ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.75 by root, Tue Nov 6 19:29:20 2007 UTC vs.
Revision 1.194 by root, Sat Dec 22 07:03:31 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 59# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 61# define EV_USE_NANOSLEEP 1
62# else
63# define EV_USE_NANOSLEEP 0
64# endif
41# endif 65# endif
42 66
43# if HAVE_POLL && HAVE_POLL_H 67# ifndef EV_USE_SELECT
68# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif
45# endif 73# endif
46 74
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_POLL 1
78# else
79# define EV_USE_POLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1
86# else
87# define EV_USE_EPOLL 0
88# endif
89# endif
90
91# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif
97# endif
98
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1
102# else
103# define EV_USE_PORT 0
104# endif
105# endif
106
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1
110# else
111# define EV_USE_INOTIFY 0
112# endif
53# endif 113# endif
54 114
55#endif 115#endif
56 116
57#include <math.h> 117#include <math.h>
66#include <sys/types.h> 126#include <sys/types.h>
67#include <time.h> 127#include <time.h>
68 128
69#include <signal.h> 129#include <signal.h>
70 130
131#ifdef EV_H
132# include EV_H
133#else
134# include "ev.h"
135#endif
136
71#ifndef WIN32 137#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 138# include <sys/time.h>
74# include <sys/wait.h> 139# include <sys/wait.h>
140# include <unistd.h>
141#else
142# define WIN32_LEAN_AND_MEAN
143# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1
75#endif 146# endif
147#endif
148
76/**/ 149/**/
77 150
78#ifndef EV_USE_MONOTONIC 151#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 152# define EV_USE_MONOTONIC 0
153#endif
154
155#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0
157#endif
158
159#ifndef EV_USE_NANOSLEEP
160# define EV_USE_NANOSLEEP 0
80#endif 161#endif
81 162
82#ifndef EV_USE_SELECT 163#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 164# define EV_USE_SELECT 1
84#endif 165#endif
85 166
86#ifndef EV_USE_POLL 167#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 168# ifdef _WIN32
169# define EV_USE_POLL 0
170# else
171# define EV_USE_POLL 1
172# endif
88#endif 173#endif
89 174
90#ifndef EV_USE_EPOLL 175#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0 176# define EV_USE_EPOLL 0
92#endif 177#endif
93 178
94#ifndef EV_USE_KQUEUE 179#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 180# define EV_USE_KQUEUE 0
96#endif 181#endif
97 182
183#ifndef EV_USE_PORT
184# define EV_USE_PORT 0
185#endif
186
98#ifndef EV_USE_WIN32 187#ifndef EV_USE_INOTIFY
99# ifdef WIN32 188# define EV_USE_INOTIFY 0
100# define EV_USE_WIN32 0 /* it does not exist, use select */ 189#endif
101# undef EV_USE_SELECT 190
102# define EV_USE_SELECT 1 191#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1
103# else 194# else
104# define EV_USE_WIN32 0 195# define EV_PID_HASHSIZE 16
105# endif 196# endif
106#endif 197#endif
107 198
108#ifndef EV_USE_REALTIME 199#ifndef EV_INOTIFY_HASHSIZE
109# define EV_USE_REALTIME 1 200# if EV_MINIMAL
201# define EV_INOTIFY_HASHSIZE 1
202# else
203# define EV_INOTIFY_HASHSIZE 16
204# endif
110#endif 205#endif
111 206
112/**/ 207/**/
113 208
114#ifndef CLOCK_MONOTONIC 209#ifndef CLOCK_MONOTONIC
119#ifndef CLOCK_REALTIME 214#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 215# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 216# define EV_USE_REALTIME 0
122#endif 217#endif
123 218
219#if !EV_STAT_ENABLE
220# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0
222#endif
223
224#if !EV_USE_NANOSLEEP
225# ifndef _WIN32
226# include <sys/select.h>
227# endif
228#endif
229
230#if EV_USE_INOTIFY
231# include <sys/inotify.h>
232#endif
233
234#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h>
236#endif
237
124/**/ 238/**/
125 239
240/*
241 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
130 253
131#include "ev.h"
132
133#if __GNUC__ >= 3 254#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 255# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 256# define noinline __attribute__ ((noinline))
136#else 257#else
137# define expect(expr,value) (expr) 258# define expect(expr,value) (expr)
138# define inline static 259# define noinline
260# if __STDC_VERSION__ < 199901L
261# define inline
262# endif
139#endif 263#endif
140 264
141#define expect_false(expr) expect ((expr) != 0, 0) 265#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 266#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline
268
269#if EV_MINIMAL
270# define inline_speed static noinline
271#else
272# define inline_speed static inline
273#endif
143 274
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
146 277
278#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */
280
147typedef struct ev_watcher *W; 281typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 282typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 283typedef ev_watcher_time *WT;
150 284
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 288
289#ifdef _WIN32
153#include "ev_win32.c" 290# include "ev_win32.c"
291#endif
154 292
155/*****************************************************************************/ 293/*****************************************************************************/
156 294
157static void (*syserr_cb)(const char *msg); 295static void (*syserr_cb)(const char *msg);
158 296
297void
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 298ev_set_syserr_cb (void (*cb)(const char *msg))
160{ 299{
161 syserr_cb = cb; 300 syserr_cb = cb;
162} 301}
163 302
164static void 303static void noinline
165syserr (const char *msg) 304syserr (const char *msg)
166{ 305{
167 if (!msg) 306 if (!msg)
168 msg = "(libev) system error"; 307 msg = "(libev) system error";
169 308
176 } 315 }
177} 316}
178 317
179static void *(*alloc)(void *ptr, long size); 318static void *(*alloc)(void *ptr, long size);
180 319
320void
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 321ev_set_allocator (void *(*cb)(void *ptr, long size))
182{ 322{
183 alloc = cb; 323 alloc = cb;
184} 324}
185 325
186static void * 326inline_speed void *
187ev_realloc (void *ptr, long size) 327ev_realloc (void *ptr, long size)
188{ 328{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190 330
191 if (!ptr && size) 331 if (!ptr && size)
205typedef struct 345typedef struct
206{ 346{
207 WL head; 347 WL head;
208 unsigned char events; 348 unsigned char events;
209 unsigned char reify; 349 unsigned char reify;
350#if EV_SELECT_IS_WINSOCKET
351 SOCKET handle;
352#endif
210} ANFD; 353} ANFD;
211 354
212typedef struct 355typedef struct
213{ 356{
214 W w; 357 W w;
215 int events; 358 int events;
216} ANPENDING; 359} ANPENDING;
217 360
361#if EV_USE_INOTIFY
362typedef struct
363{
364 WL head;
365} ANFS;
366#endif
367
218#if EV_MULTIPLICITY 368#if EV_MULTIPLICITY
219 369
220struct ev_loop 370 struct ev_loop
221{ 371 {
372 ev_tstamp ev_rt_now;
373 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 374 #define VAR(name,decl) decl;
223# include "ev_vars.h" 375 #include "ev_vars.h"
224};
225# undef VAR 376 #undef VAR
377 };
226# include "ev_wrap.h" 378 #include "ev_wrap.h"
379
380 static struct ev_loop default_loop_struct;
381 struct ev_loop *ev_default_loop_ptr;
227 382
228#else 383#else
229 384
385 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 386 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 387 #include "ev_vars.h"
232# undef VAR 388 #undef VAR
389
390 static int ev_default_loop_ptr;
233 391
234#endif 392#endif
235 393
236/*****************************************************************************/ 394/*****************************************************************************/
237 395
238inline ev_tstamp 396ev_tstamp
239ev_time (void) 397ev_time (void)
240{ 398{
241#if EV_USE_REALTIME 399#if EV_USE_REALTIME
242 struct timespec ts; 400 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 401 clock_gettime (CLOCK_REALTIME, &ts);
247 gettimeofday (&tv, 0); 405 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 406 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif 407#endif
250} 408}
251 409
252inline ev_tstamp 410ev_tstamp inline_size
253get_clock (void) 411get_clock (void)
254{ 412{
255#if EV_USE_MONOTONIC 413#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 414 if (expect_true (have_monotonic))
257 { 415 {
262#endif 420#endif
263 421
264 return ev_time (); 422 return ev_time ();
265} 423}
266 424
425#if EV_MULTIPLICITY
267ev_tstamp 426ev_tstamp
268ev_now (EV_P) 427ev_now (EV_P)
269{ 428{
270 return rt_now; 429 return ev_rt_now;
271} 430}
431#endif
272 432
273#define array_roundsize(type,n) ((n) | 4 & ~3) 433void
434ev_sleep (ev_tstamp delay)
435{
436 if (delay > 0.)
437 {
438#if EV_USE_NANOSLEEP
439 struct timespec ts;
440
441 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443
444 nanosleep (&ts, 0);
445#elif defined(_WIN32)
446 Sleep (delay * 1e3);
447#else
448 struct timeval tv;
449
450 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452
453 select (0, 0, 0, 0, &tv);
454#endif
455 }
456}
457
458/*****************************************************************************/
459
460int inline_size
461array_nextsize (int elem, int cur, int cnt)
462{
463 int ncur = cur + 1;
464
465 do
466 ncur <<= 1;
467 while (cnt > ncur);
468
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096)
471 {
472 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
474 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem;
476 }
477
478 return ncur;
479}
480
481static noinline void *
482array_realloc (int elem, void *base, int *cur, int cnt)
483{
484 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur);
486}
274 487
275#define array_needsize(type,base,cur,cnt,init) \ 488#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 489 if (expect_false ((cnt) > (cur))) \
277 { \ 490 { \
278 int newcnt = cur; \ 491 int ocur_ = (cur); \
279 do \ 492 (base) = (type *)array_realloc \
280 { \ 493 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 494 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 495 }
289 496
497#if 0
290#define array_slim(type,stem) \ 498#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 499 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 500 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 501 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 502 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 504 }
297 505#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 506
303#define array_free(stem, idx) \ 507#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
305 509
306/*****************************************************************************/ 510/*****************************************************************************/
307 511
308static void 512void noinline
513ev_feed_event (EV_P_ void *w, int revents)
514{
515 W w_ = (W)w;
516 int pri = ABSPRI (w_);
517
518 if (expect_false (w_->pending))
519 pendings [pri][w_->pending - 1].events |= revents;
520 else
521 {
522 w_->pending = ++pendingcnt [pri];
523 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
524 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents;
526 }
527}
528
529void inline_speed
530queue_events (EV_P_ W *events, int eventcnt, int type)
531{
532 int i;
533
534 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type);
536}
537
538/*****************************************************************************/
539
540void inline_size
309anfds_init (ANFD *base, int count) 541anfds_init (ANFD *base, int count)
310{ 542{
311 while (count--) 543 while (count--)
312 { 544 {
313 base->head = 0; 545 base->head = 0;
316 548
317 ++base; 549 ++base;
318 } 550 }
319} 551}
320 552
321static void 553void inline_speed
322event (EV_P_ W w, int events)
323{
324 if (w->pending)
325 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events;
327 return;
328 }
329
330 w->pending = ++pendingcnt [ABSPRI (w)];
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w;
333 pendings [ABSPRI (w)][w->pending - 1].events = events;
334}
335
336static void
337queue_events (EV_P_ W *events, int eventcnt, int type)
338{
339 int i;
340
341 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type);
343}
344
345static void
346fd_event (EV_P_ int fd, int events) 554fd_event (EV_P_ int fd, int revents)
347{ 555{
348 ANFD *anfd = anfds + fd; 556 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 557 ev_io *w;
350 558
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 559 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
352 { 560 {
353 int ev = w->events & events; 561 int ev = w->events & revents;
354 562
355 if (ev) 563 if (ev)
356 event (EV_A_ (W)w, ev); 564 ev_feed_event (EV_A_ (W)w, ev);
357 } 565 }
358} 566}
359 567
360/*****************************************************************************/ 568void
569ev_feed_fd_event (EV_P_ int fd, int revents)
570{
571 if (fd >= 0 && fd < anfdmax)
572 fd_event (EV_A_ fd, revents);
573}
361 574
362static void 575void inline_size
363fd_reify (EV_P) 576fd_reify (EV_P)
364{ 577{
365 int i; 578 int i;
366 579
367 for (i = 0; i < fdchangecnt; ++i) 580 for (i = 0; i < fdchangecnt; ++i)
368 { 581 {
369 int fd = fdchanges [i]; 582 int fd = fdchanges [i];
370 ANFD *anfd = anfds + fd; 583 ANFD *anfd = anfds + fd;
371 struct ev_io *w; 584 ev_io *w;
372 585
373 int events = 0; 586 unsigned char events = 0;
374 587
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 588 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
376 events |= w->events; 589 events |= (unsigned char)w->events;
377 590
591#if EV_SELECT_IS_WINSOCKET
592 if (events)
593 {
594 unsigned long argp;
595 anfd->handle = _get_osfhandle (fd);
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
597 }
598#endif
599
600 {
601 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify;
603
378 anfd->reify = 0; 604 anfd->reify = 0;
379
380 method_modify (EV_A_ fd, anfd->events, events);
381 anfd->events = events; 605 anfd->events = events;
606
607 if (o_events != events || o_reify & EV_IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events);
609 }
382 } 610 }
383 611
384 fdchangecnt = 0; 612 fdchangecnt = 0;
385} 613}
386 614
387static void 615void inline_size
388fd_change (EV_P_ int fd) 616fd_change (EV_P_ int fd, int flags)
389{ 617{
390 if (anfds [fd].reify) 618 unsigned char reify = anfds [fd].reify;
391 return;
392
393 anfds [fd].reify = 1; 619 anfds [fd].reify |= flags;
394 620
621 if (expect_true (!reify))
622 {
395 ++fdchangecnt; 623 ++fdchangecnt;
396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
397 fdchanges [fdchangecnt - 1] = fd; 625 fdchanges [fdchangecnt - 1] = fd;
626 }
398} 627}
399 628
400static void 629void inline_speed
401fd_kill (EV_P_ int fd) 630fd_kill (EV_P_ int fd)
402{ 631{
403 struct ev_io *w; 632 ev_io *w;
404 633
405 while ((w = (struct ev_io *)anfds [fd].head)) 634 while ((w = (ev_io *)anfds [fd].head))
406 { 635 {
407 ev_io_stop (EV_A_ w); 636 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 638 }
410} 639}
411 640
412static int 641int inline_size
413fd_valid (int fd) 642fd_valid (int fd)
414{ 643{
415#ifdef WIN32 644#ifdef _WIN32
416 return !!win32_get_osfhandle (fd); 645 return _get_osfhandle (fd) != -1;
417#else 646#else
418 return fcntl (fd, F_GETFD) != -1; 647 return fcntl (fd, F_GETFD) != -1;
419#endif 648#endif
420} 649}
421 650
422/* called on EBADF to verify fds */ 651/* called on EBADF to verify fds */
423static void 652static void noinline
424fd_ebadf (EV_P) 653fd_ebadf (EV_P)
425{ 654{
426 int fd; 655 int fd;
427 656
428 for (fd = 0; fd < anfdmax; ++fd) 657 for (fd = 0; fd < anfdmax; ++fd)
430 if (!fd_valid (fd) == -1 && errno == EBADF) 659 if (!fd_valid (fd) == -1 && errno == EBADF)
431 fd_kill (EV_A_ fd); 660 fd_kill (EV_A_ fd);
432} 661}
433 662
434/* called on ENOMEM in select/poll to kill some fds and retry */ 663/* called on ENOMEM in select/poll to kill some fds and retry */
435static void 664static void noinline
436fd_enomem (EV_P) 665fd_enomem (EV_P)
437{ 666{
438 int fd; 667 int fd;
439 668
440 for (fd = anfdmax; fd--; ) 669 for (fd = anfdmax; fd--; )
443 fd_kill (EV_A_ fd); 672 fd_kill (EV_A_ fd);
444 return; 673 return;
445 } 674 }
446} 675}
447 676
448/* usually called after fork if method needs to re-arm all fds from scratch */ 677/* usually called after fork if backend needs to re-arm all fds from scratch */
449static void 678static void noinline
450fd_rearm_all (EV_P) 679fd_rearm_all (EV_P)
451{ 680{
452 int fd; 681 int fd;
453 682
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd) 683 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events) 684 if (anfds [fd].events)
457 { 685 {
458 anfds [fd].events = 0; 686 anfds [fd].events = 0;
459 fd_change (EV_A_ fd); 687 fd_change (EV_A_ fd, EV_IOFDSET | 1);
460 } 688 }
461} 689}
462 690
463/*****************************************************************************/ 691/*****************************************************************************/
464 692
465static void 693void inline_speed
466upheap (WT *heap, int k) 694upheap (WT *heap, int k)
467{ 695{
468 WT w = heap [k]; 696 WT w = heap [k];
469 697
470 while (k && heap [k >> 1]->at > w->at) 698 while (k)
471 { 699 {
700 int p = (k - 1) >> 1;
701
702 if (heap [p]->at <= w->at)
703 break;
704
472 heap [k] = heap [k >> 1]; 705 heap [k] = heap [p];
473 ((W)heap [k])->active = k + 1; 706 ((W)heap [k])->active = k + 1;
474 k >>= 1; 707 k = p;
475 } 708 }
476 709
477 heap [k] = w; 710 heap [k] = w;
478 ((W)heap [k])->active = k + 1; 711 ((W)heap [k])->active = k + 1;
479
480} 712}
481 713
482static void 714void inline_speed
483downheap (WT *heap, int N, int k) 715downheap (WT *heap, int N, int k)
484{ 716{
485 WT w = heap [k]; 717 WT w = heap [k];
486 718
487 while (k < (N >> 1)) 719 for (;;)
488 { 720 {
489 int j = k << 1; 721 int c = (k << 1) + 1;
490 722
491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 723 if (c >= N)
492 ++j;
493
494 if (w->at <= heap [j]->at)
495 break; 724 break;
496 725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
497 heap [k] = heap [j]; 732 heap [k] = heap [c];
498 ((W)heap [k])->active = k + 1; 733 ((W)heap [k])->active = k + 1;
734
499 k = j; 735 k = c;
500 } 736 }
501 737
502 heap [k] = w; 738 heap [k] = w;
503 ((W)heap [k])->active = k + 1; 739 ((W)heap [k])->active = k + 1;
740}
741
742void inline_size
743adjustheap (WT *heap, int N, int k)
744{
745 upheap (heap, k);
746 downheap (heap, N, k);
504} 747}
505 748
506/*****************************************************************************/ 749/*****************************************************************************/
507 750
508typedef struct 751typedef struct
514static ANSIG *signals; 757static ANSIG *signals;
515static int signalmax; 758static int signalmax;
516 759
517static int sigpipe [2]; 760static int sigpipe [2];
518static sig_atomic_t volatile gotsig; 761static sig_atomic_t volatile gotsig;
519static struct ev_io sigev; 762static ev_io sigev;
520 763
521static void 764void inline_size
522signals_init (ANSIG *base, int count) 765signals_init (ANSIG *base, int count)
523{ 766{
524 while (count--) 767 while (count--)
525 { 768 {
526 base->head = 0; 769 base->head = 0;
531} 774}
532 775
533static void 776static void
534sighandler (int signum) 777sighandler (int signum)
535{ 778{
536#if WIN32 779#if _WIN32
537 signal (signum, sighandler); 780 signal (signum, sighandler);
538#endif 781#endif
539 782
540 signals [signum - 1].gotsig = 1; 783 signals [signum - 1].gotsig = 1;
541 784
542 if (!gotsig) 785 if (!gotsig)
543 { 786 {
544 int old_errno = errno; 787 int old_errno = errno;
545 gotsig = 1; 788 gotsig = 1;
546#ifdef WIN32
547 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
548#else
549 write (sigpipe [1], &signum, 1); 789 write (sigpipe [1], &signum, 1);
550#endif
551 errno = old_errno; 790 errno = old_errno;
552 } 791 }
553} 792}
554 793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
555static void 814static void
556sigcb (EV_P_ struct ev_io *iow, int revents) 815sigcb (EV_P_ ev_io *iow, int revents)
557{ 816{
558 WL w;
559 int signum; 817 int signum;
560 818
561#ifdef WIN32
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
563#else
564 read (sigpipe [0], &revents, 1); 819 read (sigpipe [0], &revents, 1);
565#endif
566 gotsig = 0; 820 gotsig = 0;
567 821
568 for (signum = signalmax; signum--; ) 822 for (signum = signalmax; signum--; )
569 if (signals [signum].gotsig) 823 if (signals [signum].gotsig)
570 { 824 ev_feed_signal_event (EV_A_ signum + 1);
571 signals [signum].gotsig = 0;
572
573 for (w = signals [signum].head; w; w = w->next)
574 event (EV_A_ (W)w, EV_SIGNAL);
575 }
576} 825}
577 826
578static void 827void inline_speed
828fd_intern (int fd)
829{
830#ifdef _WIN32
831 int arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
833#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif
837}
838
839static void noinline
579siginit (EV_P) 840siginit (EV_P)
580{ 841{
581#ifndef WIN32 842 fd_intern (sigpipe [0]);
582 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 843 fd_intern (sigpipe [1]);
583 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
584
585 /* rather than sort out wether we really need nb, set it */
586 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
587 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
588#endif
589 844
590 ev_io_set (&sigev, sigpipe [0], EV_READ); 845 ev_io_set (&sigev, sigpipe [0], EV_READ);
591 ev_io_start (EV_A_ &sigev); 846 ev_io_start (EV_A_ &sigev);
592 ev_unref (EV_A); /* child watcher should not keep loop alive */ 847 ev_unref (EV_A); /* child watcher should not keep loop alive */
593} 848}
594 849
595/*****************************************************************************/ 850/*****************************************************************************/
596 851
597static struct ev_child *childs [PID_HASHSIZE]; 852static WL childs [EV_PID_HASHSIZE];
598 853
599#ifndef WIN32 854#ifndef _WIN32
600 855
601static struct ev_signal childev; 856static ev_signal childev;
857
858void inline_speed
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
860{
861 ev_child *w;
862
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
864 if (w->pid == pid || !w->pid)
865 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
867 w->rpid = pid;
868 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 }
871}
602 872
603#ifndef WCONTINUED 873#ifndef WCONTINUED
604# define WCONTINUED 0 874# define WCONTINUED 0
605#endif 875#endif
606 876
607static void 877static void
608child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
609{
610 struct ev_child *w;
611
612 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
613 if (w->pid == pid || !w->pid)
614 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid;
617 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD);
619 }
620}
621
622static void
623childcb (EV_P_ struct ev_signal *sw, int revents) 878childcb (EV_P_ ev_signal *sw, int revents)
624{ 879{
625 int pid, status; 880 int pid, status;
626 881
882 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 883 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
628 { 884 if (!WCONTINUED
885 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return;
888
629 /* make sure we are called again until all childs have been reaped */ 889 /* make sure we are called again until all childs have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */
630 event (EV_A_ (W)sw, EV_SIGNAL); 891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
631 892
632 child_reap (EV_A_ sw, pid, pid, status); 893 child_reap (EV_A_ sw, pid, pid, status);
894 if (EV_PID_HASHSIZE > 1)
633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
634 }
635} 896}
636 897
637#endif 898#endif
638 899
639/*****************************************************************************/ 900/*****************************************************************************/
640 901
902#if EV_USE_PORT
903# include "ev_port.c"
904#endif
641#if EV_USE_KQUEUE 905#if EV_USE_KQUEUE
642# include "ev_kqueue.c" 906# include "ev_kqueue.c"
643#endif 907#endif
644#if EV_USE_EPOLL 908#if EV_USE_EPOLL
645# include "ev_epoll.c" 909# include "ev_epoll.c"
662{ 926{
663 return EV_VERSION_MINOR; 927 return EV_VERSION_MINOR;
664} 928}
665 929
666/* return true if we are running with elevated privileges and should ignore env variables */ 930/* return true if we are running with elevated privileges and should ignore env variables */
667static int 931int inline_size
668enable_secure (void) 932enable_secure (void)
669{ 933{
670#ifdef WIN32 934#ifdef _WIN32
671 return 0; 935 return 0;
672#else 936#else
673 return getuid () != geteuid () 937 return getuid () != geteuid ()
674 || getgid () != getegid (); 938 || getgid () != getegid ();
675#endif 939#endif
676} 940}
677 941
678int 942unsigned int
679ev_method (EV_P) 943ev_supported_backends (void)
680{ 944{
681 return method; 945 unsigned int flags = 0;
682}
683 946
684static void 947 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
685loop_init (EV_P_ int methods) 948 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
949 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
950 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
951 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
952
953 return flags;
954}
955
956unsigned int
957ev_recommended_backends (void)
686{ 958{
687 if (!method) 959 unsigned int flags = ev_supported_backends ();
960
961#ifndef __NetBSD__
962 /* kqueue is borked on everything but netbsd apparently */
963 /* it usually doesn't work correctly on anything but sockets and pipes */
964 flags &= ~EVBACKEND_KQUEUE;
965#endif
966#ifdef __APPLE__
967 // flags &= ~EVBACKEND_KQUEUE; for documentation
968 flags &= ~EVBACKEND_POLL;
969#endif
970
971 return flags;
972}
973
974unsigned int
975ev_embeddable_backends (void)
976{
977 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
978 return EVBACKEND_KQUEUE
979 | EVBACKEND_PORT;
980}
981
982unsigned int
983ev_backend (EV_P)
984{
985 return backend;
986}
987
988unsigned int
989ev_loop_count (EV_P)
990{
991 return loop_count;
992}
993
994void
995ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
996{
997 io_blocktime = interval;
998}
999
1000void
1001ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1002{
1003 timeout_blocktime = interval;
1004}
1005
1006static void noinline
1007loop_init (EV_P_ unsigned int flags)
1008{
1009 if (!backend)
688 { 1010 {
689#if EV_USE_MONOTONIC 1011#if EV_USE_MONOTONIC
690 { 1012 {
691 struct timespec ts; 1013 struct timespec ts;
692 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1014 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
693 have_monotonic = 1; 1015 have_monotonic = 1;
694 } 1016 }
695#endif 1017#endif
696 1018
697 rt_now = ev_time (); 1019 ev_rt_now = ev_time ();
698 mn_now = get_clock (); 1020 mn_now = get_clock ();
699 now_floor = mn_now; 1021 now_floor = mn_now;
700 rtmn_diff = rt_now - mn_now; 1022 rtmn_diff = ev_rt_now - mn_now;
701 1023
702 if (methods == EVMETHOD_AUTO) 1024 io_blocktime = 0.;
703 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1025 timeout_blocktime = 0.;
1026
1027 /* pid check not overridable via env */
1028#ifndef _WIN32
1029 if (flags & EVFLAG_FORKCHECK)
1030 curpid = getpid ();
1031#endif
1032
1033 if (!(flags & EVFLAG_NOENV)
1034 && !enable_secure ()
1035 && getenv ("LIBEV_FLAGS"))
704 methods = atoi (getenv ("LIBEV_METHODS")); 1036 flags = atoi (getenv ("LIBEV_FLAGS"));
705 else
706 methods = EVMETHOD_ANY;
707 1037
708 method = 0; 1038 if (!(flags & 0x0000ffffUL))
1039 flags |= ev_recommended_backends ();
1040
1041 backend = 0;
1042 backend_fd = -1;
709#if EV_USE_WIN32 1043#if EV_USE_INOTIFY
710 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1044 fs_fd = -2;
1045#endif
1046
1047#if EV_USE_PORT
1048 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
711#endif 1049#endif
712#if EV_USE_KQUEUE 1050#if EV_USE_KQUEUE
713 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1051 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
714#endif 1052#endif
715#if EV_USE_EPOLL 1053#if EV_USE_EPOLL
716 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1054 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
717#endif 1055#endif
718#if EV_USE_POLL 1056#if EV_USE_POLL
719 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1057 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
720#endif 1058#endif
721#if EV_USE_SELECT 1059#if EV_USE_SELECT
722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1060 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
723#endif 1061#endif
724 1062
725 ev_watcher_init (&sigev, sigcb); 1063 ev_init (&sigev, sigcb);
726 ev_set_priority (&sigev, EV_MAXPRI); 1064 ev_set_priority (&sigev, EV_MAXPRI);
727 } 1065 }
728} 1066}
729 1067
730void 1068static void noinline
731loop_destroy (EV_P) 1069loop_destroy (EV_P)
732{ 1070{
733 int i; 1071 int i;
734 1072
735#if EV_USE_WIN32 1073#if EV_USE_INOTIFY
736 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1074 if (fs_fd >= 0)
1075 close (fs_fd);
1076#endif
1077
1078 if (backend_fd >= 0)
1079 close (backend_fd);
1080
1081#if EV_USE_PORT
1082 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
737#endif 1083#endif
738#if EV_USE_KQUEUE 1084#if EV_USE_KQUEUE
739 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1085 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
740#endif 1086#endif
741#if EV_USE_EPOLL 1087#if EV_USE_EPOLL
742 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1088 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
743#endif 1089#endif
744#if EV_USE_POLL 1090#if EV_USE_POLL
745 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1091 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
746#endif 1092#endif
747#if EV_USE_SELECT 1093#if EV_USE_SELECT
748 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1094 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
749#endif 1095#endif
750 1096
751 for (i = NUMPRI; i--; ) 1097 for (i = NUMPRI; i--; )
1098 {
752 array_free (pending, [i]); 1099 array_free (pending, [i]);
1100#if EV_IDLE_ENABLE
1101 array_free (idle, [i]);
1102#endif
1103 }
1104
1105 ev_free (anfds); anfdmax = 0;
753 1106
754 /* have to use the microsoft-never-gets-it-right macro */ 1107 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange); 1108 array_free (fdchange, EMPTY);
756 array_free_microshit (timer); 1109 array_free (timer, EMPTY);
757 array_free_microshit (periodic); 1110#if EV_PERIODIC_ENABLE
758 array_free_microshit (idle); 1111 array_free (periodic, EMPTY);
759 array_free_microshit (prepare); 1112#endif
760 array_free_microshit (check); 1113#if EV_FORK_ENABLE
1114 array_free (fork, EMPTY);
1115#endif
1116 array_free (prepare, EMPTY);
1117 array_free (check, EMPTY);
761 1118
762 method = 0; 1119 backend = 0;
763} 1120}
764 1121
765static void 1122void inline_size infy_fork (EV_P);
1123
1124void inline_size
766loop_fork (EV_P) 1125loop_fork (EV_P)
767{ 1126{
1127#if EV_USE_PORT
1128 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1129#endif
1130#if EV_USE_KQUEUE
1131 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1132#endif
768#if EV_USE_EPOLL 1133#if EV_USE_EPOLL
769 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1134 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
770#endif 1135#endif
771#if EV_USE_KQUEUE 1136#if EV_USE_INOTIFY
772 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1137 infy_fork (EV_A);
773#endif 1138#endif
774 1139
775 if (ev_is_active (&sigev)) 1140 if (ev_is_active (&sigev))
776 { 1141 {
777 /* default loop */ 1142 /* default loop */
790 postfork = 0; 1155 postfork = 0;
791} 1156}
792 1157
793#if EV_MULTIPLICITY 1158#if EV_MULTIPLICITY
794struct ev_loop * 1159struct ev_loop *
795ev_loop_new (int methods) 1160ev_loop_new (unsigned int flags)
796{ 1161{
797 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1162 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
798 1163
799 memset (loop, 0, sizeof (struct ev_loop)); 1164 memset (loop, 0, sizeof (struct ev_loop));
800 1165
801 loop_init (EV_A_ methods); 1166 loop_init (EV_A_ flags);
802 1167
803 if (ev_method (EV_A)) 1168 if (ev_backend (EV_A))
804 return loop; 1169 return loop;
805 1170
806 return 0; 1171 return 0;
807} 1172}
808 1173
820} 1185}
821 1186
822#endif 1187#endif
823 1188
824#if EV_MULTIPLICITY 1189#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop * 1190struct ev_loop *
1191ev_default_loop_init (unsigned int flags)
829#else 1192#else
830static int default_loop;
831
832int 1193int
1194ev_default_loop (unsigned int flags)
833#endif 1195#endif
834ev_default_loop (int methods)
835{ 1196{
836 if (sigpipe [0] == sigpipe [1]) 1197 if (sigpipe [0] == sigpipe [1])
837 if (pipe (sigpipe)) 1198 if (pipe (sigpipe))
838 return 0; 1199 return 0;
839 1200
840 if (!default_loop) 1201 if (!ev_default_loop_ptr)
841 { 1202 {
842#if EV_MULTIPLICITY 1203#if EV_MULTIPLICITY
843 struct ev_loop *loop = default_loop = &default_loop_struct; 1204 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
844#else 1205#else
845 default_loop = 1; 1206 ev_default_loop_ptr = 1;
846#endif 1207#endif
847 1208
848 loop_init (EV_A_ methods); 1209 loop_init (EV_A_ flags);
849 1210
850 if (ev_method (EV_A)) 1211 if (ev_backend (EV_A))
851 { 1212 {
852 siginit (EV_A); 1213 siginit (EV_A);
853 1214
854#ifndef WIN32 1215#ifndef _WIN32
855 ev_signal_init (&childev, childcb, SIGCHLD); 1216 ev_signal_init (&childev, childcb, SIGCHLD);
856 ev_set_priority (&childev, EV_MAXPRI); 1217 ev_set_priority (&childev, EV_MAXPRI);
857 ev_signal_start (EV_A_ &childev); 1218 ev_signal_start (EV_A_ &childev);
858 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1219 ev_unref (EV_A); /* child watcher should not keep loop alive */
859#endif 1220#endif
860 } 1221 }
861 else 1222 else
862 default_loop = 0; 1223 ev_default_loop_ptr = 0;
863 } 1224 }
864 1225
865 return default_loop; 1226 return ev_default_loop_ptr;
866} 1227}
867 1228
868void 1229void
869ev_default_destroy (void) 1230ev_default_destroy (void)
870{ 1231{
871#if EV_MULTIPLICITY 1232#if EV_MULTIPLICITY
872 struct ev_loop *loop = default_loop; 1233 struct ev_loop *loop = ev_default_loop_ptr;
873#endif 1234#endif
874 1235
875#ifndef WIN32 1236#ifndef _WIN32
876 ev_ref (EV_A); /* child watcher */ 1237 ev_ref (EV_A); /* child watcher */
877 ev_signal_stop (EV_A_ &childev); 1238 ev_signal_stop (EV_A_ &childev);
878#endif 1239#endif
879 1240
880 ev_ref (EV_A); /* signal watcher */ 1241 ev_ref (EV_A); /* signal watcher */
888 1249
889void 1250void
890ev_default_fork (void) 1251ev_default_fork (void)
891{ 1252{
892#if EV_MULTIPLICITY 1253#if EV_MULTIPLICITY
893 struct ev_loop *loop = default_loop; 1254 struct ev_loop *loop = ev_default_loop_ptr;
894#endif 1255#endif
895 1256
896 if (method) 1257 if (backend)
897 postfork = 1; 1258 postfork = 1;
898} 1259}
899 1260
900/*****************************************************************************/ 1261/*****************************************************************************/
901 1262
902static void 1263void
1264ev_invoke (EV_P_ void *w, int revents)
1265{
1266 EV_CB_INVOKE ((W)w, revents);
1267}
1268
1269void inline_speed
903call_pending (EV_P) 1270call_pending (EV_P)
904{ 1271{
905 int pri; 1272 int pri;
906 1273
907 for (pri = NUMPRI; pri--; ) 1274 for (pri = NUMPRI; pri--; )
908 while (pendingcnt [pri]) 1275 while (pendingcnt [pri])
909 { 1276 {
910 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1277 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
911 1278
912 if (p->w) 1279 if (expect_true (p->w))
913 { 1280 {
1281 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1282
914 p->w->pending = 0; 1283 p->w->pending = 0;
915 p->w->cb (EV_A_ p->w, p->events); 1284 EV_CB_INVOKE (p->w, p->events);
916 } 1285 }
917 } 1286 }
918} 1287}
919 1288
920static void 1289void inline_size
921timers_reify (EV_P) 1290timers_reify (EV_P)
922{ 1291{
923 while (timercnt && ((WT)timers [0])->at <= mn_now) 1292 while (timercnt && ((WT)timers [0])->at <= mn_now)
924 { 1293 {
925 struct ev_timer *w = timers [0]; 1294 ev_timer *w = (ev_timer *)timers [0];
926 1295
927 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1296 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
928 1297
929 /* first reschedule or stop timer */ 1298 /* first reschedule or stop timer */
930 if (w->repeat) 1299 if (w->repeat)
931 { 1300 {
932 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1301 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1302
933 ((WT)w)->at = mn_now + w->repeat; 1303 ((WT)w)->at += w->repeat;
1304 if (((WT)w)->at < mn_now)
1305 ((WT)w)->at = mn_now;
1306
934 downheap ((WT *)timers, timercnt, 0); 1307 downheap (timers, timercnt, 0);
935 } 1308 }
936 else 1309 else
937 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1310 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
938 1311
939 event (EV_A_ (W)w, EV_TIMEOUT); 1312 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
940 } 1313 }
941} 1314}
942 1315
943static void 1316#if EV_PERIODIC_ENABLE
1317void inline_size
944periodics_reify (EV_P) 1318periodics_reify (EV_P)
945{ 1319{
946 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1320 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
947 { 1321 {
948 struct ev_periodic *w = periodics [0]; 1322 ev_periodic *w = (ev_periodic *)periodics [0];
949 1323
950 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1324 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
951 1325
952 /* first reschedule or stop timer */ 1326 /* first reschedule or stop timer */
953 if (w->interval) 1327 if (w->reschedule_cb)
954 { 1328 {
1329 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1330 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1331 downheap (periodics, periodiccnt, 0);
1332 }
1333 else if (w->interval)
1334 {
955 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1335 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1336 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
956 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1337 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
957 downheap ((WT *)periodics, periodiccnt, 0); 1338 downheap (periodics, periodiccnt, 0);
958 } 1339 }
959 else 1340 else
960 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1341 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
961 1342
962 event (EV_A_ (W)w, EV_PERIODIC); 1343 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
963 } 1344 }
964} 1345}
965 1346
966static void 1347static void noinline
967periodics_reschedule (EV_P) 1348periodics_reschedule (EV_P)
968{ 1349{
969 int i; 1350 int i;
970 1351
971 /* adjust periodics after time jump */ 1352 /* adjust periodics after time jump */
972 for (i = 0; i < periodiccnt; ++i) 1353 for (i = 0; i < periodiccnt; ++i)
973 { 1354 {
974 struct ev_periodic *w = periodics [i]; 1355 ev_periodic *w = (ev_periodic *)periodics [i];
975 1356
1357 if (w->reschedule_cb)
1358 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
976 if (w->interval) 1359 else if (w->interval)
1360 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1361 }
1362
1363 /* now rebuild the heap */
1364 for (i = periodiccnt >> 1; i--; )
1365 downheap (periodics, periodiccnt, i);
1366}
1367#endif
1368
1369#if EV_IDLE_ENABLE
1370void inline_size
1371idle_reify (EV_P)
1372{
1373 if (expect_false (idleall))
1374 {
1375 int pri;
1376
1377 for (pri = NUMPRI; pri--; )
977 { 1378 {
978 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1379 if (pendingcnt [pri])
1380 break;
979 1381
980 if (fabs (diff) >= 1e-4) 1382 if (idlecnt [pri])
981 { 1383 {
982 ev_periodic_stop (EV_A_ w); 1384 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
983 ev_periodic_start (EV_A_ w); 1385 break;
984
985 i = 0; /* restart loop, inefficient, but time jumps should be rare */
986 } 1386 }
987 } 1387 }
988 } 1388 }
989} 1389}
1390#endif
990 1391
991inline int 1392void inline_speed
992time_update_monotonic (EV_P) 1393time_update (EV_P_ ev_tstamp max_block)
993{
994 mn_now = get_clock ();
995
996 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
997 {
998 rt_now = rtmn_diff + mn_now;
999 return 0;
1000 }
1001 else
1002 {
1003 now_floor = mn_now;
1004 rt_now = ev_time ();
1005 return 1;
1006 }
1007}
1008
1009static void
1010time_update (EV_P)
1011{ 1394{
1012 int i; 1395 int i;
1013 1396
1014#if EV_USE_MONOTONIC 1397#if EV_USE_MONOTONIC
1015 if (expect_true (have_monotonic)) 1398 if (expect_true (have_monotonic))
1016 { 1399 {
1017 if (time_update_monotonic (EV_A)) 1400 ev_tstamp odiff = rtmn_diff;
1401
1402 mn_now = get_clock ();
1403
1404 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1405 /* interpolate in the meantime */
1406 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1018 { 1407 {
1019 ev_tstamp odiff = rtmn_diff; 1408 ev_rt_now = rtmn_diff + mn_now;
1409 return;
1410 }
1020 1411
1412 now_floor = mn_now;
1413 ev_rt_now = ev_time ();
1414
1021 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1415 /* loop a few times, before making important decisions.
1416 * on the choice of "4": one iteration isn't enough,
1417 * in case we get preempted during the calls to
1418 * ev_time and get_clock. a second call is almost guaranteed
1419 * to succeed in that case, though. and looping a few more times
1420 * doesn't hurt either as we only do this on time-jumps or
1421 * in the unlikely event of having been preempted here.
1422 */
1423 for (i = 4; --i; )
1022 { 1424 {
1023 rtmn_diff = rt_now - mn_now; 1425 rtmn_diff = ev_rt_now - mn_now;
1024 1426
1025 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1427 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1026 return; /* all is well */ 1428 return; /* all is well */
1027 1429
1028 rt_now = ev_time (); 1430 ev_rt_now = ev_time ();
1029 mn_now = get_clock (); 1431 mn_now = get_clock ();
1030 now_floor = mn_now; 1432 now_floor = mn_now;
1031 } 1433 }
1032 1434
1435# if EV_PERIODIC_ENABLE
1436 periodics_reschedule (EV_A);
1437# endif
1438 /* no timer adjustment, as the monotonic clock doesn't jump */
1439 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1440 }
1441 else
1442#endif
1443 {
1444 ev_rt_now = ev_time ();
1445
1446 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1447 {
1448#if EV_PERIODIC_ENABLE
1033 periodics_reschedule (EV_A); 1449 periodics_reschedule (EV_A);
1034 /* no timer adjustment, as the monotonic clock doesn't jump */ 1450#endif
1035 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1451 /* adjust timers. this is easy, as the offset is the same for all of them */
1452 for (i = 0; i < timercnt; ++i)
1453 ((WT)timers [i])->at += ev_rt_now - mn_now;
1036 } 1454 }
1037 }
1038 else
1039#endif
1040 {
1041 rt_now = ev_time ();
1042 1455
1043 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1044 {
1045 periodics_reschedule (EV_A);
1046
1047 /* adjust timers. this is easy, as the offset is the same for all */
1048 for (i = 0; i < timercnt; ++i)
1049 ((WT)timers [i])->at += rt_now - mn_now;
1050 }
1051
1052 mn_now = rt_now; 1456 mn_now = ev_rt_now;
1053 } 1457 }
1054} 1458}
1055 1459
1056void 1460void
1057ev_ref (EV_P) 1461ev_ref (EV_P)
1068static int loop_done; 1472static int loop_done;
1069 1473
1070void 1474void
1071ev_loop (EV_P_ int flags) 1475ev_loop (EV_P_ int flags)
1072{ 1476{
1073 double block;
1074 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1477 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1478 ? EVUNLOOP_ONE
1479 : EVUNLOOP_CANCEL;
1480
1481 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1075 1482
1076 do 1483 do
1077 { 1484 {
1485#ifndef _WIN32
1486 if (expect_false (curpid)) /* penalise the forking check even more */
1487 if (expect_false (getpid () != curpid))
1488 {
1489 curpid = getpid ();
1490 postfork = 1;
1491 }
1492#endif
1493
1494#if EV_FORK_ENABLE
1495 /* we might have forked, so queue fork handlers */
1496 if (expect_false (postfork))
1497 if (forkcnt)
1498 {
1499 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1500 call_pending (EV_A);
1501 }
1502#endif
1503
1078 /* queue check watchers (and execute them) */ 1504 /* queue prepare watchers (and execute them) */
1079 if (expect_false (preparecnt)) 1505 if (expect_false (preparecnt))
1080 { 1506 {
1081 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1507 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1082 call_pending (EV_A); 1508 call_pending (EV_A);
1083 } 1509 }
1084 1510
1511 if (expect_false (!activecnt))
1512 break;
1513
1085 /* we might have forked, so reify kernel state if necessary */ 1514 /* we might have forked, so reify kernel state if necessary */
1086 if (expect_false (postfork)) 1515 if (expect_false (postfork))
1087 loop_fork (EV_A); 1516 loop_fork (EV_A);
1088 1517
1089 /* update fd-related kernel structures */ 1518 /* update fd-related kernel structures */
1090 fd_reify (EV_A); 1519 fd_reify (EV_A);
1091 1520
1092 /* calculate blocking time */ 1521 /* calculate blocking time */
1522 {
1523 ev_tstamp waittime = 0.;
1524 ev_tstamp sleeptime = 0.;
1093 1525
1094 /* we only need this for !monotonic clockor timers, but as we basically 1526 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1095 always have timers, we just calculate it always */
1096#if EV_USE_MONOTONIC
1097 if (expect_true (have_monotonic))
1098 time_update_monotonic (EV_A);
1099 else
1100#endif
1101 { 1527 {
1102 rt_now = ev_time (); 1528 /* update time to cancel out callback processing overhead */
1103 mn_now = rt_now; 1529 time_update (EV_A_ 1e100);
1104 }
1105 1530
1106 if (flags & EVLOOP_NONBLOCK || idlecnt)
1107 block = 0.;
1108 else
1109 {
1110 block = MAX_BLOCKTIME; 1531 waittime = MAX_BLOCKTIME;
1111 1532
1112 if (timercnt) 1533 if (timercnt)
1113 { 1534 {
1114 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1535 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1115 if (block > to) block = to; 1536 if (waittime > to) waittime = to;
1116 } 1537 }
1117 1538
1539#if EV_PERIODIC_ENABLE
1118 if (periodiccnt) 1540 if (periodiccnt)
1119 { 1541 {
1120 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1542 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1121 if (block > to) block = to; 1543 if (waittime > to) waittime = to;
1122 } 1544 }
1545#endif
1123 1546
1124 if (block < 0.) block = 0.; 1547 if (expect_false (waittime < timeout_blocktime))
1548 waittime = timeout_blocktime;
1549
1550 sleeptime = waittime - backend_fudge;
1551
1552 if (expect_true (sleeptime > io_blocktime))
1553 sleeptime = io_blocktime;
1554
1555 if (sleeptime)
1556 {
1557 ev_sleep (sleeptime);
1558 waittime -= sleeptime;
1559 }
1125 } 1560 }
1126 1561
1127 method_poll (EV_A_ block); 1562 ++loop_count;
1563 backend_poll (EV_A_ waittime);
1128 1564
1129 /* update rt_now, do magic */ 1565 /* update ev_rt_now, do magic */
1130 time_update (EV_A); 1566 time_update (EV_A_ waittime + sleeptime);
1567 }
1131 1568
1132 /* queue pending timers and reschedule them */ 1569 /* queue pending timers and reschedule them */
1133 timers_reify (EV_A); /* relative timers called last */ 1570 timers_reify (EV_A); /* relative timers called last */
1571#if EV_PERIODIC_ENABLE
1134 periodics_reify (EV_A); /* absolute timers called first */ 1572 periodics_reify (EV_A); /* absolute timers called first */
1573#endif
1135 1574
1575#if EV_IDLE_ENABLE
1136 /* queue idle watchers unless io or timers are pending */ 1576 /* queue idle watchers unless other events are pending */
1137 if (!pendingcnt) 1577 idle_reify (EV_A);
1138 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1578#endif
1139 1579
1140 /* queue check watchers, to be executed first */ 1580 /* queue check watchers, to be executed first */
1141 if (checkcnt) 1581 if (expect_false (checkcnt))
1142 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1582 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1143 1583
1144 call_pending (EV_A); 1584 call_pending (EV_A);
1585
1145 } 1586 }
1146 while (activecnt && !loop_done); 1587 while (expect_true (activecnt && !loop_done));
1147 1588
1148 if (loop_done != 2) 1589 if (loop_done == EVUNLOOP_ONE)
1149 loop_done = 0; 1590 loop_done = EVUNLOOP_CANCEL;
1150} 1591}
1151 1592
1152void 1593void
1153ev_unloop (EV_P_ int how) 1594ev_unloop (EV_P_ int how)
1154{ 1595{
1155 loop_done = how; 1596 loop_done = how;
1156} 1597}
1157 1598
1158/*****************************************************************************/ 1599/*****************************************************************************/
1159 1600
1160inline void 1601void inline_size
1161wlist_add (WL *head, WL elem) 1602wlist_add (WL *head, WL elem)
1162{ 1603{
1163 elem->next = *head; 1604 elem->next = *head;
1164 *head = elem; 1605 *head = elem;
1165} 1606}
1166 1607
1167inline void 1608void inline_size
1168wlist_del (WL *head, WL elem) 1609wlist_del (WL *head, WL elem)
1169{ 1610{
1170 while (*head) 1611 while (*head)
1171 { 1612 {
1172 if (*head == elem) 1613 if (*head == elem)
1177 1618
1178 head = &(*head)->next; 1619 head = &(*head)->next;
1179 } 1620 }
1180} 1621}
1181 1622
1182inline void 1623void inline_speed
1183ev_clear_pending (EV_P_ W w) 1624clear_pending (EV_P_ W w)
1184{ 1625{
1185 if (w->pending) 1626 if (w->pending)
1186 { 1627 {
1187 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1628 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1188 w->pending = 0; 1629 w->pending = 0;
1189 } 1630 }
1190} 1631}
1191 1632
1192inline void 1633int
1634ev_clear_pending (EV_P_ void *w)
1635{
1636 W w_ = (W)w;
1637 int pending = w_->pending;
1638
1639 if (expect_true (pending))
1640 {
1641 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1642 w_->pending = 0;
1643 p->w = 0;
1644 return p->events;
1645 }
1646 else
1647 return 0;
1648}
1649
1650void inline_size
1651pri_adjust (EV_P_ W w)
1652{
1653 int pri = w->priority;
1654 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1655 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1656 w->priority = pri;
1657}
1658
1659void inline_speed
1193ev_start (EV_P_ W w, int active) 1660ev_start (EV_P_ W w, int active)
1194{ 1661{
1195 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1662 pri_adjust (EV_A_ w);
1196 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1197
1198 w->active = active; 1663 w->active = active;
1199 ev_ref (EV_A); 1664 ev_ref (EV_A);
1200} 1665}
1201 1666
1202inline void 1667void inline_size
1203ev_stop (EV_P_ W w) 1668ev_stop (EV_P_ W w)
1204{ 1669{
1205 ev_unref (EV_A); 1670 ev_unref (EV_A);
1206 w->active = 0; 1671 w->active = 0;
1207} 1672}
1208 1673
1209/*****************************************************************************/ 1674/*****************************************************************************/
1210 1675
1211void 1676void noinline
1212ev_io_start (EV_P_ struct ev_io *w) 1677ev_io_start (EV_P_ ev_io *w)
1213{ 1678{
1214 int fd = w->fd; 1679 int fd = w->fd;
1215 1680
1216 if (ev_is_active (w)) 1681 if (expect_false (ev_is_active (w)))
1217 return; 1682 return;
1218 1683
1219 assert (("ev_io_start called with negative fd", fd >= 0)); 1684 assert (("ev_io_start called with negative fd", fd >= 0));
1220 1685
1221 ev_start (EV_A_ (W)w, 1); 1686 ev_start (EV_A_ (W)w, 1);
1222 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1687 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1223 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1688 wlist_add (&anfds[fd].head, (WL)w);
1224 1689
1225 fd_change (EV_A_ fd); 1690 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1691 w->events &= ~EV_IOFDSET;
1226} 1692}
1227 1693
1228void 1694void noinline
1229ev_io_stop (EV_P_ struct ev_io *w) 1695ev_io_stop (EV_P_ ev_io *w)
1230{ 1696{
1231 ev_clear_pending (EV_A_ (W)w); 1697 clear_pending (EV_A_ (W)w);
1232 if (!ev_is_active (w)) 1698 if (expect_false (!ev_is_active (w)))
1233 return; 1699 return;
1234 1700
1701 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1702
1235 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1703 wlist_del (&anfds[w->fd].head, (WL)w);
1236 ev_stop (EV_A_ (W)w); 1704 ev_stop (EV_A_ (W)w);
1237 1705
1238 fd_change (EV_A_ w->fd); 1706 fd_change (EV_A_ w->fd, 1);
1239} 1707}
1240 1708
1241void 1709void noinline
1242ev_timer_start (EV_P_ struct ev_timer *w) 1710ev_timer_start (EV_P_ ev_timer *w)
1243{ 1711{
1244 if (ev_is_active (w)) 1712 if (expect_false (ev_is_active (w)))
1245 return; 1713 return;
1246 1714
1247 ((WT)w)->at += mn_now; 1715 ((WT)w)->at += mn_now;
1248 1716
1249 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1717 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1250 1718
1251 ev_start (EV_A_ (W)w, ++timercnt); 1719 ev_start (EV_A_ (W)w, ++timercnt);
1252 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1720 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1253 timers [timercnt - 1] = w; 1721 timers [timercnt - 1] = (WT)w;
1254 upheap ((WT *)timers, timercnt - 1); 1722 upheap (timers, timercnt - 1);
1255 1723
1256 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1724 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1257} 1725}
1258 1726
1259void 1727void noinline
1260ev_timer_stop (EV_P_ struct ev_timer *w) 1728ev_timer_stop (EV_P_ ev_timer *w)
1261{ 1729{
1262 ev_clear_pending (EV_A_ (W)w); 1730 clear_pending (EV_A_ (W)w);
1263 if (!ev_is_active (w)) 1731 if (expect_false (!ev_is_active (w)))
1264 return; 1732 return;
1265 1733
1266 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1734 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1267 1735
1268 if (((W)w)->active < timercnt--) 1736 {
1737 int active = ((W)w)->active;
1738
1739 if (expect_true (--active < --timercnt))
1269 { 1740 {
1270 timers [((W)w)->active - 1] = timers [timercnt]; 1741 timers [active] = timers [timercnt];
1271 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1742 adjustheap (timers, timercnt, active);
1272 } 1743 }
1744 }
1273 1745
1274 ((WT)w)->at = w->repeat; 1746 ((WT)w)->at -= mn_now;
1275 1747
1276 ev_stop (EV_A_ (W)w); 1748 ev_stop (EV_A_ (W)w);
1277} 1749}
1278 1750
1279void 1751void noinline
1280ev_timer_again (EV_P_ struct ev_timer *w) 1752ev_timer_again (EV_P_ ev_timer *w)
1281{ 1753{
1282 if (ev_is_active (w)) 1754 if (ev_is_active (w))
1283 { 1755 {
1284 if (w->repeat) 1756 if (w->repeat)
1285 { 1757 {
1286 ((WT)w)->at = mn_now + w->repeat; 1758 ((WT)w)->at = mn_now + w->repeat;
1287 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1759 adjustheap (timers, timercnt, ((W)w)->active - 1);
1288 } 1760 }
1289 else 1761 else
1290 ev_timer_stop (EV_A_ w); 1762 ev_timer_stop (EV_A_ w);
1291 } 1763 }
1292 else if (w->repeat) 1764 else if (w->repeat)
1765 {
1766 w->at = w->repeat;
1293 ev_timer_start (EV_A_ w); 1767 ev_timer_start (EV_A_ w);
1768 }
1294} 1769}
1295 1770
1296void 1771#if EV_PERIODIC_ENABLE
1772void noinline
1297ev_periodic_start (EV_P_ struct ev_periodic *w) 1773ev_periodic_start (EV_P_ ev_periodic *w)
1298{ 1774{
1299 if (ev_is_active (w)) 1775 if (expect_false (ev_is_active (w)))
1300 return; 1776 return;
1301 1777
1778 if (w->reschedule_cb)
1779 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1780 else if (w->interval)
1781 {
1302 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1782 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1303
1304 /* this formula differs from the one in periodic_reify because we do not always round up */ 1783 /* this formula differs from the one in periodic_reify because we do not always round up */
1305 if (w->interval)
1306 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1784 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1785 }
1786 else
1787 ((WT)w)->at = w->offset;
1307 1788
1308 ev_start (EV_A_ (W)w, ++periodiccnt); 1789 ev_start (EV_A_ (W)w, ++periodiccnt);
1309 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1790 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1310 periodics [periodiccnt - 1] = w; 1791 periodics [periodiccnt - 1] = (WT)w;
1311 upheap ((WT *)periodics, periodiccnt - 1); 1792 upheap (periodics, periodiccnt - 1);
1312 1793
1313 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1794 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1314} 1795}
1315 1796
1316void 1797void noinline
1317ev_periodic_stop (EV_P_ struct ev_periodic *w) 1798ev_periodic_stop (EV_P_ ev_periodic *w)
1318{ 1799{
1319 ev_clear_pending (EV_A_ (W)w); 1800 clear_pending (EV_A_ (W)w);
1320 if (!ev_is_active (w)) 1801 if (expect_false (!ev_is_active (w)))
1321 return; 1802 return;
1322 1803
1323 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1804 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1324 1805
1325 if (((W)w)->active < periodiccnt--) 1806 {
1807 int active = ((W)w)->active;
1808
1809 if (expect_true (--active < --periodiccnt))
1326 { 1810 {
1327 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1811 periodics [active] = periodics [periodiccnt];
1328 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1812 adjustheap (periodics, periodiccnt, active);
1329 } 1813 }
1814 }
1330 1815
1331 ev_stop (EV_A_ (W)w); 1816 ev_stop (EV_A_ (W)w);
1332} 1817}
1333 1818
1334void 1819void noinline
1335ev_idle_start (EV_P_ struct ev_idle *w) 1820ev_periodic_again (EV_P_ ev_periodic *w)
1336{ 1821{
1337 if (ev_is_active (w)) 1822 /* TODO: use adjustheap and recalculation */
1338 return;
1339
1340 ev_start (EV_A_ (W)w, ++idlecnt);
1341 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1342 idles [idlecnt - 1] = w;
1343}
1344
1345void
1346ev_idle_stop (EV_P_ struct ev_idle *w)
1347{
1348 ev_clear_pending (EV_A_ (W)w);
1349 if (ev_is_active (w))
1350 return;
1351
1352 idles [((W)w)->active - 1] = idles [--idlecnt];
1353 ev_stop (EV_A_ (W)w); 1823 ev_periodic_stop (EV_A_ w);
1824 ev_periodic_start (EV_A_ w);
1354} 1825}
1355 1826#endif
1356void
1357ev_prepare_start (EV_P_ struct ev_prepare *w)
1358{
1359 if (ev_is_active (w))
1360 return;
1361
1362 ev_start (EV_A_ (W)w, ++preparecnt);
1363 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1364 prepares [preparecnt - 1] = w;
1365}
1366
1367void
1368ev_prepare_stop (EV_P_ struct ev_prepare *w)
1369{
1370 ev_clear_pending (EV_A_ (W)w);
1371 if (ev_is_active (w))
1372 return;
1373
1374 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1375 ev_stop (EV_A_ (W)w);
1376}
1377
1378void
1379ev_check_start (EV_P_ struct ev_check *w)
1380{
1381 if (ev_is_active (w))
1382 return;
1383
1384 ev_start (EV_A_ (W)w, ++checkcnt);
1385 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1386 checks [checkcnt - 1] = w;
1387}
1388
1389void
1390ev_check_stop (EV_P_ struct ev_check *w)
1391{
1392 ev_clear_pending (EV_A_ (W)w);
1393 if (ev_is_active (w))
1394 return;
1395
1396 checks [((W)w)->active - 1] = checks [--checkcnt];
1397 ev_stop (EV_A_ (W)w);
1398}
1399 1827
1400#ifndef SA_RESTART 1828#ifndef SA_RESTART
1401# define SA_RESTART 0 1829# define SA_RESTART 0
1402#endif 1830#endif
1403 1831
1404void 1832void noinline
1405ev_signal_start (EV_P_ struct ev_signal *w) 1833ev_signal_start (EV_P_ ev_signal *w)
1406{ 1834{
1407#if EV_MULTIPLICITY 1835#if EV_MULTIPLICITY
1408 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1836 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1409#endif 1837#endif
1410 if (ev_is_active (w)) 1838 if (expect_false (ev_is_active (w)))
1411 return; 1839 return;
1412 1840
1413 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1841 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1414 1842
1843 {
1844#ifndef _WIN32
1845 sigset_t full, prev;
1846 sigfillset (&full);
1847 sigprocmask (SIG_SETMASK, &full, &prev);
1848#endif
1849
1850 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1851
1852#ifndef _WIN32
1853 sigprocmask (SIG_SETMASK, &prev, 0);
1854#endif
1855 }
1856
1415 ev_start (EV_A_ (W)w, 1); 1857 ev_start (EV_A_ (W)w, 1);
1416 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1417 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1858 wlist_add (&signals [w->signum - 1].head, (WL)w);
1418 1859
1419 if (!((WL)w)->next) 1860 if (!((WL)w)->next)
1420 { 1861 {
1421#if WIN32 1862#if _WIN32
1422 signal (w->signum, sighandler); 1863 signal (w->signum, sighandler);
1423#else 1864#else
1424 struct sigaction sa; 1865 struct sigaction sa;
1425 sa.sa_handler = sighandler; 1866 sa.sa_handler = sighandler;
1426 sigfillset (&sa.sa_mask); 1867 sigfillset (&sa.sa_mask);
1428 sigaction (w->signum, &sa, 0); 1869 sigaction (w->signum, &sa, 0);
1429#endif 1870#endif
1430 } 1871 }
1431} 1872}
1432 1873
1433void 1874void noinline
1434ev_signal_stop (EV_P_ struct ev_signal *w) 1875ev_signal_stop (EV_P_ ev_signal *w)
1435{ 1876{
1436 ev_clear_pending (EV_A_ (W)w); 1877 clear_pending (EV_A_ (W)w);
1437 if (!ev_is_active (w)) 1878 if (expect_false (!ev_is_active (w)))
1438 return; 1879 return;
1439 1880
1440 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1881 wlist_del (&signals [w->signum - 1].head, (WL)w);
1441 ev_stop (EV_A_ (W)w); 1882 ev_stop (EV_A_ (W)w);
1442 1883
1443 if (!signals [w->signum - 1].head) 1884 if (!signals [w->signum - 1].head)
1444 signal (w->signum, SIG_DFL); 1885 signal (w->signum, SIG_DFL);
1445} 1886}
1446 1887
1447void 1888void
1448ev_child_start (EV_P_ struct ev_child *w) 1889ev_child_start (EV_P_ ev_child *w)
1449{ 1890{
1450#if EV_MULTIPLICITY 1891#if EV_MULTIPLICITY
1451 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1892 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1452#endif 1893#endif
1453 if (ev_is_active (w)) 1894 if (expect_false (ev_is_active (w)))
1454 return; 1895 return;
1455 1896
1456 ev_start (EV_A_ (W)w, 1); 1897 ev_start (EV_A_ (W)w, 1);
1457 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1898 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1458} 1899}
1459 1900
1460void 1901void
1461ev_child_stop (EV_P_ struct ev_child *w) 1902ev_child_stop (EV_P_ ev_child *w)
1462{ 1903{
1463 ev_clear_pending (EV_A_ (W)w); 1904 clear_pending (EV_A_ (W)w);
1464 if (ev_is_active (w)) 1905 if (expect_false (!ev_is_active (w)))
1465 return; 1906 return;
1466 1907
1467 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1908 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1468 ev_stop (EV_A_ (W)w); 1909 ev_stop (EV_A_ (W)w);
1469} 1910}
1470 1911
1912#if EV_STAT_ENABLE
1913
1914# ifdef _WIN32
1915# undef lstat
1916# define lstat(a,b) _stati64 (a,b)
1917# endif
1918
1919#define DEF_STAT_INTERVAL 5.0074891
1920#define MIN_STAT_INTERVAL 0.1074891
1921
1922static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1923
1924#if EV_USE_INOTIFY
1925# define EV_INOTIFY_BUFSIZE 8192
1926
1927static void noinline
1928infy_add (EV_P_ ev_stat *w)
1929{
1930 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1931
1932 if (w->wd < 0)
1933 {
1934 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1935
1936 /* monitor some parent directory for speedup hints */
1937 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1938 {
1939 char path [4096];
1940 strcpy (path, w->path);
1941
1942 do
1943 {
1944 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1945 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1946
1947 char *pend = strrchr (path, '/');
1948
1949 if (!pend)
1950 break; /* whoops, no '/', complain to your admin */
1951
1952 *pend = 0;
1953 w->wd = inotify_add_watch (fs_fd, path, mask);
1954 }
1955 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1956 }
1957 }
1958 else
1959 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1960
1961 if (w->wd >= 0)
1962 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1963}
1964
1965static void noinline
1966infy_del (EV_P_ ev_stat *w)
1967{
1968 int slot;
1969 int wd = w->wd;
1970
1971 if (wd < 0)
1972 return;
1973
1974 w->wd = -2;
1975 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1976 wlist_del (&fs_hash [slot].head, (WL)w);
1977
1978 /* remove this watcher, if others are watching it, they will rearm */
1979 inotify_rm_watch (fs_fd, wd);
1980}
1981
1982static void noinline
1983infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1984{
1985 if (slot < 0)
1986 /* overflow, need to check for all hahs slots */
1987 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1988 infy_wd (EV_A_ slot, wd, ev);
1989 else
1990 {
1991 WL w_;
1992
1993 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1994 {
1995 ev_stat *w = (ev_stat *)w_;
1996 w_ = w_->next; /* lets us remove this watcher and all before it */
1997
1998 if (w->wd == wd || wd == -1)
1999 {
2000 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2001 {
2002 w->wd = -1;
2003 infy_add (EV_A_ w); /* re-add, no matter what */
2004 }
2005
2006 stat_timer_cb (EV_A_ &w->timer, 0);
2007 }
2008 }
2009 }
2010}
2011
2012static void
2013infy_cb (EV_P_ ev_io *w, int revents)
2014{
2015 char buf [EV_INOTIFY_BUFSIZE];
2016 struct inotify_event *ev = (struct inotify_event *)buf;
2017 int ofs;
2018 int len = read (fs_fd, buf, sizeof (buf));
2019
2020 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2021 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2022}
2023
2024void inline_size
2025infy_init (EV_P)
2026{
2027 if (fs_fd != -2)
2028 return;
2029
2030 fs_fd = inotify_init ();
2031
2032 if (fs_fd >= 0)
2033 {
2034 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2035 ev_set_priority (&fs_w, EV_MAXPRI);
2036 ev_io_start (EV_A_ &fs_w);
2037 }
2038}
2039
2040void inline_size
2041infy_fork (EV_P)
2042{
2043 int slot;
2044
2045 if (fs_fd < 0)
2046 return;
2047
2048 close (fs_fd);
2049 fs_fd = inotify_init ();
2050
2051 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2052 {
2053 WL w_ = fs_hash [slot].head;
2054 fs_hash [slot].head = 0;
2055
2056 while (w_)
2057 {
2058 ev_stat *w = (ev_stat *)w_;
2059 w_ = w_->next; /* lets us add this watcher */
2060
2061 w->wd = -1;
2062
2063 if (fs_fd >= 0)
2064 infy_add (EV_A_ w); /* re-add, no matter what */
2065 else
2066 ev_timer_start (EV_A_ &w->timer);
2067 }
2068
2069 }
2070}
2071
2072#endif
2073
2074void
2075ev_stat_stat (EV_P_ ev_stat *w)
2076{
2077 if (lstat (w->path, &w->attr) < 0)
2078 w->attr.st_nlink = 0;
2079 else if (!w->attr.st_nlink)
2080 w->attr.st_nlink = 1;
2081}
2082
2083static void noinline
2084stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2085{
2086 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2087
2088 /* we copy this here each the time so that */
2089 /* prev has the old value when the callback gets invoked */
2090 w->prev = w->attr;
2091 ev_stat_stat (EV_A_ w);
2092
2093 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2094 if (
2095 w->prev.st_dev != w->attr.st_dev
2096 || w->prev.st_ino != w->attr.st_ino
2097 || w->prev.st_mode != w->attr.st_mode
2098 || w->prev.st_nlink != w->attr.st_nlink
2099 || w->prev.st_uid != w->attr.st_uid
2100 || w->prev.st_gid != w->attr.st_gid
2101 || w->prev.st_rdev != w->attr.st_rdev
2102 || w->prev.st_size != w->attr.st_size
2103 || w->prev.st_atime != w->attr.st_atime
2104 || w->prev.st_mtime != w->attr.st_mtime
2105 || w->prev.st_ctime != w->attr.st_ctime
2106 ) {
2107 #if EV_USE_INOTIFY
2108 infy_del (EV_A_ w);
2109 infy_add (EV_A_ w);
2110 ev_stat_stat (EV_A_ w); /* avoid race... */
2111 #endif
2112
2113 ev_feed_event (EV_A_ w, EV_STAT);
2114 }
2115}
2116
2117void
2118ev_stat_start (EV_P_ ev_stat *w)
2119{
2120 if (expect_false (ev_is_active (w)))
2121 return;
2122
2123 /* since we use memcmp, we need to clear any padding data etc. */
2124 memset (&w->prev, 0, sizeof (ev_statdata));
2125 memset (&w->attr, 0, sizeof (ev_statdata));
2126
2127 ev_stat_stat (EV_A_ w);
2128
2129 if (w->interval < MIN_STAT_INTERVAL)
2130 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2131
2132 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2133 ev_set_priority (&w->timer, ev_priority (w));
2134
2135#if EV_USE_INOTIFY
2136 infy_init (EV_A);
2137
2138 if (fs_fd >= 0)
2139 infy_add (EV_A_ w);
2140 else
2141#endif
2142 ev_timer_start (EV_A_ &w->timer);
2143
2144 ev_start (EV_A_ (W)w, 1);
2145}
2146
2147void
2148ev_stat_stop (EV_P_ ev_stat *w)
2149{
2150 clear_pending (EV_A_ (W)w);
2151 if (expect_false (!ev_is_active (w)))
2152 return;
2153
2154#if EV_USE_INOTIFY
2155 infy_del (EV_A_ w);
2156#endif
2157 ev_timer_stop (EV_A_ &w->timer);
2158
2159 ev_stop (EV_A_ (W)w);
2160}
2161#endif
2162
2163#if EV_IDLE_ENABLE
2164void
2165ev_idle_start (EV_P_ ev_idle *w)
2166{
2167 if (expect_false (ev_is_active (w)))
2168 return;
2169
2170 pri_adjust (EV_A_ (W)w);
2171
2172 {
2173 int active = ++idlecnt [ABSPRI (w)];
2174
2175 ++idleall;
2176 ev_start (EV_A_ (W)w, active);
2177
2178 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2179 idles [ABSPRI (w)][active - 1] = w;
2180 }
2181}
2182
2183void
2184ev_idle_stop (EV_P_ ev_idle *w)
2185{
2186 clear_pending (EV_A_ (W)w);
2187 if (expect_false (!ev_is_active (w)))
2188 return;
2189
2190 {
2191 int active = ((W)w)->active;
2192
2193 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2194 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2195
2196 ev_stop (EV_A_ (W)w);
2197 --idleall;
2198 }
2199}
2200#endif
2201
2202void
2203ev_prepare_start (EV_P_ ev_prepare *w)
2204{
2205 if (expect_false (ev_is_active (w)))
2206 return;
2207
2208 ev_start (EV_A_ (W)w, ++preparecnt);
2209 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2210 prepares [preparecnt - 1] = w;
2211}
2212
2213void
2214ev_prepare_stop (EV_P_ ev_prepare *w)
2215{
2216 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w)))
2218 return;
2219
2220 {
2221 int active = ((W)w)->active;
2222 prepares [active - 1] = prepares [--preparecnt];
2223 ((W)prepares [active - 1])->active = active;
2224 }
2225
2226 ev_stop (EV_A_ (W)w);
2227}
2228
2229void
2230ev_check_start (EV_P_ ev_check *w)
2231{
2232 if (expect_false (ev_is_active (w)))
2233 return;
2234
2235 ev_start (EV_A_ (W)w, ++checkcnt);
2236 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2237 checks [checkcnt - 1] = w;
2238}
2239
2240void
2241ev_check_stop (EV_P_ ev_check *w)
2242{
2243 clear_pending (EV_A_ (W)w);
2244 if (expect_false (!ev_is_active (w)))
2245 return;
2246
2247 {
2248 int active = ((W)w)->active;
2249 checks [active - 1] = checks [--checkcnt];
2250 ((W)checks [active - 1])->active = active;
2251 }
2252
2253 ev_stop (EV_A_ (W)w);
2254}
2255
2256#if EV_EMBED_ENABLE
2257void noinline
2258ev_embed_sweep (EV_P_ ev_embed *w)
2259{
2260 ev_loop (w->other, EVLOOP_NONBLOCK);
2261}
2262
2263static void
2264embed_io_cb (EV_P_ ev_io *io, int revents)
2265{
2266 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2267
2268 if (ev_cb (w))
2269 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2270 else
2271 ev_embed_sweep (loop, w);
2272}
2273
2274static void
2275embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2276{
2277 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2278
2279 fd_reify (w->other);
2280}
2281
2282void
2283ev_embed_start (EV_P_ ev_embed *w)
2284{
2285 if (expect_false (ev_is_active (w)))
2286 return;
2287
2288 {
2289 struct ev_loop *loop = w->other;
2290 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2291 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2292 }
2293
2294 ev_set_priority (&w->io, ev_priority (w));
2295 ev_io_start (EV_A_ &w->io);
2296
2297 ev_prepare_init (&w->prepare, embed_prepare_cb);
2298 ev_set_priority (&w->prepare, EV_MINPRI);
2299 ev_prepare_start (EV_A_ &w->prepare);
2300
2301 ev_start (EV_A_ (W)w, 1);
2302}
2303
2304void
2305ev_embed_stop (EV_P_ ev_embed *w)
2306{
2307 clear_pending (EV_A_ (W)w);
2308 if (expect_false (!ev_is_active (w)))
2309 return;
2310
2311 ev_io_stop (EV_A_ &w->io);
2312 ev_prepare_stop (EV_A_ &w->prepare);
2313
2314 ev_stop (EV_A_ (W)w);
2315}
2316#endif
2317
2318#if EV_FORK_ENABLE
2319void
2320ev_fork_start (EV_P_ ev_fork *w)
2321{
2322 if (expect_false (ev_is_active (w)))
2323 return;
2324
2325 ev_start (EV_A_ (W)w, ++forkcnt);
2326 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2327 forks [forkcnt - 1] = w;
2328}
2329
2330void
2331ev_fork_stop (EV_P_ ev_fork *w)
2332{
2333 clear_pending (EV_A_ (W)w);
2334 if (expect_false (!ev_is_active (w)))
2335 return;
2336
2337 {
2338 int active = ((W)w)->active;
2339 forks [active - 1] = forks [--forkcnt];
2340 ((W)forks [active - 1])->active = active;
2341 }
2342
2343 ev_stop (EV_A_ (W)w);
2344}
2345#endif
2346
1471/*****************************************************************************/ 2347/*****************************************************************************/
1472 2348
1473struct ev_once 2349struct ev_once
1474{ 2350{
1475 struct ev_io io; 2351 ev_io io;
1476 struct ev_timer to; 2352 ev_timer to;
1477 void (*cb)(int revents, void *arg); 2353 void (*cb)(int revents, void *arg);
1478 void *arg; 2354 void *arg;
1479}; 2355};
1480 2356
1481static void 2357static void
1490 2366
1491 cb (revents, arg); 2367 cb (revents, arg);
1492} 2368}
1493 2369
1494static void 2370static void
1495once_cb_io (EV_P_ struct ev_io *w, int revents) 2371once_cb_io (EV_P_ ev_io *w, int revents)
1496{ 2372{
1497 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2373 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1498} 2374}
1499 2375
1500static void 2376static void
1501once_cb_to (EV_P_ struct ev_timer *w, int revents) 2377once_cb_to (EV_P_ ev_timer *w, int revents)
1502{ 2378{
1503 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2379 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1504} 2380}
1505 2381
1506void 2382void
1507ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2383ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1508{ 2384{
1509 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2385 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1510 2386
1511 if (!once) 2387 if (expect_false (!once))
2388 {
1512 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2389 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1513 else 2390 return;
1514 { 2391 }
2392
1515 once->cb = cb; 2393 once->cb = cb;
1516 once->arg = arg; 2394 once->arg = arg;
1517 2395
1518 ev_watcher_init (&once->io, once_cb_io); 2396 ev_init (&once->io, once_cb_io);
1519 if (fd >= 0) 2397 if (fd >= 0)
1520 { 2398 {
1521 ev_io_set (&once->io, fd, events); 2399 ev_io_set (&once->io, fd, events);
1522 ev_io_start (EV_A_ &once->io); 2400 ev_io_start (EV_A_ &once->io);
1523 } 2401 }
1524 2402
1525 ev_watcher_init (&once->to, once_cb_to); 2403 ev_init (&once->to, once_cb_to);
1526 if (timeout >= 0.) 2404 if (timeout >= 0.)
1527 { 2405 {
1528 ev_timer_set (&once->to, timeout, 0.); 2406 ev_timer_set (&once->to, timeout, 0.);
1529 ev_timer_start (EV_A_ &once->to); 2407 ev_timer_start (EV_A_ &once->to);
1530 }
1531 } 2408 }
1532} 2409}
1533 2410
2411#if EV_MULTIPLICITY
2412 #include "ev_wrap.h"
2413#endif
2414
2415#ifdef __cplusplus
2416}
2417#endif
2418

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines