ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.75 by root, Tue Nov 6 19:29:20 2007 UTC vs.
Revision 1.115 by root, Wed Nov 14 04:53:21 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
66#include <sys/types.h> 75#include <sys/types.h>
67#include <time.h> 76#include <time.h>
68 77
69#include <signal.h> 78#include <signal.h>
70 79
71#ifndef WIN32 80#ifndef _WIN32
72# include <unistd.h> 81# include <unistd.h>
73# include <sys/time.h> 82# include <sys/time.h>
74# include <sys/wait.h> 83# include <sys/wait.h>
84#else
85# define WIN32_LEAN_AND_MEAN
86# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1
75#endif 89# endif
90#endif
91
76/**/ 92/**/
77 93
78#ifndef EV_USE_MONOTONIC 94#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 95# define EV_USE_MONOTONIC 1
80#endif 96#endif
81 97
82#ifndef EV_USE_SELECT 98#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 99# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
84#endif 101#endif
85 102
86#ifndef EV_USE_POLL 103#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 104# ifdef _WIN32
105# define EV_USE_POLL 0
106# else
107# define EV_USE_POLL 1
108# endif
88#endif 109#endif
89 110
90#ifndef EV_USE_EPOLL 111#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0 112# define EV_USE_EPOLL 0
92#endif 113#endif
93 114
94#ifndef EV_USE_KQUEUE 115#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 116# define EV_USE_KQUEUE 0
96#endif 117#endif
97 118
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME 119#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1 120# define EV_USE_REALTIME 1
110#endif 121#endif
111 122
112/**/ 123/**/
124
125/* darwin simply cannot be helped */
126#ifdef __APPLE__
127# undef EV_USE_POLL
128# undef EV_USE_KQUEUE
129#endif
113 130
114#ifndef CLOCK_MONOTONIC 131#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 132# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 133# define EV_USE_MONOTONIC 0
117#endif 134#endif
118 135
119#ifndef CLOCK_REALTIME 136#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 137# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 138# define EV_USE_REALTIME 0
139#endif
140
141#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h>
122#endif 143#endif
123 144
124/**/ 145/**/
125 146
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 151
152#ifdef EV_H
153# include EV_H
154#else
131#include "ev.h" 155# include "ev.h"
156#endif
132 157
133#if __GNUC__ >= 3 158#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 159# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 160# define inline inline
136#else 161#else
142#define expect_true(expr) expect ((expr) != 0, 1) 167#define expect_true(expr) expect ((expr) != 0, 1)
143 168
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 170#define ABSPRI(w) ((w)->priority - EV_MINPRI)
146 171
172#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
173#define EMPTY2(a,b) /* used to suppress some warnings */
174
147typedef struct ev_watcher *W; 175typedef struct ev_watcher *W;
148typedef struct ev_watcher_list *WL; 176typedef struct ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 177typedef struct ev_watcher_time *WT;
150 178
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 179static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 180
181#ifdef _WIN32
153#include "ev_win32.c" 182# include "ev_win32.c"
183#endif
154 184
155/*****************************************************************************/ 185/*****************************************************************************/
156 186
157static void (*syserr_cb)(const char *msg); 187static void (*syserr_cb)(const char *msg);
158 188
205typedef struct 235typedef struct
206{ 236{
207 WL head; 237 WL head;
208 unsigned char events; 238 unsigned char events;
209 unsigned char reify; 239 unsigned char reify;
240#if EV_SELECT_IS_WINSOCKET
241 SOCKET handle;
242#endif
210} ANFD; 243} ANFD;
211 244
212typedef struct 245typedef struct
213{ 246{
214 W w; 247 W w;
215 int events; 248 int events;
216} ANPENDING; 249} ANPENDING;
217 250
218#if EV_MULTIPLICITY 251#if EV_MULTIPLICITY
219 252
220struct ev_loop 253 struct ev_loop
221{ 254 {
255 ev_tstamp ev_rt_now;
256 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 257 #define VAR(name,decl) decl;
223# include "ev_vars.h" 258 #include "ev_vars.h"
224};
225# undef VAR 259 #undef VAR
260 };
226# include "ev_wrap.h" 261 #include "ev_wrap.h"
262
263 struct ev_loop default_loop_struct;
264 static struct ev_loop *default_loop;
227 265
228#else 266#else
229 267
268 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 269 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 270 #include "ev_vars.h"
232# undef VAR 271 #undef VAR
272
273 static int default_loop;
233 274
234#endif 275#endif
235 276
236/*****************************************************************************/ 277/*****************************************************************************/
237 278
238inline ev_tstamp 279ev_tstamp
239ev_time (void) 280ev_time (void)
240{ 281{
241#if EV_USE_REALTIME 282#if EV_USE_REALTIME
242 struct timespec ts; 283 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 284 clock_gettime (CLOCK_REALTIME, &ts);
262#endif 303#endif
263 304
264 return ev_time (); 305 return ev_time ();
265} 306}
266 307
308#if EV_MULTIPLICITY
267ev_tstamp 309ev_tstamp
268ev_now (EV_P) 310ev_now (EV_P)
269{ 311{
270 return rt_now; 312 return ev_rt_now;
271} 313}
314#endif
272 315
273#define array_roundsize(type,n) ((n) | 4 & ~3) 316#define array_roundsize(type,n) (((n) | 4) & ~3)
274 317
275#define array_needsize(type,base,cur,cnt,init) \ 318#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 319 if (expect_false ((cnt) > cur)) \
277 { \ 320 { \
278 int newcnt = cur; \ 321 int newcnt = cur; \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 336 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 337 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 338 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 339 }
297 340
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302
303#define array_free(stem, idx) \ 341#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 342 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
305 343
306/*****************************************************************************/ 344/*****************************************************************************/
307 345
316 354
317 ++base; 355 ++base;
318 } 356 }
319} 357}
320 358
321static void 359void
322event (EV_P_ W w, int events) 360ev_feed_event (EV_P_ void *w, int revents)
323{ 361{
362 W w_ = (W)w;
363
324 if (w->pending) 364 if (w_->pending)
325 { 365 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 366 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
327 return; 367 return;
328 } 368 }
329 369
330 w->pending = ++pendingcnt [ABSPRI (w)]; 370 w_->pending = ++pendingcnt [ABSPRI (w_)];
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 371 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
332 pendings [ABSPRI (w)][w->pending - 1].w = w; 372 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
333 pendings [ABSPRI (w)][w->pending - 1].events = events; 373 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
334} 374}
335 375
336static void 376static void
337queue_events (EV_P_ W *events, int eventcnt, int type) 377queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 378{
339 int i; 379 int i;
340 380
341 for (i = 0; i < eventcnt; ++i) 381 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 382 ev_feed_event (EV_A_ events [i], type);
343} 383}
344 384
345static void 385inline void
346fd_event (EV_P_ int fd, int events) 386fd_event (EV_P_ int fd, int revents)
347{ 387{
348 ANFD *anfd = anfds + fd; 388 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 389 struct ev_io *w;
350 390
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 391 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
352 { 392 {
353 int ev = w->events & events; 393 int ev = w->events & revents;
354 394
355 if (ev) 395 if (ev)
356 event (EV_A_ (W)w, ev); 396 ev_feed_event (EV_A_ (W)w, ev);
357 } 397 }
398}
399
400void
401ev_feed_fd_event (EV_P_ int fd, int revents)
402{
403 fd_event (EV_A_ fd, revents);
358} 404}
359 405
360/*****************************************************************************/ 406/*****************************************************************************/
361 407
362static void 408static void
373 int events = 0; 419 int events = 0;
374 420
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 421 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
376 events |= w->events; 422 events |= w->events;
377 423
424#if EV_SELECT_IS_WINSOCKET
425 if (events)
426 {
427 unsigned long argp;
428 anfd->handle = _get_osfhandle (fd);
429 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
430 }
431#endif
432
378 anfd->reify = 0; 433 anfd->reify = 0;
379 434
380 method_modify (EV_A_ fd, anfd->events, events); 435 method_modify (EV_A_ fd, anfd->events, events);
381 anfd->events = events; 436 anfd->events = events;
382 } 437 }
391 return; 446 return;
392 447
393 anfds [fd].reify = 1; 448 anfds [fd].reify = 1;
394 449
395 ++fdchangecnt; 450 ++fdchangecnt;
396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 451 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
397 fdchanges [fdchangecnt - 1] = fd; 452 fdchanges [fdchangecnt - 1] = fd;
398} 453}
399 454
400static void 455static void
401fd_kill (EV_P_ int fd) 456fd_kill (EV_P_ int fd)
403 struct ev_io *w; 458 struct ev_io *w;
404 459
405 while ((w = (struct ev_io *)anfds [fd].head)) 460 while ((w = (struct ev_io *)anfds [fd].head))
406 { 461 {
407 ev_io_stop (EV_A_ w); 462 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 463 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 464 }
410} 465}
411 466
412static int 467static int
413fd_valid (int fd) 468fd_valid (int fd)
414{ 469{
415#ifdef WIN32 470#ifdef _WIN32
416 return !!win32_get_osfhandle (fd); 471 return _get_osfhandle (fd) != -1;
417#else 472#else
418 return fcntl (fd, F_GETFD) != -1; 473 return fcntl (fd, F_GETFD) != -1;
419#endif 474#endif
420} 475}
421 476
501 556
502 heap [k] = w; 557 heap [k] = w;
503 ((W)heap [k])->active = k + 1; 558 ((W)heap [k])->active = k + 1;
504} 559}
505 560
561inline void
562adjustheap (WT *heap, int N, int k)
563{
564 upheap (heap, k);
565 downheap (heap, N, k);
566}
567
506/*****************************************************************************/ 568/*****************************************************************************/
507 569
508typedef struct 570typedef struct
509{ 571{
510 WL head; 572 WL head;
531} 593}
532 594
533static void 595static void
534sighandler (int signum) 596sighandler (int signum)
535{ 597{
536#if WIN32 598#if _WIN32
537 signal (signum, sighandler); 599 signal (signum, sighandler);
538#endif 600#endif
539 601
540 signals [signum - 1].gotsig = 1; 602 signals [signum - 1].gotsig = 1;
541 603
542 if (!gotsig) 604 if (!gotsig)
543 { 605 {
544 int old_errno = errno; 606 int old_errno = errno;
545 gotsig = 1; 607 gotsig = 1;
546#ifdef WIN32
547 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
548#else
549 write (sigpipe [1], &signum, 1); 608 write (sigpipe [1], &signum, 1);
550#endif
551 errno = old_errno; 609 errno = old_errno;
552 } 610 }
553} 611}
554 612
613void
614ev_feed_signal_event (EV_P_ int signum)
615{
616 WL w;
617
618#if EV_MULTIPLICITY
619 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
620#endif
621
622 --signum;
623
624 if (signum < 0 || signum >= signalmax)
625 return;
626
627 signals [signum].gotsig = 0;
628
629 for (w = signals [signum].head; w; w = w->next)
630 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
631}
632
555static void 633static void
556sigcb (EV_P_ struct ev_io *iow, int revents) 634sigcb (EV_P_ struct ev_io *iow, int revents)
557{ 635{
558 WL w;
559 int signum; 636 int signum;
560 637
561#ifdef WIN32
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
563#else
564 read (sigpipe [0], &revents, 1); 638 read (sigpipe [0], &revents, 1);
565#endif
566 gotsig = 0; 639 gotsig = 0;
567 640
568 for (signum = signalmax; signum--; ) 641 for (signum = signalmax; signum--; )
569 if (signals [signum].gotsig) 642 if (signals [signum].gotsig)
570 { 643 ev_feed_signal_event (EV_A_ signum + 1);
571 signals [signum].gotsig = 0; 644}
572 645
573 for (w = signals [signum].head; w; w = w->next) 646inline void
574 event (EV_A_ (W)w, EV_SIGNAL); 647fd_intern (int fd)
575 } 648{
649#ifdef _WIN32
650 int arg = 1;
651 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
652#else
653 fcntl (fd, F_SETFD, FD_CLOEXEC);
654 fcntl (fd, F_SETFL, O_NONBLOCK);
655#endif
576} 656}
577 657
578static void 658static void
579siginit (EV_P) 659siginit (EV_P)
580{ 660{
581#ifndef WIN32 661 fd_intern (sigpipe [0]);
582 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 662 fd_intern (sigpipe [1]);
583 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
584
585 /* rather than sort out wether we really need nb, set it */
586 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
587 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
588#endif
589 663
590 ev_io_set (&sigev, sigpipe [0], EV_READ); 664 ev_io_set (&sigev, sigpipe [0], EV_READ);
591 ev_io_start (EV_A_ &sigev); 665 ev_io_start (EV_A_ &sigev);
592 ev_unref (EV_A); /* child watcher should not keep loop alive */ 666 ev_unref (EV_A); /* child watcher should not keep loop alive */
593} 667}
594 668
595/*****************************************************************************/ 669/*****************************************************************************/
596 670
597static struct ev_child *childs [PID_HASHSIZE]; 671static struct ev_child *childs [PID_HASHSIZE];
598 672
599#ifndef WIN32 673#ifndef _WIN32
600 674
601static struct ev_signal childev; 675static struct ev_signal childev;
602 676
603#ifndef WCONTINUED 677#ifndef WCONTINUED
604# define WCONTINUED 0 678# define WCONTINUED 0
613 if (w->pid == pid || !w->pid) 687 if (w->pid == pid || !w->pid)
614 { 688 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 689 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid; 690 w->rpid = pid;
617 w->rstatus = status; 691 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD); 692 ev_feed_event (EV_A_ (W)w, EV_CHILD);
619 } 693 }
620} 694}
621 695
622static void 696static void
623childcb (EV_P_ struct ev_signal *sw, int revents) 697childcb (EV_P_ struct ev_signal *sw, int revents)
625 int pid, status; 699 int pid, status;
626 700
627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 701 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
628 { 702 {
629 /* make sure we are called again until all childs have been reaped */ 703 /* make sure we are called again until all childs have been reaped */
630 event (EV_A_ (W)sw, EV_SIGNAL); 704 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
631 705
632 child_reap (EV_A_ sw, pid, pid, status); 706 child_reap (EV_A_ sw, pid, pid, status);
633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 707 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
634 } 708 }
635} 709}
665 739
666/* return true if we are running with elevated privileges and should ignore env variables */ 740/* return true if we are running with elevated privileges and should ignore env variables */
667static int 741static int
668enable_secure (void) 742enable_secure (void)
669{ 743{
670#ifdef WIN32 744#ifdef _WIN32
671 return 0; 745 return 0;
672#else 746#else
673 return getuid () != geteuid () 747 return getuid () != geteuid ()
674 || getgid () != getegid (); 748 || getgid () != getegid ();
675#endif 749#endif
676} 750}
677 751
678int 752unsigned int
679ev_method (EV_P) 753ev_method (EV_P)
680{ 754{
681 return method; 755 return method;
682} 756}
683 757
684static void 758static void
685loop_init (EV_P_ int methods) 759loop_init (EV_P_ unsigned int flags)
686{ 760{
687 if (!method) 761 if (!method)
688 { 762 {
689#if EV_USE_MONOTONIC 763#if EV_USE_MONOTONIC
690 { 764 {
692 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 766 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
693 have_monotonic = 1; 767 have_monotonic = 1;
694 } 768 }
695#endif 769#endif
696 770
697 rt_now = ev_time (); 771 ev_rt_now = ev_time ();
698 mn_now = get_clock (); 772 mn_now = get_clock ();
699 now_floor = mn_now; 773 now_floor = mn_now;
700 rtmn_diff = rt_now - mn_now; 774 rtmn_diff = ev_rt_now - mn_now;
701 775
702 if (methods == EVMETHOD_AUTO) 776 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS"))
703 if (!enable_secure () && getenv ("LIBEV_METHODS"))
704 methods = atoi (getenv ("LIBEV_METHODS")); 777 flags = atoi (getenv ("LIBEV_FLAGS"));
705 else 778
706 methods = EVMETHOD_ANY; 779 if (!(flags & 0x0000ffff))
780 flags |= 0x0000ffff;
707 781
708 method = 0; 782 method = 0;
709#if EV_USE_WIN32
710 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
711#endif
712#if EV_USE_KQUEUE 783#if EV_USE_KQUEUE
713 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 784 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
714#endif 785#endif
715#if EV_USE_EPOLL 786#if EV_USE_EPOLL
716 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 787 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
717#endif 788#endif
718#if EV_USE_POLL 789#if EV_USE_POLL
719 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 790 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
720#endif 791#endif
721#if EV_USE_SELECT 792#if EV_USE_SELECT
722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 793 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
723#endif 794#endif
724 795
725 ev_watcher_init (&sigev, sigcb); 796 ev_init (&sigev, sigcb);
726 ev_set_priority (&sigev, EV_MAXPRI); 797 ev_set_priority (&sigev, EV_MAXPRI);
727 } 798 }
728} 799}
729 800
730void 801void
731loop_destroy (EV_P) 802loop_destroy (EV_P)
732{ 803{
733 int i; 804 int i;
734 805
735#if EV_USE_WIN32
736 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
737#endif
738#if EV_USE_KQUEUE 806#if EV_USE_KQUEUE
739 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 807 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
740#endif 808#endif
741#if EV_USE_EPOLL 809#if EV_USE_EPOLL
742 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 810 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
750 818
751 for (i = NUMPRI; i--; ) 819 for (i = NUMPRI; i--; )
752 array_free (pending, [i]); 820 array_free (pending, [i]);
753 821
754 /* have to use the microsoft-never-gets-it-right macro */ 822 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange); 823 array_free (fdchange, EMPTY0);
756 array_free_microshit (timer); 824 array_free (timer, EMPTY0);
757 array_free_microshit (periodic); 825#if EV_PERIODICS
758 array_free_microshit (idle); 826 array_free (periodic, EMPTY0);
759 array_free_microshit (prepare); 827#endif
760 array_free_microshit (check); 828 array_free (idle, EMPTY0);
829 array_free (prepare, EMPTY0);
830 array_free (check, EMPTY0);
761 831
762 method = 0; 832 method = 0;
763} 833}
764 834
765static void 835static void
790 postfork = 0; 860 postfork = 0;
791} 861}
792 862
793#if EV_MULTIPLICITY 863#if EV_MULTIPLICITY
794struct ev_loop * 864struct ev_loop *
795ev_loop_new (int methods) 865ev_loop_new (unsigned int flags)
796{ 866{
797 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 867 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
798 868
799 memset (loop, 0, sizeof (struct ev_loop)); 869 memset (loop, 0, sizeof (struct ev_loop));
800 870
801 loop_init (EV_A_ methods); 871 loop_init (EV_A_ flags);
802 872
803 if (ev_method (EV_A)) 873 if (ev_method (EV_A))
804 return loop; 874 return loop;
805 875
806 return 0; 876 return 0;
820} 890}
821 891
822#endif 892#endif
823 893
824#if EV_MULTIPLICITY 894#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop * 895struct ev_loop *
829#else 896#else
830static int default_loop;
831
832int 897int
833#endif 898#endif
834ev_default_loop (int methods) 899ev_default_loop (unsigned int flags)
835{ 900{
836 if (sigpipe [0] == sigpipe [1]) 901 if (sigpipe [0] == sigpipe [1])
837 if (pipe (sigpipe)) 902 if (pipe (sigpipe))
838 return 0; 903 return 0;
839 904
843 struct ev_loop *loop = default_loop = &default_loop_struct; 908 struct ev_loop *loop = default_loop = &default_loop_struct;
844#else 909#else
845 default_loop = 1; 910 default_loop = 1;
846#endif 911#endif
847 912
848 loop_init (EV_A_ methods); 913 loop_init (EV_A_ flags);
849 914
850 if (ev_method (EV_A)) 915 if (ev_method (EV_A))
851 { 916 {
852 siginit (EV_A); 917 siginit (EV_A);
853 918
854#ifndef WIN32 919#ifndef _WIN32
855 ev_signal_init (&childev, childcb, SIGCHLD); 920 ev_signal_init (&childev, childcb, SIGCHLD);
856 ev_set_priority (&childev, EV_MAXPRI); 921 ev_set_priority (&childev, EV_MAXPRI);
857 ev_signal_start (EV_A_ &childev); 922 ev_signal_start (EV_A_ &childev);
858 ev_unref (EV_A); /* child watcher should not keep loop alive */ 923 ev_unref (EV_A); /* child watcher should not keep loop alive */
859#endif 924#endif
870{ 935{
871#if EV_MULTIPLICITY 936#if EV_MULTIPLICITY
872 struct ev_loop *loop = default_loop; 937 struct ev_loop *loop = default_loop;
873#endif 938#endif
874 939
875#ifndef WIN32 940#ifndef _WIN32
876 ev_ref (EV_A); /* child watcher */ 941 ev_ref (EV_A); /* child watcher */
877 ev_signal_stop (EV_A_ &childev); 942 ev_signal_stop (EV_A_ &childev);
878#endif 943#endif
879 944
880 ev_ref (EV_A); /* signal watcher */ 945 ev_ref (EV_A); /* signal watcher */
896 if (method) 961 if (method)
897 postfork = 1; 962 postfork = 1;
898} 963}
899 964
900/*****************************************************************************/ 965/*****************************************************************************/
966
967static int
968any_pending (EV_P)
969{
970 int pri;
971
972 for (pri = NUMPRI; pri--; )
973 if (pendingcnt [pri])
974 return 1;
975
976 return 0;
977}
901 978
902static void 979static void
903call_pending (EV_P) 980call_pending (EV_P)
904{ 981{
905 int pri; 982 int pri;
910 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 987 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
911 988
912 if (p->w) 989 if (p->w)
913 { 990 {
914 p->w->pending = 0; 991 p->w->pending = 0;
915 p->w->cb (EV_A_ p->w, p->events); 992 EV_CB_INVOKE (p->w, p->events);
916 } 993 }
917 } 994 }
918} 995}
919 996
920static void 997static void
928 1005
929 /* first reschedule or stop timer */ 1006 /* first reschedule or stop timer */
930 if (w->repeat) 1007 if (w->repeat)
931 { 1008 {
932 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1009 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1010
933 ((WT)w)->at = mn_now + w->repeat; 1011 ((WT)w)->at += w->repeat;
1012 if (((WT)w)->at < mn_now)
1013 ((WT)w)->at = mn_now;
1014
934 downheap ((WT *)timers, timercnt, 0); 1015 downheap ((WT *)timers, timercnt, 0);
935 } 1016 }
936 else 1017 else
937 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1018 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
938 1019
939 event (EV_A_ (W)w, EV_TIMEOUT); 1020 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
940 } 1021 }
941} 1022}
942 1023
1024#if EV_PERIODICS
943static void 1025static void
944periodics_reify (EV_P) 1026periodics_reify (EV_P)
945{ 1027{
946 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1028 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
947 { 1029 {
948 struct ev_periodic *w = periodics [0]; 1030 struct ev_periodic *w = periodics [0];
949 1031
950 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1032 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
951 1033
952 /* first reschedule or stop timer */ 1034 /* first reschedule or stop timer */
953 if (w->interval) 1035 if (w->reschedule_cb)
954 { 1036 {
1037 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1038 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1039 downheap ((WT *)periodics, periodiccnt, 0);
1040 }
1041 else if (w->interval)
1042 {
955 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1043 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
956 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1044 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
957 downheap ((WT *)periodics, periodiccnt, 0); 1045 downheap ((WT *)periodics, periodiccnt, 0);
958 } 1046 }
959 else 1047 else
960 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
961 1049
962 event (EV_A_ (W)w, EV_PERIODIC); 1050 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
963 } 1051 }
964} 1052}
965 1053
966static void 1054static void
967periodics_reschedule (EV_P) 1055periodics_reschedule (EV_P)
971 /* adjust periodics after time jump */ 1059 /* adjust periodics after time jump */
972 for (i = 0; i < periodiccnt; ++i) 1060 for (i = 0; i < periodiccnt; ++i)
973 { 1061 {
974 struct ev_periodic *w = periodics [i]; 1062 struct ev_periodic *w = periodics [i];
975 1063
1064 if (w->reschedule_cb)
1065 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
976 if (w->interval) 1066 else if (w->interval)
977 {
978 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1067 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
979
980 if (fabs (diff) >= 1e-4)
981 {
982 ev_periodic_stop (EV_A_ w);
983 ev_periodic_start (EV_A_ w);
984
985 i = 0; /* restart loop, inefficient, but time jumps should be rare */
986 }
987 }
988 } 1068 }
1069
1070 /* now rebuild the heap */
1071 for (i = periodiccnt >> 1; i--; )
1072 downheap ((WT *)periodics, periodiccnt, i);
989} 1073}
1074#endif
990 1075
991inline int 1076inline int
992time_update_monotonic (EV_P) 1077time_update_monotonic (EV_P)
993{ 1078{
994 mn_now = get_clock (); 1079 mn_now = get_clock ();
995 1080
996 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1081 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
997 { 1082 {
998 rt_now = rtmn_diff + mn_now; 1083 ev_rt_now = rtmn_diff + mn_now;
999 return 0; 1084 return 0;
1000 } 1085 }
1001 else 1086 else
1002 { 1087 {
1003 now_floor = mn_now; 1088 now_floor = mn_now;
1004 rt_now = ev_time (); 1089 ev_rt_now = ev_time ();
1005 return 1; 1090 return 1;
1006 } 1091 }
1007} 1092}
1008 1093
1009static void 1094static void
1018 { 1103 {
1019 ev_tstamp odiff = rtmn_diff; 1104 ev_tstamp odiff = rtmn_diff;
1020 1105
1021 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1106 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1022 { 1107 {
1023 rtmn_diff = rt_now - mn_now; 1108 rtmn_diff = ev_rt_now - mn_now;
1024 1109
1025 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1110 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1026 return; /* all is well */ 1111 return; /* all is well */
1027 1112
1028 rt_now = ev_time (); 1113 ev_rt_now = ev_time ();
1029 mn_now = get_clock (); 1114 mn_now = get_clock ();
1030 now_floor = mn_now; 1115 now_floor = mn_now;
1031 } 1116 }
1032 1117
1118# if EV_PERIODICS
1033 periodics_reschedule (EV_A); 1119 periodics_reschedule (EV_A);
1120# endif
1034 /* no timer adjustment, as the monotonic clock doesn't jump */ 1121 /* no timer adjustment, as the monotonic clock doesn't jump */
1035 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1122 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1036 } 1123 }
1037 } 1124 }
1038 else 1125 else
1039#endif 1126#endif
1040 { 1127 {
1041 rt_now = ev_time (); 1128 ev_rt_now = ev_time ();
1042 1129
1043 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1130 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1044 { 1131 {
1132#if EV_PERIODICS
1045 periodics_reschedule (EV_A); 1133 periodics_reschedule (EV_A);
1134#endif
1046 1135
1047 /* adjust timers. this is easy, as the offset is the same for all */ 1136 /* adjust timers. this is easy, as the offset is the same for all */
1048 for (i = 0; i < timercnt; ++i) 1137 for (i = 0; i < timercnt; ++i)
1049 ((WT)timers [i])->at += rt_now - mn_now; 1138 ((WT)timers [i])->at += ev_rt_now - mn_now;
1050 } 1139 }
1051 1140
1052 mn_now = rt_now; 1141 mn_now = ev_rt_now;
1053 } 1142 }
1054} 1143}
1055 1144
1056void 1145void
1057ev_ref (EV_P) 1146ev_ref (EV_P)
1071ev_loop (EV_P_ int flags) 1160ev_loop (EV_P_ int flags)
1072{ 1161{
1073 double block; 1162 double block;
1074 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1163 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1075 1164
1076 do 1165 while (activecnt)
1077 { 1166 {
1078 /* queue check watchers (and execute them) */ 1167 /* queue check watchers (and execute them) */
1079 if (expect_false (preparecnt)) 1168 if (expect_false (preparecnt))
1080 { 1169 {
1081 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1170 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1089 /* update fd-related kernel structures */ 1178 /* update fd-related kernel structures */
1090 fd_reify (EV_A); 1179 fd_reify (EV_A);
1091 1180
1092 /* calculate blocking time */ 1181 /* calculate blocking time */
1093 1182
1094 /* we only need this for !monotonic clockor timers, but as we basically 1183 /* we only need this for !monotonic clock or timers, but as we basically
1095 always have timers, we just calculate it always */ 1184 always have timers, we just calculate it always */
1096#if EV_USE_MONOTONIC 1185#if EV_USE_MONOTONIC
1097 if (expect_true (have_monotonic)) 1186 if (expect_true (have_monotonic))
1098 time_update_monotonic (EV_A); 1187 time_update_monotonic (EV_A);
1099 else 1188 else
1100#endif 1189#endif
1101 { 1190 {
1102 rt_now = ev_time (); 1191 ev_rt_now = ev_time ();
1103 mn_now = rt_now; 1192 mn_now = ev_rt_now;
1104 } 1193 }
1105 1194
1106 if (flags & EVLOOP_NONBLOCK || idlecnt) 1195 if (flags & EVLOOP_NONBLOCK || idlecnt)
1107 block = 0.; 1196 block = 0.;
1108 else 1197 else
1113 { 1202 {
1114 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1203 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1115 if (block > to) block = to; 1204 if (block > to) block = to;
1116 } 1205 }
1117 1206
1207#if EV_PERIODICS
1118 if (periodiccnt) 1208 if (periodiccnt)
1119 { 1209 {
1120 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1210 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1121 if (block > to) block = to; 1211 if (block > to) block = to;
1122 } 1212 }
1213#endif
1123 1214
1124 if (block < 0.) block = 0.; 1215 if (block < 0.) block = 0.;
1125 } 1216 }
1126 1217
1127 method_poll (EV_A_ block); 1218 method_poll (EV_A_ block);
1128 1219
1129 /* update rt_now, do magic */ 1220 /* update ev_rt_now, do magic */
1130 time_update (EV_A); 1221 time_update (EV_A);
1131 1222
1132 /* queue pending timers and reschedule them */ 1223 /* queue pending timers and reschedule them */
1133 timers_reify (EV_A); /* relative timers called last */ 1224 timers_reify (EV_A); /* relative timers called last */
1225#if EV_PERIODICS
1134 periodics_reify (EV_A); /* absolute timers called first */ 1226 periodics_reify (EV_A); /* absolute timers called first */
1227#endif
1135 1228
1136 /* queue idle watchers unless io or timers are pending */ 1229 /* queue idle watchers unless io or timers are pending */
1137 if (!pendingcnt) 1230 if (idlecnt && !any_pending (EV_A))
1138 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1231 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1139 1232
1140 /* queue check watchers, to be executed first */ 1233 /* queue check watchers, to be executed first */
1141 if (checkcnt) 1234 if (checkcnt)
1142 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1235 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1143 1236
1144 call_pending (EV_A); 1237 call_pending (EV_A);
1238
1239 if (loop_done)
1240 break;
1145 } 1241 }
1146 while (activecnt && !loop_done);
1147 1242
1148 if (loop_done != 2) 1243 if (loop_done != 2)
1149 loop_done = 0; 1244 loop_done = 0;
1150} 1245}
1151 1246
1230{ 1325{
1231 ev_clear_pending (EV_A_ (W)w); 1326 ev_clear_pending (EV_A_ (W)w);
1232 if (!ev_is_active (w)) 1327 if (!ev_is_active (w))
1233 return; 1328 return;
1234 1329
1330 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1331
1235 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1332 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1236 ev_stop (EV_A_ (W)w); 1333 ev_stop (EV_A_ (W)w);
1237 1334
1238 fd_change (EV_A_ w->fd); 1335 fd_change (EV_A_ w->fd);
1239} 1336}
1247 ((WT)w)->at += mn_now; 1344 ((WT)w)->at += mn_now;
1248 1345
1249 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1346 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1250 1347
1251 ev_start (EV_A_ (W)w, ++timercnt); 1348 ev_start (EV_A_ (W)w, ++timercnt);
1252 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1349 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1253 timers [timercnt - 1] = w; 1350 timers [timercnt - 1] = w;
1254 upheap ((WT *)timers, timercnt - 1); 1351 upheap ((WT *)timers, timercnt - 1);
1255 1352
1256 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1353 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1257} 1354}
1266 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1363 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1267 1364
1268 if (((W)w)->active < timercnt--) 1365 if (((W)w)->active < timercnt--)
1269 { 1366 {
1270 timers [((W)w)->active - 1] = timers [timercnt]; 1367 timers [((W)w)->active - 1] = timers [timercnt];
1271 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1368 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1272 } 1369 }
1273 1370
1274 ((WT)w)->at = w->repeat; 1371 ((WT)w)->at -= mn_now;
1275 1372
1276 ev_stop (EV_A_ (W)w); 1373 ev_stop (EV_A_ (W)w);
1277} 1374}
1278 1375
1279void 1376void
1282 if (ev_is_active (w)) 1379 if (ev_is_active (w))
1283 { 1380 {
1284 if (w->repeat) 1381 if (w->repeat)
1285 { 1382 {
1286 ((WT)w)->at = mn_now + w->repeat; 1383 ((WT)w)->at = mn_now + w->repeat;
1287 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1384 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1288 } 1385 }
1289 else 1386 else
1290 ev_timer_stop (EV_A_ w); 1387 ev_timer_stop (EV_A_ w);
1291 } 1388 }
1292 else if (w->repeat) 1389 else if (w->repeat)
1390 {
1391 w->at = w->repeat;
1293 ev_timer_start (EV_A_ w); 1392 ev_timer_start (EV_A_ w);
1393 }
1294} 1394}
1295 1395
1396#if EV_PERIODICS
1296void 1397void
1297ev_periodic_start (EV_P_ struct ev_periodic *w) 1398ev_periodic_start (EV_P_ struct ev_periodic *w)
1298{ 1399{
1299 if (ev_is_active (w)) 1400 if (ev_is_active (w))
1300 return; 1401 return;
1301 1402
1403 if (w->reschedule_cb)
1404 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1405 else if (w->interval)
1406 {
1302 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1407 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1303
1304 /* this formula differs from the one in periodic_reify because we do not always round up */ 1408 /* this formula differs from the one in periodic_reify because we do not always round up */
1305 if (w->interval)
1306 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1409 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1410 }
1307 1411
1308 ev_start (EV_A_ (W)w, ++periodiccnt); 1412 ev_start (EV_A_ (W)w, ++periodiccnt);
1309 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1413 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1310 periodics [periodiccnt - 1] = w; 1414 periodics [periodiccnt - 1] = w;
1311 upheap ((WT *)periodics, periodiccnt - 1); 1415 upheap ((WT *)periodics, periodiccnt - 1);
1312 1416
1313 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1417 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1314} 1418}
1323 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1427 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1324 1428
1325 if (((W)w)->active < periodiccnt--) 1429 if (((W)w)->active < periodiccnt--)
1326 { 1430 {
1327 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1431 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1328 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1432 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1329 } 1433 }
1330 1434
1331 ev_stop (EV_A_ (W)w); 1435 ev_stop (EV_A_ (W)w);
1332} 1436}
1333 1437
1334void 1438void
1439ev_periodic_again (EV_P_ struct ev_periodic *w)
1440{
1441 /* TODO: use adjustheap and recalculation */
1442 ev_periodic_stop (EV_A_ w);
1443 ev_periodic_start (EV_A_ w);
1444}
1445#endif
1446
1447void
1335ev_idle_start (EV_P_ struct ev_idle *w) 1448ev_idle_start (EV_P_ struct ev_idle *w)
1336{ 1449{
1337 if (ev_is_active (w)) 1450 if (ev_is_active (w))
1338 return; 1451 return;
1339 1452
1340 ev_start (EV_A_ (W)w, ++idlecnt); 1453 ev_start (EV_A_ (W)w, ++idlecnt);
1341 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void)); 1454 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1342 idles [idlecnt - 1] = w; 1455 idles [idlecnt - 1] = w;
1343} 1456}
1344 1457
1345void 1458void
1346ev_idle_stop (EV_P_ struct ev_idle *w) 1459ev_idle_stop (EV_P_ struct ev_idle *w)
1347{ 1460{
1348 ev_clear_pending (EV_A_ (W)w); 1461 ev_clear_pending (EV_A_ (W)w);
1349 if (ev_is_active (w)) 1462 if (!ev_is_active (w))
1350 return; 1463 return;
1351 1464
1352 idles [((W)w)->active - 1] = idles [--idlecnt]; 1465 idles [((W)w)->active - 1] = idles [--idlecnt];
1353 ev_stop (EV_A_ (W)w); 1466 ev_stop (EV_A_ (W)w);
1354} 1467}
1358{ 1471{
1359 if (ev_is_active (w)) 1472 if (ev_is_active (w))
1360 return; 1473 return;
1361 1474
1362 ev_start (EV_A_ (W)w, ++preparecnt); 1475 ev_start (EV_A_ (W)w, ++preparecnt);
1363 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void)); 1476 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1364 prepares [preparecnt - 1] = w; 1477 prepares [preparecnt - 1] = w;
1365} 1478}
1366 1479
1367void 1480void
1368ev_prepare_stop (EV_P_ struct ev_prepare *w) 1481ev_prepare_stop (EV_P_ struct ev_prepare *w)
1369{ 1482{
1370 ev_clear_pending (EV_A_ (W)w); 1483 ev_clear_pending (EV_A_ (W)w);
1371 if (ev_is_active (w)) 1484 if (!ev_is_active (w))
1372 return; 1485 return;
1373 1486
1374 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1487 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1375 ev_stop (EV_A_ (W)w); 1488 ev_stop (EV_A_ (W)w);
1376} 1489}
1380{ 1493{
1381 if (ev_is_active (w)) 1494 if (ev_is_active (w))
1382 return; 1495 return;
1383 1496
1384 ev_start (EV_A_ (W)w, ++checkcnt); 1497 ev_start (EV_A_ (W)w, ++checkcnt);
1385 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void)); 1498 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1386 checks [checkcnt - 1] = w; 1499 checks [checkcnt - 1] = w;
1387} 1500}
1388 1501
1389void 1502void
1390ev_check_stop (EV_P_ struct ev_check *w) 1503ev_check_stop (EV_P_ struct ev_check *w)
1391{ 1504{
1392 ev_clear_pending (EV_A_ (W)w); 1505 ev_clear_pending (EV_A_ (W)w);
1393 if (ev_is_active (w)) 1506 if (!ev_is_active (w))
1394 return; 1507 return;
1395 1508
1396 checks [((W)w)->active - 1] = checks [--checkcnt]; 1509 checks [((W)w)->active - 1] = checks [--checkcnt];
1397 ev_stop (EV_A_ (W)w); 1510 ev_stop (EV_A_ (W)w);
1398} 1511}
1416 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 1529 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1417 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1530 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1418 1531
1419 if (!((WL)w)->next) 1532 if (!((WL)w)->next)
1420 { 1533 {
1421#if WIN32 1534#if _WIN32
1422 signal (w->signum, sighandler); 1535 signal (w->signum, sighandler);
1423#else 1536#else
1424 struct sigaction sa; 1537 struct sigaction sa;
1425 sa.sa_handler = sighandler; 1538 sa.sa_handler = sighandler;
1426 sigfillset (&sa.sa_mask); 1539 sigfillset (&sa.sa_mask);
1459 1572
1460void 1573void
1461ev_child_stop (EV_P_ struct ev_child *w) 1574ev_child_stop (EV_P_ struct ev_child *w)
1462{ 1575{
1463 ev_clear_pending (EV_A_ (W)w); 1576 ev_clear_pending (EV_A_ (W)w);
1464 if (ev_is_active (w)) 1577 if (!ev_is_active (w))
1465 return; 1578 return;
1466 1579
1467 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1580 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1468 ev_stop (EV_A_ (W)w); 1581 ev_stop (EV_A_ (W)w);
1469} 1582}
1513 else 1626 else
1514 { 1627 {
1515 once->cb = cb; 1628 once->cb = cb;
1516 once->arg = arg; 1629 once->arg = arg;
1517 1630
1518 ev_watcher_init (&once->io, once_cb_io); 1631 ev_init (&once->io, once_cb_io);
1519 if (fd >= 0) 1632 if (fd >= 0)
1520 { 1633 {
1521 ev_io_set (&once->io, fd, events); 1634 ev_io_set (&once->io, fd, events);
1522 ev_io_start (EV_A_ &once->io); 1635 ev_io_start (EV_A_ &once->io);
1523 } 1636 }
1524 1637
1525 ev_watcher_init (&once->to, once_cb_to); 1638 ev_init (&once->to, once_cb_to);
1526 if (timeout >= 0.) 1639 if (timeout >= 0.)
1527 { 1640 {
1528 ev_timer_set (&once->to, timeout, 0.); 1641 ev_timer_set (&once->to, timeout, 0.);
1529 ev_timer_start (EV_A_ &once->to); 1642 ev_timer_start (EV_A_ &once->to);
1530 } 1643 }
1531 } 1644 }
1532} 1645}
1533 1646
1647#ifdef __cplusplus
1648}
1649#endif
1650

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines