ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.75 by root, Tue Nov 6 19:29:20 2007 UTC vs.
Revision 1.100 by root, Sun Nov 11 04:02:54 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 139
140#ifdef EV_H
141# include EV_H
142#else
131#include "ev.h" 143# include "ev.h"
144#endif
132 145
133#if __GNUC__ >= 3 146#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 148# define inline inline
136#else 149#else
148typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
150 163
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 165
166#ifdef WIN32
153#include "ev_win32.c" 167# include "ev_win32.c"
168#endif
154 169
155/*****************************************************************************/ 170/*****************************************************************************/
156 171
157static void (*syserr_cb)(const char *msg); 172static void (*syserr_cb)(const char *msg);
158 173
215 int events; 230 int events;
216} ANPENDING; 231} ANPENDING;
217 232
218#if EV_MULTIPLICITY 233#if EV_MULTIPLICITY
219 234
220struct ev_loop 235 struct ev_loop
221{ 236 {
237 ev_tstamp ev_rt_now;
238 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 239 #define VAR(name,decl) decl;
223# include "ev_vars.h" 240 #include "ev_vars.h"
224};
225# undef VAR 241 #undef VAR
242 };
226# include "ev_wrap.h" 243 #include "ev_wrap.h"
244
245 struct ev_loop default_loop_struct;
246 static struct ev_loop *default_loop;
227 247
228#else 248#else
229 249
250 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 251 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 252 #include "ev_vars.h"
232# undef VAR 253 #undef VAR
254
255 static int default_loop;
233 256
234#endif 257#endif
235 258
236/*****************************************************************************/ 259/*****************************************************************************/
237 260
238inline ev_tstamp 261ev_tstamp
239ev_time (void) 262ev_time (void)
240{ 263{
241#if EV_USE_REALTIME 264#if EV_USE_REALTIME
242 struct timespec ts; 265 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 266 clock_gettime (CLOCK_REALTIME, &ts);
262#endif 285#endif
263 286
264 return ev_time (); 287 return ev_time ();
265} 288}
266 289
290#if EV_MULTIPLICITY
267ev_tstamp 291ev_tstamp
268ev_now (EV_P) 292ev_now (EV_P)
269{ 293{
270 return rt_now; 294 return ev_rt_now;
271} 295}
296#endif
272 297
273#define array_roundsize(type,n) ((n) | 4 & ~3) 298#define array_roundsize(type,n) ((n) | 4 & ~3)
274 299
275#define array_needsize(type,base,cur,cnt,init) \ 300#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 301 if (expect_false ((cnt) > cur)) \
316 341
317 ++base; 342 ++base;
318 } 343 }
319} 344}
320 345
321static void 346void
322event (EV_P_ W w, int events) 347ev_feed_event (EV_P_ void *w, int revents)
323{ 348{
349 W w_ = (W)w;
350
324 if (w->pending) 351 if (w_->pending)
325 { 352 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
327 return; 354 return;
328 } 355 }
329 356
330 w->pending = ++pendingcnt [ABSPRI (w)]; 357 w_->pending = ++pendingcnt [ABSPRI (w_)];
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 358 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w; 359 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
333 pendings [ABSPRI (w)][w->pending - 1].events = events; 360 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
334} 361}
335 362
336static void 363static void
337queue_events (EV_P_ W *events, int eventcnt, int type) 364queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 365{
339 int i; 366 int i;
340 367
341 for (i = 0; i < eventcnt; ++i) 368 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 369 ev_feed_event (EV_A_ events [i], type);
343} 370}
344 371
345static void 372inline void
346fd_event (EV_P_ int fd, int events) 373fd_event (EV_P_ int fd, int revents)
347{ 374{
348 ANFD *anfd = anfds + fd; 375 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 376 struct ev_io *w;
350 377
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 378 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
352 { 379 {
353 int ev = w->events & events; 380 int ev = w->events & revents;
354 381
355 if (ev) 382 if (ev)
356 event (EV_A_ (W)w, ev); 383 ev_feed_event (EV_A_ (W)w, ev);
357 } 384 }
385}
386
387void
388ev_feed_fd_event (EV_P_ int fd, int revents)
389{
390 fd_event (EV_A_ fd, revents);
358} 391}
359 392
360/*****************************************************************************/ 393/*****************************************************************************/
361 394
362static void 395static void
403 struct ev_io *w; 436 struct ev_io *w;
404 437
405 while ((w = (struct ev_io *)anfds [fd].head)) 438 while ((w = (struct ev_io *)anfds [fd].head))
406 { 439 {
407 ev_io_stop (EV_A_ w); 440 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 441 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 442 }
410} 443}
411 444
412static int 445static int
413fd_valid (int fd) 446fd_valid (int fd)
501 534
502 heap [k] = w; 535 heap [k] = w;
503 ((W)heap [k])->active = k + 1; 536 ((W)heap [k])->active = k + 1;
504} 537}
505 538
539inline void
540adjustheap (WT *heap, int N, int k)
541{
542 upheap (heap, k);
543 downheap (heap, N, k);
544}
545
506/*****************************************************************************/ 546/*****************************************************************************/
507 547
508typedef struct 548typedef struct
509{ 549{
510 WL head; 550 WL head;
550#endif 590#endif
551 errno = old_errno; 591 errno = old_errno;
552 } 592 }
553} 593}
554 594
595void
596ev_feed_signal_event (EV_P_ int signum)
597{
598 WL w;
599
600#if EV_MULTIPLICITY
601 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
602#endif
603
604 --signum;
605
606 if (signum < 0 || signum >= signalmax)
607 return;
608
609 signals [signum].gotsig = 0;
610
611 for (w = signals [signum].head; w; w = w->next)
612 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
613}
614
555static void 615static void
556sigcb (EV_P_ struct ev_io *iow, int revents) 616sigcb (EV_P_ struct ev_io *iow, int revents)
557{ 617{
558 WL w;
559 int signum; 618 int signum;
560 619
561#ifdef WIN32 620#ifdef WIN32
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 621 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
563#else 622#else
565#endif 624#endif
566 gotsig = 0; 625 gotsig = 0;
567 626
568 for (signum = signalmax; signum--; ) 627 for (signum = signalmax; signum--; )
569 if (signals [signum].gotsig) 628 if (signals [signum].gotsig)
570 { 629 ev_feed_signal_event (EV_A_ signum + 1);
571 signals [signum].gotsig = 0;
572
573 for (w = signals [signum].head; w; w = w->next)
574 event (EV_A_ (W)w, EV_SIGNAL);
575 }
576} 630}
577 631
578static void 632static void
579siginit (EV_P) 633siginit (EV_P)
580{ 634{
613 if (w->pid == pid || !w->pid) 667 if (w->pid == pid || !w->pid)
614 { 668 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 669 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid; 670 w->rpid = pid;
617 w->rstatus = status; 671 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD); 672 ev_feed_event (EV_A_ (W)w, EV_CHILD);
619 } 673 }
620} 674}
621 675
622static void 676static void
623childcb (EV_P_ struct ev_signal *sw, int revents) 677childcb (EV_P_ struct ev_signal *sw, int revents)
625 int pid, status; 679 int pid, status;
626 680
627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 681 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
628 { 682 {
629 /* make sure we are called again until all childs have been reaped */ 683 /* make sure we are called again until all childs have been reaped */
630 event (EV_A_ (W)sw, EV_SIGNAL); 684 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
631 685
632 child_reap (EV_A_ sw, pid, pid, status); 686 child_reap (EV_A_ sw, pid, pid, status);
633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 687 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
634 } 688 }
635} 689}
692 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 746 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
693 have_monotonic = 1; 747 have_monotonic = 1;
694 } 748 }
695#endif 749#endif
696 750
697 rt_now = ev_time (); 751 ev_rt_now = ev_time ();
698 mn_now = get_clock (); 752 mn_now = get_clock ();
699 now_floor = mn_now; 753 now_floor = mn_now;
700 rtmn_diff = rt_now - mn_now; 754 rtmn_diff = ev_rt_now - mn_now;
701 755
702 if (methods == EVMETHOD_AUTO) 756 if (methods == EVMETHOD_AUTO)
703 if (!enable_secure () && getenv ("LIBEV_METHODS")) 757 if (!enable_secure () && getenv ("LIBEV_METHODS"))
704 methods = atoi (getenv ("LIBEV_METHODS")); 758 methods = atoi (getenv ("LIBEV_METHODS"));
705 else 759 else
720#endif 774#endif
721#if EV_USE_SELECT 775#if EV_USE_SELECT
722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 776 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
723#endif 777#endif
724 778
725 ev_watcher_init (&sigev, sigcb); 779 ev_init (&sigev, sigcb);
726 ev_set_priority (&sigev, EV_MAXPRI); 780 ev_set_priority (&sigev, EV_MAXPRI);
727 } 781 }
728} 782}
729 783
730void 784void
752 array_free (pending, [i]); 806 array_free (pending, [i]);
753 807
754 /* have to use the microsoft-never-gets-it-right macro */ 808 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange); 809 array_free_microshit (fdchange);
756 array_free_microshit (timer); 810 array_free_microshit (timer);
811#if EV_PERIODICS
757 array_free_microshit (periodic); 812 array_free_microshit (periodic);
813#endif
758 array_free_microshit (idle); 814 array_free_microshit (idle);
759 array_free_microshit (prepare); 815 array_free_microshit (prepare);
760 array_free_microshit (check); 816 array_free_microshit (check);
761 817
762 method = 0; 818 method = 0;
820} 876}
821 877
822#endif 878#endif
823 879
824#if EV_MULTIPLICITY 880#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop * 881struct ev_loop *
829#else 882#else
830static int default_loop;
831
832int 883int
833#endif 884#endif
834ev_default_loop (int methods) 885ev_default_loop (int methods)
835{ 886{
836 if (sigpipe [0] == sigpipe [1]) 887 if (sigpipe [0] == sigpipe [1])
897 postfork = 1; 948 postfork = 1;
898} 949}
899 950
900/*****************************************************************************/ 951/*****************************************************************************/
901 952
953static int
954any_pending (EV_P)
955{
956 int pri;
957
958 for (pri = NUMPRI; pri--; )
959 if (pendingcnt [pri])
960 return 1;
961
962 return 0;
963}
964
902static void 965static void
903call_pending (EV_P) 966call_pending (EV_P)
904{ 967{
905 int pri; 968 int pri;
906 969
910 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 973 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
911 974
912 if (p->w) 975 if (p->w)
913 { 976 {
914 p->w->pending = 0; 977 p->w->pending = 0;
915 p->w->cb (EV_A_ p->w, p->events); 978 EV_CB_INVOKE (p->w, p->events);
916 } 979 }
917 } 980 }
918} 981}
919 982
920static void 983static void
928 991
929 /* first reschedule or stop timer */ 992 /* first reschedule or stop timer */
930 if (w->repeat) 993 if (w->repeat)
931 { 994 {
932 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 995 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
996
933 ((WT)w)->at = mn_now + w->repeat; 997 ((WT)w)->at += w->repeat;
998 if (((WT)w)->at < mn_now)
999 ((WT)w)->at = mn_now;
1000
934 downheap ((WT *)timers, timercnt, 0); 1001 downheap ((WT *)timers, timercnt, 0);
935 } 1002 }
936 else 1003 else
937 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1004 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
938 1005
939 event (EV_A_ (W)w, EV_TIMEOUT); 1006 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
940 } 1007 }
941} 1008}
942 1009
1010#if EV_PERIODICS
943static void 1011static void
944periodics_reify (EV_P) 1012periodics_reify (EV_P)
945{ 1013{
946 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1014 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
947 { 1015 {
948 struct ev_periodic *w = periodics [0]; 1016 struct ev_periodic *w = periodics [0];
949 1017
950 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1018 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
951 1019
952 /* first reschedule or stop timer */ 1020 /* first reschedule or stop timer */
953 if (w->interval) 1021 if (w->reschedule_cb)
954 { 1022 {
1023 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1024
1025 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1026 downheap ((WT *)periodics, periodiccnt, 0);
1027 }
1028 else if (w->interval)
1029 {
955 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1030 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
956 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1031 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
957 downheap ((WT *)periodics, periodiccnt, 0); 1032 downheap ((WT *)periodics, periodiccnt, 0);
958 } 1033 }
959 else 1034 else
960 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1035 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
961 1036
962 event (EV_A_ (W)w, EV_PERIODIC); 1037 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
963 } 1038 }
964} 1039}
965 1040
966static void 1041static void
967periodics_reschedule (EV_P) 1042periodics_reschedule (EV_P)
971 /* adjust periodics after time jump */ 1046 /* adjust periodics after time jump */
972 for (i = 0; i < periodiccnt; ++i) 1047 for (i = 0; i < periodiccnt; ++i)
973 { 1048 {
974 struct ev_periodic *w = periodics [i]; 1049 struct ev_periodic *w = periodics [i];
975 1050
1051 if (w->reschedule_cb)
1052 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
976 if (w->interval) 1053 else if (w->interval)
977 {
978 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1054 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
979
980 if (fabs (diff) >= 1e-4)
981 {
982 ev_periodic_stop (EV_A_ w);
983 ev_periodic_start (EV_A_ w);
984
985 i = 0; /* restart loop, inefficient, but time jumps should be rare */
986 }
987 }
988 } 1055 }
1056
1057 /* now rebuild the heap */
1058 for (i = periodiccnt >> 1; i--; )
1059 downheap ((WT *)periodics, periodiccnt, i);
989} 1060}
1061#endif
990 1062
991inline int 1063inline int
992time_update_monotonic (EV_P) 1064time_update_monotonic (EV_P)
993{ 1065{
994 mn_now = get_clock (); 1066 mn_now = get_clock ();
995 1067
996 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1068 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
997 { 1069 {
998 rt_now = rtmn_diff + mn_now; 1070 ev_rt_now = rtmn_diff + mn_now;
999 return 0; 1071 return 0;
1000 } 1072 }
1001 else 1073 else
1002 { 1074 {
1003 now_floor = mn_now; 1075 now_floor = mn_now;
1004 rt_now = ev_time (); 1076 ev_rt_now = ev_time ();
1005 return 1; 1077 return 1;
1006 } 1078 }
1007} 1079}
1008 1080
1009static void 1081static void
1018 { 1090 {
1019 ev_tstamp odiff = rtmn_diff; 1091 ev_tstamp odiff = rtmn_diff;
1020 1092
1021 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1093 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1022 { 1094 {
1023 rtmn_diff = rt_now - mn_now; 1095 rtmn_diff = ev_rt_now - mn_now;
1024 1096
1025 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1097 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1026 return; /* all is well */ 1098 return; /* all is well */
1027 1099
1028 rt_now = ev_time (); 1100 ev_rt_now = ev_time ();
1029 mn_now = get_clock (); 1101 mn_now = get_clock ();
1030 now_floor = mn_now; 1102 now_floor = mn_now;
1031 } 1103 }
1032 1104
1105# if EV_PERIODICS
1033 periodics_reschedule (EV_A); 1106 periodics_reschedule (EV_A);
1107# endif
1034 /* no timer adjustment, as the monotonic clock doesn't jump */ 1108 /* no timer adjustment, as the monotonic clock doesn't jump */
1035 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1109 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1036 } 1110 }
1037 } 1111 }
1038 else 1112 else
1039#endif 1113#endif
1040 { 1114 {
1041 rt_now = ev_time (); 1115 ev_rt_now = ev_time ();
1042 1116
1043 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1117 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1044 { 1118 {
1119#if EV_PERIODICS
1045 periodics_reschedule (EV_A); 1120 periodics_reschedule (EV_A);
1121#endif
1046 1122
1047 /* adjust timers. this is easy, as the offset is the same for all */ 1123 /* adjust timers. this is easy, as the offset is the same for all */
1048 for (i = 0; i < timercnt; ++i) 1124 for (i = 0; i < timercnt; ++i)
1049 ((WT)timers [i])->at += rt_now - mn_now; 1125 ((WT)timers [i])->at += ev_rt_now - mn_now;
1050 } 1126 }
1051 1127
1052 mn_now = rt_now; 1128 mn_now = ev_rt_now;
1053 } 1129 }
1054} 1130}
1055 1131
1056void 1132void
1057ev_ref (EV_P) 1133ev_ref (EV_P)
1089 /* update fd-related kernel structures */ 1165 /* update fd-related kernel structures */
1090 fd_reify (EV_A); 1166 fd_reify (EV_A);
1091 1167
1092 /* calculate blocking time */ 1168 /* calculate blocking time */
1093 1169
1094 /* we only need this for !monotonic clockor timers, but as we basically 1170 /* we only need this for !monotonic clock or timers, but as we basically
1095 always have timers, we just calculate it always */ 1171 always have timers, we just calculate it always */
1096#if EV_USE_MONOTONIC 1172#if EV_USE_MONOTONIC
1097 if (expect_true (have_monotonic)) 1173 if (expect_true (have_monotonic))
1098 time_update_monotonic (EV_A); 1174 time_update_monotonic (EV_A);
1099 else 1175 else
1100#endif 1176#endif
1101 { 1177 {
1102 rt_now = ev_time (); 1178 ev_rt_now = ev_time ();
1103 mn_now = rt_now; 1179 mn_now = ev_rt_now;
1104 } 1180 }
1105 1181
1106 if (flags & EVLOOP_NONBLOCK || idlecnt) 1182 if (flags & EVLOOP_NONBLOCK || idlecnt)
1107 block = 0.; 1183 block = 0.;
1108 else 1184 else
1113 { 1189 {
1114 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1190 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1115 if (block > to) block = to; 1191 if (block > to) block = to;
1116 } 1192 }
1117 1193
1194#if EV_PERIODICS
1118 if (periodiccnt) 1195 if (periodiccnt)
1119 { 1196 {
1120 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1197 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1121 if (block > to) block = to; 1198 if (block > to) block = to;
1122 } 1199 }
1200#endif
1123 1201
1124 if (block < 0.) block = 0.; 1202 if (block < 0.) block = 0.;
1125 } 1203 }
1126 1204
1127 method_poll (EV_A_ block); 1205 method_poll (EV_A_ block);
1128 1206
1129 /* update rt_now, do magic */ 1207 /* update ev_rt_now, do magic */
1130 time_update (EV_A); 1208 time_update (EV_A);
1131 1209
1132 /* queue pending timers and reschedule them */ 1210 /* queue pending timers and reschedule them */
1133 timers_reify (EV_A); /* relative timers called last */ 1211 timers_reify (EV_A); /* relative timers called last */
1212#if EV_PERIODICS
1134 periodics_reify (EV_A); /* absolute timers called first */ 1213 periodics_reify (EV_A); /* absolute timers called first */
1214#endif
1135 1215
1136 /* queue idle watchers unless io or timers are pending */ 1216 /* queue idle watchers unless io or timers are pending */
1137 if (!pendingcnt) 1217 if (idlecnt && !any_pending (EV_A))
1138 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1218 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1139 1219
1140 /* queue check watchers, to be executed first */ 1220 /* queue check watchers, to be executed first */
1141 if (checkcnt) 1221 if (checkcnt)
1142 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1222 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1230{ 1310{
1231 ev_clear_pending (EV_A_ (W)w); 1311 ev_clear_pending (EV_A_ (W)w);
1232 if (!ev_is_active (w)) 1312 if (!ev_is_active (w))
1233 return; 1313 return;
1234 1314
1315 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1316
1235 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1317 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1236 ev_stop (EV_A_ (W)w); 1318 ev_stop (EV_A_ (W)w);
1237 1319
1238 fd_change (EV_A_ w->fd); 1320 fd_change (EV_A_ w->fd);
1239} 1321}
1266 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1348 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1267 1349
1268 if (((W)w)->active < timercnt--) 1350 if (((W)w)->active < timercnt--)
1269 { 1351 {
1270 timers [((W)w)->active - 1] = timers [timercnt]; 1352 timers [((W)w)->active - 1] = timers [timercnt];
1271 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1272 } 1354 }
1273 1355
1274 ((WT)w)->at = w->repeat; 1356 ((WT)w)->at -= mn_now;
1275 1357
1276 ev_stop (EV_A_ (W)w); 1358 ev_stop (EV_A_ (W)w);
1277} 1359}
1278 1360
1279void 1361void
1282 if (ev_is_active (w)) 1364 if (ev_is_active (w))
1283 { 1365 {
1284 if (w->repeat) 1366 if (w->repeat)
1285 { 1367 {
1286 ((WT)w)->at = mn_now + w->repeat; 1368 ((WT)w)->at = mn_now + w->repeat;
1287 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1288 } 1370 }
1289 else 1371 else
1290 ev_timer_stop (EV_A_ w); 1372 ev_timer_stop (EV_A_ w);
1291 } 1373 }
1292 else if (w->repeat) 1374 else if (w->repeat)
1293 ev_timer_start (EV_A_ w); 1375 ev_timer_start (EV_A_ w);
1294} 1376}
1295 1377
1378#if EV_PERIODICS
1296void 1379void
1297ev_periodic_start (EV_P_ struct ev_periodic *w) 1380ev_periodic_start (EV_P_ struct ev_periodic *w)
1298{ 1381{
1299 if (ev_is_active (w)) 1382 if (ev_is_active (w))
1300 return; 1383 return;
1301 1384
1385 if (w->reschedule_cb)
1386 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1387 else if (w->interval)
1388 {
1302 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1389 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1303
1304 /* this formula differs from the one in periodic_reify because we do not always round up */ 1390 /* this formula differs from the one in periodic_reify because we do not always round up */
1305 if (w->interval)
1306 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1391 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1392 }
1307 1393
1308 ev_start (EV_A_ (W)w, ++periodiccnt); 1394 ev_start (EV_A_ (W)w, ++periodiccnt);
1309 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1395 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1310 periodics [periodiccnt - 1] = w; 1396 periodics [periodiccnt - 1] = w;
1311 upheap ((WT *)periodics, periodiccnt - 1); 1397 upheap ((WT *)periodics, periodiccnt - 1);
1323 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1409 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1324 1410
1325 if (((W)w)->active < periodiccnt--) 1411 if (((W)w)->active < periodiccnt--)
1326 { 1412 {
1327 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1413 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1328 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1414 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1329 } 1415 }
1330 1416
1331 ev_stop (EV_A_ (W)w); 1417 ev_stop (EV_A_ (W)w);
1332} 1418}
1419
1420void
1421ev_periodic_again (EV_P_ struct ev_periodic *w)
1422{
1423 /* TODO: use adjustheap and recalculation */
1424 ev_periodic_stop (EV_A_ w);
1425 ev_periodic_start (EV_A_ w);
1426}
1427#endif
1333 1428
1334void 1429void
1335ev_idle_start (EV_P_ struct ev_idle *w) 1430ev_idle_start (EV_P_ struct ev_idle *w)
1336{ 1431{
1337 if (ev_is_active (w)) 1432 if (ev_is_active (w))
1366 1461
1367void 1462void
1368ev_prepare_stop (EV_P_ struct ev_prepare *w) 1463ev_prepare_stop (EV_P_ struct ev_prepare *w)
1369{ 1464{
1370 ev_clear_pending (EV_A_ (W)w); 1465 ev_clear_pending (EV_A_ (W)w);
1371 if (ev_is_active (w)) 1466 if (!ev_is_active (w))
1372 return; 1467 return;
1373 1468
1374 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1469 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1375 ev_stop (EV_A_ (W)w); 1470 ev_stop (EV_A_ (W)w);
1376} 1471}
1388 1483
1389void 1484void
1390ev_check_stop (EV_P_ struct ev_check *w) 1485ev_check_stop (EV_P_ struct ev_check *w)
1391{ 1486{
1392 ev_clear_pending (EV_A_ (W)w); 1487 ev_clear_pending (EV_A_ (W)w);
1393 if (ev_is_active (w)) 1488 if (!ev_is_active (w))
1394 return; 1489 return;
1395 1490
1396 checks [((W)w)->active - 1] = checks [--checkcnt]; 1491 checks [((W)w)->active - 1] = checks [--checkcnt];
1397 ev_stop (EV_A_ (W)w); 1492 ev_stop (EV_A_ (W)w);
1398} 1493}
1459 1554
1460void 1555void
1461ev_child_stop (EV_P_ struct ev_child *w) 1556ev_child_stop (EV_P_ struct ev_child *w)
1462{ 1557{
1463 ev_clear_pending (EV_A_ (W)w); 1558 ev_clear_pending (EV_A_ (W)w);
1464 if (ev_is_active (w)) 1559 if (!ev_is_active (w))
1465 return; 1560 return;
1466 1561
1467 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1562 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1468 ev_stop (EV_A_ (W)w); 1563 ev_stop (EV_A_ (W)w);
1469} 1564}
1513 else 1608 else
1514 { 1609 {
1515 once->cb = cb; 1610 once->cb = cb;
1516 once->arg = arg; 1611 once->arg = arg;
1517 1612
1518 ev_watcher_init (&once->io, once_cb_io); 1613 ev_init (&once->io, once_cb_io);
1519 if (fd >= 0) 1614 if (fd >= 0)
1520 { 1615 {
1521 ev_io_set (&once->io, fd, events); 1616 ev_io_set (&once->io, fd, events);
1522 ev_io_start (EV_A_ &once->io); 1617 ev_io_start (EV_A_ &once->io);
1523 } 1618 }
1524 1619
1525 ev_watcher_init (&once->to, once_cb_to); 1620 ev_init (&once->to, once_cb_to);
1526 if (timeout >= 0.) 1621 if (timeout >= 0.)
1527 { 1622 {
1528 ev_timer_set (&once->to, timeout, 0.); 1623 ev_timer_set (&once->to, timeout, 0.);
1529 ev_timer_start (EV_A_ &once->to); 1624 ev_timer_start (EV_A_ &once->to);
1530 } 1625 }
1531 } 1626 }
1532} 1627}
1533 1628
1629#ifdef __cplusplus
1630}
1631#endif
1632

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines