_loop_ptr = 0;
3097#if EV_MULTIPLICITY
3098 else
3099 ev_free (EV_A);
3100#endif
3101}
3102
3103#if EV_USE_INOTIFY
3104inline_size void infy_fork (EV_P);
3105#endif
3106
3107inline_size void
3108loop_fork (EV_P)
3109{
3110#if EV_USE_PORT
3111 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3112#endif
3113#if EV_USE_KQUEUE
3114 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3115#endif
3116#if EV_USE_LINUXAIO
3117 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3118#endif
3119#if EV_USE_EPOLL
3120 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3121#endif
3122#if EV_USE_INOTIFY
3123 infy_fork (EV_A);
3124#endif
3125
3126#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3127 if (ev_is_active (&pipe_w) && postfork != 2)
3128 {
3129 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3130
3131 ev_ref (EV_A);
3132 ev_io_stop (EV_A_ &pipe_w);
3133
3134 if (evpipe [0] >= 0)
3135 EV_WIN32_CLOSE_FD (evpipe [0]);
3136
3137 evpipe_init (EV_A);
3138 /* iterate over everything, in case we missed something before */
3139 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3140 }
3141#endif
3142
3143 postfork = 0;
3144}
3145
3146#if EV_MULTIPLICITY
3147
3148ecb_cold
3149struct ev_loop *
3150ev_loop_new (unsigned int flags) EV_NOEXCEPT
3151{
3152 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3153
3154 memset (EV_A, 0, sizeof (struct ev_loop));
3155 loop_init (EV_A_ flags);
3156
3157 if (ev_backend (EV_A))
3158 return EV_A;
3159
3160 ev_free (EV_A);
3161 return 0;
3162}
3163
3164#endif /* multiplicity */
3165
3166#if EV_VERIFY
3167noinline ecb_cold
3168static void
3169verify_watcher (EV_P_ W w)
3170{
3171 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3172
3173 if (w->pending)
3174 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3175}
3176
3177noinline ecb_cold
3178static void
3179verify_heap (EV_P_ ANHE *heap, int N)
3180{
3181 int i;
3182
3183 for (i = HEAP0; i < N + HEAP0; ++i)
3184 {
3185 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3186 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3187 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3188
3189 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3190 }
3191}
3192
3193noinline ecb_cold
3194static void
3195array_verify (EV_P_ W *ws, int cnt)
3196{
3197 while (cnt--)
3198 {
3199 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3200 verify_watcher (EV_A_ ws [cnt]);
3201 }
3202}
3203#endif
3204
3205#if EV_FEATURE_API
3206void ecb_cold
3207ev_verify (EV_P) EV_NOEXCEPT
3208{
3209#if EV_VERIFY
3210 int i;
3211 WL w, w2;
3212
3213 assert (activecnt >= -1);
3214
3215 assert (fdchangemax >= fdchangecnt);
3216 for (i = 0; i < fdchangecnt; ++i)
3217 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3218
3219 assert (anfdmax >= 0);
3220 for (i = 0; i < anfdmax; ++i)
3221 {
3222 int j = 0;
3223
3224 for (w = w2 = anfds [i].head; w; w = w->next)
3225 {
3226 verify_watcher (EV_A_ (W)w);
3227
3228 if (j++ & 1)
3229 {
3230 assert (("libev: io watcher list contains a loop", w != w2));
3231 w2 = w2->next;
3232 }
3233
3234 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3235 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3236 }
3237 }
3238
3239 assert (timermax >= timercnt);
3240 verify_heap (EV_A_ timers, timercnt);
3241
3242#if EV_PERIODIC_ENABLE
3243 assert (periodicmax >= periodiccnt);
3244 verify_heap (EV_A_ periodics, periodiccnt);
3245#endif
3246
3247 for (i = NUMPRI; i--; )
3248 {
3249 assert (pendingmax [i] >= pendingcnt [i]);
3250#if EV_IDLE_ENABLE
3251 assert (idleall >= 0);
3252 assert (idlemax [i] >= idlecnt [i]);
3253 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3254#endif
3255 }
3256
3257#if EV_FORK_ENABLE
3258 assert (forkmax >= forkcnt);
3259 array_verify (EV_A_ (W *)forks, forkcnt);
3260#endif
3261
3262#if EV_CLEANUP_ENABLE
3263 assert (cleanupmax >= cleanupcnt);
3264 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3265#endif
3266
3267#if EV_ASYNC_ENABLE
3268 assert (asyncmax >= asynccnt);
3269 array_verify (EV_A_ (W *)asyncs, asynccnt);
3270#endif
3271
3272#if EV_PREPARE_ENABLE
3273 assert (preparemax >= preparecnt);
3274 array_verify (EV_A_ (W *)prepares, preparecnt);
3275#endif
3276
3277#if EV_CHECK_ENABLE
3278 assert (checkmax >= checkcnt);
3279 array_verify (EV_A_ (W *)checks, checkcnt);
3280#endif
3281
3282# if 0
3283#if EV_CHILD_ENABLE
3284 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3285 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3286#endif
3287# endif
3288#endif
3289}
3290#endif
3291
3292#if EV_MULTIPLICITY
3293ecb_cold
3294struct ev_loop *
3295#else
670int 3296int
671ev_method (EV_P) 3297#endif
3298ev_default_loop (unsigned int flags) EV_NOEXCEPT
672{ 3299{
673 return method; 3300 if (!ev_default_loop_ptr)
674}
675
676static void
677loop_init (EV_P_ int methods)
678{
679 if (!method)
680 {
681#if EV_USE_MONOTONIC
682 { 3301 {
683 struct timespec ts;
684 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
685 have_monotonic = 1;
686 }
687#endif
688
689 rt_now = ev_time ();
690 mn_now = get_clock ();
691 now_floor = mn_now;
692 rtmn_diff = rt_now - mn_now;
693
694 if (methods == EVMETHOD_AUTO)
695 if (!enable_secure () && getenv ("LIBEV_METHODS"))
696 methods = atoi (getenv ("LIBEV_METHODS"));
697 else
698 methods = EVMETHOD_ANY;
699
700 method = 0;
701#if EV_USE_WIN32
702 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
703#endif
704#if EV_USE_KQUEUE
705 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
706#endif
707#if EV_USE_EPOLL
708 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
709#endif
710#if EV_USE_POLL
711 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
712#endif
713#if EV_USE_SELECT
714 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
715#endif
716
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 }
720}
721
722void
723loop_destroy (EV_P)
724{
725 int i;
726
727#if EV_USE_WIN32
728 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
729#endif
730#if EV_USE_KQUEUE
731 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
732#endif
733#if EV_USE_EPOLL
734 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
735#endif
736#if EV_USE_POLL
737 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
738#endif
739#if EV_USE_SELECT
740 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
741#endif
742
743 for (i = NUMPRI; i--; )
744 array_free (pending, [i]);
745
746 /* have to use the microsoft-never-gets-it-right macro */
747 array_free_microshit (fdchange);
748 array_free_microshit (timer);
749 array_free_microshit (periodic);
750 array_free_microshit (idle);
751 array_free_microshit (prepare);
752 array_free_microshit (check);
753
754 method = 0;
755}
756
757static void
758loop_fork (EV_P)
759{
760#if EV_USE_EPOLL
761 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
762#endif
763#if EV_USE_KQUEUE
764 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
765#endif
766
767 if (ev_is_active (&sigev))
768 {
769 /* default loop */
770
771 ev_ref (EV_A);
772 ev_io_stop (EV_A_ &sigev);
773 close (sigpipe [0]);
774 close (sigpipe [1]);
775
776 while (pipe (sigpipe))
777 syserr ("(libev) error creating pipe");
778
779 siginit (EV_A);
780 }
781
782 postfork = 0;
783}
784
785#if EV_MULTIPLICITY 3302#if EV_MULTIPLICITY
786struct ev_loop *
787ev_loop_new (int methods)
788{
789 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
790
791 memset (loop, 0, sizeof (struct ev_loop));
792
793 loop_init (EV_A_ methods);
794
795 if (ev_method (EV_A))
796 return loop;
797
798 return 0;
799}
800
801void
802ev_loop_destroy (EV_P)
803{
804 loop_destroy (EV_A);
805 ev_free (loop);
806}
807
808void
809ev_loop_fork (EV_P)
810{
811 postfork = 1;
812}
813
814#endif
815
816#if EV_MULTIPLICITY
817struct ev_loop default_loop_struct;
818static struct ev_loop *default_loop;
819
820struct ev_loop *
821#else
822static int default_loop;
823
824int
825#endif
826ev_default_loop (int methods)
827{
828 if (sigpipe [0] == sigpipe [1])
829 if (pipe (sigpipe))
830 return 0;
831
832 if (!default_loop)
833 {
834#if EV_MULTIPLICITY
835 struct ev_loop *loop = default_loop = &default_loop_struct; 3303 EV_P = ev_default_loop_ptr = &default_loop_struct;
836#else 3304#else
837 default_loop = 1; 3305 ev_default_loop_ptr = 1;
838#endif 3306#endif
839 3307
840 loop_init (EV_A_ methods); 3308 loop_init (EV_A_ flags);
841 3309
842 if (ev_method (EV_A)) 3310 if (ev_backend (EV_A))
843 { 3311 {
844 siginit (EV_A); 3312#if EV_CHILD_ENABLE
845
846#ifndef WIN32
847 ev_signal_init (&childev, childcb, SIGCHLD); 3313 ev_signal_init (&childev, childcb, SIGCHLD);
848 ev_set_priority (&childev, EV_MAXPRI); 3314 ev_set_priority (&childev, EV_MAXPRI);
849 ev_signal_start (EV_A_ &childev); 3315 ev_signal_start (EV_A_ &childev);
850 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3316 ev_unref (EV_A); /* child watcher should not keep loop alive */
851#endif 3317#endif
852 } 3318 }
853 else 3319 else
854 default_loop = 0; 3320 ev_default_loop_ptr = 0;
855 } 3321 }
856 3322
857 return default_loop; 3323 return ev_default_loop_ptr;
858} 3324}
859 3325
860void 3326void
861ev_default_destroy (void) 3327ev_loop_fork (EV_P) EV_NOEXCEPT
862{ 3328{
863#if EV_MULTIPLICITY
864 struct ev_loop *loop = default_loop;
865#endif
866
867#ifndef WIN32
868 ev_ref (EV_A); /* child watcher */
869 ev_signal_stop (EV_A_ &childev);
870#endif
871
872 ev_ref (EV_A); /* signal watcher */
873 ev_io_stop (EV_A_ &sigev);
874
875 close (sigpipe [0]); sigpipe [0] = 0;
876 close (sigpipe [1]); sigpipe [1] = 0;
877
878 loop_destroy (EV_A);
879}
880
881void
882ev_default_fork (void)
883{
884#if EV_MULTIPLICITY
885 struct ev_loop *loop = default_loop;
886#endif
887
888 if (method)
889 postfork = 1; 3329 postfork = 1;
890} 3330}
891 3331
892/*****************************************************************************/ 3332/*****************************************************************************/
893 3333
3334void
3335ev_invoke (EV_P_ void *w, int revents)
3336{
3337 EV_CB_INVOKE ((W)w, revents);
3338}
3339
3340unsigned int
3341ev_pending_count (EV_P) EV_NOEXCEPT
3342{
3343 int pri;
3344 unsigned int count = 0;
3345
3346 for (pri = NUMPRI; pri--; )
3347 count += pendingcnt [pri];
3348
3349 return count;
3350}
3351
3352noinline
3353void
3354ev_invoke_pending (EV_P)
3355{
3356 pendingpri = NUMPRI;
3357
3358 do
3359 {
3360 --pendingpri;
3361
3362 /* pendingpri possibly gets modified in the inner loop */
3363 while (pendingcnt [pendingpri])
3364 {
3365 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3366
3367 p->w->pending = 0;
3368 EV_CB_INVOKE (p->w, p->events);
3369 EV_FREQUENT_CHECK;
3370 }
3371 }
3372 while (pendingpri);
3373}
3374
3375#if EV_IDLE_ENABLE
3376/* make idle watchers pending. this handles the "call-idle */
3377/* only when higher priorities are idle" logic */
3378inline_size void
3379idle_reify (EV_P)
3380{
3381 if (expect_false (idleall))
3382 {
3383 int pri;
3384
3385 for (pri = NUMPRI; pri--; )
3386 {
3387 if (pendingcnt [pri])
3388 break;
3389
3390 if (idlecnt [pri])
3391 {
3392 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3393 break;
3394 }
3395 }
3396 }
3397}
3398#endif
3399
3400/* make timers pending */
3401inline_size void
3402timers_reify (EV_P)
3403{
3404 EV_FREQUENT_CHECK;
3405
3406 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3407 {
3408 do
3409 {
3410 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3411
3412 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3413
3414 /* first reschedule or stop timer */
3415 if (w->repeat)
3416 {
3417 ev_at (w) += w->repeat;
3418 if (ev_at (w) < mn_now)
3419 ev_at (w) = mn_now;
3420
3421 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3422
3423 ANHE_at_cache (timers [HEAP0]);
3424 downheap (timers, timercnt, HEAP0);
3425 }
3426 else
3427 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3428
3429 EV_FREQUENT_CHECK;
3430 feed_reverse (EV_A_ (W)w);
3431 }
3432 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3433
3434 feed_reverse_done (EV_A_ EV_TIMER);
3435 }
3436}
3437
3438#if EV_PERIODIC_ENABLE
3439
3440noinline
894static void 3441static void
895call_pending (EV_P) 3442periodic_recalc (EV_P_ ev_periodic *w)
896{ 3443{
897 int pri; 3444 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3445 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
898 3446
899 for (pri = NUMPRI; pri--; ) 3447 /* the above almost always errs on the low side */
900 while (pendingcnt [pri]) 3448 while (at <= ev_rt_now)
901 { 3449 {
902 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 3450 ev_tstamp nat = at + w->interval;
903 3451
904 if (p->w) 3452 /* when resolution fails us, we use ev_rt_now */
905 { 3453 if (expect_false (nat == at))
906 p->w->pending = 0;
907 p->w->cb (EV_A_ p->w, p->events);
908 }
909 }
910}
911
912static void
913timers_reify (EV_P)
914{
915 while (timercnt && ((WT)timers [0])->at <= mn_now)
916 {
917 struct ev_timer *w = timers [0];
918
919 assert (("inactive timer on timer heap detected", ev_is_active (w)));
920
921 /* first reschedule or stop timer */
922 if (w->repeat)
923 { 3454 {
924 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3455 at = ev_rt_now;
925 ((WT)w)->at = mn_now + w->repeat; 3456 break;
926 downheap ((WT *)timers, timercnt, 0);
927 } 3457 }
928 else
929 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
930 3458
931 event (EV_A_ (W)w, EV_TIMEOUT); 3459 at = nat;
932 } 3460 }
933}
934 3461
935static void 3462 ev_at (w) = at;
3463}
3464
3465/* make periodics pending */
3466inline_size void
936periodics_reify (EV_P) 3467periodics_reify (EV_P)
937{ 3468{
3469 EV_FREQUENT_CHECK;
3470
938 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 3471 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
939 { 3472 {
940 struct ev_periodic *w = periodics [0]; 3473 do
941
942 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
943
944 /* first reschedule or stop timer */
945 if (w->interval)
946 { 3474 {
947 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 3475 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
948 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 3476
3477 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3478
3479 /* first reschedule or stop timer */
3480 if (w->reschedule_cb)
3481 {
3482 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3483
3484 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3485
3486 ANHE_at_cache (periodics [HEAP0]);
949 downheap ((WT *)periodics, periodiccnt, 0); 3487 downheap (periodics, periodiccnt, HEAP0);
3488 }
3489 else if (w->interval)
3490 {
3491 periodic_recalc (EV_A_ w);
3492 ANHE_at_cache (periodics [HEAP0]);
3493 downheap (periodics, periodiccnt, HEAP0);
3494 }
3495 else
3496 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3497
3498 EV_FREQUENT_CHECK;
3499 feed_reverse (EV_A_ (W)w);
950 } 3500 }
951 else 3501 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
952 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
953 3502
954 event (EV_A_ (W)w, EV_PERIODIC); 3503 feed_reverse_done (EV_A_ EV_PERIODIC);
955 } 3504 }
956} 3505}
957 3506
3507/* simply recalculate all periodics */
3508/* TODO: maybe ensure that at least one event happens when jumping forward? */
3509noinline ecb_cold
958static void 3510static void
959periodics_reschedule (EV_P) 3511periodics_reschedule (EV_P)
960{ 3512{
961 int i; 3513 int i;
962 3514
963 /* adjust periodics after time jump */ 3515 /* adjust periodics after time jump */
964 for (i = 0; i < periodiccnt; ++i) 3516 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
965 { 3517 {
966 struct ev_periodic *w = periodics [i]; 3518 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
967 3519
3520 if (w->reschedule_cb)
3521 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
968 if (w->interval) 3522 else if (w->interval)
969 {
970 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
971
972 if (fabs (diff) >= 1e-4)
973 {
974 ev_periodic_stop (EV_A_ w);
975 ev_periodic_start (EV_A_ w); 3523 periodic_recalc (EV_A_ w);
976 3524
977 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 3525 ANHE_at_cache (periodics [i]);
978 }
979 }
980 }
981}
982
983inline int
984time_update_monotonic (EV_P)
985{
986 mn_now = get_clock ();
987
988 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
989 { 3526 }
990 rt_now = rtmn_diff + mn_now;
991 return 0;
992 }
993 else
994 {
995 now_floor = mn_now;
996 rt_now = ev_time ();
997 return 1;
998 }
999}
1000 3527
3528 reheap (periodics, periodiccnt);
3529}
3530#endif
3531
3532/* adjust all timers by a given offset */
3533noinline ecb_cold
1001static void 3534static void
1002time_update (EV_P) 3535timers_reschedule (EV_P_ ev_tstamp adjust)
1003{ 3536{
1004 int i; 3537 int i;
1005 3538
3539 for (i = 0; i < timercnt; ++i)
3540 {
3541 ANHE *he = timers + i + HEAP0;
3542 ANHE_w (*he)->at += adjust;
3543 ANHE_at_cache (*he);
3544 }
3545}
3546
3547/* fetch new monotonic and realtime times from the kernel */
3548/* also detect if there was a timejump, and act accordingly */
3549inline_speed void
3550time_update (EV_P_ ev_tstamp max_block)
3551{
1006#if EV_USE_MONOTONIC 3552#if EV_USE_MONOTONIC
1007 if (expect_true (have_monotonic)) 3553 if (expect_true (have_monotonic))
1008 { 3554 {
1009 if (time_update_monotonic (EV_A)) 3555 int i;
3556 ev_tstamp odiff = rtmn_diff;
3557
3558 mn_now = get_clock ();
3559
3560 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3561 /* interpolate in the meantime */
3562 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1010 { 3563 {
1011 ev_tstamp odiff = rtmn_diff; 3564 ev_rt_now = rtmn_diff + mn_now;
3565 return;
3566 }
1012 3567
3568 now_floor = mn_now;
3569 ev_rt_now = ev_time ();
3570
1013 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 3571 /* loop a few times, before making important decisions.
3572 * on the choice of "4": one iteration isn't enough,
3573 * in case we get preempted during the calls to
3574 * ev_time and get_clock. a second call is almost guaranteed
3575 * to succeed in that case, though. and looping a few more times
3576 * doesn't hurt either as we only do this on time-jumps or
3577 * in the unlikely event of having been preempted here.
3578 */
3579 for (i = 4; --i; )
1014 { 3580 {
3581 ev_tstamp diff;
1015 rtmn_diff = rt_now - mn_now; 3582 rtmn_diff = ev_rt_now - mn_now;
1016 3583
1017 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3584 diff = odiff - rtmn_diff;
3585
3586 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1018 return; /* all is well */ 3587 return; /* all is well */
1019 3588
1020 rt_now = ev_time (); 3589 ev_rt_now = ev_time ();
1021 mn_now = get_clock (); 3590 mn_now = get_clock ();
1022 now_floor = mn_now; 3591 now_floor = mn_now;
1023 } 3592 }
1024 3593
3594 /* no timer adjustment, as the monotonic clock doesn't jump */
3595 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3596# if EV_PERIODIC_ENABLE
3597 periodics_reschedule (EV_A);
3598# endif
3599 }
3600 else
3601#endif
3602 {
3603 ev_rt_now = ev_time ();
3604
3605 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3606 {
3607 /* adjust timers. this is easy, as the offset is the same for all of them */
3608 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3609#if EV_PERIODIC_ENABLE
1025 periodics_reschedule (EV_A); 3610 periodics_reschedule (EV_A);
1026 /* no timer adjustment, as the monotonic clock doesn't jump */ 3611#endif
1027 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1028 } 3612 }
1029 }
1030 else
1031#endif
1032 {
1033 rt_now = ev_time ();
1034 3613
1035 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1036 {
1037 periodics_reschedule (EV_A);
1038
1039 /* adjust timers. this is easy, as the offset is the same for all */
1040 for (i = 0; i < timercnt; ++i)
1041 ((WT)timers [i])->at += rt_now - mn_now;
1042 }
1043
1044 mn_now = rt_now; 3614 mn_now = ev_rt_now;
1045 } 3615 }
1046} 3616}
1047 3617
1048void 3618int
1049ev_ref (EV_P)
1050{
1051 ++activecnt;
1052}
1053
1054void
1055ev_unref (EV_P)
1056{
1057 --activecnt;
1058}
1059
1060static int loop_done;
1061
1062void
1063ev_loop (EV_P_ int flags) 3619ev_run (EV_P_ int flags)
1064{ 3620{
1065 double block; 3621#if EV_FEATURE_API
1066 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3622 ++loop_depth;
3623#endif
3624
3625 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3626
3627 loop_done = EVBREAK_CANCEL;
3628
3629 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1067 3630
1068 do 3631 do
1069 { 3632 {
3633#if EV_VERIFY >= 2
3634 ev_verify (EV_A);
3635#endif
3636
3637#ifndef _WIN32
3638 if (expect_false (curpid)) /* penalise the forking check even more */
3639 if (expect_false (getpid () != curpid))
3640 {
3641 curpid = getpid ();
3642 postfork = 1;
3643 }
3644#endif
3645
3646#if EV_FORK_ENABLE
3647 /* we might have forked, so queue fork handlers */
3648 if (expect_false (postfork))
3649 if (forkcnt)
3650 {
3651 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3652 EV_INVOKE_PENDING;
3653 }
3654#endif
3655
3656#if EV_PREPARE_ENABLE
1070 /* queue check watchers (and execute them) */ 3657 /* queue prepare watchers (and execute them) */
1071 if (expect_false (preparecnt)) 3658 if (expect_false (preparecnt))
1072 { 3659 {
1073 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3660 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1074 call_pending (EV_A); 3661 EV_INVOKE_PENDING;
1075 } 3662 }
3663#endif
3664
3665 if (expect_false (loop_done))
3666 break;
1076 3667
1077 /* we might have forked, so reify kernel state if necessary */ 3668 /* we might have forked, so reify kernel state if necessary */
1078 if (expect_false (postfork)) 3669 if (expect_false (postfork))
1079 loop_fork (EV_A); 3670 loop_fork (EV_A);
1080 3671
1081 /* update fd-related kernel structures */ 3672 /* update fd-related kernel structures */
1082 fd_reify (EV_A); 3673 fd_reify (EV_A);
1083 3674
1084 /* calculate blocking time */ 3675 /* calculate blocking time */
3676 {
3677 ev_tstamp waittime = 0.;
3678 ev_tstamp sleeptime = 0.;
1085 3679
1086 /* we only need this for !monotonic clockor timers, but as we basically 3680 /* remember old timestamp for io_blocktime calculation */
1087 always have timers, we just calculate it always */ 3681 ev_tstamp prev_mn_now = mn_now;
1088#if EV_USE_MONOTONIC 3682
1089 if (expect_true (have_monotonic)) 3683 /* update time to cancel out callback processing overhead */
1090 time_update_monotonic (EV_A); 3684 time_update (EV_A_ 1e100);
1091 else 3685
1092#endif 3686 /* from now on, we want a pipe-wake-up */
3687 pipe_write_wanted = 1;
3688
3689 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3690
3691 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1093 { 3692 {
1094 rt_now = ev_time ();
1095 mn_now = rt_now;
1096 }
1097
1098 if (flags & EVLOOP_NONBLOCK || idlecnt)
1099 block = 0.;
1100 else
1101 {
1102 block = MAX_BLOCKTIME; 3693 waittime = MAX_BLOCKTIME;
1103 3694
1104 if (timercnt) 3695 if (timercnt)
1105 { 3696 {
1106 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3697 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1107 if (block > to) block = to; 3698 if (waittime > to) waittime = to;
1108 } 3699 }
1109 3700
3701#if EV_PERIODIC_ENABLE
1110 if (periodiccnt) 3702 if (periodiccnt)
1111 { 3703 {
1112 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 3704 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1113 if (block > to) block = to; 3705 if (waittime > to) waittime = to;
1114 } 3706 }
3707#endif
1115 3708
1116 if (block < 0.) block = 0.; 3709 /* don't let timeouts decrease the waittime below timeout_blocktime */
3710 if (expect_false (waittime < timeout_blocktime))
3711 waittime = timeout_blocktime;
3712
3713 /* at this point, we NEED to wait, so we have to ensure */
3714 /* to pass a minimum nonzero value to the backend */
3715 if (expect_false (waittime < backend_mintime))
3716 waittime = backend_mintime;
3717
3718 /* extra check because io_blocktime is commonly 0 */
3719 if (expect_false (io_blocktime))
3720 {
3721 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3722
3723 if (sleeptime > waittime - backend_mintime)
3724 sleeptime = waittime - backend_mintime;
3725
3726 if (expect_true (sleeptime > 0.))
3727 {
3728 ev_sleep (sleeptime);
3729 waittime -= sleeptime;
3730 }
3731 }
1117 } 3732 }
1118 3733
1119 method_poll (EV_A_ block); 3734#if EV_FEATURE_API
3735 ++loop_count;
3736#endif
3737 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3738 backend_poll (EV_A_ waittime);
3739 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1120 3740
3741 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3742
3743 ECB_MEMORY_FENCE_ACQUIRE;
3744 if (pipe_write_skipped)
3745 {
3746 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3747 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3748 }
3749
3750
1121 /* update rt_now, do magic */ 3751 /* update ev_rt_now, do magic */
1122 time_update (EV_A); 3752 time_update (EV_A_ waittime + sleeptime);
3753 }
1123 3754
1124 /* queue pending timers and reschedule them */ 3755 /* queue pending timers and reschedule them */
1125 timers_reify (EV_A); /* relative timers called last */ 3756 timers_reify (EV_A); /* relative timers called last */
3757#if EV_PERIODIC_ENABLE
1126 periodics_reify (EV_A); /* absolute timers called first */ 3758 periodics_reify (EV_A); /* absolute timers called first */
3759#endif
1127 3760
3761#if EV_IDLE_ENABLE
1128 /* queue idle watchers unless io or timers are pending */ 3762 /* queue idle watchers unless other events are pending */
1129 if (!pendingcnt) 3763 idle_reify (EV_A);
1130 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3764#endif
1131 3765
3766#if EV_CHECK_ENABLE
1132 /* queue check watchers, to be executed first */ 3767 /* queue check watchers, to be executed first */
1133 if (checkcnt) 3768 if (expect_false (checkcnt))
1134 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3769 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3770#endif
1135 3771
1136 call_pending (EV_A); 3772 EV_INVOKE_PENDING;
1137 } 3773 }
1138 while (activecnt && !loop_done); 3774 while (expect_true (
3775 activecnt
3776 && !loop_done
3777 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3778 ));
1139 3779
1140 if (loop_done != 2) 3780 if (loop_done == EVBREAK_ONE)
1141 loop_done = 0; 3781 loop_done = EVBREAK_CANCEL;
1142}
1143 3782
3783#if EV_FEATURE_API
3784 --loop_depth;
3785#endif
3786
3787 return activecnt;
3788}
3789
1144void 3790void
1145ev_unloop (EV_P_ int how) 3791ev_break (EV_P_ int how) EV_NOEXCEPT
1146{ 3792{
1147 loop_done = how; 3793 loop_done = how;
1148} 3794}
1149 3795
3796void
3797ev_ref (EV_P) EV_NOEXCEPT
3798{
3799 ++activecnt;
3800}
3801
3802void
3803ev_unref (EV_P) EV_NOEXCEPT
3804{
3805 --activecnt;
3806}
3807
3808void
3809ev_now_update (EV_P) EV_NOEXCEPT
3810{
3811 time_update (EV_A_ 1e100);
3812}
3813
3814void
3815ev_suspend (EV_P) EV_NOEXCEPT
3816{
3817 ev_now_update (EV_A);
3818}
3819
3820void
3821ev_resume (EV_P) EV_NOEXCEPT
3822{
3823 ev_tstamp mn_prev = mn_now;
3824
3825 ev_now_update (EV_A);
3826 timers_reschedule (EV_A_ mn_now - mn_prev);
3827#if EV_PERIODIC_ENABLE
3828 /* TODO: really do this? */
3829 periodics_reschedule (EV_A);
3830#endif
3831}
3832
1150/*****************************************************************************/ 3833/*****************************************************************************/
3834/* singly-linked list management, used when the expected list length is short */
1151 3835
1152inline void 3836inline_size void
1153wlist_add (WL *head, WL elem) 3837wlist_add (WL *head, WL elem)
1154{ 3838{
1155 elem->next = *head; 3839 elem->next = *head;
1156 *head = elem; 3840 *head = elem;
1157} 3841}
1158 3842
1159inline void 3843inline_size void
1160wlist_del (WL *head, WL elem) 3844wlist_del (WL *head, WL elem)
1161{ 3845{
1162 while (*head) 3846 while (*head)
1163 { 3847 {
1164 if (*head == elem) 3848 if (expect_true (*head == elem))
1165 { 3849 {
1166 *head = elem->next; 3850 *head = elem->next;
1167 return; 3851 break;
1168 } 3852 }
1169 3853
1170 head = &(*head)->next; 3854 head = &(*head)->next;
1171 } 3855 }
1172} 3856}
1173 3857
3858/* internal, faster, version of ev_clear_pending */
1174inline void 3859inline_speed void
1175ev_clear_pending (EV_P_ W w) 3860clear_pending (EV_P_ W w)
1176{ 3861{
1177 if (w->pending) 3862 if (w->pending)
1178 { 3863 {
1179 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3864 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1180 w->pending = 0; 3865 w->pending = 0;
1181 } 3866 }
1182} 3867}
1183 3868
3869int
3870ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3871{
3872 W w_ = (W)w;
3873 int pending = w_->pending;
3874
3875 if (expect_true (pending))
3876 {
3877 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3878 p->w = (W)&pending_w;
3879 w_->pending = 0;
3880 return p->events;
3881 }
3882 else
3883 return 0;
3884}
3885
1184inline void 3886inline_size void
3887pri_adjust (EV_P_ W w)
3888{
3889 int pri = ev_priority (w);
3890 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3891 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3892 ev_set_priority (w, pri);
3893}
3894
3895inline_speed void
1185ev_start (EV_P_ W w, int active) 3896ev_start (EV_P_ W w, int active)
1186{ 3897{
1187 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3898 pri_adjust (EV_A_ w);
1188 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1189
1190 w->active = active; 3899 w->active = active;
1191 ev_ref (EV_A); 3900 ev_ref (EV_A);
1192} 3901}
1193 3902
1194inline void 3903inline_size void
1195ev_stop (EV_P_ W w) 3904ev_stop (EV_P_ W w)
1196{ 3905{
1197 ev_unref (EV_A); 3906 ev_unref (EV_A);
1198 w->active = 0; 3907 w->active = 0;
1199} 3908}
1200 3909
1201/*****************************************************************************/ 3910/*****************************************************************************/
1202 3911
3912noinline
1203void 3913void
1204ev_io_start (EV_P_ struct ev_io *w) 3914ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1205{ 3915{
1206 int fd = w->fd; 3916 int fd = w->fd;
1207 3917
1208 if (ev_is_active (w)) 3918 if (expect_false (ev_is_active (w)))
1209 return; 3919 return;
1210 3920
1211 assert (("ev_io_start called with negative fd", fd >= 0)); 3921 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3922 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3923
3924 EV_FREQUENT_CHECK;
1212 3925
1213 ev_start (EV_A_ (W)w, 1); 3926 ev_start (EV_A_ (W)w, 1);
1214 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3927 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
1215 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3928 wlist_add (&anfds[fd].head, (WL)w);
1216 3929
1217 fd_change (EV_A_ fd); 3930 /* common bug, apparently */
1218} 3931 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1219 3932
3933 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3934 w->events &= ~EV__IOFDSET;
3935
3936 EV_FREQUENT_CHECK;
3937}
3938
3939noinline
1220void 3940void
1221ev_io_stop (EV_P_ struct ev_io *w) 3941ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
1222{ 3942{
1223 ev_clear_pending (EV_A_ (W)w); 3943 clear_pending (EV_A_ (W)w);
1224 if (!ev_is_active (w)) 3944 if (expect_false (!ev_is_active (w)))
1225 return; 3945 return;
1226 3946
3947 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3948
3949 EV_FREQUENT_CHECK;
3950
1227 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3951 wlist_del (&anfds[w->fd].head, (WL)w);
1228 ev_stop (EV_A_ (W)w); 3952 ev_stop (EV_A_ (W)w);
1229 3953
1230 fd_change (EV_A_ w->fd); 3954 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1231}
1232 3955
3956 EV_FREQUENT_CHECK;
3957}
3958
3959noinline
1233void 3960void
1234ev_timer_start (EV_P_ struct ev_timer *w) 3961ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
1235{ 3962{
1236 if (ev_is_active (w)) 3963 if (expect_false (ev_is_active (w)))
1237 return; 3964 return;
1238 3965
1239 ((WT)w)->at += mn_now; 3966 ev_at (w) += mn_now;
1240 3967
1241 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3968 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1242 3969
3970 EV_FREQUENT_CHECK;
3971
3972 ++timercnt;
1243 ev_start (EV_A_ (W)w, ++timercnt); 3973 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1244 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 3974 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
1245 timers [timercnt - 1] = w; 3975 ANHE_w (timers [ev_active (w)]) = (WT)w;
1246 upheap ((WT *)timers, timercnt - 1); 3976 ANHE_at_cache (timers [ev_active (w)]);
3977 upheap (timers, ev_active (w));
1247 3978
3979 EV_FREQUENT_CHECK;
3980
1248 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3981 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1249} 3982}
1250 3983
3984noinline
1251void 3985void
1252ev_timer_stop (EV_P_ struct ev_timer *w) 3986ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
1253{ 3987{
1254 ev_clear_pending (EV_A_ (W)w); 3988 clear_pending (EV_A_ (W)w);
1255 if (!ev_is_active (w)) 3989 if (expect_false (!ev_is_active (w)))
1256 return; 3990 return;
1257 3991
3992 EV_FREQUENT_CHECK;
3993
3994 {
3995 int active = ev_active (w);
3996
1258 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3997 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1259 3998
1260 if (((W)w)->active < timercnt--) 3999 --timercnt;
4000
4001 if (expect_true (active < timercnt + HEAP0))
1261 { 4002 {
1262 timers [((W)w)->active - 1] = timers [timercnt]; 4003 timers [active] = timers [timercnt + HEAP0];
1263 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 4004 adjustheap (timers, timercnt, active);
1264 } 4005 }
4006 }
1265 4007
1266 ((WT)w)->at = w->repeat; 4008 ev_at (w) -= mn_now;
1267 4009
1268 ev_stop (EV_A_ (W)w); 4010 ev_stop (EV_A_ (W)w);
1269}
1270 4011
4012 EV_FREQUENT_CHECK;
4013}
4014
4015noinline
1271void 4016void
1272ev_timer_again (EV_P_ struct ev_timer *w) 4017ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
1273{ 4018{
4019 EV_FREQUENT_CHECK;
4020
4021 clear_pending (EV_A_ (W)w);
4022
1274 if (ev_is_active (w)) 4023 if (ev_is_active (w))
1275 { 4024 {
1276 if (w->repeat) 4025 if (w->repeat)
1277 { 4026 {
1278 ((WT)w)->at = mn_now + w->repeat; 4027 ev_at (w) = mn_now + w->repeat;
1279 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 4028 ANHE_at_cache (timers [ev_active (w)]);
4029 adjustheap (timers, timercnt, ev_active (w));
1280 } 4030 }
1281 else 4031 else
1282 ev_timer_stop (EV_A_ w); 4032 ev_timer_stop (EV_A_ w);
1283 } 4033 }
1284 else if (w->repeat) 4034 else if (w->repeat)
4035 {
4036 ev_at (w) = w->repeat;
1285 ev_timer_start (EV_A_ w); 4037 ev_timer_start (EV_A_ w);
1286} 4038 }
1287 4039
4040 EV_FREQUENT_CHECK;
4041}
4042
4043ev_tstamp
4044ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4045{
4046 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4047}
4048
4049#if EV_PERIODIC_ENABLE
4050noinline
1288void 4051void
1289ev_periodic_start (EV_P_ struct ev_periodic *w) 4052ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1290{ 4053{
1291 if (ev_is_active (w)) 4054 if (expect_false (ev_is_active (w)))
1292 return; 4055 return;
1293 4056
4057 if (w->reschedule_cb)
4058 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4059 else if (w->interval)
4060 {
1294 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4061 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4062 periodic_recalc (EV_A_ w);
4063 }
4064 else
4065 ev_at (w) = w->offset;
1295 4066
1296 /* this formula differs from the one in periodic_reify because we do not always round up */ 4067 EV_FREQUENT_CHECK;
1297 if (w->interval)
1298 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1299 4068
4069 ++periodiccnt;
1300 ev_start (EV_A_ (W)w, ++periodiccnt); 4070 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1301 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 4071 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1302 periodics [periodiccnt - 1] = w; 4072 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1303 upheap ((WT *)periodics, periodiccnt - 1); 4073 ANHE_at_cache (periodics [ev_active (w)]);
4074 upheap (periodics, ev_active (w));
1304 4075
4076 EV_FREQUENT_CHECK;
4077
1305 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4078 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1306} 4079}
1307 4080
4081noinline
1308void 4082void
1309ev_periodic_stop (EV_P_ struct ev_periodic *w) 4083ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1310{ 4084{
1311 ev_clear_pending (EV_A_ (W)w); 4085 clear_pending (EV_A_ (W)w);
1312 if (!ev_is_active (w)) 4086 if (expect_false (!ev_is_active (w)))
1313 return; 4087 return;
1314 4088
4089 EV_FREQUENT_CHECK;
4090
4091 {
4092 int active = ev_active (w);
4093
1315 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4094 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1316 4095
1317 if (((W)w)->active < periodiccnt--) 4096 --periodiccnt;
4097
4098 if (expect_true (active < periodiccnt + HEAP0))
1318 { 4099 {
1319 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 4100 periodics [active] = periodics [periodiccnt + HEAP0];
1320 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 4101 adjustheap (periodics, periodiccnt, active);
1321 } 4102 }
4103 }
1322 4104
1323 ev_stop (EV_A_ (W)w); 4105 ev_stop (EV_A_ (W)w);
1324}
1325 4106
1326void 4107 EV_FREQUENT_CHECK;
1327ev_idle_start (EV_P_ struct ev_idle *w)
1328{
1329 if (ev_is_active (w))
1330 return;
1331
1332 ev_start (EV_A_ (W)w, ++idlecnt);
1333 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1334 idles [idlecnt - 1] = w;
1335} 4108}
1336 4109
4110noinline
1337void 4111void
1338ev_idle_stop (EV_P_ struct ev_idle *w) 4112ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1339{ 4113{
1340 ev_clear_pending (EV_A_ (W)w); 4114 /* TODO: use adjustheap and recalculation */
1341 if (ev_is_active (w))
1342 return;
1343
1344 idles [((W)w)->active - 1] = idles [--idlecnt];
1345 ev_stop (EV_A_ (W)w); 4115 ev_periodic_stop (EV_A_ w);
4116 ev_periodic_start (EV_A_ w);
1346} 4117}
1347 4118#endif
1348void
1349ev_prepare_start (EV_P_ struct ev_prepare *w)
1350{
1351 if (ev_is_active (w))
1352 return;
1353
1354 ev_start (EV_A_ (W)w, ++preparecnt);
1355 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1356 prepares [preparecnt - 1] = w;
1357}
1358
1359void
1360ev_prepare_stop (EV_P_ struct ev_prepare *w)
1361{
1362 ev_clear_pending (EV_A_ (W)w);
1363 if (ev_is_active (w))
1364 return;
1365
1366 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1367 ev_stop (EV_A_ (W)w);
1368}
1369
1370void
1371ev_check_start (EV_P_ struct ev_check *w)
1372{
1373 if (ev_is_active (w))
1374 return;
1375
1376 ev_start (EV_A_ (W)w, ++checkcnt);
1377 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1378 checks [checkcnt - 1] = w;
1379}
1380
1381void
1382ev_check_stop (EV_P_ struct ev_check *w)
1383{
1384 ev_clear_pending (EV_A_ (W)w);
1385 if (ev_is_active (w))
1386 return;
1387
1388 checks [((W)w)->active - 1] = checks [--checkcnt];
1389 ev_stop (EV_A_ (W)w);
1390}
1391 4119
1392#ifndef SA_RESTART 4120#ifndef SA_RESTART
1393# define SA_RESTART 0 4121# define SA_RESTART 0
1394#endif 4122#endif
1395 4123
4124#if EV_SIGNAL_ENABLE
4125
4126noinline
1396void 4127void
1397ev_signal_start (EV_P_ struct ev_signal *w) 4128ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1398{ 4129{
4130 if (expect_false (ev_is_active (w)))
4131 return;
4132
4133 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4134
1399#if EV_MULTIPLICITY 4135#if EV_MULTIPLICITY
1400 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 4136 assert (("libev: a signal must not be attached to two different loops",
4137 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4138
4139 signals [w->signum - 1].loop = EV_A;
4140 ECB_MEMORY_FENCE_RELEASE;
4141#endif
4142
4143 EV_FREQUENT_CHECK;
4144
4145#if EV_USE_SIGNALFD
4146 if (sigfd == -2)
4147 {
4148 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4149 if (sigfd < 0 && errno == EINVAL)
4150 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4151
4152 if (sigfd >= 0)
4153 {
4154 fd_intern (sigfd); /* doing it twice will not hurt */
4155
4156 sigemptyset (&sigfd_set);
4157
4158 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4159 ev_set_priority (&sigfd_w, EV_MAXPRI);
4160 ev_io_start (EV_A_ &sigfd_w);
4161 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4162 }
4163 }
4164
4165 if (sigfd >= 0)
4166 {
4167 /* TODO: check .head */
4168 sigaddset (&sigfd_set, w->signum);
4169 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4170
4171 signalfd (sigfd, &sigfd_set, 0);
4172 }
4173#endif
4174
4175 ev_start (EV_A_ (W)w, 1);
4176 wlist_add (&signals [w->signum - 1].head, (WL)w);
4177
4178 if (!((WL)w)->next)
4179# if EV_USE_SIGNALFD
4180 if (sigfd < 0) /*TODO*/
1401#endif 4181# endif
1402 if (ev_is_active (w)) 4182 {
4183# ifdef _WIN32
4184 evpipe_init (EV_A);
4185
4186 signal (w->signum, ev_sighandler);
4187# else
4188 struct sigaction sa;
4189
4190 evpipe_init (EV_A);
4191
4192 sa.sa_handler = ev_sighandler;
4193 sigfillset (&sa.sa_mask);
4194 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4195 sigaction (w->signum, &sa, 0);
4196
4197 if (origflags & EVFLAG_NOSIGMASK)
4198 {
4199 sigemptyset (&sa.sa_mask);
4200 sigaddset (&sa.sa_mask, w->signum);
4201 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4202 }
4203#endif
4204 }
4205
4206 EV_FREQUENT_CHECK;
4207}
4208
4209noinline
4210void
4211ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4212{
4213 clear_pending (EV_A_ (W)w);
4214 if (expect_false (!ev_is_active (w)))
1403 return; 4215 return;
1404 4216
1405 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4217 EV_FREQUENT_CHECK;
4218
4219 wlist_del (&signals [w->signum - 1].head, (WL)w);
4220 ev_stop (EV_A_ (W)w);
4221
4222 if (!signals [w->signum - 1].head)
4223 {
4224#if EV_MULTIPLICITY
4225 signals [w->signum - 1].loop = 0; /* unattach from signal */
4226#endif
4227#if EV_USE_SIGNALFD
4228 if (sigfd >= 0)
4229 {
4230 sigset_t ss;
4231
4232 sigemptyset (&ss);
4233 sigaddset (&ss, w->signum);
4234 sigdelset (&sigfd_set, w->signum);
4235
4236 signalfd (sigfd, &sigfd_set, 0);
4237 sigprocmask (SIG_UNBLOCK, &ss, 0);
4238 }
4239 else
4240#endif
4241 signal (w->signum, SIG_DFL);
4242 }
4243
4244 EV_FREQUENT_CHECK;
4245}
4246
4247#endif
4248
4249#if EV_CHILD_ENABLE
4250
4251void
4252ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4253{
4254#if EV_MULTIPLICITY
4255 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4256#endif
4257 if (expect_false (ev_is_active (w)))
4258 return;
4259
4260 EV_FREQUENT_CHECK;
1406 4261
1407 ev_start (EV_A_ (W)w, 1); 4262 ev_start (EV_A_ (W)w, 1);
1408 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4263 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1409 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1410 4264
1411 if (!((WL)w)->next) 4265 EV_FREQUENT_CHECK;
1412 {
1413#if WIN32
1414 signal (w->signum, sighandler);
1415#else
1416 struct sigaction sa;
1417 sa.sa_handler = sighandler;
1418 sigfillset (&sa.sa_mask);
1419 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1420 sigaction (w->signum, &sa, 0);
1421#endif
1422 }
1423} 4266}
1424 4267
1425void 4268void
1426ev_signal_stop (EV_P_ struct ev_signal *w) 4269ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
1427{ 4270{
1428 ev_clear_pending (EV_A_ (W)w); 4271 clear_pending (EV_A_ (W)w);
1429 if (!ev_is_active (w)) 4272 if (expect_false (!ev_is_active (w)))
1430 return; 4273 return;
1431 4274
1432 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4275 EV_FREQUENT_CHECK;
4276
4277 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1433 ev_stop (EV_A_ (W)w); 4278 ev_stop (EV_A_ (W)w);
1434 4279
1435 if (!signals [w->signum - 1].head) 4280 EV_FREQUENT_CHECK;
1436 signal (w->signum, SIG_DFL);
1437} 4281}
1438 4282
1439void 4283#endif
1440ev_child_start (EV_P_ struct ev_child *w) 4284
1441{ 4285#if EV_STAT_ENABLE
1442#if EV_MULTIPLICITY 4286
1443 assert (("child watchers are only supported in the default loop", loop == default_loop)); 4287# ifdef _WIN32
4288# undef lstat
4289# define lstat(a,b) _stati64 (a,b)
1444#endif 4290# endif
1445 if (ev_is_active (w)) 4291
4292#define DEF_STAT_INTERVAL 5.0074891
4293#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4294#define MIN_STAT_INTERVAL 0.1074891
4295
4296noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4297
4298#if EV_USE_INOTIFY
4299
4300/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4301# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4302
4303noinline
4304static void
4305infy_add (EV_P_ ev_stat *w)
4306{
4307 w->wd = inotify_add_watch (fs_fd, w->path,
4308 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4309 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4310 | IN_DONT_FOLLOW | IN_MASK_ADD);
4311
4312 if (w->wd >= 0)
4313 {
4314 struct statfs sfs;
4315
4316 /* now local changes will be tracked by inotify, but remote changes won't */
4317 /* unless the filesystem is known to be local, we therefore still poll */
4318 /* also do poll on <2.6.25, but with normal frequency */
4319
4320 if (!fs_2625)
4321 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4322 else if (!statfs (w->path, &sfs)
4323 && (sfs.f_type == 0x1373 /* devfs */
4324 || sfs.f_type == 0x4006 /* fat */
4325 || sfs.f_type == 0x4d44 /* msdos */
4326 || sfs.f_type == 0xEF53 /* ext2/3 */
4327 || sfs.f_type == 0x72b6 /* jffs2 */
4328 || sfs.f_type == 0x858458f6 /* ramfs */
4329 || sfs.f_type == 0x5346544e /* ntfs */
4330 || sfs.f_type == 0x3153464a /* jfs */
4331 || sfs.f_type == 0x9123683e /* btrfs */
4332 || sfs.f_type == 0x52654973 /* reiser3 */
4333 || sfs.f_type == 0x01021994 /* tmpfs */
4334 || sfs.f_type == 0x58465342 /* xfs */))
4335 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4336 else
4337 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4338 }
4339 else
4340 {
4341 /* can't use inotify, continue to stat */
4342 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4343
4344 /* if path is not there, monitor some parent directory for speedup hints */
4345 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4346 /* but an efficiency issue only */
4347 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4348 {
4349 char path [4096];
4350 strcpy (path, w->path);
4351
4352 do
4353 {
4354 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4355 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4356
4357 char *pend = strrchr (path, '/');
4358
4359 if (!pend || pend == path)
4360 break;
4361
4362 *pend = 0;
4363 w->wd = inotify_add_watch (fs_fd, path, mask);
4364 }
4365 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4366 }
4367 }
4368
4369 if (w->wd >= 0)
4370 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4371
4372 /* now re-arm timer, if required */
4373 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4374 ev_timer_again (EV_A_ &w->timer);
4375 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4376}
4377
4378noinline
4379static void
4380infy_del (EV_P_ ev_stat *w)
4381{
4382 int slot;
4383 int wd = w->wd;
4384
4385 if (wd < 0)
1446 return; 4386 return;
1447 4387
4388 w->wd = -2;
4389 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4390 wlist_del (&fs_hash [slot].head, (WL)w);
4391
4392 /* remove this watcher, if others are watching it, they will rearm */
4393 inotify_rm_watch (fs_fd, wd);
4394}
4395
4396noinline
4397static void
4398infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4399{
4400 if (slot < 0)
4401 /* overflow, need to check for all hash slots */
4402 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4403 infy_wd (EV_A_ slot, wd, ev);
4404 else
4405 {
4406 WL w_;
4407
4408 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4409 {
4410 ev_stat *w = (ev_stat *)w_;
4411 w_ = w_->next; /* lets us remove this watcher and all before it */
4412
4413 if (w->wd == wd || wd == -1)
4414 {
4415 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4416 {
4417 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4418 w->wd = -1;
4419 infy_add (EV_A_ w); /* re-add, no matter what */
4420 }
4421
4422 stat_timer_cb (EV_A_ &w->timer, 0);
4423 }
4424 }
4425 }
4426}
4427
4428static void
4429infy_cb (EV_P_ ev_io *w, int revents)
4430{
4431 char buf [EV_INOTIFY_BUFSIZE];
4432 int ofs;
4433 int len = read (fs_fd, buf, sizeof (buf));
4434
4435 for (ofs = 0; ofs < len; )
4436 {
4437 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4438 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4439 ofs += sizeof (struct inotify_event) + ev->len;
4440 }
4441}
4442
4443inline_size ecb_cold
4444void
4445ev_check_2625 (EV_P)
4446{
4447 /* kernels < 2.6.25 are borked
4448 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4449 */
4450 if (ev_linux_version () < 0x020619)
4451 return;
4452
4453 fs_2625 = 1;
4454}
4455
4456inline_size int
4457infy_newfd (void)
4458{
4459#if defined IN_CLOEXEC && defined IN_NONBLOCK
4460 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4461 if (fd >= 0)
4462 return fd;
4463#endif
4464 return inotify_init ();
4465}
4466
4467inline_size void
4468infy_init (EV_P)
4469{
4470 if (fs_fd != -2)
4471 return;
4472
4473 fs_fd = -1;
4474
4475 ev_check_2625 (EV_A);
4476
4477 fs_fd = infy_newfd ();
4478
4479 if (fs_fd >= 0)
4480 {
4481 fd_intern (fs_fd);
4482 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4483 ev_set_priority (&fs_w, EV_MAXPRI);
4484 ev_io_start (EV_A_ &fs_w);
4485 ev_unref (EV_A);
4486 }
4487}
4488
4489inline_size void
4490infy_fork (EV_P)
4491{
4492 int slot;
4493
4494 if (fs_fd < 0)
4495 return;
4496
4497 ev_ref (EV_A);
4498 ev_io_stop (EV_A_ &fs_w);
4499 close (fs_fd);
4500 fs_fd = infy_newfd ();
4501
4502 if (fs_fd >= 0)
4503 {
4504 fd_intern (fs_fd);
4505 ev_io_set (&fs_w, fs_fd, EV_READ);
4506 ev_io_start (EV_A_ &fs_w);
4507 ev_unref (EV_A);
4508 }
4509
4510 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4511 {
4512 WL w_ = fs_hash [slot].head;
4513 fs_hash [slot].head = 0;
4514
4515 while (w_)
4516 {
4517 ev_stat *w = (ev_stat *)w_;
4518 w_ = w_->next; /* lets us add this watcher */
4519
4520 w->wd = -1;
4521
4522 if (fs_fd >= 0)
4523 infy_add (EV_A_ w); /* re-add, no matter what */
4524 else
4525 {
4526 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4527 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4528 ev_timer_again (EV_A_ &w->timer);
4529 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4530 }
4531 }
4532 }
4533}
4534
4535#endif
4536
4537#ifdef _WIN32
4538# define EV_LSTAT(p,b) _stati64 (p, b)
4539#else
4540# define EV_LSTAT(p,b) lstat (p, b)
4541#endif
4542
4543void
4544ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4545{
4546 if (lstat (w->path, &w->attr) < 0)
4547 w->attr.st_nlink = 0;
4548 else if (!w->attr.st_nlink)
4549 w->attr.st_nlink = 1;
4550}
4551
4552noinline
4553static void
4554stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4555{
4556 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4557
4558 ev_statdata prev = w->attr;
4559 ev_stat_stat (EV_A_ w);
4560
4561 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4562 if (
4563 prev.st_dev != w->attr.st_dev
4564 || prev.st_ino != w->attr.st_ino
4565 || prev.st_mode != w->attr.st_mode
4566 || prev.st_nlink != w->attr.st_nlink
4567 || prev.st_uid != w->attr.st_uid
4568 || prev.st_gid != w->attr.st_gid
4569 || prev.st_rdev != w->attr.st_rdev
4570 || prev.st_size != w->attr.st_size
4571 || prev.st_atime != w->attr.st_atime
4572 || prev.st_mtime != w->attr.st_mtime
4573 || prev.st_ctime != w->attr.st_ctime
4574 ) {
4575 /* we only update w->prev on actual differences */
4576 /* in case we test more often than invoke the callback, */
4577 /* to ensure that prev is always different to attr */
4578 w->prev = prev;
4579
4580 #if EV_USE_INOTIFY
4581 if (fs_fd >= 0)
4582 {
4583 infy_del (EV_A_ w);
4584 infy_add (EV_A_ w);
4585 ev_stat_stat (EV_A_ w); /* avoid race... */
4586 }
4587 #endif
4588
4589 ev_feed_event (EV_A_ w, EV_STAT);
4590 }
4591}
4592
4593void
4594ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4595{
4596 if (expect_false (ev_is_active (w)))
4597 return;
4598
4599 ev_stat_stat (EV_A_ w);
4600
4601 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4602 w->interval = MIN_STAT_INTERVAL;
4603
4604 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4605 ev_set_priority (&w->timer, ev_priority (w));
4606
4607#if EV_USE_INOTIFY
4608 infy_init (EV_A);
4609
4610 if (fs_fd >= 0)
4611 infy_add (EV_A_ w);
4612 else
4613#endif
4614 {
4615 ev_timer_again (EV_A_ &w->timer);
4616 ev_unref (EV_A);
4617 }
4618
1448 ev_start (EV_A_ (W)w, 1); 4619 ev_start (EV_A_ (W)w, 1);
1449 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1450}
1451 4620
4621 EV_FREQUENT_CHECK;
4622}
4623
1452void 4624void
1453ev_child_stop (EV_P_ struct ev_child *w) 4625ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
1454{ 4626{
1455 ev_clear_pending (EV_A_ (W)w); 4627 clear_pending (EV_A_ (W)w);
1456 if (ev_is_active (w)) 4628 if (expect_false (!ev_is_active (w)))
1457 return; 4629 return;
1458 4630
1459 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4631 EV_FREQUENT_CHECK;
4632
4633#if EV_USE_INOTIFY
4634 infy_del (EV_A_ w);
4635#endif
4636
4637 if (ev_is_active (&w->timer))
4638 {
4639 ev_ref (EV_A);
4640 ev_timer_stop (EV_A_ &w->timer);
4641 }
4642
1460 ev_stop (EV_A_ (W)w); 4643 ev_stop (EV_A_ (W)w);
4644
4645 EV_FREQUENT_CHECK;
1461} 4646}
4647#endif
4648
4649#if EV_IDLE_ENABLE
4650void
4651ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4652{
4653 if (expect_false (ev_is_active (w)))
4654 return;
4655
4656 pri_adjust (EV_A_ (W)w);
4657
4658 EV_FREQUENT_CHECK;
4659
4660 {
4661 int active = ++idlecnt [ABSPRI (w)];
4662
4663 ++idleall;
4664 ev_start (EV_A_ (W)w, active);
4665
4666 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4667 idles [ABSPRI (w)][active - 1] = w;
4668 }
4669
4670 EV_FREQUENT_CHECK;
4671}
4672
4673void
4674ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4675{
4676 clear_pending (EV_A_ (W)w);
4677 if (expect_false (!ev_is_active (w)))
4678 return;
4679
4680 EV_FREQUENT_CHECK;
4681
4682 {
4683 int active = ev_active (w);
4684
4685 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4686 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4687
4688 ev_stop (EV_A_ (W)w);
4689 --idleall;
4690 }
4691
4692 EV_FREQUENT_CHECK;
4693}
4694#endif
4695
4696#if EV_PREPARE_ENABLE
4697void
4698ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4699{
4700 if (expect_false (ev_is_active (w)))
4701 return;
4702
4703 EV_FREQUENT_CHECK;
4704
4705 ev_start (EV_A_ (W)w, ++preparecnt);
4706 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4707 prepares [preparecnt - 1] = w;
4708
4709 EV_FREQUENT_CHECK;
4710}
4711
4712void
4713ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4714{
4715 clear_pending (EV_A_ (W)w);
4716 if (expect_false (!ev_is_active (w)))
4717 return;
4718
4719 EV_FREQUENT_CHECK;
4720
4721 {
4722 int active = ev_active (w);
4723
4724 prepares [active - 1] = prepares [--preparecnt];
4725 ev_active (prepares [active - 1]) = active;
4726 }
4727
4728 ev_stop (EV_A_ (W)w);
4729
4730 EV_FREQUENT_CHECK;
4731}
4732#endif
4733
4734#if EV_CHECK_ENABLE
4735void
4736ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4737{
4738 if (expect_false (ev_is_active (w)))
4739 return;
4740
4741 EV_FREQUENT_CHECK;
4742
4743 ev_start (EV_A_ (W)w, ++checkcnt);
4744 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4745 checks [checkcnt - 1] = w;
4746
4747 EV_FREQUENT_CHECK;
4748}
4749
4750void
4751ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4752{
4753 clear_pending (EV_A_ (W)w);
4754 if (expect_false (!ev_is_active (w)))
4755 return;
4756
4757 EV_FREQUENT_CHECK;
4758
4759 {
4760 int active = ev_active (w);
4761
4762 checks [active - 1] = checks [--checkcnt];
4763 ev_active (checks [active - 1]) = active;
4764 }
4765
4766 ev_stop (EV_A_ (W)w);
4767
4768 EV_FREQUENT_CHECK;
4769}
4770#endif
4771
4772#if EV_EMBED_ENABLE
4773noinline
4774void
4775ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4776{
4777 ev_run (w->other, EVRUN_NOWAIT);
4778}
4779
4780static void
4781embed_io_cb (EV_P_ ev_io *io, int revents)
4782{
4783 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4784
4785 if (ev_cb (w))
4786 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4787 else
4788 ev_run (w->other, EVRUN_NOWAIT);
4789}
4790
4791static void
4792embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4793{
4794 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4795
4796 {
4797 EV_P = w->other;
4798
4799 while (fdchangecnt)
4800 {
4801 fd_reify (EV_A);
4802 ev_run (EV_A_ EVRUN_NOWAIT);
4803 }
4804 }
4805}
4806
4807static void
4808embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4809{
4810 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4811
4812 ev_embed_stop (EV_A_ w);
4813
4814 {
4815 EV_P = w->other;
4816
4817 ev_loop_fork (EV_A);
4818 ev_run (EV_A_ EVRUN_NOWAIT);
4819 }
4820
4821 ev_embed_start (EV_A_ w);
4822}
4823
4824#if 0
4825static void
4826embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4827{
4828 ev_idle_stop (EV_A_ idle);
4829}
4830#endif
4831
4832void
4833ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4834{
4835 if (expect_false (ev_is_active (w)))
4836 return;
4837
4838 {
4839 EV_P = w->other;
4840 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4841 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4842 }
4843
4844 EV_FREQUENT_CHECK;
4845
4846 ev_set_priority (&w->io, ev_priority (w));
4847 ev_io_start (EV_A_ &w->io);
4848
4849 ev_prepare_init (&w->prepare, embed_prepare_cb);
4850 ev_set_priority (&w->prepare, EV_MINPRI);
4851 ev_prepare_start (EV_A_ &w->prepare);
4852
4853 ev_fork_init (&w->fork, embed_fork_cb);
4854 ev_fork_start (EV_A_ &w->fork);
4855
4856 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4857
4858 ev_start (EV_A_ (W)w, 1);
4859
4860 EV_FREQUENT_CHECK;
4861}
4862
4863void
4864ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4865{
4866 clear_pending (EV_A_ (W)w);
4867 if (expect_false (!ev_is_active (w)))
4868 return;
4869
4870 EV_FREQUENT_CHECK;
4871
4872 ev_io_stop (EV_A_ &w->io);
4873 ev_prepare_stop (EV_A_ &w->prepare);
4874 ev_fork_stop (EV_A_ &w->fork);
4875
4876 ev_stop (EV_A_ (W)w);
4877
4878 EV_FREQUENT_CHECK;
4879}
4880#endif
4881
4882#if EV_FORK_ENABLE
4883void
4884ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4885{
4886 if (expect_false (ev_is_active (w)))
4887 return;
4888
4889 EV_FREQUENT_CHECK;
4890
4891 ev_start (EV_A_ (W)w, ++forkcnt);
4892 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
4893 forks [forkcnt - 1] = w;
4894
4895 EV_FREQUENT_CHECK;
4896}
4897
4898void
4899ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
4900{
4901 clear_pending (EV_A_ (W)w);
4902 if (expect_false (!ev_is_active (w)))
4903 return;
4904
4905 EV_FREQUENT_CHECK;
4906
4907 {
4908 int active = ev_active (w);
4909
4910 forks [active - 1] = forks [--forkcnt];
4911 ev_active (forks [active - 1]) = active;
4912 }
4913
4914 ev_stop (EV_A_ (W)w);
4915
4916 EV_FREQUENT_CHECK;
4917}
4918#endif
4919
4920#if EV_CLEANUP_ENABLE
4921void
4922ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4923{
4924 if (expect_false (ev_is_active (w)))
4925 return;
4926
4927 EV_FREQUENT_CHECK;
4928
4929 ev_start (EV_A_ (W)w, ++cleanupcnt);
4930 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
4931 cleanups [cleanupcnt - 1] = w;
4932
4933 /* cleanup watchers should never keep a refcount on the loop */
4934 ev_unref (EV_A);
4935 EV_FREQUENT_CHECK;
4936}
4937
4938void
4939ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4940{
4941 clear_pending (EV_A_ (W)w);
4942 if (expect_false (!ev_is_active (w)))
4943 return;
4944
4945 EV_FREQUENT_CHECK;
4946 ev_ref (EV_A);
4947
4948 {
4949 int active = ev_active (w);
4950
4951 cleanups [active - 1] = cleanups [--cleanupcnt];
4952 ev_active (cleanups [active - 1]) = active;
4953 }
4954
4955 ev_stop (EV_A_ (W)w);
4956
4957 EV_FREQUENT_CHECK;
4958}
4959#endif
4960
4961#if EV_ASYNC_ENABLE
4962void
4963ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4964{
4965 if (expect_false (ev_is_active (w)))
4966 return;
4967
4968 w->sent = 0;
4969
4970 evpipe_init (EV_A);
4971
4972 EV_FREQUENT_CHECK;
4973
4974 ev_start (EV_A_ (W)w, ++asynccnt);
4975 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4976 asyncs [asynccnt - 1] = w;
4977
4978 EV_FREQUENT_CHECK;
4979}
4980
4981void
4982ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4983{
4984 clear_pending (EV_A_ (W)w);
4985 if (expect_false (!ev_is_active (w)))
4986 return;
4987
4988 EV_FREQUENT_CHECK;
4989
4990 {
4991 int active = ev_active (w);
4992
4993 asyncs [active - 1] = asyncs [--asynccnt];
4994 ev_active (asyncs [active - 1]) = active;
4995 }
4996
4997 ev_stop (EV_A_ (W)w);
4998
4999 EV_FREQUENT_CHECK;
5000}
5001
5002void
5003ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5004{
5005 w->sent = 1;
5006 evpipe_write (EV_A_ &async_pending);
5007}
5008#endif
1462 5009
1463/*****************************************************************************/ 5010/*****************************************************************************/
1464 5011
1465struct ev_once 5012struct ev_once
1466{ 5013{
1467 struct ev_io io; 5014 ev_io io;
1468 struct ev_timer to; 5015 ev_timer to;
1469 void (*cb)(int revents, void *arg); 5016 void (*cb)(int revents, void *arg);
1470 void *arg; 5017 void *arg;
1471}; 5018};
1472 5019
1473static void 5020static void
1474once_cb (EV_P_ struct ev_once *once, int revents) 5021once_cb (EV_P_ struct ev_once *once, int revents)
1475{ 5022{
1476 void (*cb)(int revents, void *arg) = once->cb; 5023 void (*cb)(int revents, void *arg) = once->cb;
1477 void *arg = once->arg; 5024 void *arg = once->arg;
1478 5025
1479 ev_io_stop (EV_A_ &once->io); 5026 ev_io_stop (EV_A_ &once->io);
1480 ev_timer_stop (EV_A_ &once->to); 5027 ev_timer_stop (EV_A_ &once->to);
1481 ev_free (once); 5028 ev_free (once);
1482 5029
1483 cb (revents, arg); 5030 cb (revents, arg);
1484} 5031}
1485 5032
1486static void 5033static void
1487once_cb_io (EV_P_ struct ev_io *w, int revents) 5034once_cb_io (EV_P_ ev_io *w, int revents)
1488{ 5035{
1489 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5036 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5037
5038 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1490} 5039}
1491 5040
1492static void 5041static void
1493once_cb_to (EV_P_ struct ev_timer *w, int revents) 5042once_cb_to (EV_P_ ev_timer *w, int revents)
1494{ 5043{
1495 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5044 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1496}
1497 5045
5046 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5047}
5048
1498void 5049void
1499ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5050ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
1500{ 5051{
1501 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5052 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1502 5053
1503 if (!once)
1504 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1505 else
1506 {
1507 once->cb = cb; 5054 once->cb = cb;
1508 once->arg = arg; 5055 once->arg = arg;
1509 5056
1510 ev_watcher_init (&once->io, once_cb_io); 5057 ev_init (&once->io, once_cb_io);
1511 if (fd >= 0) 5058 if (fd >= 0)
5059 {
5060 ev_io_set (&once->io, fd, events);
5061 ev_io_start (EV_A_ &once->io);
5062 }
5063
5064 ev_init (&once->to, once_cb_to);
5065 if (timeout >= 0.)
5066 {
5067 ev_timer_set (&once->to, timeout, 0.);
5068 ev_timer_start (EV_A_ &once->to);
5069 }
5070}
5071
5072/*****************************************************************************/
5073
5074#if EV_WALK_ENABLE
5075ecb_cold
5076void
5077ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5078{
5079 int i, j;
5080 ev_watcher_list *wl, *wn;
5081
5082 if (types & (EV_IO | EV_EMBED))
5083 for (i = 0; i < anfdmax; ++i)
5084 for (wl = anfds [i].head; wl; )
1512 { 5085 {
1513 ev_io_set (&once->io, fd, events); 5086 wn = wl->next;
1514 ev_io_start (EV_A_ &once->io); 5087
5088#if EV_EMBED_ENABLE
5089 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5090 {
5091 if (types & EV_EMBED)
5092 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5093 }
5094 else
5095#endif
5096#if EV_USE_INOTIFY
5097 if (ev_cb ((ev_io *)wl) == infy_cb)
5098 ;
5099 else
5100#endif
5101 if ((ev_io *)wl != &pipe_w)
5102 if (types & EV_IO)
5103 cb (EV_A_ EV_IO, wl);
5104
5105 wl = wn;
1515 } 5106 }
1516 5107
1517 ev_watcher_init (&once->to, once_cb_to); 5108 if (types & (EV_TIMER | EV_STAT))
1518 if (timeout >= 0.) 5109 for (i = timercnt + HEAP0; i-- > HEAP0; )
5110#if EV_STAT_ENABLE
5111 /*TODO: timer is not always active*/
5112 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1519 { 5113 {
1520 ev_timer_set (&once->to, timeout, 0.); 5114 if (types & EV_STAT)
1521 ev_timer_start (EV_A_ &once->to); 5115 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1522 } 5116 }
1523 } 5117 else
1524} 5118#endif
5119 if (types & EV_TIMER)
5120 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1525 5121
5122#if EV_PERIODIC_ENABLE
5123 if (types & EV_PERIODIC)
5124 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5125 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5126#endif
5127
5128#if EV_IDLE_ENABLE
5129 if (types & EV_IDLE)
5130 for (j = NUMPRI; j--; )
5131 for (i = idlecnt [j]; i--; )
5132 cb (EV_A_ EV_IDLE, idles [j][i]);
5133#endif
5134
5135#if EV_FORK_ENABLE
5136 if (types & EV_FORK)
5137 for (i = forkcnt; i--; )
5138 if (ev_cb (forks [i]) != embed_fork_cb)
5139 cb (EV_A_ EV_FORK, forks [i]);
5140#endif
5141
5142#if EV_ASYNC_ENABLE
5143 if (types & EV_ASYNC)
5144 for (i = asynccnt; i--; )
5145 cb (EV_A_ EV_ASYNC, asyncs [i]);
5146#endif
5147
5148#if EV_PREPARE_ENABLE
5149 if (types & EV_PREPARE)
5150 for (i = preparecnt; i--; )
5151# if EV_EMBED_ENABLE
5152 if (ev_cb (prepares [i]) != embed_prepare_cb)
5153# endif
5154 cb (EV_A_ EV_PREPARE, prepares [i]);
5155#endif
5156
5157#if EV_CHECK_ENABLE
5158 if (types & EV_CHECK)
5159 for (i = checkcnt; i--; )
5160 cb (EV_A_ EV_CHECK, checks [i]);
5161#endif
5162
5163#if EV_SIGNAL_ENABLE
5164 if (types & EV_SIGNAL)
5165 for (i = 0; i < EV_NSIG - 1; ++i)
5166 for (wl = signals [i].head; wl; )
5167 {
5168 wn = wl->next;
5169 cb (EV_A_ EV_SIGNAL, wl);
5170 wl = wn;
5171 }
5172#endif
5173
5174#if EV_CHILD_ENABLE
5175 if (types & EV_CHILD)
5176 for (i = (EV_PID_HASHSIZE); i--; )
5177 for (wl = childs [i]; wl; )
5178 {
5179 wn = wl->next;
5180 cb (EV_A_ EV_CHILD, wl);
5181 wl = wn;
5182 }
5183#endif
5184/* EV_STAT 0x00001000 /* stat data changed */
5185/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5186}
5187#endif
5188
5189#if EV_MULTIPLICITY
5190 #include "ev_wrap.h"
5191#endif
5192

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines