ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.74 by root, Tue Nov 6 16:51:20 2007 UTC vs.
Revision 1.85 by root, Sat Nov 10 03:13:50 2007 UTC

126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 130
131#ifdef EV_H
132# include EV_H
133#else
131#include "ev.h" 134# include "ev.h"
135#endif
132 136
133#if __GNUC__ >= 3 137#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 139# define inline inline
136#else 140#else
215 int events; 219 int events;
216} ANPENDING; 220} ANPENDING;
217 221
218#if EV_MULTIPLICITY 222#if EV_MULTIPLICITY
219 223
220struct ev_loop 224 struct ev_loop
221{ 225 {
222# define VAR(name,decl) decl; 226 #define VAR(name,decl) decl;
223# include "ev_vars.h" 227 #include "ev_vars.h"
224};
225# undef VAR 228 #undef VAR
229 };
226# include "ev_wrap.h" 230 #include "ev_wrap.h"
231
232 struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop;
227 234
228#else 235#else
229 236
230# define VAR(name,decl) static decl; 237 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 238 #include "ev_vars.h"
232# undef VAR 239 #undef VAR
240
241 static int default_loop;
233 242
234#endif 243#endif
235 244
236/*****************************************************************************/ 245/*****************************************************************************/
237 246
262#endif 271#endif
263 272
264 return ev_time (); 273 return ev_time ();
265} 274}
266 275
276#if EV_MULTIPLICITY
267ev_tstamp 277ev_tstamp
268ev_now (EV_P) 278ev_now (EV_P)
269{ 279{
270 return rt_now; 280 return ev_rt_now;
271} 281}
282#endif
272 283
273#define array_roundsize(type,n) ((n) | 4 & ~3) 284#define array_roundsize(type,n) ((n) | 4 & ~3)
274 285
275#define array_needsize(type,base,cur,cnt,init) \ 286#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 287 if (expect_false ((cnt) > cur)) \
316 327
317 ++base; 328 ++base;
318 } 329 }
319} 330}
320 331
321static void 332void
322event (EV_P_ W w, int events) 333ev_feed_event (EV_P_ void *w, int revents)
323{ 334{
335 W w_ = (W)w;
336
324 if (w->pending) 337 if (w_->pending)
325 { 338 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 339 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
327 return; 340 return;
328 } 341 }
329 342
330 w->pending = ++pendingcnt [ABSPRI (w)]; 343 w_->pending = ++pendingcnt [ABSPRI (w_)];
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 344 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w; 345 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
333 pendings [ABSPRI (w)][w->pending - 1].events = events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
334} 347}
335 348
336static void 349static void
337queue_events (EV_P_ W *events, int eventcnt, int type) 350queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 351{
339 int i; 352 int i;
340 353
341 for (i = 0; i < eventcnt; ++i) 354 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 355 ev_feed_event (EV_A_ events [i], type);
343} 356}
344 357
345static void 358inline void
346fd_event (EV_P_ int fd, int events) 359fd_event (EV_P_ int fd, int revents)
347{ 360{
348 ANFD *anfd = anfds + fd; 361 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 362 struct ev_io *w;
350 363
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 364 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
352 { 365 {
353 int ev = w->events & events; 366 int ev = w->events & revents;
354 367
355 if (ev) 368 if (ev)
356 event (EV_A_ (W)w, ev); 369 ev_feed_event (EV_A_ (W)w, ev);
357 } 370 }
371}
372
373void
374ev_feed_fd_event (EV_P_ int fd, int revents)
375{
376 fd_event (EV_A_ fd, revents);
358} 377}
359 378
360/*****************************************************************************/ 379/*****************************************************************************/
361 380
362static void 381static void
403 struct ev_io *w; 422 struct ev_io *w;
404 423
405 while ((w = (struct ev_io *)anfds [fd].head)) 424 while ((w = (struct ev_io *)anfds [fd].head))
406 { 425 {
407 ev_io_stop (EV_A_ w); 426 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 427 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 428 }
410} 429}
411 430
412static int 431static int
413fd_valid (int fd) 432fd_valid (int fd)
501 520
502 heap [k] = w; 521 heap [k] = w;
503 ((W)heap [k])->active = k + 1; 522 ((W)heap [k])->active = k + 1;
504} 523}
505 524
525inline void
526adjustheap (WT *heap, int N, int k, ev_tstamp at)
527{
528 ev_tstamp old_at = heap [k]->at;
529 heap [k]->at = at;
530
531 if (old_at < at)
532 downheap (heap, N, k);
533 else
534 upheap (heap, k);
535}
536
506/*****************************************************************************/ 537/*****************************************************************************/
507 538
508typedef struct 539typedef struct
509{ 540{
510 WL head; 541 WL head;
541 572
542 if (!gotsig) 573 if (!gotsig)
543 { 574 {
544 int old_errno = errno; 575 int old_errno = errno;
545 gotsig = 1; 576 gotsig = 1;
577#ifdef WIN32
578 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
579#else
546 write (sigpipe [1], &signum, 1); 580 write (sigpipe [1], &signum, 1);
581#endif
547 errno = old_errno; 582 errno = old_errno;
548 } 583 }
549} 584}
550 585
586void
587ev_feed_signal_event (EV_P_ int signum)
588{
589 WL w;
590
591#if EV_MULTIPLICITY
592 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
593#endif
594
595 --signum;
596
597 if (signum < 0 || signum >= signalmax)
598 return;
599
600 signals [signum].gotsig = 0;
601
602 for (w = signals [signum].head; w; w = w->next)
603 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
604}
605
551static void 606static void
552sigcb (EV_P_ struct ev_io *iow, int revents) 607sigcb (EV_P_ struct ev_io *iow, int revents)
553{ 608{
554 WL w;
555 int signum; 609 int signum;
556 610
611#ifdef WIN32
612 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
613#else
557 read (sigpipe [0], &revents, 1); 614 read (sigpipe [0], &revents, 1);
615#endif
558 gotsig = 0; 616 gotsig = 0;
559 617
560 for (signum = signalmax; signum--; ) 618 for (signum = signalmax; signum--; )
561 if (signals [signum].gotsig) 619 if (signals [signum].gotsig)
562 { 620 ev_feed_signal_event (EV_A_ signum + 1);
563 signals [signum].gotsig = 0;
564
565 for (w = signals [signum].head; w; w = w->next)
566 event (EV_A_ (W)w, EV_SIGNAL);
567 }
568} 621}
569 622
570static void 623static void
571siginit (EV_P) 624siginit (EV_P)
572{ 625{
605 if (w->pid == pid || !w->pid) 658 if (w->pid == pid || !w->pid)
606 { 659 {
607 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 660 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
608 w->rpid = pid; 661 w->rpid = pid;
609 w->rstatus = status; 662 w->rstatus = status;
610 event (EV_A_ (W)w, EV_CHILD); 663 ev_feed_event (EV_A_ (W)w, EV_CHILD);
611 } 664 }
612} 665}
613 666
614static void 667static void
615childcb (EV_P_ struct ev_signal *sw, int revents) 668childcb (EV_P_ struct ev_signal *sw, int revents)
617 int pid, status; 670 int pid, status;
618 671
619 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 672 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
620 { 673 {
621 /* make sure we are called again until all childs have been reaped */ 674 /* make sure we are called again until all childs have been reaped */
622 event (EV_A_ (W)sw, EV_SIGNAL); 675 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
623 676
624 child_reap (EV_A_ sw, pid, pid, status); 677 child_reap (EV_A_ sw, pid, pid, status);
625 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 678 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
626 } 679 }
627} 680}
684 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 737 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
685 have_monotonic = 1; 738 have_monotonic = 1;
686 } 739 }
687#endif 740#endif
688 741
689 rt_now = ev_time (); 742 ev_rt_now = ev_time ();
690 mn_now = get_clock (); 743 mn_now = get_clock ();
691 now_floor = mn_now; 744 now_floor = mn_now;
692 rtmn_diff = rt_now - mn_now; 745 rtmn_diff = ev_rt_now - mn_now;
693 746
694 if (methods == EVMETHOD_AUTO) 747 if (methods == EVMETHOD_AUTO)
695 if (!enable_secure () && getenv ("LIBEV_METHODS")) 748 if (!enable_secure () && getenv ("LIBEV_METHODS"))
696 methods = atoi (getenv ("LIBEV_METHODS")); 749 methods = atoi (getenv ("LIBEV_METHODS"));
697 else 750 else
712#endif 765#endif
713#if EV_USE_SELECT 766#if EV_USE_SELECT
714 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 767 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
715#endif 768#endif
716 769
717 ev_watcher_init (&sigev, sigcb); 770 ev_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI); 771 ev_set_priority (&sigev, EV_MAXPRI);
719 } 772 }
720} 773}
721 774
722void 775void
812} 865}
813 866
814#endif 867#endif
815 868
816#if EV_MULTIPLICITY 869#if EV_MULTIPLICITY
817struct ev_loop default_loop_struct;
818static struct ev_loop *default_loop;
819
820struct ev_loop * 870struct ev_loop *
821#else 871#else
822static int default_loop;
823
824int 872int
825#endif 873#endif
826ev_default_loop (int methods) 874ev_default_loop (int methods)
827{ 875{
828 if (sigpipe [0] == sigpipe [1]) 876 if (sigpipe [0] == sigpipe [1])
889 postfork = 1; 937 postfork = 1;
890} 938}
891 939
892/*****************************************************************************/ 940/*****************************************************************************/
893 941
942static int
943any_pending (EV_P)
944{
945 int pri;
946
947 for (pri = NUMPRI; pri--; )
948 if (pendingcnt [pri])
949 return 1;
950
951 return 0;
952}
953
894static void 954static void
895call_pending (EV_P) 955call_pending (EV_P)
896{ 956{
897 int pri; 957 int pri;
898 958
902 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 962 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
903 963
904 if (p->w) 964 if (p->w)
905 { 965 {
906 p->w->pending = 0; 966 p->w->pending = 0;
907 p->w->cb (EV_A_ p->w, p->events); 967 EV_CB_INVOKE (p->w, p->events);
908 } 968 }
909 } 969 }
910} 970}
911 971
912static void 972static void
926 downheap ((WT *)timers, timercnt, 0); 986 downheap ((WT *)timers, timercnt, 0);
927 } 987 }
928 else 988 else
929 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 989 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
930 990
931 event (EV_A_ (W)w, EV_TIMEOUT); 991 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
932 } 992 }
933} 993}
934 994
935static void 995static void
936periodics_reify (EV_P) 996periodics_reify (EV_P)
937{ 997{
938 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 998 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
939 { 999 {
940 struct ev_periodic *w = periodics [0]; 1000 struct ev_periodic *w = periodics [0];
941 1001
942 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1002 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
943 1003
944 /* first reschedule or stop timer */ 1004 /* first reschedule or stop timer */
945 if (w->interval) 1005 if (w->reschedule_cb)
946 { 1006 {
1007 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1008
1009 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1010 downheap ((WT *)periodics, periodiccnt, 0);
1011 }
1012 else if (w->interval)
1013 {
947 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1014 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
948 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1015 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
949 downheap ((WT *)periodics, periodiccnt, 0); 1016 downheap ((WT *)periodics, periodiccnt, 0);
950 } 1017 }
951 else 1018 else
952 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1019 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
953 1020
954 event (EV_A_ (W)w, EV_PERIODIC); 1021 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
955 } 1022 }
956} 1023}
957 1024
958static void 1025static void
959periodics_reschedule (EV_P) 1026periodics_reschedule (EV_P)
963 /* adjust periodics after time jump */ 1030 /* adjust periodics after time jump */
964 for (i = 0; i < periodiccnt; ++i) 1031 for (i = 0; i < periodiccnt; ++i)
965 { 1032 {
966 struct ev_periodic *w = periodics [i]; 1033 struct ev_periodic *w = periodics [i];
967 1034
1035 if (w->reschedule_cb)
1036 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
968 if (w->interval) 1037 else if (w->interval)
969 {
970 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1038 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
971
972 if (fabs (diff) >= 1e-4)
973 {
974 ev_periodic_stop (EV_A_ w);
975 ev_periodic_start (EV_A_ w);
976
977 i = 0; /* restart loop, inefficient, but time jumps should be rare */
978 }
979 }
980 } 1039 }
1040
1041 /* now rebuild the heap */
1042 for (i = periodiccnt >> 1; i--; )
1043 downheap ((WT *)periodics, periodiccnt, i);
981} 1044}
982 1045
983inline int 1046inline int
984time_update_monotonic (EV_P) 1047time_update_monotonic (EV_P)
985{ 1048{
986 mn_now = get_clock (); 1049 mn_now = get_clock ();
987 1050
988 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1051 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
989 { 1052 {
990 rt_now = rtmn_diff + mn_now; 1053 ev_rt_now = rtmn_diff + mn_now;
991 return 0; 1054 return 0;
992 } 1055 }
993 else 1056 else
994 { 1057 {
995 now_floor = mn_now; 1058 now_floor = mn_now;
996 rt_now = ev_time (); 1059 ev_rt_now = ev_time ();
997 return 1; 1060 return 1;
998 } 1061 }
999} 1062}
1000 1063
1001static void 1064static void
1010 { 1073 {
1011 ev_tstamp odiff = rtmn_diff; 1074 ev_tstamp odiff = rtmn_diff;
1012 1075
1013 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1076 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1014 { 1077 {
1015 rtmn_diff = rt_now - mn_now; 1078 rtmn_diff = ev_rt_now - mn_now;
1016 1079
1017 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1080 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1018 return; /* all is well */ 1081 return; /* all is well */
1019 1082
1020 rt_now = ev_time (); 1083 ev_rt_now = ev_time ();
1021 mn_now = get_clock (); 1084 mn_now = get_clock ();
1022 now_floor = mn_now; 1085 now_floor = mn_now;
1023 } 1086 }
1024 1087
1025 periodics_reschedule (EV_A); 1088 periodics_reschedule (EV_A);
1028 } 1091 }
1029 } 1092 }
1030 else 1093 else
1031#endif 1094#endif
1032 { 1095 {
1033 rt_now = ev_time (); 1096 ev_rt_now = ev_time ();
1034 1097
1035 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1098 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1036 { 1099 {
1037 periodics_reschedule (EV_A); 1100 periodics_reschedule (EV_A);
1038 1101
1039 /* adjust timers. this is easy, as the offset is the same for all */ 1102 /* adjust timers. this is easy, as the offset is the same for all */
1040 for (i = 0; i < timercnt; ++i) 1103 for (i = 0; i < timercnt; ++i)
1041 ((WT)timers [i])->at += rt_now - mn_now; 1104 ((WT)timers [i])->at += ev_rt_now - mn_now;
1042 } 1105 }
1043 1106
1044 mn_now = rt_now; 1107 mn_now = ev_rt_now;
1045 } 1108 }
1046} 1109}
1047 1110
1048void 1111void
1049ev_ref (EV_P) 1112ev_ref (EV_P)
1081 /* update fd-related kernel structures */ 1144 /* update fd-related kernel structures */
1082 fd_reify (EV_A); 1145 fd_reify (EV_A);
1083 1146
1084 /* calculate blocking time */ 1147 /* calculate blocking time */
1085 1148
1086 /* we only need this for !monotonic clockor timers, but as we basically 1149 /* we only need this for !monotonic clock or timers, but as we basically
1087 always have timers, we just calculate it always */ 1150 always have timers, we just calculate it always */
1088#if EV_USE_MONOTONIC 1151#if EV_USE_MONOTONIC
1089 if (expect_true (have_monotonic)) 1152 if (expect_true (have_monotonic))
1090 time_update_monotonic (EV_A); 1153 time_update_monotonic (EV_A);
1091 else 1154 else
1092#endif 1155#endif
1093 { 1156 {
1094 rt_now = ev_time (); 1157 ev_rt_now = ev_time ();
1095 mn_now = rt_now; 1158 mn_now = ev_rt_now;
1096 } 1159 }
1097 1160
1098 if (flags & EVLOOP_NONBLOCK || idlecnt) 1161 if (flags & EVLOOP_NONBLOCK || idlecnt)
1099 block = 0.; 1162 block = 0.;
1100 else 1163 else
1107 if (block > to) block = to; 1170 if (block > to) block = to;
1108 } 1171 }
1109 1172
1110 if (periodiccnt) 1173 if (periodiccnt)
1111 { 1174 {
1112 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1175 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1113 if (block > to) block = to; 1176 if (block > to) block = to;
1114 } 1177 }
1115 1178
1116 if (block < 0.) block = 0.; 1179 if (block < 0.) block = 0.;
1117 } 1180 }
1118 1181
1119 method_poll (EV_A_ block); 1182 method_poll (EV_A_ block);
1120 1183
1121 /* update rt_now, do magic */ 1184 /* update ev_rt_now, do magic */
1122 time_update (EV_A); 1185 time_update (EV_A);
1123 1186
1124 /* queue pending timers and reschedule them */ 1187 /* queue pending timers and reschedule them */
1125 timers_reify (EV_A); /* relative timers called last */ 1188 timers_reify (EV_A); /* relative timers called last */
1126 periodics_reify (EV_A); /* absolute timers called first */ 1189 periodics_reify (EV_A); /* absolute timers called first */
1127 1190
1128 /* queue idle watchers unless io or timers are pending */ 1191 /* queue idle watchers unless io or timers are pending */
1129 if (!pendingcnt) 1192 if (idlecnt && !any_pending (EV_A))
1130 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1193 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1131 1194
1132 /* queue check watchers, to be executed first */ 1195 /* queue check watchers, to be executed first */
1133 if (checkcnt) 1196 if (checkcnt)
1134 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1197 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1272ev_timer_again (EV_P_ struct ev_timer *w) 1335ev_timer_again (EV_P_ struct ev_timer *w)
1273{ 1336{
1274 if (ev_is_active (w)) 1337 if (ev_is_active (w))
1275 { 1338 {
1276 if (w->repeat) 1339 if (w->repeat)
1277 {
1278 ((WT)w)->at = mn_now + w->repeat;
1279 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1340 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1280 }
1281 else 1341 else
1282 ev_timer_stop (EV_A_ w); 1342 ev_timer_stop (EV_A_ w);
1283 } 1343 }
1284 else if (w->repeat) 1344 else if (w->repeat)
1285 ev_timer_start (EV_A_ w); 1345 ev_timer_start (EV_A_ w);
1289ev_periodic_start (EV_P_ struct ev_periodic *w) 1349ev_periodic_start (EV_P_ struct ev_periodic *w)
1290{ 1350{
1291 if (ev_is_active (w)) 1351 if (ev_is_active (w))
1292 return; 1352 return;
1293 1353
1354 if (w->reschedule_cb)
1355 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1356 else if (w->interval)
1357 {
1294 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1358 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1295
1296 /* this formula differs from the one in periodic_reify because we do not always round up */ 1359 /* this formula differs from the one in periodic_reify because we do not always round up */
1297 if (w->interval)
1298 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1360 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1361 }
1299 1362
1300 ev_start (EV_A_ (W)w, ++periodiccnt); 1363 ev_start (EV_A_ (W)w, ++periodiccnt);
1301 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1364 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1302 periodics [periodiccnt - 1] = w; 1365 periodics [periodiccnt - 1] = w;
1303 upheap ((WT *)periodics, periodiccnt - 1); 1366 upheap ((WT *)periodics, periodiccnt - 1);
1319 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1382 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1320 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1383 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1321 } 1384 }
1322 1385
1323 ev_stop (EV_A_ (W)w); 1386 ev_stop (EV_A_ (W)w);
1387}
1388
1389void
1390ev_periodic_again (EV_P_ struct ev_periodic *w)
1391{
1392 /* TODO: use adjustheap and recalculation */
1393 ev_periodic_stop (EV_A_ w);
1394 ev_periodic_start (EV_A_ w);
1324} 1395}
1325 1396
1326void 1397void
1327ev_idle_start (EV_P_ struct ev_idle *w) 1398ev_idle_start (EV_P_ struct ev_idle *w)
1328{ 1399{
1505 else 1576 else
1506 { 1577 {
1507 once->cb = cb; 1578 once->cb = cb;
1508 once->arg = arg; 1579 once->arg = arg;
1509 1580
1510 ev_watcher_init (&once->io, once_cb_io); 1581 ev_init (&once->io, once_cb_io);
1511 if (fd >= 0) 1582 if (fd >= 0)
1512 { 1583 {
1513 ev_io_set (&once->io, fd, events); 1584 ev_io_set (&once->io, fd, events);
1514 ev_io_start (EV_A_ &once->io); 1585 ev_io_start (EV_A_ &once->io);
1515 } 1586 }
1516 1587
1517 ev_watcher_init (&once->to, once_cb_to); 1588 ev_init (&once->to, once_cb_to);
1518 if (timeout >= 0.) 1589 if (timeout >= 0.)
1519 { 1590 {
1520 ev_timer_set (&once->to, timeout, 0.); 1591 ev_timer_set (&once->to, timeout, 0.);
1521 ev_timer_start (EV_A_ &once->to); 1592 ev_timer_start (EV_A_ &once->to);
1522 } 1593 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines