ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.75 by root, Tue Nov 6 19:29:20 2007 UTC vs.
Revision 1.132 by root, Fri Nov 23 10:36:30 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
46# else
47# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0
49# endif
50# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0
52# endif
37# endif 53# endif
38 54
55# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 56# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 57# define EV_USE_SELECT 1
58# else
59# define EV_USE_SELECT 0
60# endif
41# endif 61# endif
42 62
63# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 64# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 65# define EV_USE_POLL 1
66# else
67# define EV_USE_POLL 0
68# endif
45# endif 69# endif
46 70
71# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 72# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 73# define EV_USE_EPOLL 1
74# else
75# define EV_USE_EPOLL 0
76# endif
49# endif 77# endif
50 78
79# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 81# define EV_USE_KQUEUE 1
82# else
83# define EV_USE_KQUEUE 0
84# endif
85# endif
86
87# ifndef EV_USE_PORT
88# if HAVE_PORT_H && HAVE_PORT_CREATE
89# define EV_USE_PORT 1
90# else
91# define EV_USE_PORT 0
92# endif
53# endif 93# endif
54 94
55#endif 95#endif
56 96
57#include <math.h> 97#include <math.h>
66#include <sys/types.h> 106#include <sys/types.h>
67#include <time.h> 107#include <time.h>
68 108
69#include <signal.h> 109#include <signal.h>
70 110
71#ifndef WIN32 111#ifndef _WIN32
72# include <unistd.h> 112# include <unistd.h>
73# include <sys/time.h> 113# include <sys/time.h>
74# include <sys/wait.h> 114# include <sys/wait.h>
115#else
116# define WIN32_LEAN_AND_MEAN
117# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1
75#endif 120# endif
121#endif
122
76/**/ 123/**/
77 124
78#ifndef EV_USE_MONOTONIC 125#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 126# define EV_USE_MONOTONIC 0
127#endif
128
129#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0
80#endif 131#endif
81 132
82#ifndef EV_USE_SELECT 133#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 134# define EV_USE_SELECT 1
84#endif 135#endif
85 136
86#ifndef EV_USE_POLL 137#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 138# ifdef _WIN32
139# define EV_USE_POLL 0
140# else
141# define EV_USE_POLL 1
142# endif
88#endif 143#endif
89 144
90#ifndef EV_USE_EPOLL 145#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0 146# define EV_USE_EPOLL 0
92#endif 147#endif
93 148
94#ifndef EV_USE_KQUEUE 149#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 150# define EV_USE_KQUEUE 0
96#endif 151#endif
97 152
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME 153#ifndef EV_USE_PORT
109# define EV_USE_REALTIME 1 154# define EV_USE_PORT 0
110#endif 155#endif
111 156
112/**/ 157/**/
113 158
114#ifndef CLOCK_MONOTONIC 159#ifndef CLOCK_MONOTONIC
119#ifndef CLOCK_REALTIME 164#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 165# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 166# define EV_USE_REALTIME 0
122#endif 167#endif
123 168
169#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h>
171#endif
172
124/**/ 173/**/
125 174
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
130 179
180#ifdef EV_H
181# include EV_H
182#else
131#include "ev.h" 183# include "ev.h"
184#endif
132 185
133#if __GNUC__ >= 3 186#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 187# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 188# define inline static inline
136#else 189#else
137# define expect(expr,value) (expr) 190# define expect(expr,value) (expr)
138# define inline static 191# define inline static
139#endif 192#endif
140 193
142#define expect_true(expr) expect ((expr) != 0, 1) 195#define expect_true(expr) expect ((expr) != 0, 1)
143 196
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 198#define ABSPRI(w) ((w)->priority - EV_MINPRI)
146 199
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */
202
147typedef struct ev_watcher *W; 203typedef struct ev_watcher *W;
148typedef struct ev_watcher_list *WL; 204typedef struct ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 205typedef struct ev_watcher_time *WT;
150 206
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 208
209#ifdef _WIN32
153#include "ev_win32.c" 210# include "ev_win32.c"
211#endif
154 212
155/*****************************************************************************/ 213/*****************************************************************************/
156 214
157static void (*syserr_cb)(const char *msg); 215static void (*syserr_cb)(const char *msg);
158 216
205typedef struct 263typedef struct
206{ 264{
207 WL head; 265 WL head;
208 unsigned char events; 266 unsigned char events;
209 unsigned char reify; 267 unsigned char reify;
268#if EV_SELECT_IS_WINSOCKET
269 SOCKET handle;
270#endif
210} ANFD; 271} ANFD;
211 272
212typedef struct 273typedef struct
213{ 274{
214 W w; 275 W w;
215 int events; 276 int events;
216} ANPENDING; 277} ANPENDING;
217 278
218#if EV_MULTIPLICITY 279#if EV_MULTIPLICITY
219 280
220struct ev_loop 281 struct ev_loop
221{ 282 {
283 ev_tstamp ev_rt_now;
284 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 285 #define VAR(name,decl) decl;
223# include "ev_vars.h" 286 #include "ev_vars.h"
224};
225# undef VAR 287 #undef VAR
288 };
226# include "ev_wrap.h" 289 #include "ev_wrap.h"
290
291 static struct ev_loop default_loop_struct;
292 struct ev_loop *ev_default_loop_ptr;
227 293
228#else 294#else
229 295
296 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 297 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 298 #include "ev_vars.h"
232# undef VAR 299 #undef VAR
300
301 static int ev_default_loop_ptr;
233 302
234#endif 303#endif
235 304
236/*****************************************************************************/ 305/*****************************************************************************/
237 306
238inline ev_tstamp 307ev_tstamp
239ev_time (void) 308ev_time (void)
240{ 309{
241#if EV_USE_REALTIME 310#if EV_USE_REALTIME
242 struct timespec ts; 311 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 312 clock_gettime (CLOCK_REALTIME, &ts);
262#endif 331#endif
263 332
264 return ev_time (); 333 return ev_time ();
265} 334}
266 335
336#if EV_MULTIPLICITY
267ev_tstamp 337ev_tstamp
268ev_now (EV_P) 338ev_now (EV_P)
269{ 339{
270 return rt_now; 340 return ev_rt_now;
271} 341}
342#endif
272 343
273#define array_roundsize(type,n) ((n) | 4 & ~3) 344#define array_roundsize(type,n) (((n) | 4) & ~3)
274 345
275#define array_needsize(type,base,cur,cnt,init) \ 346#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 347 if (expect_false ((cnt) > cur)) \
277 { \ 348 { \
278 int newcnt = cur; \ 349 int newcnt = cur; \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 364 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 367 }
297 368
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302
303#define array_free(stem, idx) \ 369#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
305 371
306/*****************************************************************************/ 372/*****************************************************************************/
307 373
316 382
317 ++base; 383 ++base;
318 } 384 }
319} 385}
320 386
321static void 387void
322event (EV_P_ W w, int events) 388ev_feed_event (EV_P_ void *w, int revents)
323{ 389{
324 if (w->pending) 390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
325 { 393 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
327 return; 395 return;
328 } 396 }
329 397
330 w->pending = ++pendingcnt [ABSPRI (w)]; 398 w_->pending = ++pendingcnt [ABSPRI (w_)];
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
332 pendings [ABSPRI (w)][w->pending - 1].w = w; 400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
333 pendings [ABSPRI (w)][w->pending - 1].events = events; 401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
334} 402}
335 403
336static void 404static void
337queue_events (EV_P_ W *events, int eventcnt, int type) 405queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 406{
339 int i; 407 int i;
340 408
341 for (i = 0; i < eventcnt; ++i) 409 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 410 ev_feed_event (EV_A_ events [i], type);
343} 411}
344 412
345static void 413inline void
346fd_event (EV_P_ int fd, int events) 414fd_event (EV_P_ int fd, int revents)
347{ 415{
348 ANFD *anfd = anfds + fd; 416 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 417 struct ev_io *w;
350 418
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
352 { 420 {
353 int ev = w->events & events; 421 int ev = w->events & revents;
354 422
355 if (ev) 423 if (ev)
356 event (EV_A_ (W)w, ev); 424 ev_feed_event (EV_A_ (W)w, ev);
357 } 425 }
426}
427
428void
429ev_feed_fd_event (EV_P_ int fd, int revents)
430{
431 fd_event (EV_A_ fd, revents);
358} 432}
359 433
360/*****************************************************************************/ 434/*****************************************************************************/
361 435
362static void 436inline void
363fd_reify (EV_P) 437fd_reify (EV_P)
364{ 438{
365 int i; 439 int i;
366 440
367 for (i = 0; i < fdchangecnt; ++i) 441 for (i = 0; i < fdchangecnt; ++i)
373 int events = 0; 447 int events = 0;
374 448
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
376 events |= w->events; 450 events |= w->events;
377 451
452#if EV_SELECT_IS_WINSOCKET
453 if (events)
454 {
455 unsigned long argp;
456 anfd->handle = _get_osfhandle (fd);
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
458 }
459#endif
460
378 anfd->reify = 0; 461 anfd->reify = 0;
379 462
380 method_modify (EV_A_ fd, anfd->events, events); 463 backend_modify (EV_A_ fd, anfd->events, events);
381 anfd->events = events; 464 anfd->events = events;
382 } 465 }
383 466
384 fdchangecnt = 0; 467 fdchangecnt = 0;
385} 468}
386 469
387static void 470static void
388fd_change (EV_P_ int fd) 471fd_change (EV_P_ int fd)
389{ 472{
390 if (anfds [fd].reify) 473 if (expect_false (anfds [fd].reify))
391 return; 474 return;
392 475
393 anfds [fd].reify = 1; 476 anfds [fd].reify = 1;
394 477
395 ++fdchangecnt; 478 ++fdchangecnt;
396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
397 fdchanges [fdchangecnt - 1] = fd; 480 fdchanges [fdchangecnt - 1] = fd;
398} 481}
399 482
400static void 483static void
401fd_kill (EV_P_ int fd) 484fd_kill (EV_P_ int fd)
403 struct ev_io *w; 486 struct ev_io *w;
404 487
405 while ((w = (struct ev_io *)anfds [fd].head)) 488 while ((w = (struct ev_io *)anfds [fd].head))
406 { 489 {
407 ev_io_stop (EV_A_ w); 490 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 492 }
410} 493}
411 494
412static int 495inline int
413fd_valid (int fd) 496fd_valid (int fd)
414{ 497{
415#ifdef WIN32 498#ifdef _WIN32
416 return !!win32_get_osfhandle (fd); 499 return _get_osfhandle (fd) != -1;
417#else 500#else
418 return fcntl (fd, F_GETFD) != -1; 501 return fcntl (fd, F_GETFD) != -1;
419#endif 502#endif
420} 503}
421 504
443 fd_kill (EV_A_ fd); 526 fd_kill (EV_A_ fd);
444 return; 527 return;
445 } 528 }
446} 529}
447 530
448/* usually called after fork if method needs to re-arm all fds from scratch */ 531/* usually called after fork if backend needs to re-arm all fds from scratch */
449static void 532static void
450fd_rearm_all (EV_P) 533fd_rearm_all (EV_P)
451{ 534{
452 int fd; 535 int fd;
453 536
501 584
502 heap [k] = w; 585 heap [k] = w;
503 ((W)heap [k])->active = k + 1; 586 ((W)heap [k])->active = k + 1;
504} 587}
505 588
589inline void
590adjustheap (WT *heap, int N, int k)
591{
592 upheap (heap, k);
593 downheap (heap, N, k);
594}
595
506/*****************************************************************************/ 596/*****************************************************************************/
507 597
508typedef struct 598typedef struct
509{ 599{
510 WL head; 600 WL head;
531} 621}
532 622
533static void 623static void
534sighandler (int signum) 624sighandler (int signum)
535{ 625{
536#if WIN32 626#if _WIN32
537 signal (signum, sighandler); 627 signal (signum, sighandler);
538#endif 628#endif
539 629
540 signals [signum - 1].gotsig = 1; 630 signals [signum - 1].gotsig = 1;
541 631
542 if (!gotsig) 632 if (!gotsig)
543 { 633 {
544 int old_errno = errno; 634 int old_errno = errno;
545 gotsig = 1; 635 gotsig = 1;
546#ifdef WIN32
547 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
548#else
549 write (sigpipe [1], &signum, 1); 636 write (sigpipe [1], &signum, 1);
550#endif
551 errno = old_errno; 637 errno = old_errno;
552 } 638 }
553} 639}
554 640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
555static void 661static void
556sigcb (EV_P_ struct ev_io *iow, int revents) 662sigcb (EV_P_ struct ev_io *iow, int revents)
557{ 663{
558 WL w;
559 int signum; 664 int signum;
560 665
561#ifdef WIN32
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
563#else
564 read (sigpipe [0], &revents, 1); 666 read (sigpipe [0], &revents, 1);
565#endif
566 gotsig = 0; 667 gotsig = 0;
567 668
568 for (signum = signalmax; signum--; ) 669 for (signum = signalmax; signum--; )
569 if (signals [signum].gotsig) 670 if (signals [signum].gotsig)
570 { 671 ev_feed_signal_event (EV_A_ signum + 1);
571 signals [signum].gotsig = 0; 672}
572 673
573 for (w = signals [signum].head; w; w = w->next) 674static void
574 event (EV_A_ (W)w, EV_SIGNAL); 675fd_intern (int fd)
575 } 676{
677#ifdef _WIN32
678 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
680#else
681 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif
576} 684}
577 685
578static void 686static void
579siginit (EV_P) 687siginit (EV_P)
580{ 688{
581#ifndef WIN32 689 fd_intern (sigpipe [0]);
582 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 690 fd_intern (sigpipe [1]);
583 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
584
585 /* rather than sort out wether we really need nb, set it */
586 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
587 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
588#endif
589 691
590 ev_io_set (&sigev, sigpipe [0], EV_READ); 692 ev_io_set (&sigev, sigpipe [0], EV_READ);
591 ev_io_start (EV_A_ &sigev); 693 ev_io_start (EV_A_ &sigev);
592 ev_unref (EV_A); /* child watcher should not keep loop alive */ 694 ev_unref (EV_A); /* child watcher should not keep loop alive */
593} 695}
594 696
595/*****************************************************************************/ 697/*****************************************************************************/
596 698
597static struct ev_child *childs [PID_HASHSIZE]; 699static struct ev_child *childs [PID_HASHSIZE];
598 700
599#ifndef WIN32 701#ifndef _WIN32
600 702
601static struct ev_signal childev; 703static struct ev_signal childev;
602 704
603#ifndef WCONTINUED 705#ifndef WCONTINUED
604# define WCONTINUED 0 706# define WCONTINUED 0
613 if (w->pid == pid || !w->pid) 715 if (w->pid == pid || !w->pid)
614 { 716 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid; 718 w->rpid = pid;
617 w->rstatus = status; 719 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD); 720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
619 } 721 }
620} 722}
621 723
622static void 724static void
623childcb (EV_P_ struct ev_signal *sw, int revents) 725childcb (EV_P_ struct ev_signal *sw, int revents)
625 int pid, status; 727 int pid, status;
626 728
627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
628 { 730 {
629 /* make sure we are called again until all childs have been reaped */ 731 /* make sure we are called again until all childs have been reaped */
732 /* we need to do it this way so that the callback gets called before we continue */
630 event (EV_A_ (W)sw, EV_SIGNAL); 733 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
631 734
632 child_reap (EV_A_ sw, pid, pid, status); 735 child_reap (EV_A_ sw, pid, pid, status);
633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 736 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
634 } 737 }
635} 738}
636 739
637#endif 740#endif
638 741
639/*****************************************************************************/ 742/*****************************************************************************/
640 743
744#if EV_USE_PORT
745# include "ev_port.c"
746#endif
641#if EV_USE_KQUEUE 747#if EV_USE_KQUEUE
642# include "ev_kqueue.c" 748# include "ev_kqueue.c"
643#endif 749#endif
644#if EV_USE_EPOLL 750#if EV_USE_EPOLL
645# include "ev_epoll.c" 751# include "ev_epoll.c"
665 771
666/* return true if we are running with elevated privileges and should ignore env variables */ 772/* return true if we are running with elevated privileges and should ignore env variables */
667static int 773static int
668enable_secure (void) 774enable_secure (void)
669{ 775{
670#ifdef WIN32 776#ifdef _WIN32
671 return 0; 777 return 0;
672#else 778#else
673 return getuid () != geteuid () 779 return getuid () != geteuid ()
674 || getgid () != getegid (); 780 || getgid () != getegid ();
675#endif 781#endif
676} 782}
677 783
678int 784unsigned int
679ev_method (EV_P) 785ev_supported_backends (void)
680{ 786{
681 return method; 787 unsigned int flags = 0;
682}
683 788
684static void 789 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
685loop_init (EV_P_ int methods) 790 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
791 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
792 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
793 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
794
795 return flags;
796}
797
798unsigned int
799ev_recommended_backends (void)
686{ 800{
687 if (!method) 801 unsigned int flags = ev_supported_backends ();
802
803#ifndef __NetBSD__
804 /* kqueue is borked on everything but netbsd apparently */
805 /* it usually doesn't work correctly on anything but sockets and pipes */
806 flags &= ~EVBACKEND_KQUEUE;
807#endif
808#ifdef __APPLE__
809 // flags &= ~EVBACKEND_KQUEUE; for documentation
810 flags &= ~EVBACKEND_POLL;
811#endif
812
813 return flags;
814}
815
816unsigned int
817ev_backend (EV_P)
818{
819 return backend;
820}
821
822static void
823loop_init (EV_P_ unsigned int flags)
824{
825 if (!backend)
688 { 826 {
689#if EV_USE_MONOTONIC 827#if EV_USE_MONOTONIC
690 { 828 {
691 struct timespec ts; 829 struct timespec ts;
692 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 830 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
693 have_monotonic = 1; 831 have_monotonic = 1;
694 } 832 }
695#endif 833#endif
696 834
697 rt_now = ev_time (); 835 ev_rt_now = ev_time ();
698 mn_now = get_clock (); 836 mn_now = get_clock ();
699 now_floor = mn_now; 837 now_floor = mn_now;
700 rtmn_diff = rt_now - mn_now; 838 rtmn_diff = ev_rt_now - mn_now;
701 839
702 if (methods == EVMETHOD_AUTO) 840 if (!(flags & EVFLAG_NOENV)
703 if (!enable_secure () && getenv ("LIBEV_METHODS")) 841 && !enable_secure ()
842 && getenv ("LIBEV_FLAGS"))
704 methods = atoi (getenv ("LIBEV_METHODS")); 843 flags = atoi (getenv ("LIBEV_FLAGS"));
705 else
706 methods = EVMETHOD_ANY;
707 844
708 method = 0; 845 if (!(flags & 0x0000ffffUL))
709#if EV_USE_WIN32 846 flags |= ev_recommended_backends ();
710 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 847
848 backend = 0;
849#if EV_USE_PORT
850 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
711#endif 851#endif
712#if EV_USE_KQUEUE 852#if EV_USE_KQUEUE
713 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 853 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
714#endif 854#endif
715#if EV_USE_EPOLL 855#if EV_USE_EPOLL
716 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 856 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
717#endif 857#endif
718#if EV_USE_POLL 858#if EV_USE_POLL
719 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 859 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
720#endif 860#endif
721#if EV_USE_SELECT 861#if EV_USE_SELECT
722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 862 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
723#endif 863#endif
724 864
725 ev_watcher_init (&sigev, sigcb); 865 ev_init (&sigev, sigcb);
726 ev_set_priority (&sigev, EV_MAXPRI); 866 ev_set_priority (&sigev, EV_MAXPRI);
727 } 867 }
728} 868}
729 869
730void 870static void
731loop_destroy (EV_P) 871loop_destroy (EV_P)
732{ 872{
733 int i; 873 int i;
734 874
735#if EV_USE_WIN32 875#if EV_USE_PORT
736 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 876 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
737#endif 877#endif
738#if EV_USE_KQUEUE 878#if EV_USE_KQUEUE
739 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 879 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
740#endif 880#endif
741#if EV_USE_EPOLL 881#if EV_USE_EPOLL
742 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 882 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
743#endif 883#endif
744#if EV_USE_POLL 884#if EV_USE_POLL
745 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 885 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
746#endif 886#endif
747#if EV_USE_SELECT 887#if EV_USE_SELECT
748 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 888 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
749#endif 889#endif
750 890
751 for (i = NUMPRI; i--; ) 891 for (i = NUMPRI; i--; )
752 array_free (pending, [i]); 892 array_free (pending, [i]);
753 893
754 /* have to use the microsoft-never-gets-it-right macro */ 894 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange); 895 array_free (fdchange, EMPTY0);
756 array_free_microshit (timer); 896 array_free (timer, EMPTY0);
757 array_free_microshit (periodic); 897#if EV_PERIODICS
758 array_free_microshit (idle); 898 array_free (periodic, EMPTY0);
759 array_free_microshit (prepare); 899#endif
760 array_free_microshit (check); 900 array_free (idle, EMPTY0);
901 array_free (prepare, EMPTY0);
902 array_free (check, EMPTY0);
761 903
762 method = 0; 904 backend = 0;
763} 905}
764 906
765static void 907static void
766loop_fork (EV_P) 908loop_fork (EV_P)
767{ 909{
910#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
912#endif
913#if EV_USE_KQUEUE
914 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
915#endif
768#if EV_USE_EPOLL 916#if EV_USE_EPOLL
769 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 917 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
770#endif
771#if EV_USE_KQUEUE
772 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
773#endif 918#endif
774 919
775 if (ev_is_active (&sigev)) 920 if (ev_is_active (&sigev))
776 { 921 {
777 /* default loop */ 922 /* default loop */
790 postfork = 0; 935 postfork = 0;
791} 936}
792 937
793#if EV_MULTIPLICITY 938#if EV_MULTIPLICITY
794struct ev_loop * 939struct ev_loop *
795ev_loop_new (int methods) 940ev_loop_new (unsigned int flags)
796{ 941{
797 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 942 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
798 943
799 memset (loop, 0, sizeof (struct ev_loop)); 944 memset (loop, 0, sizeof (struct ev_loop));
800 945
801 loop_init (EV_A_ methods); 946 loop_init (EV_A_ flags);
802 947
803 if (ev_method (EV_A)) 948 if (ev_backend (EV_A))
804 return loop; 949 return loop;
805 950
806 return 0; 951 return 0;
807} 952}
808 953
820} 965}
821 966
822#endif 967#endif
823 968
824#if EV_MULTIPLICITY 969#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop * 970struct ev_loop *
971ev_default_loop_init (unsigned int flags)
829#else 972#else
830static int default_loop;
831
832int 973int
974ev_default_loop (unsigned int flags)
833#endif 975#endif
834ev_default_loop (int methods)
835{ 976{
836 if (sigpipe [0] == sigpipe [1]) 977 if (sigpipe [0] == sigpipe [1])
837 if (pipe (sigpipe)) 978 if (pipe (sigpipe))
838 return 0; 979 return 0;
839 980
840 if (!default_loop) 981 if (!ev_default_loop_ptr)
841 { 982 {
842#if EV_MULTIPLICITY 983#if EV_MULTIPLICITY
843 struct ev_loop *loop = default_loop = &default_loop_struct; 984 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
844#else 985#else
845 default_loop = 1; 986 ev_default_loop_ptr = 1;
846#endif 987#endif
847 988
848 loop_init (EV_A_ methods); 989 loop_init (EV_A_ flags);
849 990
850 if (ev_method (EV_A)) 991 if (ev_backend (EV_A))
851 { 992 {
852 siginit (EV_A); 993 siginit (EV_A);
853 994
854#ifndef WIN32 995#ifndef _WIN32
855 ev_signal_init (&childev, childcb, SIGCHLD); 996 ev_signal_init (&childev, childcb, SIGCHLD);
856 ev_set_priority (&childev, EV_MAXPRI); 997 ev_set_priority (&childev, EV_MAXPRI);
857 ev_signal_start (EV_A_ &childev); 998 ev_signal_start (EV_A_ &childev);
858 ev_unref (EV_A); /* child watcher should not keep loop alive */ 999 ev_unref (EV_A); /* child watcher should not keep loop alive */
859#endif 1000#endif
860 } 1001 }
861 else 1002 else
862 default_loop = 0; 1003 ev_default_loop_ptr = 0;
863 } 1004 }
864 1005
865 return default_loop; 1006 return ev_default_loop_ptr;
866} 1007}
867 1008
868void 1009void
869ev_default_destroy (void) 1010ev_default_destroy (void)
870{ 1011{
871#if EV_MULTIPLICITY 1012#if EV_MULTIPLICITY
872 struct ev_loop *loop = default_loop; 1013 struct ev_loop *loop = ev_default_loop_ptr;
873#endif 1014#endif
874 1015
875#ifndef WIN32 1016#ifndef _WIN32
876 ev_ref (EV_A); /* child watcher */ 1017 ev_ref (EV_A); /* child watcher */
877 ev_signal_stop (EV_A_ &childev); 1018 ev_signal_stop (EV_A_ &childev);
878#endif 1019#endif
879 1020
880 ev_ref (EV_A); /* signal watcher */ 1021 ev_ref (EV_A); /* signal watcher */
888 1029
889void 1030void
890ev_default_fork (void) 1031ev_default_fork (void)
891{ 1032{
892#if EV_MULTIPLICITY 1033#if EV_MULTIPLICITY
893 struct ev_loop *loop = default_loop; 1034 struct ev_loop *loop = ev_default_loop_ptr;
894#endif 1035#endif
895 1036
896 if (method) 1037 if (backend)
897 postfork = 1; 1038 postfork = 1;
898} 1039}
899 1040
900/*****************************************************************************/ 1041/*****************************************************************************/
901 1042
902static void 1043static int
1044any_pending (EV_P)
1045{
1046 int pri;
1047
1048 for (pri = NUMPRI; pri--; )
1049 if (pendingcnt [pri])
1050 return 1;
1051
1052 return 0;
1053}
1054
1055inline void
903call_pending (EV_P) 1056call_pending (EV_P)
904{ 1057{
905 int pri; 1058 int pri;
906 1059
907 for (pri = NUMPRI; pri--; ) 1060 for (pri = NUMPRI; pri--; )
908 while (pendingcnt [pri]) 1061 while (pendingcnt [pri])
909 { 1062 {
910 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1063 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
911 1064
912 if (p->w) 1065 if (expect_true (p->w))
913 { 1066 {
914 p->w->pending = 0; 1067 p->w->pending = 0;
915 p->w->cb (EV_A_ p->w, p->events); 1068 EV_CB_INVOKE (p->w, p->events);
916 } 1069 }
917 } 1070 }
918} 1071}
919 1072
920static void 1073inline void
921timers_reify (EV_P) 1074timers_reify (EV_P)
922{ 1075{
923 while (timercnt && ((WT)timers [0])->at <= mn_now) 1076 while (timercnt && ((WT)timers [0])->at <= mn_now)
924 { 1077 {
925 struct ev_timer *w = timers [0]; 1078 struct ev_timer *w = timers [0];
928 1081
929 /* first reschedule or stop timer */ 1082 /* first reschedule or stop timer */
930 if (w->repeat) 1083 if (w->repeat)
931 { 1084 {
932 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1085 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1086
933 ((WT)w)->at = mn_now + w->repeat; 1087 ((WT)w)->at += w->repeat;
1088 if (((WT)w)->at < mn_now)
1089 ((WT)w)->at = mn_now;
1090
934 downheap ((WT *)timers, timercnt, 0); 1091 downheap ((WT *)timers, timercnt, 0);
935 } 1092 }
936 else 1093 else
937 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1094 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
938 1095
939 event (EV_A_ (W)w, EV_TIMEOUT); 1096 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
940 } 1097 }
941} 1098}
942 1099
943static void 1100#if EV_PERIODICS
1101inline void
944periodics_reify (EV_P) 1102periodics_reify (EV_P)
945{ 1103{
946 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1104 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
947 { 1105 {
948 struct ev_periodic *w = periodics [0]; 1106 struct ev_periodic *w = periodics [0];
949 1107
950 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1108 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
951 1109
952 /* first reschedule or stop timer */ 1110 /* first reschedule or stop timer */
953 if (w->interval) 1111 if (w->reschedule_cb)
954 { 1112 {
1113 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1114 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1115 downheap ((WT *)periodics, periodiccnt, 0);
1116 }
1117 else if (w->interval)
1118 {
955 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1119 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
956 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1120 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
957 downheap ((WT *)periodics, periodiccnt, 0); 1121 downheap ((WT *)periodics, periodiccnt, 0);
958 } 1122 }
959 else 1123 else
960 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1124 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
961 1125
962 event (EV_A_ (W)w, EV_PERIODIC); 1126 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
963 } 1127 }
964} 1128}
965 1129
966static void 1130static void
967periodics_reschedule (EV_P) 1131periodics_reschedule (EV_P)
971 /* adjust periodics after time jump */ 1135 /* adjust periodics after time jump */
972 for (i = 0; i < periodiccnt; ++i) 1136 for (i = 0; i < periodiccnt; ++i)
973 { 1137 {
974 struct ev_periodic *w = periodics [i]; 1138 struct ev_periodic *w = periodics [i];
975 1139
1140 if (w->reschedule_cb)
1141 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
976 if (w->interval) 1142 else if (w->interval)
977 {
978 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1143 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
979
980 if (fabs (diff) >= 1e-4)
981 {
982 ev_periodic_stop (EV_A_ w);
983 ev_periodic_start (EV_A_ w);
984
985 i = 0; /* restart loop, inefficient, but time jumps should be rare */
986 }
987 }
988 } 1144 }
1145
1146 /* now rebuild the heap */
1147 for (i = periodiccnt >> 1; i--; )
1148 downheap ((WT *)periodics, periodiccnt, i);
989} 1149}
1150#endif
990 1151
991inline int 1152inline int
992time_update_monotonic (EV_P) 1153time_update_monotonic (EV_P)
993{ 1154{
994 mn_now = get_clock (); 1155 mn_now = get_clock ();
995 1156
996 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1157 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
997 { 1158 {
998 rt_now = rtmn_diff + mn_now; 1159 ev_rt_now = rtmn_diff + mn_now;
999 return 0; 1160 return 0;
1000 } 1161 }
1001 else 1162 else
1002 { 1163 {
1003 now_floor = mn_now; 1164 now_floor = mn_now;
1004 rt_now = ev_time (); 1165 ev_rt_now = ev_time ();
1005 return 1; 1166 return 1;
1006 } 1167 }
1007} 1168}
1008 1169
1009static void 1170inline void
1010time_update (EV_P) 1171time_update (EV_P)
1011{ 1172{
1012 int i; 1173 int i;
1013 1174
1014#if EV_USE_MONOTONIC 1175#if EV_USE_MONOTONIC
1018 { 1179 {
1019 ev_tstamp odiff = rtmn_diff; 1180 ev_tstamp odiff = rtmn_diff;
1020 1181
1021 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1182 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1022 { 1183 {
1023 rtmn_diff = rt_now - mn_now; 1184 rtmn_diff = ev_rt_now - mn_now;
1024 1185
1025 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1186 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1026 return; /* all is well */ 1187 return; /* all is well */
1027 1188
1028 rt_now = ev_time (); 1189 ev_rt_now = ev_time ();
1029 mn_now = get_clock (); 1190 mn_now = get_clock ();
1030 now_floor = mn_now; 1191 now_floor = mn_now;
1031 } 1192 }
1032 1193
1194# if EV_PERIODICS
1033 periodics_reschedule (EV_A); 1195 periodics_reschedule (EV_A);
1196# endif
1034 /* no timer adjustment, as the monotonic clock doesn't jump */ 1197 /* no timer adjustment, as the monotonic clock doesn't jump */
1035 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1198 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1036 } 1199 }
1037 } 1200 }
1038 else 1201 else
1039#endif 1202#endif
1040 { 1203 {
1041 rt_now = ev_time (); 1204 ev_rt_now = ev_time ();
1042 1205
1043 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1206 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1044 { 1207 {
1208#if EV_PERIODICS
1045 periodics_reschedule (EV_A); 1209 periodics_reschedule (EV_A);
1210#endif
1046 1211
1047 /* adjust timers. this is easy, as the offset is the same for all */ 1212 /* adjust timers. this is easy, as the offset is the same for all */
1048 for (i = 0; i < timercnt; ++i) 1213 for (i = 0; i < timercnt; ++i)
1049 ((WT)timers [i])->at += rt_now - mn_now; 1214 ((WT)timers [i])->at += ev_rt_now - mn_now;
1050 } 1215 }
1051 1216
1052 mn_now = rt_now; 1217 mn_now = ev_rt_now;
1053 } 1218 }
1054} 1219}
1055 1220
1056void 1221void
1057ev_ref (EV_P) 1222ev_ref (EV_P)
1071ev_loop (EV_P_ int flags) 1236ev_loop (EV_P_ int flags)
1072{ 1237{
1073 double block; 1238 double block;
1074 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1239 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1075 1240
1076 do 1241 while (activecnt)
1077 { 1242 {
1078 /* queue check watchers (and execute them) */ 1243 /* queue check watchers (and execute them) */
1079 if (expect_false (preparecnt)) 1244 if (expect_false (preparecnt))
1080 { 1245 {
1081 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1246 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1089 /* update fd-related kernel structures */ 1254 /* update fd-related kernel structures */
1090 fd_reify (EV_A); 1255 fd_reify (EV_A);
1091 1256
1092 /* calculate blocking time */ 1257 /* calculate blocking time */
1093 1258
1094 /* we only need this for !monotonic clockor timers, but as we basically 1259 /* we only need this for !monotonic clock or timers, but as we basically
1095 always have timers, we just calculate it always */ 1260 always have timers, we just calculate it always */
1096#if EV_USE_MONOTONIC 1261#if EV_USE_MONOTONIC
1097 if (expect_true (have_monotonic)) 1262 if (expect_true (have_monotonic))
1098 time_update_monotonic (EV_A); 1263 time_update_monotonic (EV_A);
1099 else 1264 else
1100#endif 1265#endif
1101 { 1266 {
1102 rt_now = ev_time (); 1267 ev_rt_now = ev_time ();
1103 mn_now = rt_now; 1268 mn_now = ev_rt_now;
1104 } 1269 }
1105 1270
1106 if (flags & EVLOOP_NONBLOCK || idlecnt) 1271 if (flags & EVLOOP_NONBLOCK || idlecnt)
1107 block = 0.; 1272 block = 0.;
1108 else 1273 else
1109 { 1274 {
1110 block = MAX_BLOCKTIME; 1275 block = MAX_BLOCKTIME;
1111 1276
1112 if (timercnt) 1277 if (timercnt)
1113 { 1278 {
1114 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1279 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1115 if (block > to) block = to; 1280 if (block > to) block = to;
1116 } 1281 }
1117 1282
1283#if EV_PERIODICS
1118 if (periodiccnt) 1284 if (periodiccnt)
1119 { 1285 {
1120 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1286 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1121 if (block > to) block = to; 1287 if (block > to) block = to;
1122 } 1288 }
1289#endif
1123 1290
1124 if (block < 0.) block = 0.; 1291 if (expect_false (block < 0.)) block = 0.;
1125 } 1292 }
1126 1293
1127 method_poll (EV_A_ block); 1294 backend_poll (EV_A_ block);
1128 1295
1129 /* update rt_now, do magic */ 1296 /* update ev_rt_now, do magic */
1130 time_update (EV_A); 1297 time_update (EV_A);
1131 1298
1132 /* queue pending timers and reschedule them */ 1299 /* queue pending timers and reschedule them */
1133 timers_reify (EV_A); /* relative timers called last */ 1300 timers_reify (EV_A); /* relative timers called last */
1301#if EV_PERIODICS
1134 periodics_reify (EV_A); /* absolute timers called first */ 1302 periodics_reify (EV_A); /* absolute timers called first */
1303#endif
1135 1304
1136 /* queue idle watchers unless io or timers are pending */ 1305 /* queue idle watchers unless io or timers are pending */
1137 if (!pendingcnt) 1306 if (idlecnt && !any_pending (EV_A))
1138 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1307 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1139 1308
1140 /* queue check watchers, to be executed first */ 1309 /* queue check watchers, to be executed first */
1141 if (checkcnt) 1310 if (expect_false (checkcnt))
1142 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1311 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1143 1312
1144 call_pending (EV_A); 1313 call_pending (EV_A);
1314
1315 if (expect_false (loop_done))
1316 break;
1145 } 1317 }
1146 while (activecnt && !loop_done);
1147 1318
1148 if (loop_done != 2) 1319 if (loop_done != 2)
1149 loop_done = 0; 1320 loop_done = 0;
1150} 1321}
1151 1322
1211void 1382void
1212ev_io_start (EV_P_ struct ev_io *w) 1383ev_io_start (EV_P_ struct ev_io *w)
1213{ 1384{
1214 int fd = w->fd; 1385 int fd = w->fd;
1215 1386
1216 if (ev_is_active (w)) 1387 if (expect_false (ev_is_active (w)))
1217 return; 1388 return;
1218 1389
1219 assert (("ev_io_start called with negative fd", fd >= 0)); 1390 assert (("ev_io_start called with negative fd", fd >= 0));
1220 1391
1221 ev_start (EV_A_ (W)w, 1); 1392 ev_start (EV_A_ (W)w, 1);
1227 1398
1228void 1399void
1229ev_io_stop (EV_P_ struct ev_io *w) 1400ev_io_stop (EV_P_ struct ev_io *w)
1230{ 1401{
1231 ev_clear_pending (EV_A_ (W)w); 1402 ev_clear_pending (EV_A_ (W)w);
1232 if (!ev_is_active (w)) 1403 if (expect_false (!ev_is_active (w)))
1233 return; 1404 return;
1405
1406 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1234 1407
1235 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1408 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1236 ev_stop (EV_A_ (W)w); 1409 ev_stop (EV_A_ (W)w);
1237 1410
1238 fd_change (EV_A_ w->fd); 1411 fd_change (EV_A_ w->fd);
1239} 1412}
1240 1413
1241void 1414void
1242ev_timer_start (EV_P_ struct ev_timer *w) 1415ev_timer_start (EV_P_ struct ev_timer *w)
1243{ 1416{
1244 if (ev_is_active (w)) 1417 if (expect_false (ev_is_active (w)))
1245 return; 1418 return;
1246 1419
1247 ((WT)w)->at += mn_now; 1420 ((WT)w)->at += mn_now;
1248 1421
1249 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1422 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1250 1423
1251 ev_start (EV_A_ (W)w, ++timercnt); 1424 ev_start (EV_A_ (W)w, ++timercnt);
1252 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1425 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1253 timers [timercnt - 1] = w; 1426 timers [timercnt - 1] = w;
1254 upheap ((WT *)timers, timercnt - 1); 1427 upheap ((WT *)timers, timercnt - 1);
1255 1428
1256 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1429 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1257} 1430}
1258 1431
1259void 1432void
1260ev_timer_stop (EV_P_ struct ev_timer *w) 1433ev_timer_stop (EV_P_ struct ev_timer *w)
1261{ 1434{
1262 ev_clear_pending (EV_A_ (W)w); 1435 ev_clear_pending (EV_A_ (W)w);
1263 if (!ev_is_active (w)) 1436 if (expect_false (!ev_is_active (w)))
1264 return; 1437 return;
1265 1438
1266 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1439 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1267 1440
1268 if (((W)w)->active < timercnt--) 1441 if (expect_true (((W)w)->active < timercnt--))
1269 { 1442 {
1270 timers [((W)w)->active - 1] = timers [timercnt]; 1443 timers [((W)w)->active - 1] = timers [timercnt];
1271 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1444 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1272 } 1445 }
1273 1446
1274 ((WT)w)->at = w->repeat; 1447 ((WT)w)->at -= mn_now;
1275 1448
1276 ev_stop (EV_A_ (W)w); 1449 ev_stop (EV_A_ (W)w);
1277} 1450}
1278 1451
1279void 1452void
1282 if (ev_is_active (w)) 1455 if (ev_is_active (w))
1283 { 1456 {
1284 if (w->repeat) 1457 if (w->repeat)
1285 { 1458 {
1286 ((WT)w)->at = mn_now + w->repeat; 1459 ((WT)w)->at = mn_now + w->repeat;
1287 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1460 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1288 } 1461 }
1289 else 1462 else
1290 ev_timer_stop (EV_A_ w); 1463 ev_timer_stop (EV_A_ w);
1291 } 1464 }
1292 else if (w->repeat) 1465 else if (w->repeat)
1466 {
1467 w->at = w->repeat;
1293 ev_timer_start (EV_A_ w); 1468 ev_timer_start (EV_A_ w);
1469 }
1294} 1470}
1295 1471
1472#if EV_PERIODICS
1296void 1473void
1297ev_periodic_start (EV_P_ struct ev_periodic *w) 1474ev_periodic_start (EV_P_ struct ev_periodic *w)
1298{ 1475{
1299 if (ev_is_active (w)) 1476 if (expect_false (ev_is_active (w)))
1300 return; 1477 return;
1301 1478
1479 if (w->reschedule_cb)
1480 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1481 else if (w->interval)
1482 {
1302 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1483 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1303
1304 /* this formula differs from the one in periodic_reify because we do not always round up */ 1484 /* this formula differs from the one in periodic_reify because we do not always round up */
1305 if (w->interval)
1306 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1485 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1486 }
1307 1487
1308 ev_start (EV_A_ (W)w, ++periodiccnt); 1488 ev_start (EV_A_ (W)w, ++periodiccnt);
1309 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1489 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1310 periodics [periodiccnt - 1] = w; 1490 periodics [periodiccnt - 1] = w;
1311 upheap ((WT *)periodics, periodiccnt - 1); 1491 upheap ((WT *)periodics, periodiccnt - 1);
1312 1492
1313 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1493 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1314} 1494}
1315 1495
1316void 1496void
1317ev_periodic_stop (EV_P_ struct ev_periodic *w) 1497ev_periodic_stop (EV_P_ struct ev_periodic *w)
1318{ 1498{
1319 ev_clear_pending (EV_A_ (W)w); 1499 ev_clear_pending (EV_A_ (W)w);
1320 if (!ev_is_active (w)) 1500 if (expect_false (!ev_is_active (w)))
1321 return; 1501 return;
1322 1502
1323 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1503 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1324 1504
1325 if (((W)w)->active < periodiccnt--) 1505 if (expect_true (((W)w)->active < periodiccnt--))
1326 { 1506 {
1327 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1507 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1328 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1508 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1329 } 1509 }
1330 1510
1331 ev_stop (EV_A_ (W)w); 1511 ev_stop (EV_A_ (W)w);
1332} 1512}
1333 1513
1334void 1514void
1515ev_periodic_again (EV_P_ struct ev_periodic *w)
1516{
1517 /* TODO: use adjustheap and recalculation */
1518 ev_periodic_stop (EV_A_ w);
1519 ev_periodic_start (EV_A_ w);
1520}
1521#endif
1522
1523void
1335ev_idle_start (EV_P_ struct ev_idle *w) 1524ev_idle_start (EV_P_ struct ev_idle *w)
1336{ 1525{
1337 if (ev_is_active (w)) 1526 if (expect_false (ev_is_active (w)))
1338 return; 1527 return;
1339 1528
1340 ev_start (EV_A_ (W)w, ++idlecnt); 1529 ev_start (EV_A_ (W)w, ++idlecnt);
1341 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void)); 1530 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1342 idles [idlecnt - 1] = w; 1531 idles [idlecnt - 1] = w;
1343} 1532}
1344 1533
1345void 1534void
1346ev_idle_stop (EV_P_ struct ev_idle *w) 1535ev_idle_stop (EV_P_ struct ev_idle *w)
1347{ 1536{
1348 ev_clear_pending (EV_A_ (W)w); 1537 ev_clear_pending (EV_A_ (W)w);
1349 if (ev_is_active (w)) 1538 if (expect_false (!ev_is_active (w)))
1350 return; 1539 return;
1351 1540
1352 idles [((W)w)->active - 1] = idles [--idlecnt]; 1541 idles [((W)w)->active - 1] = idles [--idlecnt];
1353 ev_stop (EV_A_ (W)w); 1542 ev_stop (EV_A_ (W)w);
1354} 1543}
1355 1544
1356void 1545void
1357ev_prepare_start (EV_P_ struct ev_prepare *w) 1546ev_prepare_start (EV_P_ struct ev_prepare *w)
1358{ 1547{
1359 if (ev_is_active (w)) 1548 if (expect_false (ev_is_active (w)))
1360 return; 1549 return;
1361 1550
1362 ev_start (EV_A_ (W)w, ++preparecnt); 1551 ev_start (EV_A_ (W)w, ++preparecnt);
1363 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void)); 1552 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1364 prepares [preparecnt - 1] = w; 1553 prepares [preparecnt - 1] = w;
1365} 1554}
1366 1555
1367void 1556void
1368ev_prepare_stop (EV_P_ struct ev_prepare *w) 1557ev_prepare_stop (EV_P_ struct ev_prepare *w)
1369{ 1558{
1370 ev_clear_pending (EV_A_ (W)w); 1559 ev_clear_pending (EV_A_ (W)w);
1371 if (ev_is_active (w)) 1560 if (expect_false (!ev_is_active (w)))
1372 return; 1561 return;
1373 1562
1374 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1563 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1375 ev_stop (EV_A_ (W)w); 1564 ev_stop (EV_A_ (W)w);
1376} 1565}
1377 1566
1378void 1567void
1379ev_check_start (EV_P_ struct ev_check *w) 1568ev_check_start (EV_P_ struct ev_check *w)
1380{ 1569{
1381 if (ev_is_active (w)) 1570 if (expect_false (ev_is_active (w)))
1382 return; 1571 return;
1383 1572
1384 ev_start (EV_A_ (W)w, ++checkcnt); 1573 ev_start (EV_A_ (W)w, ++checkcnt);
1385 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void)); 1574 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1386 checks [checkcnt - 1] = w; 1575 checks [checkcnt - 1] = w;
1387} 1576}
1388 1577
1389void 1578void
1390ev_check_stop (EV_P_ struct ev_check *w) 1579ev_check_stop (EV_P_ struct ev_check *w)
1391{ 1580{
1392 ev_clear_pending (EV_A_ (W)w); 1581 ev_clear_pending (EV_A_ (W)w);
1393 if (ev_is_active (w)) 1582 if (expect_false (!ev_is_active (w)))
1394 return; 1583 return;
1395 1584
1396 checks [((W)w)->active - 1] = checks [--checkcnt]; 1585 checks [((W)w)->active - 1] = checks [--checkcnt];
1397 ev_stop (EV_A_ (W)w); 1586 ev_stop (EV_A_ (W)w);
1398} 1587}
1403 1592
1404void 1593void
1405ev_signal_start (EV_P_ struct ev_signal *w) 1594ev_signal_start (EV_P_ struct ev_signal *w)
1406{ 1595{
1407#if EV_MULTIPLICITY 1596#if EV_MULTIPLICITY
1408 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1597 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1409#endif 1598#endif
1410 if (ev_is_active (w)) 1599 if (expect_false (ev_is_active (w)))
1411 return; 1600 return;
1412 1601
1413 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1602 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1414 1603
1415 ev_start (EV_A_ (W)w, 1); 1604 ev_start (EV_A_ (W)w, 1);
1416 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 1605 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1417 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1606 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1418 1607
1419 if (!((WL)w)->next) 1608 if (!((WL)w)->next)
1420 { 1609 {
1421#if WIN32 1610#if _WIN32
1422 signal (w->signum, sighandler); 1611 signal (w->signum, sighandler);
1423#else 1612#else
1424 struct sigaction sa; 1613 struct sigaction sa;
1425 sa.sa_handler = sighandler; 1614 sa.sa_handler = sighandler;
1426 sigfillset (&sa.sa_mask); 1615 sigfillset (&sa.sa_mask);
1432 1621
1433void 1622void
1434ev_signal_stop (EV_P_ struct ev_signal *w) 1623ev_signal_stop (EV_P_ struct ev_signal *w)
1435{ 1624{
1436 ev_clear_pending (EV_A_ (W)w); 1625 ev_clear_pending (EV_A_ (W)w);
1437 if (!ev_is_active (w)) 1626 if (expect_false (!ev_is_active (w)))
1438 return; 1627 return;
1439 1628
1440 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1629 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1441 ev_stop (EV_A_ (W)w); 1630 ev_stop (EV_A_ (W)w);
1442 1631
1446 1635
1447void 1636void
1448ev_child_start (EV_P_ struct ev_child *w) 1637ev_child_start (EV_P_ struct ev_child *w)
1449{ 1638{
1450#if EV_MULTIPLICITY 1639#if EV_MULTIPLICITY
1451 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1640 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1452#endif 1641#endif
1453 if (ev_is_active (w)) 1642 if (expect_false (ev_is_active (w)))
1454 return; 1643 return;
1455 1644
1456 ev_start (EV_A_ (W)w, 1); 1645 ev_start (EV_A_ (W)w, 1);
1457 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1646 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1458} 1647}
1459 1648
1460void 1649void
1461ev_child_stop (EV_P_ struct ev_child *w) 1650ev_child_stop (EV_P_ struct ev_child *w)
1462{ 1651{
1463 ev_clear_pending (EV_A_ (W)w); 1652 ev_clear_pending (EV_A_ (W)w);
1464 if (ev_is_active (w)) 1653 if (expect_false (!ev_is_active (w)))
1465 return; 1654 return;
1466 1655
1467 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1656 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1468 ev_stop (EV_A_ (W)w); 1657 ev_stop (EV_A_ (W)w);
1469} 1658}
1506void 1695void
1507ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1696ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1508{ 1697{
1509 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 1698 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1510 1699
1511 if (!once) 1700 if (expect_false (!once))
1701 {
1512 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1702 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1513 else 1703 return;
1514 { 1704 }
1705
1515 once->cb = cb; 1706 once->cb = cb;
1516 once->arg = arg; 1707 once->arg = arg;
1517 1708
1518 ev_watcher_init (&once->io, once_cb_io); 1709 ev_init (&once->io, once_cb_io);
1519 if (fd >= 0) 1710 if (fd >= 0)
1520 { 1711 {
1521 ev_io_set (&once->io, fd, events); 1712 ev_io_set (&once->io, fd, events);
1522 ev_io_start (EV_A_ &once->io); 1713 ev_io_start (EV_A_ &once->io);
1523 } 1714 }
1524 1715
1525 ev_watcher_init (&once->to, once_cb_to); 1716 ev_init (&once->to, once_cb_to);
1526 if (timeout >= 0.) 1717 if (timeout >= 0.)
1527 { 1718 {
1528 ev_timer_set (&once->to, timeout, 0.); 1719 ev_timer_set (&once->to, timeout, 0.);
1529 ev_timer_start (EV_A_ &once->to); 1720 ev_timer_start (EV_A_ &once->to);
1530 }
1531 } 1721 }
1532} 1722}
1533 1723
1724#ifdef __cplusplus
1725}
1726#endif
1727

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines