ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.75 by root, Tue Nov 6 19:29:20 2007 UTC vs.
Revision 1.268 by root, Mon Oct 27 13:39:18 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <fcntl.h> 136#include <fcntl.h>
66#include <sys/types.h> 143#include <sys/types.h>
67#include <time.h> 144#include <time.h>
68 145
69#include <signal.h> 146#include <signal.h>
70 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
71#ifndef WIN32 154#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 155# include <sys/time.h>
74# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# include <io.h>
160# define WIN32_LEAN_AND_MEAN
161# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1
75#endif 164# endif
76/**/ 165#endif
166
167/* this block tries to deduce configuration from header-defined symbols and defaults */
77 168
78#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
79# define EV_USE_MONOTONIC 1 171# define EV_USE_MONOTONIC 1
172# else
173# define EV_USE_MONOTONIC 0
174# endif
175#endif
176
177#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
80#endif 187#endif
81 188
82#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
84#endif 191#endif
85 192
86#ifndef EV_USE_POLL 193#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 194# ifdef _WIN32
195# define EV_USE_POLL 0
196# else
197# define EV_USE_POLL 1
198# endif
88#endif 199#endif
89 200
90#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
91# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
92#endif 207#endif
93 208
94#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
96#endif 211#endif
97 212
213#ifndef EV_USE_PORT
214# define EV_USE_PORT 0
215#endif
216
98#ifndef EV_USE_WIN32 217#ifndef EV_USE_INOTIFY
99# ifdef WIN32 218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1 219# define EV_USE_INOTIFY 1
103# else 220# else
104# define EV_USE_WIN32 0 221# define EV_USE_INOTIFY 0
105# endif 222# endif
106#endif 223#endif
107 224
108#ifndef EV_USE_REALTIME 225#ifndef EV_PID_HASHSIZE
109# define EV_USE_REALTIME 1 226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
110#endif 230# endif
231#endif
111 232
112/**/ 233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
113 268
114#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
117#endif 272#endif
119#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
122#endif 277#endif
123 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
298#endif
299
300#if EV_SELECT_IS_WINSOCKET
301# include <winsock.h>
302#endif
303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
124/**/ 316/**/
125 317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
323
324/*
325 * This is used to avoid floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
333
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
130 337
131#include "ev.h"
132
133#if __GNUC__ >= 3 338#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 340# define noinline __attribute__ ((noinline))
136#else 341#else
137# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
138# define inline static 343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif
139#endif 347#endif
140 348
141#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 350#define expect_true(expr) expect ((expr) != 0, 1)
351#define inline_size static inline
352
353#if EV_MINIMAL
354# define inline_speed static noinline
355#else
356# define inline_speed static inline
357#endif
143 358
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
146 361
362#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */
364
147typedef struct ev_watcher *W; 365typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
150 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
152 377
378#ifdef _WIN32
153#include "ev_win32.c" 379# include "ev_win32.c"
380#endif
154 381
155/*****************************************************************************/ 382/*****************************************************************************/
156 383
157static void (*syserr_cb)(const char *msg); 384static void (*syserr_cb)(const char *msg);
158 385
386void
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 387ev_set_syserr_cb (void (*cb)(const char *msg))
160{ 388{
161 syserr_cb = cb; 389 syserr_cb = cb;
162} 390}
163 391
164static void 392static void noinline
165syserr (const char *msg) 393syserr (const char *msg)
166{ 394{
167 if (!msg) 395 if (!msg)
168 msg = "(libev) system error"; 396 msg = "(libev) system error";
169 397
174 perror (msg); 402 perror (msg);
175 abort (); 403 abort ();
176 } 404 }
177} 405}
178 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
179static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
180 423
424void
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
182{ 426{
183 alloc = cb; 427 alloc = cb;
184} 428}
185 429
186static void * 430inline_speed void *
187ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
188{ 432{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
190 434
191 if (!ptr && size) 435 if (!ptr && size)
192 { 436 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort (); 438 abort ();
205typedef struct 449typedef struct
206{ 450{
207 WL head; 451 WL head;
208 unsigned char events; 452 unsigned char events;
209 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char egen; /* generation counter to counter epoll bugs */
456#if EV_SELECT_IS_WINSOCKET
457 SOCKET handle;
458#endif
210} ANFD; 459} ANFD;
211 460
212typedef struct 461typedef struct
213{ 462{
214 W w; 463 W w;
215 int events; 464 int events;
216} ANPENDING; 465} ANPENDING;
217 466
467#if EV_USE_INOTIFY
468/* hash table entry per inotify-id */
469typedef struct
470{
471 WL head;
472} ANFS;
473#endif
474
475/* Heap Entry */
476#if EV_HEAP_CACHE_AT
477 typedef struct {
478 ev_tstamp at;
479 WT w;
480 } ANHE;
481
482 #define ANHE_w(he) (he).w /* access watcher, read-write */
483 #define ANHE_at(he) (he).at /* access cached at, read-only */
484 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
485#else
486 typedef WT ANHE;
487
488 #define ANHE_w(he) (he)
489 #define ANHE_at(he) (he)->at
490 #define ANHE_at_cache(he)
491#endif
492
218#if EV_MULTIPLICITY 493#if EV_MULTIPLICITY
219 494
220struct ev_loop 495 struct ev_loop
221{ 496 {
497 ev_tstamp ev_rt_now;
498 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 499 #define VAR(name,decl) decl;
223# include "ev_vars.h" 500 #include "ev_vars.h"
224};
225# undef VAR 501 #undef VAR
502 };
226# include "ev_wrap.h" 503 #include "ev_wrap.h"
504
505 static struct ev_loop default_loop_struct;
506 struct ev_loop *ev_default_loop_ptr;
227 507
228#else 508#else
229 509
510 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 511 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 512 #include "ev_vars.h"
232# undef VAR 513 #undef VAR
514
515 static int ev_default_loop_ptr;
233 516
234#endif 517#endif
235 518
236/*****************************************************************************/ 519/*****************************************************************************/
237 520
238inline ev_tstamp 521ev_tstamp
239ev_time (void) 522ev_time (void)
240{ 523{
241#if EV_USE_REALTIME 524#if EV_USE_REALTIME
242 struct timespec ts; 525 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 526 clock_gettime (CLOCK_REALTIME, &ts);
247 gettimeofday (&tv, 0); 530 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 531 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif 532#endif
250} 533}
251 534
252inline ev_tstamp 535ev_tstamp inline_size
253get_clock (void) 536get_clock (void)
254{ 537{
255#if EV_USE_MONOTONIC 538#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 539 if (expect_true (have_monotonic))
257 { 540 {
262#endif 545#endif
263 546
264 return ev_time (); 547 return ev_time ();
265} 548}
266 549
550#if EV_MULTIPLICITY
267ev_tstamp 551ev_tstamp
268ev_now (EV_P) 552ev_now (EV_P)
269{ 553{
270 return rt_now; 554 return ev_rt_now;
271} 555}
556#endif
272 557
273#define array_roundsize(type,n) ((n) | 4 & ~3) 558void
559ev_sleep (ev_tstamp delay)
560{
561 if (delay > 0.)
562 {
563#if EV_USE_NANOSLEEP
564 struct timespec ts;
565
566 ts.tv_sec = (time_t)delay;
567 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
568
569 nanosleep (&ts, 0);
570#elif defined(_WIN32)
571 Sleep ((unsigned long)(delay * 1e3));
572#else
573 struct timeval tv;
574
575 tv.tv_sec = (time_t)delay;
576 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
577
578 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
579 /* somehting nto guaranteed by newer posix versions, but guaranteed */
580 /* by older ones */
581 select (0, 0, 0, 0, &tv);
582#endif
583 }
584}
585
586/*****************************************************************************/
587
588#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
589
590int inline_size
591array_nextsize (int elem, int cur, int cnt)
592{
593 int ncur = cur + 1;
594
595 do
596 ncur <<= 1;
597 while (cnt > ncur);
598
599 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
600 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
601 {
602 ncur *= elem;
603 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
604 ncur = ncur - sizeof (void *) * 4;
605 ncur /= elem;
606 }
607
608 return ncur;
609}
610
611static noinline void *
612array_realloc (int elem, void *base, int *cur, int cnt)
613{
614 *cur = array_nextsize (elem, *cur, cnt);
615 return ev_realloc (base, elem * *cur);
616}
617
618#define array_init_zero(base,count) \
619 memset ((void *)(base), 0, sizeof (*(base)) * (count))
274 620
275#define array_needsize(type,base,cur,cnt,init) \ 621#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 622 if (expect_false ((cnt) > (cur))) \
277 { \ 623 { \
278 int newcnt = cur; \ 624 int ocur_ = (cur); \
279 do \ 625 (base) = (type *)array_realloc \
280 { \ 626 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 627 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 628 }
289 629
630#if 0
290#define array_slim(type,stem) \ 631#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 632 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 633 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 634 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 635 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 636 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 637 }
297 638#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 639
303#define array_free(stem, idx) \ 640#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 641 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
305 642
306/*****************************************************************************/ 643/*****************************************************************************/
307 644
308static void 645void noinline
309anfds_init (ANFD *base, int count) 646ev_feed_event (EV_P_ void *w, int revents)
310{ 647{
311 while (count--) 648 W w_ = (W)w;
312 { 649 int pri = ABSPRI (w_);
313 base->head = 0;
314 base->events = EV_NONE;
315 base->reify = 0;
316 650
317 ++base; 651 if (expect_false (w_->pending))
652 pendings [pri][w_->pending - 1].events |= revents;
653 else
318 } 654 {
319} 655 w_->pending = ++pendingcnt [pri];
320 656 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
321static void 657 pendings [pri][w_->pending - 1].w = w_;
322event (EV_P_ W w, int events)
323{
324 if (w->pending)
325 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 658 pendings [pri][w_->pending - 1].events = revents;
327 return;
328 } 659 }
329
330 w->pending = ++pendingcnt [ABSPRI (w)];
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w;
333 pendings [ABSPRI (w)][w->pending - 1].events = events;
334} 660}
335 661
336static void 662void inline_speed
337queue_events (EV_P_ W *events, int eventcnt, int type) 663queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 664{
339 int i; 665 int i;
340 666
341 for (i = 0; i < eventcnt; ++i) 667 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 668 ev_feed_event (EV_A_ events [i], type);
343} 669}
344 670
345static void 671/*****************************************************************************/
672
673void inline_speed
346fd_event (EV_P_ int fd, int events) 674fd_event (EV_P_ int fd, int revents)
347{ 675{
348 ANFD *anfd = anfds + fd; 676 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 677 ev_io *w;
350 678
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 679 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
352 { 680 {
353 int ev = w->events & events; 681 int ev = w->events & revents;
354 682
355 if (ev) 683 if (ev)
356 event (EV_A_ (W)w, ev); 684 ev_feed_event (EV_A_ (W)w, ev);
357 } 685 }
358} 686}
359 687
360/*****************************************************************************/ 688void
689ev_feed_fd_event (EV_P_ int fd, int revents)
690{
691 if (fd >= 0 && fd < anfdmax)
692 fd_event (EV_A_ fd, revents);
693}
361 694
362static void 695void inline_size
363fd_reify (EV_P) 696fd_reify (EV_P)
364{ 697{
365 int i; 698 int i;
366 699
367 for (i = 0; i < fdchangecnt; ++i) 700 for (i = 0; i < fdchangecnt; ++i)
368 { 701 {
369 int fd = fdchanges [i]; 702 int fd = fdchanges [i];
370 ANFD *anfd = anfds + fd; 703 ANFD *anfd = anfds + fd;
371 struct ev_io *w; 704 ev_io *w;
372 705
373 int events = 0; 706 unsigned char events = 0;
374 707
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 708 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
376 events |= w->events; 709 events |= (unsigned char)w->events;
377 710
711#if EV_SELECT_IS_WINSOCKET
712 if (events)
713 {
714 unsigned long arg;
715 #ifdef EV_FD_TO_WIN32_HANDLE
716 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
717 #else
718 anfd->handle = _get_osfhandle (fd);
719 #endif
720 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
721 }
722#endif
723
724 {
725 unsigned char o_events = anfd->events;
726 unsigned char o_reify = anfd->reify;
727
378 anfd->reify = 0; 728 anfd->reify = 0;
379
380 method_modify (EV_A_ fd, anfd->events, events);
381 anfd->events = events; 729 anfd->events = events;
730
731 if (o_events != events || o_reify & EV_IOFDSET)
732 backend_modify (EV_A_ fd, o_events, events);
733 }
382 } 734 }
383 735
384 fdchangecnt = 0; 736 fdchangecnt = 0;
385} 737}
386 738
387static void 739void inline_size
388fd_change (EV_P_ int fd) 740fd_change (EV_P_ int fd, int flags)
389{ 741{
390 if (anfds [fd].reify) 742 unsigned char reify = anfds [fd].reify;
391 return;
392
393 anfds [fd].reify = 1; 743 anfds [fd].reify |= flags;
394 744
745 if (expect_true (!reify))
746 {
395 ++fdchangecnt; 747 ++fdchangecnt;
396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 748 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
397 fdchanges [fdchangecnt - 1] = fd; 749 fdchanges [fdchangecnt - 1] = fd;
750 }
398} 751}
399 752
400static void 753void inline_speed
401fd_kill (EV_P_ int fd) 754fd_kill (EV_P_ int fd)
402{ 755{
403 struct ev_io *w; 756 ev_io *w;
404 757
405 while ((w = (struct ev_io *)anfds [fd].head)) 758 while ((w = (ev_io *)anfds [fd].head))
406 { 759 {
407 ev_io_stop (EV_A_ w); 760 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 761 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 762 }
410} 763}
411 764
412static int 765int inline_size
413fd_valid (int fd) 766fd_valid (int fd)
414{ 767{
415#ifdef WIN32 768#ifdef _WIN32
416 return !!win32_get_osfhandle (fd); 769 return _get_osfhandle (fd) != -1;
417#else 770#else
418 return fcntl (fd, F_GETFD) != -1; 771 return fcntl (fd, F_GETFD) != -1;
419#endif 772#endif
420} 773}
421 774
422/* called on EBADF to verify fds */ 775/* called on EBADF to verify fds */
423static void 776static void noinline
424fd_ebadf (EV_P) 777fd_ebadf (EV_P)
425{ 778{
426 int fd; 779 int fd;
427 780
428 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
429 if (anfds [fd].events) 782 if (anfds [fd].events)
430 if (!fd_valid (fd) == -1 && errno == EBADF) 783 if (!fd_valid (fd) && errno == EBADF)
431 fd_kill (EV_A_ fd); 784 fd_kill (EV_A_ fd);
432} 785}
433 786
434/* called on ENOMEM in select/poll to kill some fds and retry */ 787/* called on ENOMEM in select/poll to kill some fds and retry */
435static void 788static void noinline
436fd_enomem (EV_P) 789fd_enomem (EV_P)
437{ 790{
438 int fd; 791 int fd;
439 792
440 for (fd = anfdmax; fd--; ) 793 for (fd = anfdmax; fd--; )
443 fd_kill (EV_A_ fd); 796 fd_kill (EV_A_ fd);
444 return; 797 return;
445 } 798 }
446} 799}
447 800
448/* usually called after fork if method needs to re-arm all fds from scratch */ 801/* usually called after fork if backend needs to re-arm all fds from scratch */
449static void 802static void noinline
450fd_rearm_all (EV_P) 803fd_rearm_all (EV_P)
451{ 804{
452 int fd; 805 int fd;
453 806
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd) 807 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events) 808 if (anfds [fd].events)
457 { 809 {
458 anfds [fd].events = 0; 810 anfds [fd].events = 0;
811 anfds [fd].emask = 0;
459 fd_change (EV_A_ fd); 812 fd_change (EV_A_ fd, EV_IOFDSET | 1);
460 } 813 }
461} 814}
462 815
463/*****************************************************************************/ 816/*****************************************************************************/
464 817
465static void 818/*
466upheap (WT *heap, int k) 819 * the heap functions want a real array index. array index 0 uis guaranteed to not
467{ 820 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
468 WT w = heap [k]; 821 * the branching factor of the d-tree.
822 */
469 823
470 while (k && heap [k >> 1]->at > w->at) 824/*
471 { 825 * at the moment we allow libev the luxury of two heaps,
472 heap [k] = heap [k >> 1]; 826 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
473 ((W)heap [k])->active = k + 1; 827 * which is more cache-efficient.
474 k >>= 1; 828 * the difference is about 5% with 50000+ watchers.
475 } 829 */
830#if EV_USE_4HEAP
476 831
477 heap [k] = w; 832#define DHEAP 4
478 ((W)heap [k])->active = k + 1; 833#define HEAP0 (DHEAP - 1) /* index of first element in heap */
834#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
835#define UPHEAP_DONE(p,k) ((p) == (k))
479 836
480} 837/* away from the root */
481 838void inline_speed
482static void
483downheap (WT *heap, int N, int k) 839downheap (ANHE *heap, int N, int k)
484{ 840{
485 WT w = heap [k]; 841 ANHE he = heap [k];
842 ANHE *E = heap + N + HEAP0;
486 843
487 while (k < (N >> 1)) 844 for (;;)
488 { 845 {
489 int j = k << 1; 846 ev_tstamp minat;
847 ANHE *minpos;
848 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
490 849
491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 850 /* find minimum child */
851 if (expect_true (pos + DHEAP - 1 < E))
492 ++j; 852 {
493 853 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
494 if (w->at <= heap [j]->at) 854 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else if (pos < E)
859 {
860 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
861 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 }
865 else
495 break; 866 break;
496 867
868 if (ANHE_at (he) <= minat)
869 break;
870
871 heap [k] = *minpos;
872 ev_active (ANHE_w (*minpos)) = k;
873
874 k = minpos - heap;
875 }
876
877 heap [k] = he;
878 ev_active (ANHE_w (he)) = k;
879}
880
881#else /* 4HEAP */
882
883#define HEAP0 1
884#define HPARENT(k) ((k) >> 1)
885#define UPHEAP_DONE(p,k) (!(p))
886
887/* away from the root */
888void inline_speed
889downheap (ANHE *heap, int N, int k)
890{
891 ANHE he = heap [k];
892
893 for (;;)
894 {
895 int c = k << 1;
896
897 if (c > N + HEAP0 - 1)
898 break;
899
900 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
901 ? 1 : 0;
902
903 if (ANHE_at (he) <= ANHE_at (heap [c]))
904 break;
905
497 heap [k] = heap [j]; 906 heap [k] = heap [c];
498 ((W)heap [k])->active = k + 1; 907 ev_active (ANHE_w (heap [k])) = k;
908
499 k = j; 909 k = c;
500 } 910 }
501 911
502 heap [k] = w; 912 heap [k] = he;
503 ((W)heap [k])->active = k + 1; 913 ev_active (ANHE_w (he)) = k;
914}
915#endif
916
917/* towards the root */
918void inline_speed
919upheap (ANHE *heap, int k)
920{
921 ANHE he = heap [k];
922
923 for (;;)
924 {
925 int p = HPARENT (k);
926
927 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
928 break;
929
930 heap [k] = heap [p];
931 ev_active (ANHE_w (heap [k])) = k;
932 k = p;
933 }
934
935 heap [k] = he;
936 ev_active (ANHE_w (he)) = k;
937}
938
939void inline_size
940adjustheap (ANHE *heap, int N, int k)
941{
942 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
943 upheap (heap, k);
944 else
945 downheap (heap, N, k);
946}
947
948/* rebuild the heap: this function is used only once and executed rarely */
949void inline_size
950reheap (ANHE *heap, int N)
951{
952 int i;
953
954 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
955 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
956 for (i = 0; i < N; ++i)
957 upheap (heap, i + HEAP0);
504} 958}
505 959
506/*****************************************************************************/ 960/*****************************************************************************/
507 961
508typedef struct 962typedef struct
509{ 963{
510 WL head; 964 WL head;
511 sig_atomic_t volatile gotsig; 965 EV_ATOMIC_T gotsig;
512} ANSIG; 966} ANSIG;
513 967
514static ANSIG *signals; 968static ANSIG *signals;
515static int signalmax; 969static int signalmax;
516 970
517static int sigpipe [2]; 971static EV_ATOMIC_T gotsig;
518static sig_atomic_t volatile gotsig; 972
519static struct ev_io sigev; 973/*****************************************************************************/
974
975void inline_speed
976fd_intern (int fd)
977{
978#ifdef _WIN32
979 unsigned long arg = 1;
980 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
981#else
982 fcntl (fd, F_SETFD, FD_CLOEXEC);
983 fcntl (fd, F_SETFL, O_NONBLOCK);
984#endif
985}
986
987static void noinline
988evpipe_init (EV_P)
989{
990 if (!ev_is_active (&pipeev))
991 {
992#if EV_USE_EVENTFD
993 if ((evfd = eventfd (0, 0)) >= 0)
994 {
995 evpipe [0] = -1;
996 fd_intern (evfd);
997 ev_io_set (&pipeev, evfd, EV_READ);
998 }
999 else
1000#endif
1001 {
1002 while (pipe (evpipe))
1003 syserr ("(libev) error creating signal/async pipe");
1004
1005 fd_intern (evpipe [0]);
1006 fd_intern (evpipe [1]);
1007 ev_io_set (&pipeev, evpipe [0], EV_READ);
1008 }
1009
1010 ev_io_start (EV_A_ &pipeev);
1011 ev_unref (EV_A); /* watcher should not keep loop alive */
1012 }
1013}
1014
1015void inline_size
1016evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1017{
1018 if (!*flag)
1019 {
1020 int old_errno = errno; /* save errno because write might clobber it */
1021
1022 *flag = 1;
1023
1024#if EV_USE_EVENTFD
1025 if (evfd >= 0)
1026 {
1027 uint64_t counter = 1;
1028 write (evfd, &counter, sizeof (uint64_t));
1029 }
1030 else
1031#endif
1032 write (evpipe [1], &old_errno, 1);
1033
1034 errno = old_errno;
1035 }
1036}
520 1037
521static void 1038static void
522signals_init (ANSIG *base, int count) 1039pipecb (EV_P_ ev_io *iow, int revents)
523{ 1040{
524 while (count--) 1041#if EV_USE_EVENTFD
1042 if (evfd >= 0)
1043 {
1044 uint64_t counter;
1045 read (evfd, &counter, sizeof (uint64_t));
525 { 1046 }
526 base->head = 0; 1047 else
1048#endif
1049 {
1050 char dummy;
1051 read (evpipe [0], &dummy, 1);
1052 }
1053
1054 if (gotsig && ev_is_default_loop (EV_A))
1055 {
1056 int signum;
527 base->gotsig = 0; 1057 gotsig = 0;
528 1058
529 ++base; 1059 for (signum = signalmax; signum--; )
1060 if (signals [signum].gotsig)
1061 ev_feed_signal_event (EV_A_ signum + 1);
1062 }
1063
1064#if EV_ASYNC_ENABLE
1065 if (gotasync)
530 } 1066 {
1067 int i;
1068 gotasync = 0;
1069
1070 for (i = asynccnt; i--; )
1071 if (asyncs [i]->sent)
1072 {
1073 asyncs [i]->sent = 0;
1074 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1075 }
1076 }
1077#endif
531} 1078}
1079
1080/*****************************************************************************/
532 1081
533static void 1082static void
534sighandler (int signum) 1083ev_sighandler (int signum)
535{ 1084{
1085#if EV_MULTIPLICITY
1086 struct ev_loop *loop = &default_loop_struct;
1087#endif
1088
536#if WIN32 1089#if _WIN32
537 signal (signum, sighandler); 1090 signal (signum, ev_sighandler);
538#endif 1091#endif
539 1092
540 signals [signum - 1].gotsig = 1; 1093 signals [signum - 1].gotsig = 1;
541 1094 evpipe_write (EV_A_ &gotsig);
542 if (!gotsig)
543 {
544 int old_errno = errno;
545 gotsig = 1;
546#ifdef WIN32
547 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
548#else
549 write (sigpipe [1], &signum, 1);
550#endif
551 errno = old_errno;
552 }
553} 1095}
554 1096
555static void 1097void noinline
556sigcb (EV_P_ struct ev_io *iow, int revents) 1098ev_feed_signal_event (EV_P_ int signum)
557{ 1099{
558 WL w; 1100 WL w;
1101
1102#if EV_MULTIPLICITY
1103 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1104#endif
1105
559 int signum; 1106 --signum;
560 1107
561#ifdef WIN32 1108 if (signum < 0 || signum >= signalmax)
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1109 return;
563#else
564 read (sigpipe [0], &revents, 1);
565#endif
566 gotsig = 0;
567 1110
568 for (signum = signalmax; signum--; )
569 if (signals [signum].gotsig)
570 {
571 signals [signum].gotsig = 0; 1111 signals [signum].gotsig = 0;
572 1112
573 for (w = signals [signum].head; w; w = w->next) 1113 for (w = signals [signum].head; w; w = w->next)
574 event (EV_A_ (W)w, EV_SIGNAL); 1114 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
575 }
576}
577
578static void
579siginit (EV_P)
580{
581#ifndef WIN32
582 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
583 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
584
585 /* rather than sort out wether we really need nb, set it */
586 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
587 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
588#endif
589
590 ev_io_set (&sigev, sigpipe [0], EV_READ);
591 ev_io_start (EV_A_ &sigev);
592 ev_unref (EV_A); /* child watcher should not keep loop alive */
593} 1115}
594 1116
595/*****************************************************************************/ 1117/*****************************************************************************/
596 1118
597static struct ev_child *childs [PID_HASHSIZE]; 1119static WL childs [EV_PID_HASHSIZE];
598 1120
599#ifndef WIN32 1121#ifndef _WIN32
600 1122
601static struct ev_signal childev; 1123static ev_signal childev;
1124
1125#ifndef WIFCONTINUED
1126# define WIFCONTINUED(status) 0
1127#endif
1128
1129void inline_speed
1130child_reap (EV_P_ int chain, int pid, int status)
1131{
1132 ev_child *w;
1133 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1134
1135 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1136 {
1137 if ((w->pid == pid || !w->pid)
1138 && (!traced || (w->flags & 1)))
1139 {
1140 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1141 w->rpid = pid;
1142 w->rstatus = status;
1143 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1144 }
1145 }
1146}
602 1147
603#ifndef WCONTINUED 1148#ifndef WCONTINUED
604# define WCONTINUED 0 1149# define WCONTINUED 0
605#endif 1150#endif
606 1151
607static void 1152static void
608child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
609{
610 struct ev_child *w;
611
612 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
613 if (w->pid == pid || !w->pid)
614 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid;
617 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD);
619 }
620}
621
622static void
623childcb (EV_P_ struct ev_signal *sw, int revents) 1153childcb (EV_P_ ev_signal *sw, int revents)
624{ 1154{
625 int pid, status; 1155 int pid, status;
626 1156
1157 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1158 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
628 { 1159 if (!WCONTINUED
1160 || errno != EINVAL
1161 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1162 return;
1163
629 /* make sure we are called again until all childs have been reaped */ 1164 /* make sure we are called again until all children have been reaped */
1165 /* we need to do it this way so that the callback gets called before we continue */
630 event (EV_A_ (W)sw, EV_SIGNAL); 1166 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
631 1167
632 child_reap (EV_A_ sw, pid, pid, status); 1168 child_reap (EV_A_ pid, pid, status);
1169 if (EV_PID_HASHSIZE > 1)
633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1170 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
634 }
635} 1171}
636 1172
637#endif 1173#endif
638 1174
639/*****************************************************************************/ 1175/*****************************************************************************/
640 1176
1177#if EV_USE_PORT
1178# include "ev_port.c"
1179#endif
641#if EV_USE_KQUEUE 1180#if EV_USE_KQUEUE
642# include "ev_kqueue.c" 1181# include "ev_kqueue.c"
643#endif 1182#endif
644#if EV_USE_EPOLL 1183#if EV_USE_EPOLL
645# include "ev_epoll.c" 1184# include "ev_epoll.c"
662{ 1201{
663 return EV_VERSION_MINOR; 1202 return EV_VERSION_MINOR;
664} 1203}
665 1204
666/* return true if we are running with elevated privileges and should ignore env variables */ 1205/* return true if we are running with elevated privileges and should ignore env variables */
667static int 1206int inline_size
668enable_secure (void) 1207enable_secure (void)
669{ 1208{
670#ifdef WIN32 1209#ifdef _WIN32
671 return 0; 1210 return 0;
672#else 1211#else
673 return getuid () != geteuid () 1212 return getuid () != geteuid ()
674 || getgid () != getegid (); 1213 || getgid () != getegid ();
675#endif 1214#endif
676} 1215}
677 1216
678int 1217unsigned int
679ev_method (EV_P) 1218ev_supported_backends (void)
680{ 1219{
681 return method; 1220 unsigned int flags = 0;
682}
683 1221
684static void 1222 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
685loop_init (EV_P_ int methods) 1223 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1224 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1225 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1226 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1227
1228 return flags;
1229}
1230
1231unsigned int
1232ev_recommended_backends (void)
686{ 1233{
687 if (!method) 1234 unsigned int flags = ev_supported_backends ();
1235
1236#ifndef __NetBSD__
1237 /* kqueue is borked on everything but netbsd apparently */
1238 /* it usually doesn't work correctly on anything but sockets and pipes */
1239 flags &= ~EVBACKEND_KQUEUE;
1240#endif
1241#ifdef __APPLE__
1242 // flags &= ~EVBACKEND_KQUEUE; for documentation
1243 flags &= ~EVBACKEND_POLL;
1244#endif
1245
1246 return flags;
1247}
1248
1249unsigned int
1250ev_embeddable_backends (void)
1251{
1252 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1253
1254 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1255 /* please fix it and tell me how to detect the fix */
1256 flags &= ~EVBACKEND_EPOLL;
1257
1258 return flags;
1259}
1260
1261unsigned int
1262ev_backend (EV_P)
1263{
1264 return backend;
1265}
1266
1267unsigned int
1268ev_loop_count (EV_P)
1269{
1270 return loop_count;
1271}
1272
1273void
1274ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1275{
1276 io_blocktime = interval;
1277}
1278
1279void
1280ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1281{
1282 timeout_blocktime = interval;
1283}
1284
1285static void noinline
1286loop_init (EV_P_ unsigned int flags)
1287{
1288 if (!backend)
688 { 1289 {
689#if EV_USE_MONOTONIC 1290#if EV_USE_MONOTONIC
690 { 1291 {
691 struct timespec ts; 1292 struct timespec ts;
692 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1293 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
693 have_monotonic = 1; 1294 have_monotonic = 1;
694 } 1295 }
695#endif 1296#endif
696 1297
697 rt_now = ev_time (); 1298 ev_rt_now = ev_time ();
698 mn_now = get_clock (); 1299 mn_now = get_clock ();
699 now_floor = mn_now; 1300 now_floor = mn_now;
700 rtmn_diff = rt_now - mn_now; 1301 rtmn_diff = ev_rt_now - mn_now;
701 1302
702 if (methods == EVMETHOD_AUTO) 1303 io_blocktime = 0.;
703 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1304 timeout_blocktime = 0.;
1305 backend = 0;
1306 backend_fd = -1;
1307 gotasync = 0;
1308#if EV_USE_INOTIFY
1309 fs_fd = -2;
1310#endif
1311
1312 /* pid check not overridable via env */
1313#ifndef _WIN32
1314 if (flags & EVFLAG_FORKCHECK)
1315 curpid = getpid ();
1316#endif
1317
1318 if (!(flags & EVFLAG_NOENV)
1319 && !enable_secure ()
1320 && getenv ("LIBEV_FLAGS"))
704 methods = atoi (getenv ("LIBEV_METHODS")); 1321 flags = atoi (getenv ("LIBEV_FLAGS"));
705 else
706 methods = EVMETHOD_ANY;
707 1322
708 method = 0; 1323 if (!(flags & 0x0000ffffU))
709#if EV_USE_WIN32 1324 flags |= ev_recommended_backends ();
710 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1325
1326#if EV_USE_PORT
1327 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
711#endif 1328#endif
712#if EV_USE_KQUEUE 1329#if EV_USE_KQUEUE
713 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1330 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
714#endif 1331#endif
715#if EV_USE_EPOLL 1332#if EV_USE_EPOLL
716 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1333 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
717#endif 1334#endif
718#if EV_USE_POLL 1335#if EV_USE_POLL
719 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1336 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
720#endif 1337#endif
721#if EV_USE_SELECT 1338#if EV_USE_SELECT
722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1339 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
723#endif 1340#endif
724 1341
725 ev_watcher_init (&sigev, sigcb); 1342 ev_init (&pipeev, pipecb);
726 ev_set_priority (&sigev, EV_MAXPRI); 1343 ev_set_priority (&pipeev, EV_MAXPRI);
727 } 1344 }
728} 1345}
729 1346
730void 1347static void noinline
731loop_destroy (EV_P) 1348loop_destroy (EV_P)
732{ 1349{
733 int i; 1350 int i;
734 1351
1352 if (ev_is_active (&pipeev))
1353 {
1354 ev_ref (EV_A); /* signal watcher */
1355 ev_io_stop (EV_A_ &pipeev);
1356
1357#if EV_USE_EVENTFD
1358 if (evfd >= 0)
1359 close (evfd);
1360#endif
1361
1362 if (evpipe [0] >= 0)
1363 {
1364 close (evpipe [0]);
1365 close (evpipe [1]);
1366 }
1367 }
1368
735#if EV_USE_WIN32 1369#if EV_USE_INOTIFY
736 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1370 if (fs_fd >= 0)
1371 close (fs_fd);
1372#endif
1373
1374 if (backend_fd >= 0)
1375 close (backend_fd);
1376
1377#if EV_USE_PORT
1378 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
737#endif 1379#endif
738#if EV_USE_KQUEUE 1380#if EV_USE_KQUEUE
739 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1381 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
740#endif 1382#endif
741#if EV_USE_EPOLL 1383#if EV_USE_EPOLL
742 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1384 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
743#endif 1385#endif
744#if EV_USE_POLL 1386#if EV_USE_POLL
745 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1387 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
746#endif 1388#endif
747#if EV_USE_SELECT 1389#if EV_USE_SELECT
748 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1390 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
749#endif 1391#endif
750 1392
751 for (i = NUMPRI; i--; ) 1393 for (i = NUMPRI; i--; )
1394 {
752 array_free (pending, [i]); 1395 array_free (pending, [i]);
1396#if EV_IDLE_ENABLE
1397 array_free (idle, [i]);
1398#endif
1399 }
1400
1401 ev_free (anfds); anfdmax = 0;
753 1402
754 /* have to use the microsoft-never-gets-it-right macro */ 1403 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange); 1404 array_free (fdchange, EMPTY);
756 array_free_microshit (timer); 1405 array_free (timer, EMPTY);
757 array_free_microshit (periodic); 1406#if EV_PERIODIC_ENABLE
758 array_free_microshit (idle); 1407 array_free (periodic, EMPTY);
759 array_free_microshit (prepare); 1408#endif
760 array_free_microshit (check); 1409#if EV_FORK_ENABLE
1410 array_free (fork, EMPTY);
1411#endif
1412 array_free (prepare, EMPTY);
1413 array_free (check, EMPTY);
1414#if EV_ASYNC_ENABLE
1415 array_free (async, EMPTY);
1416#endif
761 1417
762 method = 0; 1418 backend = 0;
763} 1419}
764 1420
765static void 1421#if EV_USE_INOTIFY
1422void inline_size infy_fork (EV_P);
1423#endif
1424
1425void inline_size
766loop_fork (EV_P) 1426loop_fork (EV_P)
767{ 1427{
1428#if EV_USE_PORT
1429 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1430#endif
1431#if EV_USE_KQUEUE
1432 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1433#endif
768#if EV_USE_EPOLL 1434#if EV_USE_EPOLL
769 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1435 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
770#endif 1436#endif
771#if EV_USE_KQUEUE 1437#if EV_USE_INOTIFY
772 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1438 infy_fork (EV_A);
773#endif 1439#endif
774 1440
775 if (ev_is_active (&sigev)) 1441 if (ev_is_active (&pipeev))
776 { 1442 {
777 /* default loop */ 1443 /* this "locks" the handlers against writing to the pipe */
1444 /* while we modify the fd vars */
1445 gotsig = 1;
1446#if EV_ASYNC_ENABLE
1447 gotasync = 1;
1448#endif
778 1449
779 ev_ref (EV_A); 1450 ev_ref (EV_A);
780 ev_io_stop (EV_A_ &sigev); 1451 ev_io_stop (EV_A_ &pipeev);
1452
1453#if EV_USE_EVENTFD
1454 if (evfd >= 0)
1455 close (evfd);
1456#endif
1457
1458 if (evpipe [0] >= 0)
1459 {
781 close (sigpipe [0]); 1460 close (evpipe [0]);
782 close (sigpipe [1]); 1461 close (evpipe [1]);
1462 }
783 1463
784 while (pipe (sigpipe))
785 syserr ("(libev) error creating pipe");
786
787 siginit (EV_A); 1464 evpipe_init (EV_A);
1465 /* now iterate over everything, in case we missed something */
1466 pipecb (EV_A_ &pipeev, EV_READ);
788 } 1467 }
789 1468
790 postfork = 0; 1469 postfork = 0;
791} 1470}
1471
1472#if EV_MULTIPLICITY
1473
1474struct ev_loop *
1475ev_loop_new (unsigned int flags)
1476{
1477 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1478
1479 memset (loop, 0, sizeof (struct ev_loop));
1480
1481 loop_init (EV_A_ flags);
1482
1483 if (ev_backend (EV_A))
1484 return loop;
1485
1486 return 0;
1487}
1488
1489void
1490ev_loop_destroy (EV_P)
1491{
1492 loop_destroy (EV_A);
1493 ev_free (loop);
1494}
1495
1496void
1497ev_loop_fork (EV_P)
1498{
1499 postfork = 1; /* must be in line with ev_default_fork */
1500}
1501
1502#if EV_VERIFY
1503static void noinline
1504verify_watcher (EV_P_ W w)
1505{
1506 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1507
1508 if (w->pending)
1509 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1510}
1511
1512static void noinline
1513verify_heap (EV_P_ ANHE *heap, int N)
1514{
1515 int i;
1516
1517 for (i = HEAP0; i < N + HEAP0; ++i)
1518 {
1519 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1520 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1521 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1522
1523 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1524 }
1525}
1526
1527static void noinline
1528array_verify (EV_P_ W *ws, int cnt)
1529{
1530 while (cnt--)
1531 {
1532 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1533 verify_watcher (EV_A_ ws [cnt]);
1534 }
1535}
1536#endif
1537
1538void
1539ev_loop_verify (EV_P)
1540{
1541#if EV_VERIFY
1542 int i;
1543 WL w;
1544
1545 assert (activecnt >= -1);
1546
1547 assert (fdchangemax >= fdchangecnt);
1548 for (i = 0; i < fdchangecnt; ++i)
1549 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1550
1551 assert (anfdmax >= 0);
1552 for (i = 0; i < anfdmax; ++i)
1553 for (w = anfds [i].head; w; w = w->next)
1554 {
1555 verify_watcher (EV_A_ (W)w);
1556 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1557 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1558 }
1559
1560 assert (timermax >= timercnt);
1561 verify_heap (EV_A_ timers, timercnt);
1562
1563#if EV_PERIODIC_ENABLE
1564 assert (periodicmax >= periodiccnt);
1565 verify_heap (EV_A_ periodics, periodiccnt);
1566#endif
1567
1568 for (i = NUMPRI; i--; )
1569 {
1570 assert (pendingmax [i] >= pendingcnt [i]);
1571#if EV_IDLE_ENABLE
1572 assert (idleall >= 0);
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
792 1602
793#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
794struct ev_loop * 1604struct ev_loop *
795ev_loop_new (int methods) 1605ev_default_loop_init (unsigned int flags)
796{ 1606#else
797 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1607int
798 1608ev_default_loop (unsigned int flags)
799 memset (loop, 0, sizeof (struct ev_loop));
800
801 loop_init (EV_A_ methods);
802
803 if (ev_method (EV_A))
804 return loop;
805
806 return 0;
807}
808
809void
810ev_loop_destroy (EV_P)
811{
812 loop_destroy (EV_A);
813 ev_free (loop);
814}
815
816void
817ev_loop_fork (EV_P)
818{
819 postfork = 1;
820}
821
822#endif 1609#endif
823 1610{
1611 if (!ev_default_loop_ptr)
1612 {
824#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct; 1614 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop *
829#else 1615#else
830static int default_loop;
831
832int
833#endif
834ev_default_loop (int methods)
835{
836 if (sigpipe [0] == sigpipe [1])
837 if (pipe (sigpipe))
838 return 0;
839
840 if (!default_loop)
841 {
842#if EV_MULTIPLICITY
843 struct ev_loop *loop = default_loop = &default_loop_struct;
844#else
845 default_loop = 1; 1616 ev_default_loop_ptr = 1;
846#endif 1617#endif
847 1618
848 loop_init (EV_A_ methods); 1619 loop_init (EV_A_ flags);
849 1620
850 if (ev_method (EV_A)) 1621 if (ev_backend (EV_A))
851 { 1622 {
852 siginit (EV_A);
853
854#ifndef WIN32 1623#ifndef _WIN32
855 ev_signal_init (&childev, childcb, SIGCHLD); 1624 ev_signal_init (&childev, childcb, SIGCHLD);
856 ev_set_priority (&childev, EV_MAXPRI); 1625 ev_set_priority (&childev, EV_MAXPRI);
857 ev_signal_start (EV_A_ &childev); 1626 ev_signal_start (EV_A_ &childev);
858 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1627 ev_unref (EV_A); /* child watcher should not keep loop alive */
859#endif 1628#endif
860 } 1629 }
861 else 1630 else
862 default_loop = 0; 1631 ev_default_loop_ptr = 0;
863 } 1632 }
864 1633
865 return default_loop; 1634 return ev_default_loop_ptr;
866} 1635}
867 1636
868void 1637void
869ev_default_destroy (void) 1638ev_default_destroy (void)
870{ 1639{
871#if EV_MULTIPLICITY 1640#if EV_MULTIPLICITY
872 struct ev_loop *loop = default_loop; 1641 struct ev_loop *loop = ev_default_loop_ptr;
873#endif 1642#endif
874 1643
1644 ev_default_loop_ptr = 0;
1645
875#ifndef WIN32 1646#ifndef _WIN32
876 ev_ref (EV_A); /* child watcher */ 1647 ev_ref (EV_A); /* child watcher */
877 ev_signal_stop (EV_A_ &childev); 1648 ev_signal_stop (EV_A_ &childev);
878#endif 1649#endif
879 1650
880 ev_ref (EV_A); /* signal watcher */
881 ev_io_stop (EV_A_ &sigev);
882
883 close (sigpipe [0]); sigpipe [0] = 0;
884 close (sigpipe [1]); sigpipe [1] = 0;
885
886 loop_destroy (EV_A); 1651 loop_destroy (EV_A);
887} 1652}
888 1653
889void 1654void
890ev_default_fork (void) 1655ev_default_fork (void)
891{ 1656{
892#if EV_MULTIPLICITY 1657#if EV_MULTIPLICITY
893 struct ev_loop *loop = default_loop; 1658 struct ev_loop *loop = ev_default_loop_ptr;
894#endif 1659#endif
895 1660
896 if (method) 1661 if (backend)
897 postfork = 1; 1662 postfork = 1; /* must be in line with ev_loop_fork */
898} 1663}
899 1664
900/*****************************************************************************/ 1665/*****************************************************************************/
901 1666
902static void 1667void
1668ev_invoke (EV_P_ void *w, int revents)
1669{
1670 EV_CB_INVOKE ((W)w, revents);
1671}
1672
1673void inline_speed
903call_pending (EV_P) 1674call_pending (EV_P)
904{ 1675{
905 int pri; 1676 int pri;
906 1677
907 for (pri = NUMPRI; pri--; ) 1678 for (pri = NUMPRI; pri--; )
908 while (pendingcnt [pri]) 1679 while (pendingcnt [pri])
909 { 1680 {
910 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1681 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
911 1682
912 if (p->w) 1683 if (expect_true (p->w))
913 { 1684 {
1685 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1686
914 p->w->pending = 0; 1687 p->w->pending = 0;
915 p->w->cb (EV_A_ p->w, p->events); 1688 EV_CB_INVOKE (p->w, p->events);
1689 EV_FREQUENT_CHECK;
916 } 1690 }
917 } 1691 }
918} 1692}
919 1693
920static void 1694#if EV_IDLE_ENABLE
1695void inline_size
1696idle_reify (EV_P)
1697{
1698 if (expect_false (idleall))
1699 {
1700 int pri;
1701
1702 for (pri = NUMPRI; pri--; )
1703 {
1704 if (pendingcnt [pri])
1705 break;
1706
1707 if (idlecnt [pri])
1708 {
1709 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1710 break;
1711 }
1712 }
1713 }
1714}
1715#endif
1716
1717void inline_size
921timers_reify (EV_P) 1718timers_reify (EV_P)
922{ 1719{
1720 EV_FREQUENT_CHECK;
1721
923 while (timercnt && ((WT)timers [0])->at <= mn_now) 1722 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
924 { 1723 {
925 struct ev_timer *w = timers [0]; 1724 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
926 1725
927 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1726 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
928 1727
929 /* first reschedule or stop timer */ 1728 /* first reschedule or stop timer */
930 if (w->repeat) 1729 if (w->repeat)
931 { 1730 {
1731 ev_at (w) += w->repeat;
1732 if (ev_at (w) < mn_now)
1733 ev_at (w) = mn_now;
1734
932 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1735 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
933 ((WT)w)->at = mn_now + w->repeat; 1736
1737 ANHE_at_cache (timers [HEAP0]);
934 downheap ((WT *)timers, timercnt, 0); 1738 downheap (timers, timercnt, HEAP0);
935 } 1739 }
936 else 1740 else
937 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1741 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
938 1742
1743 EV_FREQUENT_CHECK;
939 event (EV_A_ (W)w, EV_TIMEOUT); 1744 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
940 } 1745 }
941} 1746}
942 1747
943static void 1748#if EV_PERIODIC_ENABLE
1749void inline_size
944periodics_reify (EV_P) 1750periodics_reify (EV_P)
945{ 1751{
1752 EV_FREQUENT_CHECK;
1753
946 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1754 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
947 { 1755 {
948 struct ev_periodic *w = periodics [0]; 1756 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
949 1757
950 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1758 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
951 1759
952 /* first reschedule or stop timer */ 1760 /* first reschedule or stop timer */
953 if (w->interval) 1761 if (w->reschedule_cb)
954 { 1762 {
955 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1763 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
956 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1764
1765 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1766
1767 ANHE_at_cache (periodics [HEAP0]);
957 downheap ((WT *)periodics, periodiccnt, 0); 1768 downheap (periodics, periodiccnt, HEAP0);
1769 }
1770 else if (w->interval)
1771 {
1772 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1773 /* if next trigger time is not sufficiently in the future, put it there */
1774 /* this might happen because of floating point inexactness */
1775 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1776 {
1777 ev_at (w) += w->interval;
1778
1779 /* if interval is unreasonably low we might still have a time in the past */
1780 /* so correct this. this will make the periodic very inexact, but the user */
1781 /* has effectively asked to get triggered more often than possible */
1782 if (ev_at (w) < ev_rt_now)
1783 ev_at (w) = ev_rt_now;
1784 }
1785
1786 ANHE_at_cache (periodics [HEAP0]);
1787 downheap (periodics, periodiccnt, HEAP0);
958 } 1788 }
959 else 1789 else
960 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1790 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
961 1791
1792 EV_FREQUENT_CHECK;
962 event (EV_A_ (W)w, EV_PERIODIC); 1793 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
963 } 1794 }
964} 1795}
965 1796
966static void 1797static void noinline
967periodics_reschedule (EV_P) 1798periodics_reschedule (EV_P)
968{ 1799{
969 int i; 1800 int i;
970 1801
971 /* adjust periodics after time jump */ 1802 /* adjust periodics after time jump */
972 for (i = 0; i < periodiccnt; ++i) 1803 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
973 { 1804 {
974 struct ev_periodic *w = periodics [i]; 1805 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
975 1806
1807 if (w->reschedule_cb)
1808 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
976 if (w->interval) 1809 else if (w->interval)
1810 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1811
1812 ANHE_at_cache (periodics [i]);
1813 }
1814
1815 reheap (periodics, periodiccnt);
1816}
1817#endif
1818
1819void inline_speed
1820time_update (EV_P_ ev_tstamp max_block)
1821{
1822 int i;
1823
1824#if EV_USE_MONOTONIC
1825 if (expect_true (have_monotonic))
1826 {
1827 ev_tstamp odiff = rtmn_diff;
1828
1829 mn_now = get_clock ();
1830
1831 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1832 /* interpolate in the meantime */
1833 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
977 { 1834 {
978 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1835 ev_rt_now = rtmn_diff + mn_now;
1836 return;
1837 }
979 1838
980 if (fabs (diff) >= 1e-4) 1839 now_floor = mn_now;
1840 ev_rt_now = ev_time ();
1841
1842 /* loop a few times, before making important decisions.
1843 * on the choice of "4": one iteration isn't enough,
1844 * in case we get preempted during the calls to
1845 * ev_time and get_clock. a second call is almost guaranteed
1846 * to succeed in that case, though. and looping a few more times
1847 * doesn't hurt either as we only do this on time-jumps or
1848 * in the unlikely event of having been preempted here.
1849 */
1850 for (i = 4; --i; )
1851 {
1852 rtmn_diff = ev_rt_now - mn_now;
1853
1854 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1855 return; /* all is well */
1856
1857 ev_rt_now = ev_time ();
1858 mn_now = get_clock ();
1859 now_floor = mn_now;
1860 }
1861
1862# if EV_PERIODIC_ENABLE
1863 periodics_reschedule (EV_A);
1864# endif
1865 /* no timer adjustment, as the monotonic clock doesn't jump */
1866 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1867 }
1868 else
1869#endif
1870 {
1871 ev_rt_now = ev_time ();
1872
1873 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1874 {
1875#if EV_PERIODIC_ENABLE
1876 periodics_reschedule (EV_A);
1877#endif
1878 /* adjust timers. this is easy, as the offset is the same for all of them */
1879 for (i = 0; i < timercnt; ++i)
981 { 1880 {
982 ev_periodic_stop (EV_A_ w); 1881 ANHE *he = timers + i + HEAP0;
983 ev_periodic_start (EV_A_ w); 1882 ANHE_w (*he)->at += ev_rt_now - mn_now;
984 1883 ANHE_at_cache (*he);
985 i = 0; /* restart loop, inefficient, but time jumps should be rare */
986 } 1884 }
987 } 1885 }
988 }
989}
990 1886
991inline int
992time_update_monotonic (EV_P)
993{
994 mn_now = get_clock ();
995
996 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
997 {
998 rt_now = rtmn_diff + mn_now;
999 return 0;
1000 }
1001 else
1002 {
1003 now_floor = mn_now;
1004 rt_now = ev_time ();
1005 return 1;
1006 }
1007}
1008
1009static void
1010time_update (EV_P)
1011{
1012 int i;
1013
1014#if EV_USE_MONOTONIC
1015 if (expect_true (have_monotonic))
1016 {
1017 if (time_update_monotonic (EV_A))
1018 {
1019 ev_tstamp odiff = rtmn_diff;
1020
1021 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1022 {
1023 rtmn_diff = rt_now - mn_now;
1024
1025 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1026 return; /* all is well */
1027
1028 rt_now = ev_time ();
1029 mn_now = get_clock ();
1030 now_floor = mn_now;
1031 }
1032
1033 periodics_reschedule (EV_A);
1034 /* no timer adjustment, as the monotonic clock doesn't jump */
1035 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1036 }
1037 }
1038 else
1039#endif
1040 {
1041 rt_now = ev_time ();
1042
1043 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1044 {
1045 periodics_reschedule (EV_A);
1046
1047 /* adjust timers. this is easy, as the offset is the same for all */
1048 for (i = 0; i < timercnt; ++i)
1049 ((WT)timers [i])->at += rt_now - mn_now;
1050 }
1051
1052 mn_now = rt_now; 1887 mn_now = ev_rt_now;
1053 } 1888 }
1054} 1889}
1055 1890
1056void 1891void
1057ev_ref (EV_P) 1892ev_ref (EV_P)
1063ev_unref (EV_P) 1898ev_unref (EV_P)
1064{ 1899{
1065 --activecnt; 1900 --activecnt;
1066} 1901}
1067 1902
1903void
1904ev_now_update (EV_P)
1905{
1906 time_update (EV_A_ 1e100);
1907}
1908
1068static int loop_done; 1909static int loop_done;
1069 1910
1070void 1911void
1071ev_loop (EV_P_ int flags) 1912ev_loop (EV_P_ int flags)
1072{ 1913{
1073 double block; 1914 loop_done = EVUNLOOP_CANCEL;
1074 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1915
1916 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1075 1917
1076 do 1918 do
1077 { 1919 {
1920#if EV_VERIFY >= 2
1921 ev_loop_verify (EV_A);
1922#endif
1923
1924#ifndef _WIN32
1925 if (expect_false (curpid)) /* penalise the forking check even more */
1926 if (expect_false (getpid () != curpid))
1927 {
1928 curpid = getpid ();
1929 postfork = 1;
1930 }
1931#endif
1932
1933#if EV_FORK_ENABLE
1934 /* we might have forked, so queue fork handlers */
1935 if (expect_false (postfork))
1936 if (forkcnt)
1937 {
1938 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1939 call_pending (EV_A);
1940 }
1941#endif
1942
1078 /* queue check watchers (and execute them) */ 1943 /* queue prepare watchers (and execute them) */
1079 if (expect_false (preparecnt)) 1944 if (expect_false (preparecnt))
1080 { 1945 {
1081 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1946 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1082 call_pending (EV_A); 1947 call_pending (EV_A);
1083 } 1948 }
1084 1949
1950 if (expect_false (!activecnt))
1951 break;
1952
1085 /* we might have forked, so reify kernel state if necessary */ 1953 /* we might have forked, so reify kernel state if necessary */
1086 if (expect_false (postfork)) 1954 if (expect_false (postfork))
1087 loop_fork (EV_A); 1955 loop_fork (EV_A);
1088 1956
1089 /* update fd-related kernel structures */ 1957 /* update fd-related kernel structures */
1090 fd_reify (EV_A); 1958 fd_reify (EV_A);
1091 1959
1092 /* calculate blocking time */ 1960 /* calculate blocking time */
1961 {
1962 ev_tstamp waittime = 0.;
1963 ev_tstamp sleeptime = 0.;
1093 1964
1094 /* we only need this for !monotonic clockor timers, but as we basically 1965 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1095 always have timers, we just calculate it always */
1096#if EV_USE_MONOTONIC
1097 if (expect_true (have_monotonic))
1098 time_update_monotonic (EV_A);
1099 else
1100#endif
1101 { 1966 {
1102 rt_now = ev_time (); 1967 /* update time to cancel out callback processing overhead */
1103 mn_now = rt_now; 1968 time_update (EV_A_ 1e100);
1104 }
1105 1969
1106 if (flags & EVLOOP_NONBLOCK || idlecnt)
1107 block = 0.;
1108 else
1109 {
1110 block = MAX_BLOCKTIME; 1970 waittime = MAX_BLOCKTIME;
1111 1971
1112 if (timercnt) 1972 if (timercnt)
1113 { 1973 {
1114 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1974 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1115 if (block > to) block = to; 1975 if (waittime > to) waittime = to;
1116 } 1976 }
1117 1977
1978#if EV_PERIODIC_ENABLE
1118 if (periodiccnt) 1979 if (periodiccnt)
1119 { 1980 {
1120 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1981 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1121 if (block > to) block = to; 1982 if (waittime > to) waittime = to;
1122 } 1983 }
1984#endif
1123 1985
1124 if (block < 0.) block = 0.; 1986 if (expect_false (waittime < timeout_blocktime))
1987 waittime = timeout_blocktime;
1988
1989 sleeptime = waittime - backend_fudge;
1990
1991 if (expect_true (sleeptime > io_blocktime))
1992 sleeptime = io_blocktime;
1993
1994 if (sleeptime)
1995 {
1996 ev_sleep (sleeptime);
1997 waittime -= sleeptime;
1998 }
1125 } 1999 }
1126 2000
1127 method_poll (EV_A_ block); 2001 ++loop_count;
2002 backend_poll (EV_A_ waittime);
1128 2003
1129 /* update rt_now, do magic */ 2004 /* update ev_rt_now, do magic */
1130 time_update (EV_A); 2005 time_update (EV_A_ waittime + sleeptime);
2006 }
1131 2007
1132 /* queue pending timers and reschedule them */ 2008 /* queue pending timers and reschedule them */
1133 timers_reify (EV_A); /* relative timers called last */ 2009 timers_reify (EV_A); /* relative timers called last */
2010#if EV_PERIODIC_ENABLE
1134 periodics_reify (EV_A); /* absolute timers called first */ 2011 periodics_reify (EV_A); /* absolute timers called first */
2012#endif
1135 2013
2014#if EV_IDLE_ENABLE
1136 /* queue idle watchers unless io or timers are pending */ 2015 /* queue idle watchers unless other events are pending */
1137 if (!pendingcnt) 2016 idle_reify (EV_A);
1138 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2017#endif
1139 2018
1140 /* queue check watchers, to be executed first */ 2019 /* queue check watchers, to be executed first */
1141 if (checkcnt) 2020 if (expect_false (checkcnt))
1142 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2021 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1143 2022
1144 call_pending (EV_A); 2023 call_pending (EV_A);
1145 } 2024 }
1146 while (activecnt && !loop_done); 2025 while (expect_true (
2026 activecnt
2027 && !loop_done
2028 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2029 ));
1147 2030
1148 if (loop_done != 2) 2031 if (loop_done == EVUNLOOP_ONE)
1149 loop_done = 0; 2032 loop_done = EVUNLOOP_CANCEL;
1150} 2033}
1151 2034
1152void 2035void
1153ev_unloop (EV_P_ int how) 2036ev_unloop (EV_P_ int how)
1154{ 2037{
1155 loop_done = how; 2038 loop_done = how;
1156} 2039}
1157 2040
1158/*****************************************************************************/ 2041/*****************************************************************************/
1159 2042
1160inline void 2043void inline_size
1161wlist_add (WL *head, WL elem) 2044wlist_add (WL *head, WL elem)
1162{ 2045{
1163 elem->next = *head; 2046 elem->next = *head;
1164 *head = elem; 2047 *head = elem;
1165} 2048}
1166 2049
1167inline void 2050void inline_size
1168wlist_del (WL *head, WL elem) 2051wlist_del (WL *head, WL elem)
1169{ 2052{
1170 while (*head) 2053 while (*head)
1171 { 2054 {
1172 if (*head == elem) 2055 if (*head == elem)
1177 2060
1178 head = &(*head)->next; 2061 head = &(*head)->next;
1179 } 2062 }
1180} 2063}
1181 2064
1182inline void 2065void inline_speed
1183ev_clear_pending (EV_P_ W w) 2066clear_pending (EV_P_ W w)
1184{ 2067{
1185 if (w->pending) 2068 if (w->pending)
1186 { 2069 {
1187 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2070 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1188 w->pending = 0; 2071 w->pending = 0;
1189 } 2072 }
1190} 2073}
1191 2074
1192inline void 2075int
2076ev_clear_pending (EV_P_ void *w)
2077{
2078 W w_ = (W)w;
2079 int pending = w_->pending;
2080
2081 if (expect_true (pending))
2082 {
2083 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2084 w_->pending = 0;
2085 p->w = 0;
2086 return p->events;
2087 }
2088 else
2089 return 0;
2090}
2091
2092void inline_size
2093pri_adjust (EV_P_ W w)
2094{
2095 int pri = w->priority;
2096 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2097 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2098 w->priority = pri;
2099}
2100
2101void inline_speed
1193ev_start (EV_P_ W w, int active) 2102ev_start (EV_P_ W w, int active)
1194{ 2103{
1195 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2104 pri_adjust (EV_A_ w);
1196 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1197
1198 w->active = active; 2105 w->active = active;
1199 ev_ref (EV_A); 2106 ev_ref (EV_A);
1200} 2107}
1201 2108
1202inline void 2109void inline_size
1203ev_stop (EV_P_ W w) 2110ev_stop (EV_P_ W w)
1204{ 2111{
1205 ev_unref (EV_A); 2112 ev_unref (EV_A);
1206 w->active = 0; 2113 w->active = 0;
1207} 2114}
1208 2115
1209/*****************************************************************************/ 2116/*****************************************************************************/
1210 2117
1211void 2118void noinline
1212ev_io_start (EV_P_ struct ev_io *w) 2119ev_io_start (EV_P_ ev_io *w)
1213{ 2120{
1214 int fd = w->fd; 2121 int fd = w->fd;
1215 2122
1216 if (ev_is_active (w)) 2123 if (expect_false (ev_is_active (w)))
1217 return; 2124 return;
1218 2125
1219 assert (("ev_io_start called with negative fd", fd >= 0)); 2126 assert (("ev_io_start called with negative fd", fd >= 0));
2127 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2128
2129 EV_FREQUENT_CHECK;
1220 2130
1221 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1222 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1223 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1224 2134
1225 fd_change (EV_A_ fd); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1226} 2136 w->events &= ~EV_IOFDSET;
1227 2137
1228void 2138 EV_FREQUENT_CHECK;
2139}
2140
2141void noinline
1229ev_io_stop (EV_P_ struct ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1230{ 2143{
1231 ev_clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1232 if (!ev_is_active (w)) 2145 if (expect_false (!ev_is_active (w)))
1233 return; 2146 return;
1234 2147
2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149
2150 EV_FREQUENT_CHECK;
2151
1235 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1236 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1237 2154
1238 fd_change (EV_A_ w->fd); 2155 fd_change (EV_A_ w->fd, 1);
1239}
1240 2156
1241void 2157 EV_FREQUENT_CHECK;
2158}
2159
2160void noinline
1242ev_timer_start (EV_P_ struct ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1243{ 2162{
1244 if (ev_is_active (w)) 2163 if (expect_false (ev_is_active (w)))
1245 return; 2164 return;
1246 2165
1247 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1248 2167
1249 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1250 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1251 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1252 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1253 timers [timercnt - 1] = w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1254 upheap ((WT *)timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1255 2178
2179 EV_FREQUENT_CHECK;
2180
1256 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1257} 2182}
1258 2183
1259void 2184void noinline
1260ev_timer_stop (EV_P_ struct ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1261{ 2186{
1262 ev_clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1263 if (!ev_is_active (w)) 2188 if (expect_false (!ev_is_active (w)))
1264 return; 2189 return;
1265 2190
2191 EV_FREQUENT_CHECK;
2192
2193 {
2194 int active = ev_active (w);
2195
1266 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1267 2197
1268 if (((W)w)->active < timercnt--) 2198 --timercnt;
2199
2200 if (expect_true (active < timercnt + HEAP0))
1269 { 2201 {
1270 timers [((W)w)->active - 1] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1271 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2203 adjustheap (timers, timercnt, active);
1272 } 2204 }
2205 }
1273 2206
1274 ((WT)w)->at = w->repeat; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1275 2210
1276 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1277} 2212}
1278 2213
1279void 2214void noinline
1280ev_timer_again (EV_P_ struct ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1281{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1282 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1283 { 2220 {
1284 if (w->repeat) 2221 if (w->repeat)
1285 { 2222 {
1286 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
1287 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2224 ANHE_at_cache (timers [ev_active (w)]);
2225 adjustheap (timers, timercnt, ev_active (w));
1288 } 2226 }
1289 else 2227 else
1290 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1291 } 2229 }
1292 else if (w->repeat) 2230 else if (w->repeat)
2231 {
2232 ev_at (w) = w->repeat;
1293 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1294} 2234 }
1295 2235
1296void 2236 EV_FREQUENT_CHECK;
2237}
2238
2239#if EV_PERIODIC_ENABLE
2240void noinline
1297ev_periodic_start (EV_P_ struct ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1298{ 2242{
1299 if (ev_is_active (w)) 2243 if (expect_false (ev_is_active (w)))
1300 return; 2244 return;
1301 2245
2246 if (w->reschedule_cb)
2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2248 else if (w->interval)
2249 {
1302 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1303
1304 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1305 if (w->interval)
1306 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2253 }
2254 else
2255 ev_at (w) = w->offset;
1307 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1308 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1309 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1310 periodics [periodiccnt - 1] = w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1311 upheap ((WT *)periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1312 2265
2266 EV_FREQUENT_CHECK;
2267
1313 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1314} 2269}
1315 2270
1316void 2271void noinline
1317ev_periodic_stop (EV_P_ struct ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1318{ 2273{
1319 ev_clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1320 if (!ev_is_active (w)) 2275 if (expect_false (!ev_is_active (w)))
1321 return; 2276 return;
1322 2277
2278 EV_FREQUENT_CHECK;
2279
2280 {
2281 int active = ev_active (w);
2282
1323 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1324 2284
1325 if (((W)w)->active < periodiccnt--) 2285 --periodiccnt;
2286
2287 if (expect_true (active < periodiccnt + HEAP0))
1326 { 2288 {
1327 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1328 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2290 adjustheap (periodics, periodiccnt, active);
1329 } 2291 }
2292 }
2293
2294 EV_FREQUENT_CHECK;
1330 2295
1331 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1332} 2297}
1333 2298
1334void 2299void noinline
1335ev_idle_start (EV_P_ struct ev_idle *w) 2300ev_periodic_again (EV_P_ ev_periodic *w)
1336{ 2301{
1337 if (ev_is_active (w)) 2302 /* TODO: use adjustheap and recalculation */
1338 return;
1339
1340 ev_start (EV_A_ (W)w, ++idlecnt);
1341 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1342 idles [idlecnt - 1] = w;
1343}
1344
1345void
1346ev_idle_stop (EV_P_ struct ev_idle *w)
1347{
1348 ev_clear_pending (EV_A_ (W)w);
1349 if (ev_is_active (w))
1350 return;
1351
1352 idles [((W)w)->active - 1] = idles [--idlecnt];
1353 ev_stop (EV_A_ (W)w); 2303 ev_periodic_stop (EV_A_ w);
2304 ev_periodic_start (EV_A_ w);
1354} 2305}
1355 2306#endif
1356void
1357ev_prepare_start (EV_P_ struct ev_prepare *w)
1358{
1359 if (ev_is_active (w))
1360 return;
1361
1362 ev_start (EV_A_ (W)w, ++preparecnt);
1363 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1364 prepares [preparecnt - 1] = w;
1365}
1366
1367void
1368ev_prepare_stop (EV_P_ struct ev_prepare *w)
1369{
1370 ev_clear_pending (EV_A_ (W)w);
1371 if (ev_is_active (w))
1372 return;
1373
1374 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1375 ev_stop (EV_A_ (W)w);
1376}
1377
1378void
1379ev_check_start (EV_P_ struct ev_check *w)
1380{
1381 if (ev_is_active (w))
1382 return;
1383
1384 ev_start (EV_A_ (W)w, ++checkcnt);
1385 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1386 checks [checkcnt - 1] = w;
1387}
1388
1389void
1390ev_check_stop (EV_P_ struct ev_check *w)
1391{
1392 ev_clear_pending (EV_A_ (W)w);
1393 if (ev_is_active (w))
1394 return;
1395
1396 checks [((W)w)->active - 1] = checks [--checkcnt];
1397 ev_stop (EV_A_ (W)w);
1398}
1399 2307
1400#ifndef SA_RESTART 2308#ifndef SA_RESTART
1401# define SA_RESTART 0 2309# define SA_RESTART 0
1402#endif 2310#endif
1403 2311
1404void 2312void noinline
1405ev_signal_start (EV_P_ struct ev_signal *w) 2313ev_signal_start (EV_P_ ev_signal *w)
1406{ 2314{
1407#if EV_MULTIPLICITY 2315#if EV_MULTIPLICITY
1408 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2316 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1409#endif 2317#endif
1410 if (ev_is_active (w)) 2318 if (expect_false (ev_is_active (w)))
1411 return; 2319 return;
1412 2320
1413 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1414 2322
2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
2326
2327 {
2328#ifndef _WIN32
2329 sigset_t full, prev;
2330 sigfillset (&full);
2331 sigprocmask (SIG_SETMASK, &full, &prev);
2332#endif
2333
2334 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2335
2336#ifndef _WIN32
2337 sigprocmask (SIG_SETMASK, &prev, 0);
2338#endif
2339 }
2340
1415 ev_start (EV_A_ (W)w, 1); 2341 ev_start (EV_A_ (W)w, 1);
1416 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1417 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2342 wlist_add (&signals [w->signum - 1].head, (WL)w);
1418 2343
1419 if (!((WL)w)->next) 2344 if (!((WL)w)->next)
1420 { 2345 {
1421#if WIN32 2346#if _WIN32
1422 signal (w->signum, sighandler); 2347 signal (w->signum, ev_sighandler);
1423#else 2348#else
1424 struct sigaction sa; 2349 struct sigaction sa;
1425 sa.sa_handler = sighandler; 2350 sa.sa_handler = ev_sighandler;
1426 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
1427 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1428 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
1429#endif 2354#endif
1430 } 2355 }
1431}
1432 2356
1433void 2357 EV_FREQUENT_CHECK;
2358}
2359
2360void noinline
1434ev_signal_stop (EV_P_ struct ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
1435{ 2362{
1436 ev_clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
1437 if (!ev_is_active (w)) 2364 if (expect_false (!ev_is_active (w)))
1438 return; 2365 return;
1439 2366
2367 EV_FREQUENT_CHECK;
2368
1440 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
1441 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
1442 2371
1443 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
1444 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
1445}
1446 2374
2375 EV_FREQUENT_CHECK;
2376}
2377
1447void 2378void
1448ev_child_start (EV_P_ struct ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
1449{ 2380{
1450#if EV_MULTIPLICITY 2381#if EV_MULTIPLICITY
1451 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1452#endif 2383#endif
1453 if (ev_is_active (w)) 2384 if (expect_false (ev_is_active (w)))
1454 return; 2385 return;
1455 2386
2387 EV_FREQUENT_CHECK;
2388
1456 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
1457 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1458}
1459 2391
2392 EV_FREQUENT_CHECK;
2393}
2394
1460void 2395void
1461ev_child_stop (EV_P_ struct ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
1462{ 2397{
1463 ev_clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
1464 if (ev_is_active (w)) 2399 if (expect_false (!ev_is_active (w)))
1465 return; 2400 return;
1466 2401
2402 EV_FREQUENT_CHECK;
2403
1467 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1468 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
1469} 2408}
2409
2410#if EV_STAT_ENABLE
2411
2412# ifdef _WIN32
2413# undef lstat
2414# define lstat(a,b) _stati64 (a,b)
2415# endif
2416
2417#define DEF_STAT_INTERVAL 5.0074891
2418#define MIN_STAT_INTERVAL 0.1074891
2419
2420static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2421
2422#if EV_USE_INOTIFY
2423# define EV_INOTIFY_BUFSIZE 8192
2424
2425static void noinline
2426infy_add (EV_P_ ev_stat *w)
2427{
2428 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2429
2430 if (w->wd < 0)
2431 {
2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2433
2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2438 {
2439 char path [4096];
2440 strcpy (path, w->path);
2441
2442 do
2443 {
2444 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2445 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2446
2447 char *pend = strrchr (path, '/');
2448
2449 if (!pend)
2450 break; /* whoops, no '/', complain to your admin */
2451
2452 *pend = 0;
2453 w->wd = inotify_add_watch (fs_fd, path, mask);
2454 }
2455 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2456 }
2457 }
2458 else
2459 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2460
2461 if (w->wd >= 0)
2462 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2463}
2464
2465static void noinline
2466infy_del (EV_P_ ev_stat *w)
2467{
2468 int slot;
2469 int wd = w->wd;
2470
2471 if (wd < 0)
2472 return;
2473
2474 w->wd = -2;
2475 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2476 wlist_del (&fs_hash [slot].head, (WL)w);
2477
2478 /* remove this watcher, if others are watching it, they will rearm */
2479 inotify_rm_watch (fs_fd, wd);
2480}
2481
2482static void noinline
2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2484{
2485 if (slot < 0)
2486 /* overflow, need to check for all hash slots */
2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2488 infy_wd (EV_A_ slot, wd, ev);
2489 else
2490 {
2491 WL w_;
2492
2493 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2494 {
2495 ev_stat *w = (ev_stat *)w_;
2496 w_ = w_->next; /* lets us remove this watcher and all before it */
2497
2498 if (w->wd == wd || wd == -1)
2499 {
2500 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2501 {
2502 w->wd = -1;
2503 infy_add (EV_A_ w); /* re-add, no matter what */
2504 }
2505
2506 stat_timer_cb (EV_A_ &w->timer, 0);
2507 }
2508 }
2509 }
2510}
2511
2512static void
2513infy_cb (EV_P_ ev_io *w, int revents)
2514{
2515 char buf [EV_INOTIFY_BUFSIZE];
2516 struct inotify_event *ev = (struct inotify_event *)buf;
2517 int ofs;
2518 int len = read (fs_fd, buf, sizeof (buf));
2519
2520 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2521 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2522}
2523
2524void inline_size
2525infy_init (EV_P)
2526{
2527 if (fs_fd != -2)
2528 return;
2529
2530 /* kernels < 2.6.25 are borked
2531 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2532 */
2533 {
2534 struct utsname buf;
2535 int major, minor, micro;
2536
2537 fs_fd = -1;
2538
2539 if (uname (&buf))
2540 return;
2541
2542 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2543 return;
2544
2545 if (major < 2
2546 || (major == 2 && minor < 6)
2547 || (major == 2 && minor == 6 && micro < 25))
2548 return;
2549 }
2550
2551 fs_fd = inotify_init ();
2552
2553 if (fs_fd >= 0)
2554 {
2555 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2556 ev_set_priority (&fs_w, EV_MAXPRI);
2557 ev_io_start (EV_A_ &fs_w);
2558 }
2559}
2560
2561void inline_size
2562infy_fork (EV_P)
2563{
2564 int slot;
2565
2566 if (fs_fd < 0)
2567 return;
2568
2569 close (fs_fd);
2570 fs_fd = inotify_init ();
2571
2572 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2573 {
2574 WL w_ = fs_hash [slot].head;
2575 fs_hash [slot].head = 0;
2576
2577 while (w_)
2578 {
2579 ev_stat *w = (ev_stat *)w_;
2580 w_ = w_->next; /* lets us add this watcher */
2581
2582 w->wd = -1;
2583
2584 if (fs_fd >= 0)
2585 infy_add (EV_A_ w); /* re-add, no matter what */
2586 else
2587 ev_timer_start (EV_A_ &w->timer);
2588 }
2589 }
2590}
2591
2592#endif
2593
2594#ifdef _WIN32
2595# define EV_LSTAT(p,b) _stati64 (p, b)
2596#else
2597# define EV_LSTAT(p,b) lstat (p, b)
2598#endif
2599
2600void
2601ev_stat_stat (EV_P_ ev_stat *w)
2602{
2603 if (lstat (w->path, &w->attr) < 0)
2604 w->attr.st_nlink = 0;
2605 else if (!w->attr.st_nlink)
2606 w->attr.st_nlink = 1;
2607}
2608
2609static void noinline
2610stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2611{
2612 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2613
2614 /* we copy this here each the time so that */
2615 /* prev has the old value when the callback gets invoked */
2616 w->prev = w->attr;
2617 ev_stat_stat (EV_A_ w);
2618
2619 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2620 if (
2621 w->prev.st_dev != w->attr.st_dev
2622 || w->prev.st_ino != w->attr.st_ino
2623 || w->prev.st_mode != w->attr.st_mode
2624 || w->prev.st_nlink != w->attr.st_nlink
2625 || w->prev.st_uid != w->attr.st_uid
2626 || w->prev.st_gid != w->attr.st_gid
2627 || w->prev.st_rdev != w->attr.st_rdev
2628 || w->prev.st_size != w->attr.st_size
2629 || w->prev.st_atime != w->attr.st_atime
2630 || w->prev.st_mtime != w->attr.st_mtime
2631 || w->prev.st_ctime != w->attr.st_ctime
2632 ) {
2633 #if EV_USE_INOTIFY
2634 if (fs_fd >= 0)
2635 {
2636 infy_del (EV_A_ w);
2637 infy_add (EV_A_ w);
2638 ev_stat_stat (EV_A_ w); /* avoid race... */
2639 }
2640 #endif
2641
2642 ev_feed_event (EV_A_ w, EV_STAT);
2643 }
2644}
2645
2646void
2647ev_stat_start (EV_P_ ev_stat *w)
2648{
2649 if (expect_false (ev_is_active (w)))
2650 return;
2651
2652 /* since we use memcmp, we need to clear any padding data etc. */
2653 memset (&w->prev, 0, sizeof (ev_statdata));
2654 memset (&w->attr, 0, sizeof (ev_statdata));
2655
2656 ev_stat_stat (EV_A_ w);
2657
2658 if (w->interval < MIN_STAT_INTERVAL)
2659 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2660
2661 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2662 ev_set_priority (&w->timer, ev_priority (w));
2663
2664#if EV_USE_INOTIFY
2665 infy_init (EV_A);
2666
2667 if (fs_fd >= 0)
2668 infy_add (EV_A_ w);
2669 else
2670#endif
2671 ev_timer_start (EV_A_ &w->timer);
2672
2673 ev_start (EV_A_ (W)w, 1);
2674
2675 EV_FREQUENT_CHECK;
2676}
2677
2678void
2679ev_stat_stop (EV_P_ ev_stat *w)
2680{
2681 clear_pending (EV_A_ (W)w);
2682 if (expect_false (!ev_is_active (w)))
2683 return;
2684
2685 EV_FREQUENT_CHECK;
2686
2687#if EV_USE_INOTIFY
2688 infy_del (EV_A_ w);
2689#endif
2690 ev_timer_stop (EV_A_ &w->timer);
2691
2692 ev_stop (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2695}
2696#endif
2697
2698#if EV_IDLE_ENABLE
2699void
2700ev_idle_start (EV_P_ ev_idle *w)
2701{
2702 if (expect_false (ev_is_active (w)))
2703 return;
2704
2705 pri_adjust (EV_A_ (W)w);
2706
2707 EV_FREQUENT_CHECK;
2708
2709 {
2710 int active = ++idlecnt [ABSPRI (w)];
2711
2712 ++idleall;
2713 ev_start (EV_A_ (W)w, active);
2714
2715 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2716 idles [ABSPRI (w)][active - 1] = w;
2717 }
2718
2719 EV_FREQUENT_CHECK;
2720}
2721
2722void
2723ev_idle_stop (EV_P_ ev_idle *w)
2724{
2725 clear_pending (EV_A_ (W)w);
2726 if (expect_false (!ev_is_active (w)))
2727 return;
2728
2729 EV_FREQUENT_CHECK;
2730
2731 {
2732 int active = ev_active (w);
2733
2734 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2735 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2736
2737 ev_stop (EV_A_ (W)w);
2738 --idleall;
2739 }
2740
2741 EV_FREQUENT_CHECK;
2742}
2743#endif
2744
2745void
2746ev_prepare_start (EV_P_ ev_prepare *w)
2747{
2748 if (expect_false (ev_is_active (w)))
2749 return;
2750
2751 EV_FREQUENT_CHECK;
2752
2753 ev_start (EV_A_ (W)w, ++preparecnt);
2754 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2755 prepares [preparecnt - 1] = w;
2756
2757 EV_FREQUENT_CHECK;
2758}
2759
2760void
2761ev_prepare_stop (EV_P_ ev_prepare *w)
2762{
2763 clear_pending (EV_A_ (W)w);
2764 if (expect_false (!ev_is_active (w)))
2765 return;
2766
2767 EV_FREQUENT_CHECK;
2768
2769 {
2770 int active = ev_active (w);
2771
2772 prepares [active - 1] = prepares [--preparecnt];
2773 ev_active (prepares [active - 1]) = active;
2774 }
2775
2776 ev_stop (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
2779}
2780
2781void
2782ev_check_start (EV_P_ ev_check *w)
2783{
2784 if (expect_false (ev_is_active (w)))
2785 return;
2786
2787 EV_FREQUENT_CHECK;
2788
2789 ev_start (EV_A_ (W)w, ++checkcnt);
2790 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2791 checks [checkcnt - 1] = w;
2792
2793 EV_FREQUENT_CHECK;
2794}
2795
2796void
2797ev_check_stop (EV_P_ ev_check *w)
2798{
2799 clear_pending (EV_A_ (W)w);
2800 if (expect_false (!ev_is_active (w)))
2801 return;
2802
2803 EV_FREQUENT_CHECK;
2804
2805 {
2806 int active = ev_active (w);
2807
2808 checks [active - 1] = checks [--checkcnt];
2809 ev_active (checks [active - 1]) = active;
2810 }
2811
2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2815}
2816
2817#if EV_EMBED_ENABLE
2818void noinline
2819ev_embed_sweep (EV_P_ ev_embed *w)
2820{
2821 ev_loop (w->other, EVLOOP_NONBLOCK);
2822}
2823
2824static void
2825embed_io_cb (EV_P_ ev_io *io, int revents)
2826{
2827 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2828
2829 if (ev_cb (w))
2830 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2831 else
2832 ev_loop (w->other, EVLOOP_NONBLOCK);
2833}
2834
2835static void
2836embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2837{
2838 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2839
2840 {
2841 struct ev_loop *loop = w->other;
2842
2843 while (fdchangecnt)
2844 {
2845 fd_reify (EV_A);
2846 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2847 }
2848 }
2849}
2850
2851static void
2852embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2853{
2854 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2855
2856 {
2857 struct ev_loop *loop = w->other;
2858
2859 ev_loop_fork (EV_A);
2860 }
2861}
2862
2863#if 0
2864static void
2865embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2866{
2867 ev_idle_stop (EV_A_ idle);
2868}
2869#endif
2870
2871void
2872ev_embed_start (EV_P_ ev_embed *w)
2873{
2874 if (expect_false (ev_is_active (w)))
2875 return;
2876
2877 {
2878 struct ev_loop *loop = w->other;
2879 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2880 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2881 }
2882
2883 EV_FREQUENT_CHECK;
2884
2885 ev_set_priority (&w->io, ev_priority (w));
2886 ev_io_start (EV_A_ &w->io);
2887
2888 ev_prepare_init (&w->prepare, embed_prepare_cb);
2889 ev_set_priority (&w->prepare, EV_MINPRI);
2890 ev_prepare_start (EV_A_ &w->prepare);
2891
2892 ev_fork_init (&w->fork, embed_fork_cb);
2893 ev_fork_start (EV_A_ &w->fork);
2894
2895 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2896
2897 ev_start (EV_A_ (W)w, 1);
2898
2899 EV_FREQUENT_CHECK;
2900}
2901
2902void
2903ev_embed_stop (EV_P_ ev_embed *w)
2904{
2905 clear_pending (EV_A_ (W)w);
2906 if (expect_false (!ev_is_active (w)))
2907 return;
2908
2909 EV_FREQUENT_CHECK;
2910
2911 ev_io_stop (EV_A_ &w->io);
2912 ev_prepare_stop (EV_A_ &w->prepare);
2913 ev_fork_stop (EV_A_ &w->fork);
2914
2915 EV_FREQUENT_CHECK;
2916}
2917#endif
2918
2919#if EV_FORK_ENABLE
2920void
2921ev_fork_start (EV_P_ ev_fork *w)
2922{
2923 if (expect_false (ev_is_active (w)))
2924 return;
2925
2926 EV_FREQUENT_CHECK;
2927
2928 ev_start (EV_A_ (W)w, ++forkcnt);
2929 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2930 forks [forkcnt - 1] = w;
2931
2932 EV_FREQUENT_CHECK;
2933}
2934
2935void
2936ev_fork_stop (EV_P_ ev_fork *w)
2937{
2938 clear_pending (EV_A_ (W)w);
2939 if (expect_false (!ev_is_active (w)))
2940 return;
2941
2942 EV_FREQUENT_CHECK;
2943
2944 {
2945 int active = ev_active (w);
2946
2947 forks [active - 1] = forks [--forkcnt];
2948 ev_active (forks [active - 1]) = active;
2949 }
2950
2951 ev_stop (EV_A_ (W)w);
2952
2953 EV_FREQUENT_CHECK;
2954}
2955#endif
2956
2957#if EV_ASYNC_ENABLE
2958void
2959ev_async_start (EV_P_ ev_async *w)
2960{
2961 if (expect_false (ev_is_active (w)))
2962 return;
2963
2964 evpipe_init (EV_A);
2965
2966 EV_FREQUENT_CHECK;
2967
2968 ev_start (EV_A_ (W)w, ++asynccnt);
2969 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2970 asyncs [asynccnt - 1] = w;
2971
2972 EV_FREQUENT_CHECK;
2973}
2974
2975void
2976ev_async_stop (EV_P_ ev_async *w)
2977{
2978 clear_pending (EV_A_ (W)w);
2979 if (expect_false (!ev_is_active (w)))
2980 return;
2981
2982 EV_FREQUENT_CHECK;
2983
2984 {
2985 int active = ev_active (w);
2986
2987 asyncs [active - 1] = asyncs [--asynccnt];
2988 ev_active (asyncs [active - 1]) = active;
2989 }
2990
2991 ev_stop (EV_A_ (W)w);
2992
2993 EV_FREQUENT_CHECK;
2994}
2995
2996void
2997ev_async_send (EV_P_ ev_async *w)
2998{
2999 w->sent = 1;
3000 evpipe_write (EV_A_ &gotasync);
3001}
3002#endif
1470 3003
1471/*****************************************************************************/ 3004/*****************************************************************************/
1472 3005
1473struct ev_once 3006struct ev_once
1474{ 3007{
1475 struct ev_io io; 3008 ev_io io;
1476 struct ev_timer to; 3009 ev_timer to;
1477 void (*cb)(int revents, void *arg); 3010 void (*cb)(int revents, void *arg);
1478 void *arg; 3011 void *arg;
1479}; 3012};
1480 3013
1481static void 3014static void
1482once_cb (EV_P_ struct ev_once *once, int revents) 3015once_cb (EV_P_ struct ev_once *once, int revents)
1483{ 3016{
1484 void (*cb)(int revents, void *arg) = once->cb; 3017 void (*cb)(int revents, void *arg) = once->cb;
1485 void *arg = once->arg; 3018 void *arg = once->arg;
1486 3019
1487 ev_io_stop (EV_A_ &once->io); 3020 ev_io_stop (EV_A_ &once->io);
1488 ev_timer_stop (EV_A_ &once->to); 3021 ev_timer_stop (EV_A_ &once->to);
1489 ev_free (once); 3022 ev_free (once);
1490 3023
1491 cb (revents, arg); 3024 cb (revents, arg);
1492} 3025}
1493 3026
1494static void 3027static void
1495once_cb_io (EV_P_ struct ev_io *w, int revents) 3028once_cb_io (EV_P_ ev_io *w, int revents)
1496{ 3029{
1497 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3030 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3031
3032 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1498} 3033}
1499 3034
1500static void 3035static void
1501once_cb_to (EV_P_ struct ev_timer *w, int revents) 3036once_cb_to (EV_P_ ev_timer *w, int revents)
1502{ 3037{
1503 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3038 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3039
3040 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1504} 3041}
1505 3042
1506void 3043void
1507ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3044ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1508{ 3045{
1509 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3046 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1510 3047
1511 if (!once) 3048 if (expect_false (!once))
3049 {
1512 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3050 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1513 else 3051 return;
1514 { 3052 }
3053
1515 once->cb = cb; 3054 once->cb = cb;
1516 once->arg = arg; 3055 once->arg = arg;
1517 3056
1518 ev_watcher_init (&once->io, once_cb_io); 3057 ev_init (&once->io, once_cb_io);
1519 if (fd >= 0) 3058 if (fd >= 0)
1520 { 3059 {
1521 ev_io_set (&once->io, fd, events); 3060 ev_io_set (&once->io, fd, events);
1522 ev_io_start (EV_A_ &once->io); 3061 ev_io_start (EV_A_ &once->io);
1523 } 3062 }
1524 3063
1525 ev_watcher_init (&once->to, once_cb_to); 3064 ev_init (&once->to, once_cb_to);
1526 if (timeout >= 0.) 3065 if (timeout >= 0.)
1527 { 3066 {
1528 ev_timer_set (&once->to, timeout, 0.); 3067 ev_timer_set (&once->to, timeout, 0.);
1529 ev_timer_start (EV_A_ &once->to); 3068 ev_timer_start (EV_A_ &once->to);
1530 }
1531 } 3069 }
1532} 3070}
1533 3071
3072#if EV_MULTIPLICITY
3073 #include "ev_wrap.h"
3074#endif
3075
3076#ifdef __cplusplus
3077}
3078#endif
3079

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines