ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.35 by root, Thu Nov 1 11:55:54 2007 UTC vs.
Revision 1.75 by root, Tue Nov 6 19:29:20 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
29#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
30# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
31#endif 55#endif
32 56
33#include <math.h> 57#include <math.h>
34#include <stdlib.h> 58#include <stdlib.h>
35#include <unistd.h>
36#include <fcntl.h> 59#include <fcntl.h>
37#include <signal.h>
38#include <stddef.h> 60#include <stddef.h>
39 61
40#include <stdio.h> 62#include <stdio.h>
41 63
42#include <assert.h> 64#include <assert.h>
43#include <errno.h> 65#include <errno.h>
44#include <sys/types.h> 66#include <sys/types.h>
45#include <sys/wait.h>
46#include <sys/time.h>
47#include <time.h> 67#include <time.h>
48 68
69#include <signal.h>
70
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
77
49#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC
51# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
52# endif
53#endif 80#endif
54 81
55#ifndef EV_USE_SELECT 82#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 83# define EV_USE_SELECT 1
57#endif 84#endif
58 85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
59#ifndef EV_USE_EPOLL 90#ifndef EV_USE_EPOLL
60# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
61#endif 92#endif
62 93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1
110#endif
111
112/**/
113
114#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0
117#endif
118
63#ifndef CLOCK_REALTIME 119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 121# define EV_USE_REALTIME 0
65#endif 122#endif
66#ifndef EV_USE_REALTIME 123
67# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 124/**/
68#endif
69 125
70#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
71#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
72#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
73#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
74 130
75#include "ev.h" 131#include "ev.h"
132
133#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline
136#else
137# define expect(expr,value) (expr)
138# define inline static
139#endif
140
141#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1)
143
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI)
76 146
77typedef struct ev_watcher *W; 147typedef struct ev_watcher *W;
78typedef struct ev_watcher_list *WL; 148typedef struct ev_watcher_list *WL;
79typedef struct ev_watcher_time *WT; 149typedef struct ev_watcher_time *WT;
80 150
81static ev_tstamp now, diff; /* monotonic clock */ 151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
82ev_tstamp ev_now;
83int ev_method;
84 152
85static int have_monotonic; /* runtime */ 153#include "ev_win32.c"
86
87static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
88static void (*method_modify)(int fd, int oev, int nev);
89static void (*method_poll)(ev_tstamp timeout);
90 154
91/*****************************************************************************/ 155/*****************************************************************************/
92 156
93ev_tstamp 157static void (*syserr_cb)(const char *msg);
158
159void ev_set_syserr_cb (void (*cb)(const char *msg))
160{
161 syserr_cb = cb;
162}
163
164static void
165syserr (const char *msg)
166{
167 if (!msg)
168 msg = "(libev) system error";
169
170 if (syserr_cb)
171 syserr_cb (msg);
172 else
173 {
174 perror (msg);
175 abort ();
176 }
177}
178
179static void *(*alloc)(void *ptr, long size);
180
181void ev_set_allocator (void *(*cb)(void *ptr, long size))
182{
183 alloc = cb;
184}
185
186static void *
187ev_realloc (void *ptr, long size)
188{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190
191 if (!ptr && size)
192 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort ();
195 }
196
197 return ptr;
198}
199
200#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0)
202
203/*****************************************************************************/
204
205typedef struct
206{
207 WL head;
208 unsigned char events;
209 unsigned char reify;
210} ANFD;
211
212typedef struct
213{
214 W w;
215 int events;
216} ANPENDING;
217
218#if EV_MULTIPLICITY
219
220struct ev_loop
221{
222# define VAR(name,decl) decl;
223# include "ev_vars.h"
224};
225# undef VAR
226# include "ev_wrap.h"
227
228#else
229
230# define VAR(name,decl) static decl;
231# include "ev_vars.h"
232# undef VAR
233
234#endif
235
236/*****************************************************************************/
237
238inline ev_tstamp
94ev_time (void) 239ev_time (void)
95{ 240{
96#if EV_USE_REALTIME 241#if EV_USE_REALTIME
97 struct timespec ts; 242 struct timespec ts;
98 clock_gettime (CLOCK_REALTIME, &ts); 243 clock_gettime (CLOCK_REALTIME, &ts);
102 gettimeofday (&tv, 0); 247 gettimeofday (&tv, 0);
103 return tv.tv_sec + tv.tv_usec * 1e-6; 248 return tv.tv_sec + tv.tv_usec * 1e-6;
104#endif 249#endif
105} 250}
106 251
107static ev_tstamp 252inline ev_tstamp
108get_clock (void) 253get_clock (void)
109{ 254{
110#if EV_USE_MONOTONIC 255#if EV_USE_MONOTONIC
111 if (have_monotonic) 256 if (expect_true (have_monotonic))
112 { 257 {
113 struct timespec ts; 258 struct timespec ts;
114 clock_gettime (CLOCK_MONOTONIC, &ts); 259 clock_gettime (CLOCK_MONOTONIC, &ts);
115 return ts.tv_sec + ts.tv_nsec * 1e-9; 260 return ts.tv_sec + ts.tv_nsec * 1e-9;
116 } 261 }
117#endif 262#endif
118 263
119 return ev_time (); 264 return ev_time ();
120} 265}
121 266
267ev_tstamp
268ev_now (EV_P)
269{
270 return rt_now;
271}
272
122#define array_roundsize(base,n) ((n) | 4 & ~3) 273#define array_roundsize(type,n) ((n) | 4 & ~3)
123 274
124#define array_needsize(base,cur,cnt,init) \ 275#define array_needsize(type,base,cur,cnt,init) \
125 if ((cnt) > cur) \ 276 if (expect_false ((cnt) > cur)) \
126 { \ 277 { \
127 int newcnt = cur; \ 278 int newcnt = cur; \
128 do \ 279 do \
129 { \ 280 { \
130 newcnt = array_roundsize (base, newcnt << 1); \ 281 newcnt = array_roundsize (type, newcnt << 1); \
131 } \ 282 } \
132 while ((cnt) > newcnt); \ 283 while ((cnt) > newcnt); \
133 \ 284 \
134 base = realloc (base, sizeof (*base) * (newcnt)); \ 285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
135 init (base + cur, newcnt - cur); \ 286 init (base + cur, newcnt - cur); \
136 cur = newcnt; \ 287 cur = newcnt; \
137 } 288 }
289
290#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 }
297
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302
303#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
138 305
139/*****************************************************************************/ 306/*****************************************************************************/
140
141typedef struct
142{
143 struct ev_io *head;
144 unsigned char events;
145 unsigned char reify;
146} ANFD;
147
148static ANFD *anfds;
149static int anfdmax;
150 307
151static void 308static void
152anfds_init (ANFD *base, int count) 309anfds_init (ANFD *base, int count)
153{ 310{
154 while (count--) 311 while (count--)
159 316
160 ++base; 317 ++base;
161 } 318 }
162} 319}
163 320
164typedef struct
165{
166 W w;
167 int events;
168} ANPENDING;
169
170static ANPENDING *pendings;
171static int pendingmax, pendingcnt;
172
173static void 321static void
174event (W w, int events) 322event (EV_P_ W w, int events)
175{ 323{
176 if (w->pending) 324 if (w->pending)
177 { 325 {
178 pendings [w->pending - 1].events |= events; 326 pendings [ABSPRI (w)][w->pending - 1].events |= events;
179 return; 327 return;
180 } 328 }
181 329
182 w->pending = ++pendingcnt; 330 w->pending = ++pendingcnt [ABSPRI (w)];
183 array_needsize (pendings, pendingmax, pendingcnt, ); 331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
184 pendings [pendingcnt - 1].w = w; 332 pendings [ABSPRI (w)][w->pending - 1].w = w;
185 pendings [pendingcnt - 1].events = events; 333 pendings [ABSPRI (w)][w->pending - 1].events = events;
186} 334}
187 335
188static void 336static void
189queue_events (W *events, int eventcnt, int type) 337queue_events (EV_P_ W *events, int eventcnt, int type)
190{ 338{
191 int i; 339 int i;
192 340
193 for (i = 0; i < eventcnt; ++i) 341 for (i = 0; i < eventcnt; ++i)
194 event (events [i], type); 342 event (EV_A_ events [i], type);
195} 343}
196 344
197static void 345static void
198fd_event (int fd, int events) 346fd_event (EV_P_ int fd, int events)
199{ 347{
200 ANFD *anfd = anfds + fd; 348 ANFD *anfd = anfds + fd;
201 struct ev_io *w; 349 struct ev_io *w;
202 350
203 for (w = anfd->head; w; w = w->next) 351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
204 { 352 {
205 int ev = w->events & events; 353 int ev = w->events & events;
206 354
207 if (ev) 355 if (ev)
208 event ((W)w, ev); 356 event (EV_A_ (W)w, ev);
209 } 357 }
210} 358}
211 359
212/*****************************************************************************/ 360/*****************************************************************************/
213 361
214static int *fdchanges;
215static int fdchangemax, fdchangecnt;
216
217static void 362static void
218fd_reify (void) 363fd_reify (EV_P)
219{ 364{
220 int i; 365 int i;
221 366
222 for (i = 0; i < fdchangecnt; ++i) 367 for (i = 0; i < fdchangecnt; ++i)
223 { 368 {
225 ANFD *anfd = anfds + fd; 370 ANFD *anfd = anfds + fd;
226 struct ev_io *w; 371 struct ev_io *w;
227 372
228 int events = 0; 373 int events = 0;
229 374
230 for (w = anfd->head; w; w = w->next) 375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
231 events |= w->events; 376 events |= w->events;
232 377
233 anfd->reify = 0; 378 anfd->reify = 0;
234 379
235 if (anfd->events != events)
236 {
237 method_modify (fd, anfd->events, events); 380 method_modify (EV_A_ fd, anfd->events, events);
238 anfd->events = events; 381 anfd->events = events;
239 }
240 } 382 }
241 383
242 fdchangecnt = 0; 384 fdchangecnt = 0;
243} 385}
244 386
245static void 387static void
246fd_change (int fd) 388fd_change (EV_P_ int fd)
247{ 389{
248 if (anfds [fd].reify || fdchangecnt < 0) 390 if (anfds [fd].reify)
249 return; 391 return;
250 392
251 anfds [fd].reify = 1; 393 anfds [fd].reify = 1;
252 394
253 ++fdchangecnt; 395 ++fdchangecnt;
254 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
255 fdchanges [fdchangecnt - 1] = fd; 397 fdchanges [fdchangecnt - 1] = fd;
256} 398}
257 399
400static void
401fd_kill (EV_P_ int fd)
402{
403 struct ev_io *w;
404
405 while ((w = (struct ev_io *)anfds [fd].head))
406 {
407 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 }
410}
411
412static int
413fd_valid (int fd)
414{
415#ifdef WIN32
416 return !!win32_get_osfhandle (fd);
417#else
418 return fcntl (fd, F_GETFD) != -1;
419#endif
420}
421
258/* called on EBADF to verify fds */ 422/* called on EBADF to verify fds */
259static void 423static void
260fd_recheck (void) 424fd_ebadf (EV_P)
261{ 425{
262 int fd; 426 int fd;
263 427
264 for (fd = 0; fd < anfdmax; ++fd) 428 for (fd = 0; fd < anfdmax; ++fd)
265 if (anfds [fd].events) 429 if (anfds [fd].events)
266 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 430 if (!fd_valid (fd) == -1 && errno == EBADF)
267 while (anfds [fd].head) 431 fd_kill (EV_A_ fd);
432}
433
434/* called on ENOMEM in select/poll to kill some fds and retry */
435static void
436fd_enomem (EV_P)
437{
438 int fd;
439
440 for (fd = anfdmax; fd--; )
441 if (anfds [fd].events)
268 { 442 {
269 ev_io_stop (anfds [fd].head); 443 fd_kill (EV_A_ fd);
270 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 444 return;
271 } 445 }
446}
447
448/* usually called after fork if method needs to re-arm all fds from scratch */
449static void
450fd_rearm_all (EV_P)
451{
452 int fd;
453
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events)
457 {
458 anfds [fd].events = 0;
459 fd_change (EV_A_ fd);
460 }
272} 461}
273 462
274/*****************************************************************************/ 463/*****************************************************************************/
275 464
276static struct ev_timer **timers;
277static int timermax, timercnt;
278
279static struct ev_periodic **periodics;
280static int periodicmax, periodiccnt;
281
282static void 465static void
283upheap (WT *timers, int k) 466upheap (WT *heap, int k)
284{ 467{
285 WT w = timers [k]; 468 WT w = heap [k];
286 469
287 while (k && timers [k >> 1]->at > w->at) 470 while (k && heap [k >> 1]->at > w->at)
288 { 471 {
289 timers [k] = timers [k >> 1]; 472 heap [k] = heap [k >> 1];
290 timers [k]->active = k + 1; 473 ((W)heap [k])->active = k + 1;
291 k >>= 1; 474 k >>= 1;
292 } 475 }
293 476
294 timers [k] = w; 477 heap [k] = w;
295 timers [k]->active = k + 1; 478 ((W)heap [k])->active = k + 1;
296 479
297} 480}
298 481
299static void 482static void
300downheap (WT *timers, int N, int k) 483downheap (WT *heap, int N, int k)
301{ 484{
302 WT w = timers [k]; 485 WT w = heap [k];
303 486
304 while (k < (N >> 1)) 487 while (k < (N >> 1))
305 { 488 {
306 int j = k << 1; 489 int j = k << 1;
307 490
308 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
309 ++j; 492 ++j;
310 493
311 if (w->at <= timers [j]->at) 494 if (w->at <= heap [j]->at)
312 break; 495 break;
313 496
314 timers [k] = timers [j]; 497 heap [k] = heap [j];
315 timers [k]->active = k + 1; 498 ((W)heap [k])->active = k + 1;
316 k = j; 499 k = j;
317 } 500 }
318 501
319 timers [k] = w; 502 heap [k] = w;
320 timers [k]->active = k + 1; 503 ((W)heap [k])->active = k + 1;
321} 504}
322 505
323/*****************************************************************************/ 506/*****************************************************************************/
324 507
325typedef struct 508typedef struct
326{ 509{
327 struct ev_signal *head; 510 WL head;
328 sig_atomic_t volatile gotsig; 511 sig_atomic_t volatile gotsig;
329} ANSIG; 512} ANSIG;
330 513
331static ANSIG *signals; 514static ANSIG *signals;
332static int signalmax; 515static int signalmax;
348} 531}
349 532
350static void 533static void
351sighandler (int signum) 534sighandler (int signum)
352{ 535{
536#if WIN32
537 signal (signum, sighandler);
538#endif
539
353 signals [signum - 1].gotsig = 1; 540 signals [signum - 1].gotsig = 1;
354 541
355 if (!gotsig) 542 if (!gotsig)
356 { 543 {
544 int old_errno = errno;
357 gotsig = 1; 545 gotsig = 1;
546#ifdef WIN32
547 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
548#else
358 write (sigpipe [1], &signum, 1); 549 write (sigpipe [1], &signum, 1);
550#endif
551 errno = old_errno;
359 } 552 }
360} 553}
361 554
362static void 555static void
363sigcb (struct ev_io *iow, int revents) 556sigcb (EV_P_ struct ev_io *iow, int revents)
364{ 557{
365 struct ev_signal *w; 558 WL w;
366 int sig; 559 int signum;
367 560
561#ifdef WIN32
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
563#else
368 read (sigpipe [0], &revents, 1); 564 read (sigpipe [0], &revents, 1);
565#endif
369 gotsig = 0; 566 gotsig = 0;
370 567
371 for (sig = signalmax; sig--; ) 568 for (signum = signalmax; signum--; )
372 if (signals [sig].gotsig) 569 if (signals [signum].gotsig)
373 { 570 {
374 signals [sig].gotsig = 0; 571 signals [signum].gotsig = 0;
375 572
376 for (w = signals [sig].head; w; w = w->next) 573 for (w = signals [signum].head; w; w = w->next)
377 event ((W)w, EV_SIGNAL); 574 event (EV_A_ (W)w, EV_SIGNAL);
378 } 575 }
379} 576}
380 577
381static void 578static void
382siginit (void) 579siginit (EV_P)
383{ 580{
581#ifndef WIN32
384 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 582 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
385 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 583 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
386 584
387 /* rather than sort out wether we really need nb, set it */ 585 /* rather than sort out wether we really need nb, set it */
388 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 586 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
389 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 587 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
588#endif
390 589
391 ev_io_set (&sigev, sigpipe [0], EV_READ); 590 ev_io_set (&sigev, sigpipe [0], EV_READ);
392 ev_io_start (&sigev); 591 ev_io_start (EV_A_ &sigev);
592 ev_unref (EV_A); /* child watcher should not keep loop alive */
393} 593}
394 594
395/*****************************************************************************/ 595/*****************************************************************************/
396 596
397static struct ev_idle **idles;
398static int idlemax, idlecnt;
399
400static struct ev_prepare **prepares;
401static int preparemax, preparecnt;
402
403static struct ev_check **checks;
404static int checkmax, checkcnt;
405
406/*****************************************************************************/
407
408static struct ev_child *childs [PID_HASHSIZE]; 597static struct ev_child *childs [PID_HASHSIZE];
598
599#ifndef WIN32
600
409static struct ev_signal childev; 601static struct ev_signal childev;
410 602
411#ifndef WCONTINUED 603#ifndef WCONTINUED
412# define WCONTINUED 0 604# define WCONTINUED 0
413#endif 605#endif
414 606
415static void 607static void
416childcb (struct ev_signal *sw, int revents) 608child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
417{ 609{
418 struct ev_child *w; 610 struct ev_child *w;
611
612 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
613 if (w->pid == pid || !w->pid)
614 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid;
617 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD);
619 }
620}
621
622static void
623childcb (EV_P_ struct ev_signal *sw, int revents)
624{
419 int pid, status; 625 int pid, status;
420 626
421 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
422 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 628 {
423 if (w->pid == pid || w->pid == -1) 629 /* make sure we are called again until all childs have been reaped */
424 { 630 event (EV_A_ (W)sw, EV_SIGNAL);
425 w->status = status; 631
426 event ((W)w, EV_CHILD); 632 child_reap (EV_A_ sw, pid, pid, status);
427 } 633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
634 }
428} 635}
636
637#endif
429 638
430/*****************************************************************************/ 639/*****************************************************************************/
431 640
641#if EV_USE_KQUEUE
642# include "ev_kqueue.c"
643#endif
432#if EV_USE_EPOLL 644#if EV_USE_EPOLL
433# include "ev_epoll.c" 645# include "ev_epoll.c"
434#endif 646#endif
647#if EV_USE_POLL
648# include "ev_poll.c"
649#endif
435#if EV_USE_SELECT 650#if EV_USE_SELECT
436# include "ev_select.c" 651# include "ev_select.c"
437#endif 652#endif
438 653
439int 654int
446ev_version_minor (void) 661ev_version_minor (void)
447{ 662{
448 return EV_VERSION_MINOR; 663 return EV_VERSION_MINOR;
449} 664}
450 665
451int ev_init (int flags) 666/* return true if we are running with elevated privileges and should ignore env variables */
667static int
668enable_secure (void)
452{ 669{
670#ifdef WIN32
671 return 0;
672#else
673 return getuid () != geteuid ()
674 || getgid () != getegid ();
675#endif
676}
677
678int
679ev_method (EV_P)
680{
681 return method;
682}
683
684static void
685loop_init (EV_P_ int methods)
686{
453 if (!ev_method) 687 if (!method)
454 { 688 {
455#if EV_USE_MONOTONIC 689#if EV_USE_MONOTONIC
456 { 690 {
457 struct timespec ts; 691 struct timespec ts;
458 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 692 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
459 have_monotonic = 1; 693 have_monotonic = 1;
460 } 694 }
461#endif 695#endif
462 696
463 ev_now = ev_time (); 697 rt_now = ev_time ();
464 now = get_clock (); 698 mn_now = get_clock ();
699 now_floor = mn_now;
465 diff = ev_now - now; 700 rtmn_diff = rt_now - mn_now;
466 701
467 if (pipe (sigpipe)) 702 if (methods == EVMETHOD_AUTO)
468 return 0; 703 if (!enable_secure () && getenv ("LIBEV_METHODS"))
469 704 methods = atoi (getenv ("LIBEV_METHODS"));
705 else
470 ev_method = EVMETHOD_NONE; 706 methods = EVMETHOD_ANY;
707
708 method = 0;
709#if EV_USE_WIN32
710 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
711#endif
712#if EV_USE_KQUEUE
713 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
714#endif
471#if EV_USE_EPOLL 715#if EV_USE_EPOLL
472 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 716 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
717#endif
718#if EV_USE_POLL
719 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
473#endif 720#endif
474#if EV_USE_SELECT 721#if EV_USE_SELECT
475 if (ev_method == EVMETHOD_NONE) select_init (flags); 722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
476#endif 723#endif
477 724
725 ev_watcher_init (&sigev, sigcb);
726 ev_set_priority (&sigev, EV_MAXPRI);
727 }
728}
729
730void
731loop_destroy (EV_P)
732{
733 int i;
734
735#if EV_USE_WIN32
736 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
737#endif
738#if EV_USE_KQUEUE
739 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
740#endif
741#if EV_USE_EPOLL
742 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
743#endif
744#if EV_USE_POLL
745 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
746#endif
747#if EV_USE_SELECT
748 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
749#endif
750
751 for (i = NUMPRI; i--; )
752 array_free (pending, [i]);
753
754 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange);
756 array_free_microshit (timer);
757 array_free_microshit (periodic);
758 array_free_microshit (idle);
759 array_free_microshit (prepare);
760 array_free_microshit (check);
761
762 method = 0;
763}
764
765static void
766loop_fork (EV_P)
767{
768#if EV_USE_EPOLL
769 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
770#endif
771#if EV_USE_KQUEUE
772 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
773#endif
774
775 if (ev_is_active (&sigev))
776 {
777 /* default loop */
778
779 ev_ref (EV_A);
780 ev_io_stop (EV_A_ &sigev);
781 close (sigpipe [0]);
782 close (sigpipe [1]);
783
784 while (pipe (sigpipe))
785 syserr ("(libev) error creating pipe");
786
787 siginit (EV_A);
788 }
789
790 postfork = 0;
791}
792
793#if EV_MULTIPLICITY
794struct ev_loop *
795ev_loop_new (int methods)
796{
797 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
798
799 memset (loop, 0, sizeof (struct ev_loop));
800
801 loop_init (EV_A_ methods);
802
803 if (ev_method (EV_A))
804 return loop;
805
806 return 0;
807}
808
809void
810ev_loop_destroy (EV_P)
811{
812 loop_destroy (EV_A);
813 ev_free (loop);
814}
815
816void
817ev_loop_fork (EV_P)
818{
819 postfork = 1;
820}
821
822#endif
823
824#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop *
829#else
830static int default_loop;
831
832int
833#endif
834ev_default_loop (int methods)
835{
836 if (sigpipe [0] == sigpipe [1])
837 if (pipe (sigpipe))
838 return 0;
839
840 if (!default_loop)
841 {
842#if EV_MULTIPLICITY
843 struct ev_loop *loop = default_loop = &default_loop_struct;
844#else
845 default_loop = 1;
846#endif
847
848 loop_init (EV_A_ methods);
849
478 if (ev_method) 850 if (ev_method (EV_A))
479 { 851 {
480 ev_watcher_init (&sigev, sigcb);
481 siginit (); 852 siginit (EV_A);
482 853
854#ifndef WIN32
483 ev_signal_init (&childev, childcb, SIGCHLD); 855 ev_signal_init (&childev, childcb, SIGCHLD);
856 ev_set_priority (&childev, EV_MAXPRI);
484 ev_signal_start (&childev); 857 ev_signal_start (EV_A_ &childev);
858 ev_unref (EV_A); /* child watcher should not keep loop alive */
859#endif
485 } 860 }
861 else
862 default_loop = 0;
486 } 863 }
487 864
488 return ev_method; 865 return default_loop;
866}
867
868void
869ev_default_destroy (void)
870{
871#if EV_MULTIPLICITY
872 struct ev_loop *loop = default_loop;
873#endif
874
875#ifndef WIN32
876 ev_ref (EV_A); /* child watcher */
877 ev_signal_stop (EV_A_ &childev);
878#endif
879
880 ev_ref (EV_A); /* signal watcher */
881 ev_io_stop (EV_A_ &sigev);
882
883 close (sigpipe [0]); sigpipe [0] = 0;
884 close (sigpipe [1]); sigpipe [1] = 0;
885
886 loop_destroy (EV_A);
887}
888
889void
890ev_default_fork (void)
891{
892#if EV_MULTIPLICITY
893 struct ev_loop *loop = default_loop;
894#endif
895
896 if (method)
897 postfork = 1;
489} 898}
490 899
491/*****************************************************************************/ 900/*****************************************************************************/
492 901
493void
494ev_fork_prepare (void)
495{
496 /* nop */
497}
498
499void
500ev_fork_parent (void)
501{
502 /* nop */
503}
504
505void
506ev_fork_child (void)
507{
508#if EV_USE_EPOLL
509 if (ev_method == EVMETHOD_EPOLL)
510 epoll_postfork_child ();
511#endif
512
513 ev_io_stop (&sigev);
514 close (sigpipe [0]);
515 close (sigpipe [1]);
516 pipe (sigpipe);
517 siginit ();
518}
519
520/*****************************************************************************/
521
522static void 902static void
523call_pending (void) 903call_pending (EV_P)
524{ 904{
905 int pri;
906
907 for (pri = NUMPRI; pri--; )
525 while (pendingcnt) 908 while (pendingcnt [pri])
526 { 909 {
527 ANPENDING *p = pendings + --pendingcnt; 910 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
528 911
529 if (p->w) 912 if (p->w)
530 { 913 {
531 p->w->pending = 0; 914 p->w->pending = 0;
532 p->w->cb (p->w, p->events); 915 p->w->cb (EV_A_ p->w, p->events);
533 } 916 }
534 } 917 }
535} 918}
536 919
537static void 920static void
538timers_reify (void) 921timers_reify (EV_P)
539{ 922{
540 while (timercnt && timers [0]->at <= now) 923 while (timercnt && ((WT)timers [0])->at <= mn_now)
541 { 924 {
542 struct ev_timer *w = timers [0]; 925 struct ev_timer *w = timers [0];
926
927 assert (("inactive timer on timer heap detected", ev_is_active (w)));
543 928
544 /* first reschedule or stop timer */ 929 /* first reschedule or stop timer */
545 if (w->repeat) 930 if (w->repeat)
546 { 931 {
547 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 932 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
548 w->at = now + w->repeat; 933 ((WT)w)->at = mn_now + w->repeat;
549 downheap ((WT *)timers, timercnt, 0); 934 downheap ((WT *)timers, timercnt, 0);
550 } 935 }
551 else 936 else
552 ev_timer_stop (w); /* nonrepeating: stop timer */ 937 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
553 938
554 event ((W)w, EV_TIMEOUT); 939 event (EV_A_ (W)w, EV_TIMEOUT);
555 } 940 }
556} 941}
557 942
558static void 943static void
559periodics_reify (void) 944periodics_reify (EV_P)
560{ 945{
561 while (periodiccnt && periodics [0]->at <= ev_now) 946 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
562 { 947 {
563 struct ev_periodic *w = periodics [0]; 948 struct ev_periodic *w = periodics [0];
949
950 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
564 951
565 /* first reschedule or stop timer */ 952 /* first reschedule or stop timer */
566 if (w->interval) 953 if (w->interval)
567 { 954 {
568 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 955 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
569 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 956 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
570 downheap ((WT *)periodics, periodiccnt, 0); 957 downheap ((WT *)periodics, periodiccnt, 0);
571 } 958 }
572 else 959 else
573 ev_periodic_stop (w); /* nonrepeating: stop timer */ 960 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
574 961
575 event ((W)w, EV_PERIODIC); 962 event (EV_A_ (W)w, EV_PERIODIC);
576 } 963 }
577} 964}
578 965
579static void 966static void
580periodics_reschedule (ev_tstamp diff) 967periodics_reschedule (EV_P)
581{ 968{
582 int i; 969 int i;
583 970
584 /* adjust periodics after time jump */ 971 /* adjust periodics after time jump */
585 for (i = 0; i < periodiccnt; ++i) 972 for (i = 0; i < periodiccnt; ++i)
586 { 973 {
587 struct ev_periodic *w = periodics [i]; 974 struct ev_periodic *w = periodics [i];
588 975
589 if (w->interval) 976 if (w->interval)
590 { 977 {
591 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 978 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
592 979
593 if (fabs (diff) >= 1e-4) 980 if (fabs (diff) >= 1e-4)
594 { 981 {
595 ev_periodic_stop (w); 982 ev_periodic_stop (EV_A_ w);
596 ev_periodic_start (w); 983 ev_periodic_start (EV_A_ w);
597 984
598 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 985 i = 0; /* restart loop, inefficient, but time jumps should be rare */
599 } 986 }
600 } 987 }
601 } 988 }
602} 989}
603 990
991inline int
992time_update_monotonic (EV_P)
993{
994 mn_now = get_clock ();
995
996 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
997 {
998 rt_now = rtmn_diff + mn_now;
999 return 0;
1000 }
1001 else
1002 {
1003 now_floor = mn_now;
1004 rt_now = ev_time ();
1005 return 1;
1006 }
1007}
1008
604static void 1009static void
605time_update (void) 1010time_update (EV_P)
606{ 1011{
607 int i; 1012 int i;
608 1013
609 ev_now = ev_time (); 1014#if EV_USE_MONOTONIC
610
611 if (have_monotonic) 1015 if (expect_true (have_monotonic))
612 { 1016 {
613 ev_tstamp odiff = diff; 1017 if (time_update_monotonic (EV_A))
614
615 for (i = 4; --i; ) /* loop a few times, before making important decisions */
616 { 1018 {
617 now = get_clock (); 1019 ev_tstamp odiff = rtmn_diff;
1020
1021 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1022 {
618 diff = ev_now - now; 1023 rtmn_diff = rt_now - mn_now;
619 1024
620 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1025 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
621 return; /* all is well */ 1026 return; /* all is well */
622 1027
623 ev_now = ev_time (); 1028 rt_now = ev_time ();
1029 mn_now = get_clock ();
1030 now_floor = mn_now;
1031 }
1032
1033 periodics_reschedule (EV_A);
1034 /* no timer adjustment, as the monotonic clock doesn't jump */
1035 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
624 } 1036 }
625
626 periodics_reschedule (diff - odiff);
627 /* no timer adjustment, as the monotonic clock doesn't jump */
628 } 1037 }
629 else 1038 else
1039#endif
630 { 1040 {
631 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 1041 rt_now = ev_time ();
1042
1043 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
632 { 1044 {
633 periodics_reschedule (ev_now - now); 1045 periodics_reschedule (EV_A);
634 1046
635 /* adjust timers. this is easy, as the offset is the same for all */ 1047 /* adjust timers. this is easy, as the offset is the same for all */
636 for (i = 0; i < timercnt; ++i) 1048 for (i = 0; i < timercnt; ++i)
637 timers [i]->at += diff; 1049 ((WT)timers [i])->at += rt_now - mn_now;
638 } 1050 }
639 1051
640 now = ev_now; 1052 mn_now = rt_now;
641 } 1053 }
642} 1054}
643 1055
644int ev_loop_done; 1056void
1057ev_ref (EV_P)
1058{
1059 ++activecnt;
1060}
645 1061
1062void
1063ev_unref (EV_P)
1064{
1065 --activecnt;
1066}
1067
1068static int loop_done;
1069
1070void
646void ev_loop (int flags) 1071ev_loop (EV_P_ int flags)
647{ 1072{
648 double block; 1073 double block;
649 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1074 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
650 1075
651 do 1076 do
652 { 1077 {
653 /* queue check watchers (and execute them) */ 1078 /* queue check watchers (and execute them) */
654 if (preparecnt) 1079 if (expect_false (preparecnt))
655 { 1080 {
656 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1081 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
657 call_pending (); 1082 call_pending (EV_A);
658 } 1083 }
659 1084
1085 /* we might have forked, so reify kernel state if necessary */
1086 if (expect_false (postfork))
1087 loop_fork (EV_A);
1088
660 /* update fd-related kernel structures */ 1089 /* update fd-related kernel structures */
661 fd_reify (); 1090 fd_reify (EV_A);
662 1091
663 /* calculate blocking time */ 1092 /* calculate blocking time */
664 1093
665 /* we only need this for !monotonic clockor timers, but as we basically 1094 /* we only need this for !monotonic clockor timers, but as we basically
666 always have timers, we just calculate it always */ 1095 always have timers, we just calculate it always */
1096#if EV_USE_MONOTONIC
1097 if (expect_true (have_monotonic))
1098 time_update_monotonic (EV_A);
1099 else
1100#endif
1101 {
667 ev_now = ev_time (); 1102 rt_now = ev_time ();
1103 mn_now = rt_now;
1104 }
668 1105
669 if (flags & EVLOOP_NONBLOCK || idlecnt) 1106 if (flags & EVLOOP_NONBLOCK || idlecnt)
670 block = 0.; 1107 block = 0.;
671 else 1108 else
672 { 1109 {
673 block = MAX_BLOCKTIME; 1110 block = MAX_BLOCKTIME;
674 1111
675 if (timercnt) 1112 if (timercnt)
676 { 1113 {
677 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1114 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
678 if (block > to) block = to; 1115 if (block > to) block = to;
679 } 1116 }
680 1117
681 if (periodiccnt) 1118 if (periodiccnt)
682 { 1119 {
683 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1120 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
684 if (block > to) block = to; 1121 if (block > to) block = to;
685 } 1122 }
686 1123
687 if (block < 0.) block = 0.; 1124 if (block < 0.) block = 0.;
688 } 1125 }
689 1126
690 method_poll (block); 1127 method_poll (EV_A_ block);
691 1128
692 /* update ev_now, do magic */ 1129 /* update rt_now, do magic */
693 time_update (); 1130 time_update (EV_A);
694 1131
695 /* queue pending timers and reschedule them */ 1132 /* queue pending timers and reschedule them */
696 timers_reify (); /* relative timers called last */ 1133 timers_reify (EV_A); /* relative timers called last */
697 periodics_reify (); /* absolute timers called first */ 1134 periodics_reify (EV_A); /* absolute timers called first */
698 1135
699 /* queue idle watchers unless io or timers are pending */ 1136 /* queue idle watchers unless io or timers are pending */
700 if (!pendingcnt) 1137 if (!pendingcnt)
701 queue_events ((W *)idles, idlecnt, EV_IDLE); 1138 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
702 1139
703 /* queue check watchers, to be executed first */ 1140 /* queue check watchers, to be executed first */
704 if (checkcnt) 1141 if (checkcnt)
705 queue_events ((W *)checks, checkcnt, EV_CHECK); 1142 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
706 1143
707 call_pending (); 1144 call_pending (EV_A);
708 } 1145 }
709 while (!ev_loop_done); 1146 while (activecnt && !loop_done);
710 1147
711 if (ev_loop_done != 2) 1148 if (loop_done != 2)
712 ev_loop_done = 0; 1149 loop_done = 0;
1150}
1151
1152void
1153ev_unloop (EV_P_ int how)
1154{
1155 loop_done = how;
713} 1156}
714 1157
715/*****************************************************************************/ 1158/*****************************************************************************/
716 1159
717static void 1160inline void
718wlist_add (WL *head, WL elem) 1161wlist_add (WL *head, WL elem)
719{ 1162{
720 elem->next = *head; 1163 elem->next = *head;
721 *head = elem; 1164 *head = elem;
722} 1165}
723 1166
724static void 1167inline void
725wlist_del (WL *head, WL elem) 1168wlist_del (WL *head, WL elem)
726{ 1169{
727 while (*head) 1170 while (*head)
728 { 1171 {
729 if (*head == elem) 1172 if (*head == elem)
734 1177
735 head = &(*head)->next; 1178 head = &(*head)->next;
736 } 1179 }
737} 1180}
738 1181
739static void 1182inline void
740ev_clear_pending (W w) 1183ev_clear_pending (EV_P_ W w)
741{ 1184{
742 if (w->pending) 1185 if (w->pending)
743 { 1186 {
744 pendings [w->pending - 1].w = 0; 1187 pendings [ABSPRI (w)][w->pending - 1].w = 0;
745 w->pending = 0; 1188 w->pending = 0;
746 } 1189 }
747} 1190}
748 1191
749static void 1192inline void
750ev_start (W w, int active) 1193ev_start (EV_P_ W w, int active)
751{ 1194{
1195 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1196 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1197
752 w->active = active; 1198 w->active = active;
1199 ev_ref (EV_A);
753} 1200}
754 1201
755static void 1202inline void
756ev_stop (W w) 1203ev_stop (EV_P_ W w)
757{ 1204{
1205 ev_unref (EV_A);
758 w->active = 0; 1206 w->active = 0;
759} 1207}
760 1208
761/*****************************************************************************/ 1209/*****************************************************************************/
762 1210
763void 1211void
764ev_io_start (struct ev_io *w) 1212ev_io_start (EV_P_ struct ev_io *w)
765{ 1213{
1214 int fd = w->fd;
1215
766 if (ev_is_active (w)) 1216 if (ev_is_active (w))
767 return; 1217 return;
768 1218
769 int fd = w->fd;
770
771 assert (("ev_io_start called with negative fd", fd >= 0)); 1219 assert (("ev_io_start called with negative fd", fd >= 0));
772 1220
773 ev_start ((W)w, 1); 1221 ev_start (EV_A_ (W)w, 1);
774 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1222 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
775 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1223 wlist_add ((WL *)&anfds[fd].head, (WL)w);
776 1224
777 fd_change (fd); 1225 fd_change (EV_A_ fd);
778} 1226}
779 1227
780void 1228void
781ev_io_stop (struct ev_io *w) 1229ev_io_stop (EV_P_ struct ev_io *w)
782{ 1230{
783 ev_clear_pending ((W)w); 1231 ev_clear_pending (EV_A_ (W)w);
784 if (!ev_is_active (w)) 1232 if (!ev_is_active (w))
785 return; 1233 return;
786 1234
787 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1235 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
788 ev_stop ((W)w); 1236 ev_stop (EV_A_ (W)w);
789 1237
790 fd_change (w->fd); 1238 fd_change (EV_A_ w->fd);
791} 1239}
792 1240
793void 1241void
794ev_timer_start (struct ev_timer *w) 1242ev_timer_start (EV_P_ struct ev_timer *w)
795{ 1243{
796 if (ev_is_active (w)) 1244 if (ev_is_active (w))
797 return; 1245 return;
798 1246
799 w->at += now; 1247 ((WT)w)->at += mn_now;
800 1248
801 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1249 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
802 1250
803 ev_start ((W)w, ++timercnt); 1251 ev_start (EV_A_ (W)w, ++timercnt);
804 array_needsize (timers, timermax, timercnt, ); 1252 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
805 timers [timercnt - 1] = w; 1253 timers [timercnt - 1] = w;
806 upheap ((WT *)timers, timercnt - 1); 1254 upheap ((WT *)timers, timercnt - 1);
807}
808 1255
1256 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1257}
1258
809void 1259void
810ev_timer_stop (struct ev_timer *w) 1260ev_timer_stop (EV_P_ struct ev_timer *w)
811{ 1261{
812 ev_clear_pending ((W)w); 1262 ev_clear_pending (EV_A_ (W)w);
813 if (!ev_is_active (w)) 1263 if (!ev_is_active (w))
814 return; 1264 return;
815 1265
1266 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1267
816 if (w->active < timercnt--) 1268 if (((W)w)->active < timercnt--)
817 { 1269 {
818 timers [w->active - 1] = timers [timercnt]; 1270 timers [((W)w)->active - 1] = timers [timercnt];
819 downheap ((WT *)timers, timercnt, w->active - 1); 1271 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
820 } 1272 }
821 1273
822 w->at = w->repeat; 1274 ((WT)w)->at = w->repeat;
823 1275
824 ev_stop ((W)w); 1276 ev_stop (EV_A_ (W)w);
825} 1277}
826 1278
827void 1279void
828ev_timer_again (struct ev_timer *w) 1280ev_timer_again (EV_P_ struct ev_timer *w)
829{ 1281{
830 if (ev_is_active (w)) 1282 if (ev_is_active (w))
831 { 1283 {
832 if (w->repeat) 1284 if (w->repeat)
833 { 1285 {
834 w->at = now + w->repeat; 1286 ((WT)w)->at = mn_now + w->repeat;
835 downheap ((WT *)timers, timercnt, w->active - 1); 1287 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
836 } 1288 }
837 else 1289 else
838 ev_timer_stop (w); 1290 ev_timer_stop (EV_A_ w);
839 } 1291 }
840 else if (w->repeat) 1292 else if (w->repeat)
841 ev_timer_start (w); 1293 ev_timer_start (EV_A_ w);
842} 1294}
843 1295
844void 1296void
845ev_periodic_start (struct ev_periodic *w) 1297ev_periodic_start (EV_P_ struct ev_periodic *w)
846{ 1298{
847 if (ev_is_active (w)) 1299 if (ev_is_active (w))
848 return; 1300 return;
849 1301
850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1302 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
851 1303
852 /* this formula differs from the one in periodic_reify because we do not always round up */ 1304 /* this formula differs from the one in periodic_reify because we do not always round up */
853 if (w->interval) 1305 if (w->interval)
854 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1306 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
855 1307
856 ev_start ((W)w, ++periodiccnt); 1308 ev_start (EV_A_ (W)w, ++periodiccnt);
857 array_needsize (periodics, periodicmax, periodiccnt, ); 1309 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
858 periodics [periodiccnt - 1] = w; 1310 periodics [periodiccnt - 1] = w;
859 upheap ((WT *)periodics, periodiccnt - 1); 1311 upheap ((WT *)periodics, periodiccnt - 1);
860}
861 1312
1313 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1314}
1315
862void 1316void
863ev_periodic_stop (struct ev_periodic *w) 1317ev_periodic_stop (EV_P_ struct ev_periodic *w)
864{ 1318{
865 ev_clear_pending ((W)w); 1319 ev_clear_pending (EV_A_ (W)w);
866 if (!ev_is_active (w)) 1320 if (!ev_is_active (w))
867 return; 1321 return;
868 1322
1323 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1324
869 if (w->active < periodiccnt--) 1325 if (((W)w)->active < periodiccnt--)
870 { 1326 {
871 periodics [w->active - 1] = periodics [periodiccnt]; 1327 periodics [((W)w)->active - 1] = periodics [periodiccnt];
872 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1328 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
873 } 1329 }
874 1330
875 ev_stop ((W)w); 1331 ev_stop (EV_A_ (W)w);
876} 1332}
877 1333
878void 1334void
879ev_signal_start (struct ev_signal *w) 1335ev_idle_start (EV_P_ struct ev_idle *w)
880{ 1336{
881 if (ev_is_active (w)) 1337 if (ev_is_active (w))
882 return; 1338 return;
883 1339
1340 ev_start (EV_A_ (W)w, ++idlecnt);
1341 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1342 idles [idlecnt - 1] = w;
1343}
1344
1345void
1346ev_idle_stop (EV_P_ struct ev_idle *w)
1347{
1348 ev_clear_pending (EV_A_ (W)w);
1349 if (ev_is_active (w))
1350 return;
1351
1352 idles [((W)w)->active - 1] = idles [--idlecnt];
1353 ev_stop (EV_A_ (W)w);
1354}
1355
1356void
1357ev_prepare_start (EV_P_ struct ev_prepare *w)
1358{
1359 if (ev_is_active (w))
1360 return;
1361
1362 ev_start (EV_A_ (W)w, ++preparecnt);
1363 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1364 prepares [preparecnt - 1] = w;
1365}
1366
1367void
1368ev_prepare_stop (EV_P_ struct ev_prepare *w)
1369{
1370 ev_clear_pending (EV_A_ (W)w);
1371 if (ev_is_active (w))
1372 return;
1373
1374 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1375 ev_stop (EV_A_ (W)w);
1376}
1377
1378void
1379ev_check_start (EV_P_ struct ev_check *w)
1380{
1381 if (ev_is_active (w))
1382 return;
1383
1384 ev_start (EV_A_ (W)w, ++checkcnt);
1385 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1386 checks [checkcnt - 1] = w;
1387}
1388
1389void
1390ev_check_stop (EV_P_ struct ev_check *w)
1391{
1392 ev_clear_pending (EV_A_ (W)w);
1393 if (ev_is_active (w))
1394 return;
1395
1396 checks [((W)w)->active - 1] = checks [--checkcnt];
1397 ev_stop (EV_A_ (W)w);
1398}
1399
1400#ifndef SA_RESTART
1401# define SA_RESTART 0
1402#endif
1403
1404void
1405ev_signal_start (EV_P_ struct ev_signal *w)
1406{
1407#if EV_MULTIPLICITY
1408 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1409#endif
1410 if (ev_is_active (w))
1411 return;
1412
884 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1413 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
885 1414
886 ev_start ((W)w, 1); 1415 ev_start (EV_A_ (W)w, 1);
887 array_needsize (signals, signalmax, w->signum, signals_init); 1416 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
888 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1417 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
889 1418
890 if (!w->next) 1419 if (!((WL)w)->next)
891 { 1420 {
1421#if WIN32
1422 signal (w->signum, sighandler);
1423#else
892 struct sigaction sa; 1424 struct sigaction sa;
893 sa.sa_handler = sighandler; 1425 sa.sa_handler = sighandler;
894 sigfillset (&sa.sa_mask); 1426 sigfillset (&sa.sa_mask);
895 sa.sa_flags = 0; 1427 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
896 sigaction (w->signum, &sa, 0); 1428 sigaction (w->signum, &sa, 0);
1429#endif
897 } 1430 }
898} 1431}
899 1432
900void 1433void
901ev_signal_stop (struct ev_signal *w) 1434ev_signal_stop (EV_P_ struct ev_signal *w)
902{ 1435{
903 ev_clear_pending ((W)w); 1436 ev_clear_pending (EV_A_ (W)w);
904 if (!ev_is_active (w)) 1437 if (!ev_is_active (w))
905 return; 1438 return;
906 1439
907 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1440 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
908 ev_stop ((W)w); 1441 ev_stop (EV_A_ (W)w);
909 1442
910 if (!signals [w->signum - 1].head) 1443 if (!signals [w->signum - 1].head)
911 signal (w->signum, SIG_DFL); 1444 signal (w->signum, SIG_DFL);
912} 1445}
913 1446
914void 1447void
915ev_idle_start (struct ev_idle *w) 1448ev_child_start (EV_P_ struct ev_child *w)
916{ 1449{
1450#if EV_MULTIPLICITY
1451 assert (("child watchers are only supported in the default loop", loop == default_loop));
1452#endif
917 if (ev_is_active (w)) 1453 if (ev_is_active (w))
918 return; 1454 return;
919 1455
920 ev_start ((W)w, ++idlecnt); 1456 ev_start (EV_A_ (W)w, 1);
921 array_needsize (idles, idlemax, idlecnt, ); 1457 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
922 idles [idlecnt - 1] = w;
923} 1458}
924 1459
925void 1460void
926ev_idle_stop (struct ev_idle *w) 1461ev_child_stop (EV_P_ struct ev_child *w)
927{ 1462{
928 ev_clear_pending ((W)w); 1463 ev_clear_pending (EV_A_ (W)w);
929 if (ev_is_active (w)) 1464 if (ev_is_active (w))
930 return; 1465 return;
931 1466
932 idles [w->active - 1] = idles [--idlecnt];
933 ev_stop ((W)w);
934}
935
936void
937ev_prepare_start (struct ev_prepare *w)
938{
939 if (ev_is_active (w))
940 return;
941
942 ev_start ((W)w, ++preparecnt);
943 array_needsize (prepares, preparemax, preparecnt, );
944 prepares [preparecnt - 1] = w;
945}
946
947void
948ev_prepare_stop (struct ev_prepare *w)
949{
950 ev_clear_pending ((W)w);
951 if (ev_is_active (w))
952 return;
953
954 prepares [w->active - 1] = prepares [--preparecnt];
955 ev_stop ((W)w);
956}
957
958void
959ev_check_start (struct ev_check *w)
960{
961 if (ev_is_active (w))
962 return;
963
964 ev_start ((W)w, ++checkcnt);
965 array_needsize (checks, checkmax, checkcnt, );
966 checks [checkcnt - 1] = w;
967}
968
969void
970ev_check_stop (struct ev_check *w)
971{
972 ev_clear_pending ((W)w);
973 if (ev_is_active (w))
974 return;
975
976 checks [w->active - 1] = checks [--checkcnt];
977 ev_stop ((W)w);
978}
979
980void
981ev_child_start (struct ev_child *w)
982{
983 if (ev_is_active (w))
984 return;
985
986 ev_start ((W)w, 1);
987 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
988}
989
990void
991ev_child_stop (struct ev_child *w)
992{
993 ev_clear_pending ((W)w);
994 if (ev_is_active (w))
995 return;
996
997 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1467 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
998 ev_stop ((W)w); 1468 ev_stop (EV_A_ (W)w);
999} 1469}
1000 1470
1001/*****************************************************************************/ 1471/*****************************************************************************/
1002 1472
1003struct ev_once 1473struct ev_once
1007 void (*cb)(int revents, void *arg); 1477 void (*cb)(int revents, void *arg);
1008 void *arg; 1478 void *arg;
1009}; 1479};
1010 1480
1011static void 1481static void
1012once_cb (struct ev_once *once, int revents) 1482once_cb (EV_P_ struct ev_once *once, int revents)
1013{ 1483{
1014 void (*cb)(int revents, void *arg) = once->cb; 1484 void (*cb)(int revents, void *arg) = once->cb;
1015 void *arg = once->arg; 1485 void *arg = once->arg;
1016 1486
1017 ev_io_stop (&once->io); 1487 ev_io_stop (EV_A_ &once->io);
1018 ev_timer_stop (&once->to); 1488 ev_timer_stop (EV_A_ &once->to);
1019 free (once); 1489 ev_free (once);
1020 1490
1021 cb (revents, arg); 1491 cb (revents, arg);
1022} 1492}
1023 1493
1024static void 1494static void
1025once_cb_io (struct ev_io *w, int revents) 1495once_cb_io (EV_P_ struct ev_io *w, int revents)
1026{ 1496{
1027 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1497 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1028} 1498}
1029 1499
1030static void 1500static void
1031once_cb_to (struct ev_timer *w, int revents) 1501once_cb_to (EV_P_ struct ev_timer *w, int revents)
1032{ 1502{
1033 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1503 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1034} 1504}
1035 1505
1036void 1506void
1037ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1507ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1038{ 1508{
1039 struct ev_once *once = malloc (sizeof (struct ev_once)); 1509 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1040 1510
1041 if (!once) 1511 if (!once)
1042 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1512 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1043 else 1513 else
1044 { 1514 {
1047 1517
1048 ev_watcher_init (&once->io, once_cb_io); 1518 ev_watcher_init (&once->io, once_cb_io);
1049 if (fd >= 0) 1519 if (fd >= 0)
1050 { 1520 {
1051 ev_io_set (&once->io, fd, events); 1521 ev_io_set (&once->io, fd, events);
1052 ev_io_start (&once->io); 1522 ev_io_start (EV_A_ &once->io);
1053 } 1523 }
1054 1524
1055 ev_watcher_init (&once->to, once_cb_to); 1525 ev_watcher_init (&once->to, once_cb_to);
1056 if (timeout >= 0.) 1526 if (timeout >= 0.)
1057 { 1527 {
1058 ev_timer_set (&once->to, timeout, 0.); 1528 ev_timer_set (&once->to, timeout, 0.);
1059 ev_timer_start (&once->to); 1529 ev_timer_start (EV_A_ &once->to);
1060 } 1530 }
1061 } 1531 }
1062} 1532}
1063 1533
1064/*****************************************************************************/
1065
1066#if 0
1067
1068struct ev_io wio;
1069
1070static void
1071sin_cb (struct ev_io *w, int revents)
1072{
1073 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1074}
1075
1076static void
1077ocb (struct ev_timer *w, int revents)
1078{
1079 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1080 ev_timer_stop (w);
1081 ev_timer_start (w);
1082}
1083
1084static void
1085scb (struct ev_signal *w, int revents)
1086{
1087 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1088 ev_io_stop (&wio);
1089 ev_io_start (&wio);
1090}
1091
1092static void
1093gcb (struct ev_signal *w, int revents)
1094{
1095 fprintf (stderr, "generic %x\n", revents);
1096
1097}
1098
1099int main (void)
1100{
1101 ev_init (0);
1102
1103 ev_io_init (&wio, sin_cb, 0, EV_READ);
1104 ev_io_start (&wio);
1105
1106 struct ev_timer t[10000];
1107
1108#if 0
1109 int i;
1110 for (i = 0; i < 10000; ++i)
1111 {
1112 struct ev_timer *w = t + i;
1113 ev_watcher_init (w, ocb, i);
1114 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1115 ev_timer_start (w);
1116 if (drand48 () < 0.5)
1117 ev_timer_stop (w);
1118 }
1119#endif
1120
1121 struct ev_timer t1;
1122 ev_timer_init (&t1, ocb, 5, 10);
1123 ev_timer_start (&t1);
1124
1125 struct ev_signal sig;
1126 ev_signal_init (&sig, scb, SIGQUIT);
1127 ev_signal_start (&sig);
1128
1129 struct ev_check cw;
1130 ev_check_init (&cw, gcb);
1131 ev_check_start (&cw);
1132
1133 struct ev_idle iw;
1134 ev_idle_init (&iw, gcb);
1135 ev_idle_start (&iw);
1136
1137 ev_loop (0);
1138
1139 return 0;
1140}
1141
1142#endif
1143
1144
1145
1146

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines