ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.75 by root, Tue Nov 6 19:29:20 2007 UTC vs.
Revision 1.453 by root, Thu Feb 28 00:33:25 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
33 67
34# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
37# endif 82# endif
38 83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 99# define EV_USE_SELECT 0
41# endif 100# endif
42 101
43# if HAVE_POLL && HAVE_POLL_H 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
44# define EV_USE_POLL 1 108# define EV_USE_POLL 0
45# endif 109# endif
46 110
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 117# define EV_USE_EPOLL 0
49# endif 118# endif
50 119
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 126# define EV_USE_KQUEUE 0
53# endif 127# endif
54 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
55#endif 136# endif
56 137
57#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
58#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
59#include <fcntl.h> 169#include <fcntl.h>
60#include <stddef.h> 170#include <stddef.h>
61 171
62#include <stdio.h> 172#include <stdio.h>
63 173
64#include <assert.h> 174#include <assert.h>
65#include <errno.h> 175#include <errno.h>
66#include <sys/types.h> 176#include <sys/types.h>
67#include <time.h> 177#include <time.h>
178#include <limits.h>
68 179
69#include <signal.h> 180#include <signal.h>
70 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
71#ifndef WIN32 199#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 200# include <sys/time.h>
74# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
203#else
204# include <io.h>
205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
207# include <windows.h>
208# ifndef EV_SELECT_IS_WINSOCKET
209# define EV_SELECT_IS_WINSOCKET 1
75#endif 210# endif
76/**/ 211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
77 263
78#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
79# define EV_USE_MONOTONIC 1 268# define EV_USE_MONOTONIC 0
269# endif
270#endif
271
272#ifndef EV_USE_REALTIME
273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
281# endif
80#endif 282#endif
81 283
82#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
84#endif 286#endif
85 287
86#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 289# ifdef _WIN32
290# define EV_USE_POLL 0
291# else
292# define EV_USE_POLL EV_FEATURE_BACKENDS
293# endif
88#endif 294#endif
89 295
90#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
91# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
92#endif 302#endif
93 303
94#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
96#endif 306#endif
97 307
308#ifndef EV_USE_PORT
309# define EV_USE_PORT 0
310#endif
311
98#ifndef EV_USE_WIN32 312#ifndef EV_USE_INOTIFY
99# ifdef WIN32 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */ 314# define EV_USE_INOTIFY EV_FEATURE_OS
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else 315# else
104# define EV_USE_WIN32 0 316# define EV_USE_INOTIFY 0
105# endif 317# endif
106#endif 318#endif
107 319
320#ifndef EV_PID_HASHSIZE
321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
108#ifndef EV_USE_REALTIME 328#ifndef EV_USE_EVENTFD
109# define EV_USE_REALTIME 1 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
331# else
332# define EV_USE_EVENTFD 0
110#endif 333# endif
334#endif
111 335
112/**/ 336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362#ifdef ANDROID
363/* supposedly, android doesn't typedef fd_mask */
364# undef EV_USE_SELECT
365# define EV_USE_SELECT 0
366/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367# undef EV_USE_CLOCK_SYSCALL
368# define EV_USE_CLOCK_SYSCALL 0
369#endif
370
371/* aix's poll.h seems to cause lots of trouble */
372#ifdef _AIX
373/* AIX has a completely broken poll.h header */
374# undef EV_USE_POLL
375# define EV_USE_POLL 0
376#endif
377
378/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379/* which makes programs even slower. might work on other unices, too. */
380#if EV_USE_CLOCK_SYSCALL
381# include <sys/syscall.h>
382# ifdef SYS_clock_gettime
383# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384# undef EV_USE_MONOTONIC
385# define EV_USE_MONOTONIC 1
386# else
387# undef EV_USE_CLOCK_SYSCALL
388# define EV_USE_CLOCK_SYSCALL 0
389# endif
390#endif
391
392/* this block fixes any misconfiguration where we know we run into trouble otherwise */
113 393
114#ifndef CLOCK_MONOTONIC 394#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 395# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 396# define EV_USE_MONOTONIC 0
117#endif 397#endif
119#ifndef CLOCK_REALTIME 399#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 400# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 401# define EV_USE_REALTIME 0
122#endif 402#endif
123 403
404#if !EV_STAT_ENABLE
405# undef EV_USE_INOTIFY
406# define EV_USE_INOTIFY 0
407#endif
408
409#if !EV_USE_NANOSLEEP
410/* hp-ux has it in sys/time.h, which we unconditionally include above */
411# if !defined _WIN32 && !defined __hpux
412# include <sys/select.h>
413# endif
414#endif
415
416#if EV_USE_INOTIFY
417# include <sys/statfs.h>
418# include <sys/inotify.h>
419/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420# ifndef IN_DONT_FOLLOW
421# undef EV_USE_INOTIFY
422# define EV_USE_INOTIFY 0
423# endif
424#endif
425
426#if EV_USE_EVENTFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef EFD_NONBLOCK
430# define EFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef EFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define EFD_CLOEXEC O_CLOEXEC
435# else
436# define EFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440#endif
441
442#if EV_USE_SIGNALFD
443/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444# include <stdint.h>
445# ifndef SFD_NONBLOCK
446# define SFD_NONBLOCK O_NONBLOCK
447# endif
448# ifndef SFD_CLOEXEC
449# ifdef O_CLOEXEC
450# define SFD_CLOEXEC O_CLOEXEC
451# else
452# define SFD_CLOEXEC 02000000
453# endif
454# endif
455EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457struct signalfd_siginfo
458{
459 uint32_t ssi_signo;
460 char pad[128 - sizeof (uint32_t)];
461};
462#endif
463
124/**/ 464/**/
125 465
466#if EV_VERIFY >= 3
467# define EV_FREQUENT_CHECK ev_verify (EV_A)
468#else
469# define EV_FREQUENT_CHECK do { } while (0)
470#endif
471
472/*
473 * This is used to work around floating point rounding problems.
474 * This value is good at least till the year 4000.
475 */
476#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
478
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 479#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 480#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 481
131#include "ev.h" 482#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
132 484
485/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486/* ECB.H BEGIN */
487/*
488 * libecb - http://software.schmorp.de/pkg/libecb
489 *
490 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 * Copyright (©) 2011 Emanuele Giaquinta
492 * All rights reserved.
493 *
494 * Redistribution and use in source and binary forms, with or without modifica-
495 * tion, are permitted provided that the following conditions are met:
496 *
497 * 1. Redistributions of source code must retain the above copyright notice,
498 * this list of conditions and the following disclaimer.
499 *
500 * 2. Redistributions in binary form must reproduce the above copyright
501 * notice, this list of conditions and the following disclaimer in the
502 * documentation and/or other materials provided with the distribution.
503 *
504 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513 * OF THE POSSIBILITY OF SUCH DAMAGE.
514 */
515
516#ifndef ECB_H
517#define ECB_H
518
519/* 16 bits major, 16 bits minor */
520#define ECB_VERSION 0x00010002
521
522#ifdef _WIN32
523 typedef signed char int8_t;
524 typedef unsigned char uint8_t;
525 typedef signed short int16_t;
526 typedef unsigned short uint16_t;
527 typedef signed int int32_t;
528 typedef unsigned int uint32_t;
133#if __GNUC__ >= 3 529 #if __GNUC__
134# define expect(expr,value) __builtin_expect ((expr),(value)) 530 typedef signed long long int64_t;
135# define inline inline 531 typedef unsigned long long uint64_t;
532 #else /* _MSC_VER || __BORLANDC__ */
533 typedef signed __int64 int64_t;
534 typedef unsigned __int64 uint64_t;
535 #endif
536 #ifdef _WIN64
537 #define ECB_PTRSIZE 8
538 typedef uint64_t uintptr_t;
539 typedef int64_t intptr_t;
540 #else
541 #define ECB_PTRSIZE 4
542 typedef uint32_t uintptr_t;
543 typedef int32_t intptr_t;
544 #endif
136#else 545#else
137# define expect(expr,value) (expr) 546 #include <inttypes.h>
138# define inline static 547 #if UINTMAX_MAX > 0xffffffffU
548 #define ECB_PTRSIZE 8
549 #else
550 #define ECB_PTRSIZE 4
139#endif 551 #endif
552#endif
140 553
141#define expect_false(expr) expect ((expr) != 0, 0) 554/* many compilers define _GNUC_ to some versions but then only implement
142#define expect_true(expr) expect ((expr) != 0, 1) 555 * what their idiot authors think are the "more important" extensions,
556 * causing enormous grief in return for some better fake benchmark numbers.
557 * or so.
558 * we try to detect these and simply assume they are not gcc - if they have
559 * an issue with that they should have done it right in the first place.
560 */
561#ifndef ECB_GCC_VERSION
562 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
563 #define ECB_GCC_VERSION(major,minor) 0
564 #else
565 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
566 #endif
567#endif
143 568
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 569#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 570#define ECB_C99 (__STDC_VERSION__ >= 199901L)
571#define ECB_C11 (__STDC_VERSION__ >= 201112L)
572#define ECB_CPP (__cplusplus+0)
573#define ECB_CPP11 (__cplusplus >= 201103L)
146 574
147typedef struct ev_watcher *W; 575#if ECB_CPP
148typedef struct ev_watcher_list *WL; 576 #define ECB_EXTERN_C extern "C"
149typedef struct ev_watcher_time *WT; 577 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
150 578 #define ECB_EXTERN_C_END }
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 579#else
152 580 #define ECB_EXTERN_C extern
153#include "ev_win32.c" 581 #define ECB_EXTERN_C_BEG
582 #define ECB_EXTERN_C_END
583#endif
154 584
155/*****************************************************************************/ 585/*****************************************************************************/
156 586
587/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
588/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
589
590#if ECB_NO_THREADS
591 #define ECB_NO_SMP 1
592#endif
593
594#if ECB_NO_SMP
595 #define ECB_MEMORY_FENCE do { } while (0)
596#endif
597
598#ifndef ECB_MEMORY_FENCE
599 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
600 #if __i386 || __i386__
601 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
602 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
603 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
604 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
605 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
606 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
607 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
608 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
609 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
610 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
611 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
612 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
613 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
614 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
616 #elif __sparc || __sparc__
617 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
618 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
619 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
620 #elif defined __s390__ || defined __s390x__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
622 #elif defined __mips__
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
624 #elif defined __alpha__
625 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
626 #elif defined __hppa__
627 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629 #elif defined __ia64__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
631 #endif
632 #endif
633#endif
634
635#ifndef ECB_MEMORY_FENCE
636 #if ECB_GCC_VERSION(4,7)
637 /* see comment below (stdatomic.h) about the C11 memory model. */
638 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
639
640 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
641 * without risking compile time errors with other compilers. We *could*
642 * define our own ecb_clang_has_feature, but I just can't be bothered to work
643 * around this shit time and again.
644 * #elif defined __clang && __has_feature (cxx_atomic)
645 * // see comment below (stdatomic.h) about the C11 memory model.
646 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
647 */
648
649 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
650 #define ECB_MEMORY_FENCE __sync_synchronize ()
651 #elif _MSC_VER >= 1400 /* VC++ 2005 */
652 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
653 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
654 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
655 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
656 #elif defined _WIN32
657 #include <WinNT.h>
658 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
659 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
660 #include <mbarrier.h>
661 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
662 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
663 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
664 #elif __xlC__
665 #define ECB_MEMORY_FENCE __sync ()
666 #endif
667#endif
668
669#ifndef ECB_MEMORY_FENCE
670 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
671 /* we assume that these memory fences work on all variables/all memory accesses, */
672 /* not just C11 atomics and atomic accesses */
673 #include <stdatomic.h>
674 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
675 /* any fence other than seq_cst, which isn't very efficient for us. */
676 /* Why that is, we don't know - either the C11 memory model is quite useless */
677 /* for most usages, or gcc and clang have a bug */
678 /* I *currently* lean towards the latter, and inefficiently implement */
679 /* all three of ecb's fences as a seq_cst fence */
680 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
681 #endif
682#endif
683
684#ifndef ECB_MEMORY_FENCE
685 #if !ECB_AVOID_PTHREADS
686 /*
687 * if you get undefined symbol references to pthread_mutex_lock,
688 * or failure to find pthread.h, then you should implement
689 * the ECB_MEMORY_FENCE operations for your cpu/compiler
690 * OR provide pthread.h and link against the posix thread library
691 * of your system.
692 */
693 #include <pthread.h>
694 #define ECB_NEEDS_PTHREADS 1
695 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
696
697 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
698 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
699 #endif
700#endif
701
702#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
703 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
704#endif
705
706#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
707 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
708#endif
709
710/*****************************************************************************/
711
712#if __cplusplus
713 #define ecb_inline static inline
714#elif ECB_GCC_VERSION(2,5)
715 #define ecb_inline static __inline__
716#elif ECB_C99
717 #define ecb_inline static inline
718#else
719 #define ecb_inline static
720#endif
721
722#if ECB_GCC_VERSION(3,3)
723 #define ecb_restrict __restrict__
724#elif ECB_C99
725 #define ecb_restrict restrict
726#else
727 #define ecb_restrict
728#endif
729
730typedef int ecb_bool;
731
732#define ECB_CONCAT_(a, b) a ## b
733#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
734#define ECB_STRINGIFY_(a) # a
735#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
736
737#define ecb_function_ ecb_inline
738
739#if ECB_GCC_VERSION(3,1)
740 #define ecb_attribute(attrlist) __attribute__(attrlist)
741 #define ecb_is_constant(expr) __builtin_constant_p (expr)
742 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
743 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
744#else
745 #define ecb_attribute(attrlist)
746 #define ecb_is_constant(expr) 0
747 #define ecb_expect(expr,value) (expr)
748 #define ecb_prefetch(addr,rw,locality)
749#endif
750
751/* no emulation for ecb_decltype */
752#if ECB_GCC_VERSION(4,5)
753 #define ecb_decltype(x) __decltype(x)
754#elif ECB_GCC_VERSION(3,0)
755 #define ecb_decltype(x) __typeof(x)
756#endif
757
758#define ecb_noinline ecb_attribute ((__noinline__))
759#define ecb_unused ecb_attribute ((__unused__))
760#define ecb_const ecb_attribute ((__const__))
761#define ecb_pure ecb_attribute ((__pure__))
762
763#if ECB_C11
764 #define ecb_noreturn _Noreturn
765#else
766 #define ecb_noreturn ecb_attribute ((__noreturn__))
767#endif
768
769#if ECB_GCC_VERSION(4,3)
770 #define ecb_artificial ecb_attribute ((__artificial__))
771 #define ecb_hot ecb_attribute ((__hot__))
772 #define ecb_cold ecb_attribute ((__cold__))
773#else
774 #define ecb_artificial
775 #define ecb_hot
776 #define ecb_cold
777#endif
778
779/* put around conditional expressions if you are very sure that the */
780/* expression is mostly true or mostly false. note that these return */
781/* booleans, not the expression. */
782#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
783#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
784/* for compatibility to the rest of the world */
785#define ecb_likely(expr) ecb_expect_true (expr)
786#define ecb_unlikely(expr) ecb_expect_false (expr)
787
788/* count trailing zero bits and count # of one bits */
789#if ECB_GCC_VERSION(3,4)
790 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
791 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
792 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
793 #define ecb_ctz32(x) __builtin_ctz (x)
794 #define ecb_ctz64(x) __builtin_ctzll (x)
795 #define ecb_popcount32(x) __builtin_popcount (x)
796 /* no popcountll */
797#else
798 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
799 ecb_function_ int
800 ecb_ctz32 (uint32_t x)
801 {
802 int r = 0;
803
804 x &= ~x + 1; /* this isolates the lowest bit */
805
806#if ECB_branchless_on_i386
807 r += !!(x & 0xaaaaaaaa) << 0;
808 r += !!(x & 0xcccccccc) << 1;
809 r += !!(x & 0xf0f0f0f0) << 2;
810 r += !!(x & 0xff00ff00) << 3;
811 r += !!(x & 0xffff0000) << 4;
812#else
813 if (x & 0xaaaaaaaa) r += 1;
814 if (x & 0xcccccccc) r += 2;
815 if (x & 0xf0f0f0f0) r += 4;
816 if (x & 0xff00ff00) r += 8;
817 if (x & 0xffff0000) r += 16;
818#endif
819
820 return r;
821 }
822
823 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
824 ecb_function_ int
825 ecb_ctz64 (uint64_t x)
826 {
827 int shift = x & 0xffffffffU ? 0 : 32;
828 return ecb_ctz32 (x >> shift) + shift;
829 }
830
831 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
832 ecb_function_ int
833 ecb_popcount32 (uint32_t x)
834 {
835 x -= (x >> 1) & 0x55555555;
836 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
837 x = ((x >> 4) + x) & 0x0f0f0f0f;
838 x *= 0x01010101;
839
840 return x >> 24;
841 }
842
843 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
844 ecb_function_ int ecb_ld32 (uint32_t x)
845 {
846 int r = 0;
847
848 if (x >> 16) { x >>= 16; r += 16; }
849 if (x >> 8) { x >>= 8; r += 8; }
850 if (x >> 4) { x >>= 4; r += 4; }
851 if (x >> 2) { x >>= 2; r += 2; }
852 if (x >> 1) { r += 1; }
853
854 return r;
855 }
856
857 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
858 ecb_function_ int ecb_ld64 (uint64_t x)
859 {
860 int r = 0;
861
862 if (x >> 32) { x >>= 32; r += 32; }
863
864 return r + ecb_ld32 (x);
865 }
866#endif
867
868ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
869ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
870ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
871ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
872
873ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
874ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
875{
876 return ( (x * 0x0802U & 0x22110U)
877 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
878}
879
880ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
881ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
882{
883 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
884 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
885 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
886 x = ( x >> 8 ) | ( x << 8);
887
888 return x;
889}
890
891ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
892ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
893{
894 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
895 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
896 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
897 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
898 x = ( x >> 16 ) | ( x << 16);
899
900 return x;
901}
902
903/* popcount64 is only available on 64 bit cpus as gcc builtin */
904/* so for this version we are lazy */
905ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
906ecb_function_ int
907ecb_popcount64 (uint64_t x)
908{
909 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
910}
911
912ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
913ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
914ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
915ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
916ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
917ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
918ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
919ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
920
921ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
922ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
923ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
924ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
925ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
926ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
927ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
928ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
929
930#if ECB_GCC_VERSION(4,3)
931 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
932 #define ecb_bswap32(x) __builtin_bswap32 (x)
933 #define ecb_bswap64(x) __builtin_bswap64 (x)
934#else
935 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
936 ecb_function_ uint16_t
937 ecb_bswap16 (uint16_t x)
938 {
939 return ecb_rotl16 (x, 8);
940 }
941
942 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
943 ecb_function_ uint32_t
944 ecb_bswap32 (uint32_t x)
945 {
946 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
947 }
948
949 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
950 ecb_function_ uint64_t
951 ecb_bswap64 (uint64_t x)
952 {
953 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
954 }
955#endif
956
957#if ECB_GCC_VERSION(4,5)
958 #define ecb_unreachable() __builtin_unreachable ()
959#else
960 /* this seems to work fine, but gcc always emits a warning for it :/ */
961 ecb_inline void ecb_unreachable (void) ecb_noreturn;
962 ecb_inline void ecb_unreachable (void) { }
963#endif
964
965/* try to tell the compiler that some condition is definitely true */
966#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
967
968ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
969ecb_inline unsigned char
970ecb_byteorder_helper (void)
971{
972 /* the union code still generates code under pressure in gcc, */
973 /* but less than using pointers, and always seems to */
974 /* successfully return a constant. */
975 /* the reason why we have this horrible preprocessor mess */
976 /* is to avoid it in all cases, at least on common architectures */
977 /* or when using a recent enough gcc version (>= 4.6) */
978#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
979 return 0x44;
980#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
981 return 0x44;
982#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
983 return 0x11;
984#else
985 union
986 {
987 uint32_t i;
988 uint8_t c;
989 } u = { 0x11223344 };
990 return u.c;
991#endif
992}
993
994ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
995ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
996ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
997ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
998
999#if ECB_GCC_VERSION(3,0) || ECB_C99
1000 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1001#else
1002 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1003#endif
1004
1005#if __cplusplus
1006 template<typename T>
1007 static inline T ecb_div_rd (T val, T div)
1008 {
1009 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1010 }
1011 template<typename T>
1012 static inline T ecb_div_ru (T val, T div)
1013 {
1014 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1015 }
1016#else
1017 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1018 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1019#endif
1020
1021#if ecb_cplusplus_does_not_suck
1022 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1023 template<typename T, int N>
1024 static inline int ecb_array_length (const T (&arr)[N])
1025 {
1026 return N;
1027 }
1028#else
1029 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1030#endif
1031
1032/*******************************************************************************/
1033/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1034
1035/* basically, everything uses "ieee pure-endian" floating point numbers */
1036/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1037#if 0 \
1038 || __i386 || __i386__ \
1039 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1040 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1041 || defined __arm__ && defined __ARM_EABI__ \
1042 || defined __s390__ || defined __s390x__ \
1043 || defined __mips__ \
1044 || defined __alpha__ \
1045 || defined __hppa__ \
1046 || defined __ia64__ \
1047 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1048 #define ECB_STDFP 1
1049 #include <string.h> /* for memcpy */
1050#else
1051 #define ECB_STDFP 0
1052 #include <math.h> /* for frexp*, ldexp* */
1053#endif
1054
1055#ifndef ECB_NO_LIBM
1056
1057 /* convert a float to ieee single/binary32 */
1058 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1059 ecb_function_ uint32_t
1060 ecb_float_to_binary32 (float x)
1061 {
1062 uint32_t r;
1063
1064 #if ECB_STDFP
1065 memcpy (&r, &x, 4);
1066 #else
1067 /* slow emulation, works for anything but -0 */
1068 uint32_t m;
1069 int e;
1070
1071 if (x == 0e0f ) return 0x00000000U;
1072 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1073 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1074 if (x != x ) return 0x7fbfffffU;
1075
1076 m = frexpf (x, &e) * 0x1000000U;
1077
1078 r = m & 0x80000000U;
1079
1080 if (r)
1081 m = -m;
1082
1083 if (e <= -126)
1084 {
1085 m &= 0xffffffU;
1086 m >>= (-125 - e);
1087 e = -126;
1088 }
1089
1090 r |= (e + 126) << 23;
1091 r |= m & 0x7fffffU;
1092 #endif
1093
1094 return r;
1095 }
1096
1097 /* converts an ieee single/binary32 to a float */
1098 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1099 ecb_function_ float
1100 ecb_binary32_to_float (uint32_t x)
1101 {
1102 float r;
1103
1104 #if ECB_STDFP
1105 memcpy (&r, &x, 4);
1106 #else
1107 /* emulation, only works for normals and subnormals and +0 */
1108 int neg = x >> 31;
1109 int e = (x >> 23) & 0xffU;
1110
1111 x &= 0x7fffffU;
1112
1113 if (e)
1114 x |= 0x800000U;
1115 else
1116 e = 1;
1117
1118 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1119 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1120
1121 r = neg ? -r : r;
1122 #endif
1123
1124 return r;
1125 }
1126
1127 /* convert a double to ieee double/binary64 */
1128 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1129 ecb_function_ uint64_t
1130 ecb_double_to_binary64 (double x)
1131 {
1132 uint64_t r;
1133
1134 #if ECB_STDFP
1135 memcpy (&r, &x, 8);
1136 #else
1137 /* slow emulation, works for anything but -0 */
1138 uint64_t m;
1139 int e;
1140
1141 if (x == 0e0 ) return 0x0000000000000000U;
1142 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1143 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1144 if (x != x ) return 0X7ff7ffffffffffffU;
1145
1146 m = frexp (x, &e) * 0x20000000000000U;
1147
1148 r = m & 0x8000000000000000;;
1149
1150 if (r)
1151 m = -m;
1152
1153 if (e <= -1022)
1154 {
1155 m &= 0x1fffffffffffffU;
1156 m >>= (-1021 - e);
1157 e = -1022;
1158 }
1159
1160 r |= ((uint64_t)(e + 1022)) << 52;
1161 r |= m & 0xfffffffffffffU;
1162 #endif
1163
1164 return r;
1165 }
1166
1167 /* converts an ieee double/binary64 to a double */
1168 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1169 ecb_function_ double
1170 ecb_binary64_to_double (uint64_t x)
1171 {
1172 double r;
1173
1174 #if ECB_STDFP
1175 memcpy (&r, &x, 8);
1176 #else
1177 /* emulation, only works for normals and subnormals and +0 */
1178 int neg = x >> 63;
1179 int e = (x >> 52) & 0x7ffU;
1180
1181 x &= 0xfffffffffffffU;
1182
1183 if (e)
1184 x |= 0x10000000000000U;
1185 else
1186 e = 1;
1187
1188 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1189 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1190
1191 r = neg ? -r : r;
1192 #endif
1193
1194 return r;
1195 }
1196
1197#endif
1198
1199#endif
1200
1201/* ECB.H END */
1202
1203#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1204/* if your architecture doesn't need memory fences, e.g. because it is
1205 * single-cpu/core, or if you use libev in a project that doesn't use libev
1206 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1207 * libev, in which cases the memory fences become nops.
1208 * alternatively, you can remove this #error and link against libpthread,
1209 * which will then provide the memory fences.
1210 */
1211# error "memory fences not defined for your architecture, please report"
1212#endif
1213
1214#ifndef ECB_MEMORY_FENCE
1215# define ECB_MEMORY_FENCE do { } while (0)
1216# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1217# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1218#endif
1219
1220#define expect_false(cond) ecb_expect_false (cond)
1221#define expect_true(cond) ecb_expect_true (cond)
1222#define noinline ecb_noinline
1223
1224#define inline_size ecb_inline
1225
1226#if EV_FEATURE_CODE
1227# define inline_speed ecb_inline
1228#else
1229# define inline_speed static noinline
1230#endif
1231
1232#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1233
1234#if EV_MINPRI == EV_MAXPRI
1235# define ABSPRI(w) (((W)w), 0)
1236#else
1237# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1238#endif
1239
1240#define EMPTY /* required for microsofts broken pseudo-c compiler */
1241#define EMPTY2(a,b) /* used to suppress some warnings */
1242
1243typedef ev_watcher *W;
1244typedef ev_watcher_list *WL;
1245typedef ev_watcher_time *WT;
1246
1247#define ev_active(w) ((W)(w))->active
1248#define ev_at(w) ((WT)(w))->at
1249
1250#if EV_USE_REALTIME
1251/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1252/* giving it a reasonably high chance of working on typical architectures */
1253static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1254#endif
1255
1256#if EV_USE_MONOTONIC
1257static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1258#endif
1259
1260#ifndef EV_FD_TO_WIN32_HANDLE
1261# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1262#endif
1263#ifndef EV_WIN32_HANDLE_TO_FD
1264# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1265#endif
1266#ifndef EV_WIN32_CLOSE_FD
1267# define EV_WIN32_CLOSE_FD(fd) close (fd)
1268#endif
1269
1270#ifdef _WIN32
1271# include "ev_win32.c"
1272#endif
1273
1274/*****************************************************************************/
1275
1276/* define a suitable floor function (only used by periodics atm) */
1277
1278#if EV_USE_FLOOR
1279# include <math.h>
1280# define ev_floor(v) floor (v)
1281#else
1282
1283#include <float.h>
1284
1285/* a floor() replacement function, should be independent of ev_tstamp type */
1286static ev_tstamp noinline
1287ev_floor (ev_tstamp v)
1288{
1289 /* the choice of shift factor is not terribly important */
1290#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1291 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1292#else
1293 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1294#endif
1295
1296 /* argument too large for an unsigned long? */
1297 if (expect_false (v >= shift))
1298 {
1299 ev_tstamp f;
1300
1301 if (v == v - 1.)
1302 return v; /* very large number */
1303
1304 f = shift * ev_floor (v * (1. / shift));
1305 return f + ev_floor (v - f);
1306 }
1307
1308 /* special treatment for negative args? */
1309 if (expect_false (v < 0.))
1310 {
1311 ev_tstamp f = -ev_floor (-v);
1312
1313 return f - (f == v ? 0 : 1);
1314 }
1315
1316 /* fits into an unsigned long */
1317 return (unsigned long)v;
1318}
1319
1320#endif
1321
1322/*****************************************************************************/
1323
1324#ifdef __linux
1325# include <sys/utsname.h>
1326#endif
1327
1328static unsigned int noinline ecb_cold
1329ev_linux_version (void)
1330{
1331#ifdef __linux
1332 unsigned int v = 0;
1333 struct utsname buf;
1334 int i;
1335 char *p = buf.release;
1336
1337 if (uname (&buf))
1338 return 0;
1339
1340 for (i = 3+1; --i; )
1341 {
1342 unsigned int c = 0;
1343
1344 for (;;)
1345 {
1346 if (*p >= '0' && *p <= '9')
1347 c = c * 10 + *p++ - '0';
1348 else
1349 {
1350 p += *p == '.';
1351 break;
1352 }
1353 }
1354
1355 v = (v << 8) | c;
1356 }
1357
1358 return v;
1359#else
1360 return 0;
1361#endif
1362}
1363
1364/*****************************************************************************/
1365
1366#if EV_AVOID_STDIO
1367static void noinline ecb_cold
1368ev_printerr (const char *msg)
1369{
1370 write (STDERR_FILENO, msg, strlen (msg));
1371}
1372#endif
1373
157static void (*syserr_cb)(const char *msg); 1374static void (*syserr_cb)(const char *msg) EV_THROW;
158 1375
1376void ecb_cold
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 1377ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
160{ 1378{
161 syserr_cb = cb; 1379 syserr_cb = cb;
162} 1380}
163 1381
164static void 1382static void noinline ecb_cold
165syserr (const char *msg) 1383ev_syserr (const char *msg)
166{ 1384{
167 if (!msg) 1385 if (!msg)
168 msg = "(libev) system error"; 1386 msg = "(libev) system error";
169 1387
170 if (syserr_cb) 1388 if (syserr_cb)
171 syserr_cb (msg); 1389 syserr_cb (msg);
172 else 1390 else
173 { 1391 {
1392#if EV_AVOID_STDIO
1393 ev_printerr (msg);
1394 ev_printerr (": ");
1395 ev_printerr (strerror (errno));
1396 ev_printerr ("\n");
1397#else
174 perror (msg); 1398 perror (msg);
1399#endif
175 abort (); 1400 abort ();
176 } 1401 }
177} 1402}
178 1403
1404static void *
1405ev_realloc_emul (void *ptr, long size) EV_THROW
1406{
1407 /* some systems, notably openbsd and darwin, fail to properly
1408 * implement realloc (x, 0) (as required by both ansi c-89 and
1409 * the single unix specification, so work around them here.
1410 * recently, also (at least) fedora and debian started breaking it,
1411 * despite documenting it otherwise.
1412 */
1413
1414 if (size)
1415 return realloc (ptr, size);
1416
1417 free (ptr);
1418 return 0;
1419}
1420
179static void *(*alloc)(void *ptr, long size); 1421static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
180 1422
1423void ecb_cold
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1424ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
182{ 1425{
183 alloc = cb; 1426 alloc = cb;
184} 1427}
185 1428
186static void * 1429inline_speed void *
187ev_realloc (void *ptr, long size) 1430ev_realloc (void *ptr, long size)
188{ 1431{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1432 ptr = alloc (ptr, size);
190 1433
191 if (!ptr && size) 1434 if (!ptr && size)
192 { 1435 {
1436#if EV_AVOID_STDIO
1437 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1438#else
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1439 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1440#endif
194 abort (); 1441 abort ();
195 } 1442 }
196 1443
197 return ptr; 1444 return ptr;
198} 1445}
200#define ev_malloc(size) ev_realloc (0, (size)) 1447#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0) 1448#define ev_free(ptr) ev_realloc ((ptr), 0)
202 1449
203/*****************************************************************************/ 1450/*****************************************************************************/
204 1451
1452/* set in reify when reification needed */
1453#define EV_ANFD_REIFY 1
1454
1455/* file descriptor info structure */
205typedef struct 1456typedef struct
206{ 1457{
207 WL head; 1458 WL head;
208 unsigned char events; 1459 unsigned char events; /* the events watched for */
1460 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1461 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
209 unsigned char reify; 1462 unsigned char unused;
1463#if EV_USE_EPOLL
1464 unsigned int egen; /* generation counter to counter epoll bugs */
1465#endif
1466#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1467 SOCKET handle;
1468#endif
1469#if EV_USE_IOCP
1470 OVERLAPPED or, ow;
1471#endif
210} ANFD; 1472} ANFD;
211 1473
1474/* stores the pending event set for a given watcher */
212typedef struct 1475typedef struct
213{ 1476{
214 W w; 1477 W w;
215 int events; 1478 int events; /* the pending event set for the given watcher */
216} ANPENDING; 1479} ANPENDING;
217 1480
1481#if EV_USE_INOTIFY
1482/* hash table entry per inotify-id */
1483typedef struct
1484{
1485 WL head;
1486} ANFS;
1487#endif
1488
1489/* Heap Entry */
1490#if EV_HEAP_CACHE_AT
1491 /* a heap element */
1492 typedef struct {
1493 ev_tstamp at;
1494 WT w;
1495 } ANHE;
1496
1497 #define ANHE_w(he) (he).w /* access watcher, read-write */
1498 #define ANHE_at(he) (he).at /* access cached at, read-only */
1499 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1500#else
1501 /* a heap element */
1502 typedef WT ANHE;
1503
1504 #define ANHE_w(he) (he)
1505 #define ANHE_at(he) (he)->at
1506 #define ANHE_at_cache(he)
1507#endif
1508
218#if EV_MULTIPLICITY 1509#if EV_MULTIPLICITY
219 1510
220struct ev_loop 1511 struct ev_loop
221{ 1512 {
1513 ev_tstamp ev_rt_now;
1514 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 1515 #define VAR(name,decl) decl;
223# include "ev_vars.h" 1516 #include "ev_vars.h"
224};
225# undef VAR 1517 #undef VAR
1518 };
226# include "ev_wrap.h" 1519 #include "ev_wrap.h"
1520
1521 static struct ev_loop default_loop_struct;
1522 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
227 1523
228#else 1524#else
229 1525
1526 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
230# define VAR(name,decl) static decl; 1527 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 1528 #include "ev_vars.h"
232# undef VAR 1529 #undef VAR
233 1530
1531 static int ev_default_loop_ptr;
1532
234#endif 1533#endif
1534
1535#if EV_FEATURE_API
1536# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1537# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1538# define EV_INVOKE_PENDING invoke_cb (EV_A)
1539#else
1540# define EV_RELEASE_CB (void)0
1541# define EV_ACQUIRE_CB (void)0
1542# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1543#endif
1544
1545#define EVBREAK_RECURSE 0x80
235 1546
236/*****************************************************************************/ 1547/*****************************************************************************/
237 1548
238inline ev_tstamp 1549#ifndef EV_HAVE_EV_TIME
1550ev_tstamp
239ev_time (void) 1551ev_time (void) EV_THROW
240{ 1552{
241#if EV_USE_REALTIME 1553#if EV_USE_REALTIME
1554 if (expect_true (have_realtime))
1555 {
242 struct timespec ts; 1556 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 1557 clock_gettime (CLOCK_REALTIME, &ts);
244 return ts.tv_sec + ts.tv_nsec * 1e-9; 1558 return ts.tv_sec + ts.tv_nsec * 1e-9;
245#else 1559 }
1560#endif
1561
246 struct timeval tv; 1562 struct timeval tv;
247 gettimeofday (&tv, 0); 1563 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 1564 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif
250} 1565}
1566#endif
251 1567
252inline ev_tstamp 1568inline_size ev_tstamp
253get_clock (void) 1569get_clock (void)
254{ 1570{
255#if EV_USE_MONOTONIC 1571#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 1572 if (expect_true (have_monotonic))
257 { 1573 {
262#endif 1578#endif
263 1579
264 return ev_time (); 1580 return ev_time ();
265} 1581}
266 1582
1583#if EV_MULTIPLICITY
267ev_tstamp 1584ev_tstamp
268ev_now (EV_P) 1585ev_now (EV_P) EV_THROW
269{ 1586{
270 return rt_now; 1587 return ev_rt_now;
271} 1588}
1589#endif
272 1590
273#define array_roundsize(type,n) ((n) | 4 & ~3) 1591void
1592ev_sleep (ev_tstamp delay) EV_THROW
1593{
1594 if (delay > 0.)
1595 {
1596#if EV_USE_NANOSLEEP
1597 struct timespec ts;
1598
1599 EV_TS_SET (ts, delay);
1600 nanosleep (&ts, 0);
1601#elif defined _WIN32
1602 Sleep ((unsigned long)(delay * 1e3));
1603#else
1604 struct timeval tv;
1605
1606 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1607 /* something not guaranteed by newer posix versions, but guaranteed */
1608 /* by older ones */
1609 EV_TV_SET (tv, delay);
1610 select (0, 0, 0, 0, &tv);
1611#endif
1612 }
1613}
1614
1615/*****************************************************************************/
1616
1617#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1618
1619/* find a suitable new size for the given array, */
1620/* hopefully by rounding to a nice-to-malloc size */
1621inline_size int
1622array_nextsize (int elem, int cur, int cnt)
1623{
1624 int ncur = cur + 1;
1625
1626 do
1627 ncur <<= 1;
1628 while (cnt > ncur);
1629
1630 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1631 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1632 {
1633 ncur *= elem;
1634 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1635 ncur = ncur - sizeof (void *) * 4;
1636 ncur /= elem;
1637 }
1638
1639 return ncur;
1640}
1641
1642static void * noinline ecb_cold
1643array_realloc (int elem, void *base, int *cur, int cnt)
1644{
1645 *cur = array_nextsize (elem, *cur, cnt);
1646 return ev_realloc (base, elem * *cur);
1647}
1648
1649#define array_init_zero(base,count) \
1650 memset ((void *)(base), 0, sizeof (*(base)) * (count))
274 1651
275#define array_needsize(type,base,cur,cnt,init) \ 1652#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 1653 if (expect_false ((cnt) > (cur))) \
277 { \ 1654 { \
278 int newcnt = cur; \ 1655 int ecb_unused ocur_ = (cur); \
279 do \ 1656 (base) = (type *)array_realloc \
280 { \ 1657 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 1658 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 1659 }
289 1660
1661#if 0
290#define array_slim(type,stem) \ 1662#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1663 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 1664 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1665 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1666 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1667 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 1668 }
297 1669#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 1670
303#define array_free(stem, idx) \ 1671#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1672 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
305 1673
306/*****************************************************************************/ 1674/*****************************************************************************/
307 1675
308static void 1676/* dummy callback for pending events */
309anfds_init (ANFD *base, int count) 1677static void noinline
1678pendingcb (EV_P_ ev_prepare *w, int revents)
310{ 1679{
311 while (count--) 1680}
312 {
313 base->head = 0;
314 base->events = EV_NONE;
315 base->reify = 0;
316 1681
317 ++base; 1682void noinline
1683ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1684{
1685 W w_ = (W)w;
1686 int pri = ABSPRI (w_);
1687
1688 if (expect_false (w_->pending))
1689 pendings [pri][w_->pending - 1].events |= revents;
1690 else
318 } 1691 {
319} 1692 w_->pending = ++pendingcnt [pri];
320 1693 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
321static void 1694 pendings [pri][w_->pending - 1].w = w_;
322event (EV_P_ W w, int events)
323{
324 if (w->pending)
325 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 1695 pendings [pri][w_->pending - 1].events = revents;
327 return;
328 } 1696 }
329 1697
330 w->pending = ++pendingcnt [ABSPRI (w)]; 1698 pendingpri = NUMPRI - 1;
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w;
333 pendings [ABSPRI (w)][w->pending - 1].events = events;
334} 1699}
335 1700
336static void 1701inline_speed void
1702feed_reverse (EV_P_ W w)
1703{
1704 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1705 rfeeds [rfeedcnt++] = w;
1706}
1707
1708inline_size void
1709feed_reverse_done (EV_P_ int revents)
1710{
1711 do
1712 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1713 while (rfeedcnt);
1714}
1715
1716inline_speed void
337queue_events (EV_P_ W *events, int eventcnt, int type) 1717queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 1718{
339 int i; 1719 int i;
340 1720
341 for (i = 0; i < eventcnt; ++i) 1721 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 1722 ev_feed_event (EV_A_ events [i], type);
343} 1723}
344 1724
345static void 1725/*****************************************************************************/
1726
1727inline_speed void
346fd_event (EV_P_ int fd, int events) 1728fd_event_nocheck (EV_P_ int fd, int revents)
347{ 1729{
348 ANFD *anfd = anfds + fd; 1730 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 1731 ev_io *w;
350 1732
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1733 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
352 { 1734 {
353 int ev = w->events & events; 1735 int ev = w->events & revents;
354 1736
355 if (ev) 1737 if (ev)
356 event (EV_A_ (W)w, ev); 1738 ev_feed_event (EV_A_ (W)w, ev);
357 } 1739 }
358} 1740}
359 1741
360/*****************************************************************************/ 1742/* do not submit kernel events for fds that have reify set */
1743/* because that means they changed while we were polling for new events */
1744inline_speed void
1745fd_event (EV_P_ int fd, int revents)
1746{
1747 ANFD *anfd = anfds + fd;
361 1748
362static void 1749 if (expect_true (!anfd->reify))
1750 fd_event_nocheck (EV_A_ fd, revents);
1751}
1752
1753void
1754ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1755{
1756 if (fd >= 0 && fd < anfdmax)
1757 fd_event_nocheck (EV_A_ fd, revents);
1758}
1759
1760/* make sure the external fd watch events are in-sync */
1761/* with the kernel/libev internal state */
1762inline_size void
363fd_reify (EV_P) 1763fd_reify (EV_P)
364{ 1764{
365 int i; 1765 int i;
366 1766
1767#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
367 for (i = 0; i < fdchangecnt; ++i) 1768 for (i = 0; i < fdchangecnt; ++i)
368 { 1769 {
369 int fd = fdchanges [i]; 1770 int fd = fdchanges [i];
370 ANFD *anfd = anfds + fd; 1771 ANFD *anfd = anfds + fd;
1772
1773 if (anfd->reify & EV__IOFDSET && anfd->head)
1774 {
1775 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1776
1777 if (handle != anfd->handle)
1778 {
1779 unsigned long arg;
1780
1781 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1782
1783 /* handle changed, but fd didn't - we need to do it in two steps */
1784 backend_modify (EV_A_ fd, anfd->events, 0);
1785 anfd->events = 0;
1786 anfd->handle = handle;
1787 }
1788 }
1789 }
1790#endif
1791
1792 for (i = 0; i < fdchangecnt; ++i)
1793 {
1794 int fd = fdchanges [i];
1795 ANFD *anfd = anfds + fd;
371 struct ev_io *w; 1796 ev_io *w;
372 1797
373 int events = 0; 1798 unsigned char o_events = anfd->events;
1799 unsigned char o_reify = anfd->reify;
374 1800
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
376 events |= w->events;
377
378 anfd->reify = 0; 1801 anfd->reify = 0;
379 1802
380 method_modify (EV_A_ fd, anfd->events, events); 1803 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1804 {
381 anfd->events = events; 1805 anfd->events = 0;
1806
1807 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1808 anfd->events |= (unsigned char)w->events;
1809
1810 if (o_events != anfd->events)
1811 o_reify = EV__IOFDSET; /* actually |= */
1812 }
1813
1814 if (o_reify & EV__IOFDSET)
1815 backend_modify (EV_A_ fd, o_events, anfd->events);
382 } 1816 }
383 1817
384 fdchangecnt = 0; 1818 fdchangecnt = 0;
385} 1819}
386 1820
387static void 1821/* something about the given fd changed */
1822inline_size void
388fd_change (EV_P_ int fd) 1823fd_change (EV_P_ int fd, int flags)
389{ 1824{
390 if (anfds [fd].reify) 1825 unsigned char reify = anfds [fd].reify;
391 return;
392
393 anfds [fd].reify = 1; 1826 anfds [fd].reify |= flags;
394 1827
1828 if (expect_true (!reify))
1829 {
395 ++fdchangecnt; 1830 ++fdchangecnt;
396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1831 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
397 fdchanges [fdchangecnt - 1] = fd; 1832 fdchanges [fdchangecnt - 1] = fd;
1833 }
398} 1834}
399 1835
400static void 1836/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1837inline_speed void ecb_cold
401fd_kill (EV_P_ int fd) 1838fd_kill (EV_P_ int fd)
402{ 1839{
403 struct ev_io *w; 1840 ev_io *w;
404 1841
405 while ((w = (struct ev_io *)anfds [fd].head)) 1842 while ((w = (ev_io *)anfds [fd].head))
406 { 1843 {
407 ev_io_stop (EV_A_ w); 1844 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1845 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 1846 }
410} 1847}
411 1848
412static int 1849/* check whether the given fd is actually valid, for error recovery */
1850inline_size int ecb_cold
413fd_valid (int fd) 1851fd_valid (int fd)
414{ 1852{
415#ifdef WIN32 1853#ifdef _WIN32
416 return !!win32_get_osfhandle (fd); 1854 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
417#else 1855#else
418 return fcntl (fd, F_GETFD) != -1; 1856 return fcntl (fd, F_GETFD) != -1;
419#endif 1857#endif
420} 1858}
421 1859
422/* called on EBADF to verify fds */ 1860/* called on EBADF to verify fds */
423static void 1861static void noinline ecb_cold
424fd_ebadf (EV_P) 1862fd_ebadf (EV_P)
425{ 1863{
426 int fd; 1864 int fd;
427 1865
428 for (fd = 0; fd < anfdmax; ++fd) 1866 for (fd = 0; fd < anfdmax; ++fd)
429 if (anfds [fd].events) 1867 if (anfds [fd].events)
430 if (!fd_valid (fd) == -1 && errno == EBADF) 1868 if (!fd_valid (fd) && errno == EBADF)
431 fd_kill (EV_A_ fd); 1869 fd_kill (EV_A_ fd);
432} 1870}
433 1871
434/* called on ENOMEM in select/poll to kill some fds and retry */ 1872/* called on ENOMEM in select/poll to kill some fds and retry */
435static void 1873static void noinline ecb_cold
436fd_enomem (EV_P) 1874fd_enomem (EV_P)
437{ 1875{
438 int fd; 1876 int fd;
439 1877
440 for (fd = anfdmax; fd--; ) 1878 for (fd = anfdmax; fd--; )
441 if (anfds [fd].events) 1879 if (anfds [fd].events)
442 { 1880 {
443 fd_kill (EV_A_ fd); 1881 fd_kill (EV_A_ fd);
444 return; 1882 break;
445 } 1883 }
446} 1884}
447 1885
448/* usually called after fork if method needs to re-arm all fds from scratch */ 1886/* usually called after fork if backend needs to re-arm all fds from scratch */
449static void 1887static void noinline
450fd_rearm_all (EV_P) 1888fd_rearm_all (EV_P)
451{ 1889{
452 int fd; 1890 int fd;
453 1891
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd) 1892 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events) 1893 if (anfds [fd].events)
457 { 1894 {
458 anfds [fd].events = 0; 1895 anfds [fd].events = 0;
459 fd_change (EV_A_ fd); 1896 anfds [fd].emask = 0;
1897 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
460 } 1898 }
461} 1899}
462 1900
1901/* used to prepare libev internal fd's */
1902/* this is not fork-safe */
1903inline_speed void
1904fd_intern (int fd)
1905{
1906#ifdef _WIN32
1907 unsigned long arg = 1;
1908 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1909#else
1910 fcntl (fd, F_SETFD, FD_CLOEXEC);
1911 fcntl (fd, F_SETFL, O_NONBLOCK);
1912#endif
1913}
1914
463/*****************************************************************************/ 1915/*****************************************************************************/
464 1916
1917/*
1918 * the heap functions want a real array index. array index 0 is guaranteed to not
1919 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1920 * the branching factor of the d-tree.
1921 */
1922
1923/*
1924 * at the moment we allow libev the luxury of two heaps,
1925 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1926 * which is more cache-efficient.
1927 * the difference is about 5% with 50000+ watchers.
1928 */
1929#if EV_USE_4HEAP
1930
1931#define DHEAP 4
1932#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1933#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1934#define UPHEAP_DONE(p,k) ((p) == (k))
1935
1936/* away from the root */
1937inline_speed void
1938downheap (ANHE *heap, int N, int k)
1939{
1940 ANHE he = heap [k];
1941 ANHE *E = heap + N + HEAP0;
1942
1943 for (;;)
1944 {
1945 ev_tstamp minat;
1946 ANHE *minpos;
1947 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1948
1949 /* find minimum child */
1950 if (expect_true (pos + DHEAP - 1 < E))
1951 {
1952 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1953 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1954 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1955 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1956 }
1957 else if (pos < E)
1958 {
1959 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1960 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1961 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1962 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1963 }
1964 else
1965 break;
1966
1967 if (ANHE_at (he) <= minat)
1968 break;
1969
1970 heap [k] = *minpos;
1971 ev_active (ANHE_w (*minpos)) = k;
1972
1973 k = minpos - heap;
1974 }
1975
1976 heap [k] = he;
1977 ev_active (ANHE_w (he)) = k;
1978}
1979
1980#else /* 4HEAP */
1981
1982#define HEAP0 1
1983#define HPARENT(k) ((k) >> 1)
1984#define UPHEAP_DONE(p,k) (!(p))
1985
1986/* away from the root */
1987inline_speed void
1988downheap (ANHE *heap, int N, int k)
1989{
1990 ANHE he = heap [k];
1991
1992 for (;;)
1993 {
1994 int c = k << 1;
1995
1996 if (c >= N + HEAP0)
1997 break;
1998
1999 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2000 ? 1 : 0;
2001
2002 if (ANHE_at (he) <= ANHE_at (heap [c]))
2003 break;
2004
2005 heap [k] = heap [c];
2006 ev_active (ANHE_w (heap [k])) = k;
2007
2008 k = c;
2009 }
2010
2011 heap [k] = he;
2012 ev_active (ANHE_w (he)) = k;
2013}
2014#endif
2015
2016/* towards the root */
2017inline_speed void
2018upheap (ANHE *heap, int k)
2019{
2020 ANHE he = heap [k];
2021
2022 for (;;)
2023 {
2024 int p = HPARENT (k);
2025
2026 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2027 break;
2028
2029 heap [k] = heap [p];
2030 ev_active (ANHE_w (heap [k])) = k;
2031 k = p;
2032 }
2033
2034 heap [k] = he;
2035 ev_active (ANHE_w (he)) = k;
2036}
2037
2038/* move an element suitably so it is in a correct place */
2039inline_size void
2040adjustheap (ANHE *heap, int N, int k)
2041{
2042 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2043 upheap (heap, k);
2044 else
2045 downheap (heap, N, k);
2046}
2047
2048/* rebuild the heap: this function is used only once and executed rarely */
2049inline_size void
2050reheap (ANHE *heap, int N)
2051{
2052 int i;
2053
2054 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2055 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2056 for (i = 0; i < N; ++i)
2057 upheap (heap, i + HEAP0);
2058}
2059
2060/*****************************************************************************/
2061
2062/* associate signal watchers to a signal signal */
2063typedef struct
2064{
2065 EV_ATOMIC_T pending;
2066#if EV_MULTIPLICITY
2067 EV_P;
2068#endif
2069 WL head;
2070} ANSIG;
2071
2072static ANSIG signals [EV_NSIG - 1];
2073
2074/*****************************************************************************/
2075
2076#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2077
2078static void noinline ecb_cold
2079evpipe_init (EV_P)
2080{
2081 if (!ev_is_active (&pipe_w))
2082 {
2083 int fds [2];
2084
2085# if EV_USE_EVENTFD
2086 fds [0] = -1;
2087 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2088 if (fds [1] < 0 && errno == EINVAL)
2089 fds [1] = eventfd (0, 0);
2090
2091 if (fds [1] < 0)
2092# endif
2093 {
2094 while (pipe (fds))
2095 ev_syserr ("(libev) error creating signal/async pipe");
2096
2097 fd_intern (fds [0]);
2098 }
2099
2100 fd_intern (fds [1]);
2101
2102 evpipe [0] = fds [0];
2103
2104 if (evpipe [1] < 0)
2105 evpipe [1] = fds [1]; /* first call, set write fd */
2106 else
2107 {
2108 /* on subsequent calls, do not change evpipe [1] */
2109 /* so that evpipe_write can always rely on its value. */
2110 /* this branch does not do anything sensible on windows, */
2111 /* so must not be executed on windows */
2112
2113 dup2 (fds [1], evpipe [1]);
2114 close (fds [1]);
2115 }
2116
2117 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2118 ev_io_start (EV_A_ &pipe_w);
2119 ev_unref (EV_A); /* watcher should not keep loop alive */
2120 }
2121}
2122
2123inline_speed void
2124evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2125{
2126 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2127
2128 if (expect_true (*flag))
2129 return;
2130
2131 *flag = 1;
2132 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2133
2134 pipe_write_skipped = 1;
2135
2136 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2137
2138 if (pipe_write_wanted)
2139 {
2140 int old_errno;
2141
2142 pipe_write_skipped = 0;
2143 ECB_MEMORY_FENCE_RELEASE;
2144
2145 old_errno = errno; /* save errno because write will clobber it */
2146
2147#if EV_USE_EVENTFD
2148 if (evpipe [0] < 0)
2149 {
2150 uint64_t counter = 1;
2151 write (evpipe [1], &counter, sizeof (uint64_t));
2152 }
2153 else
2154#endif
2155 {
2156#ifdef _WIN32
2157 WSABUF buf;
2158 DWORD sent;
2159 buf.buf = &buf;
2160 buf.len = 1;
2161 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2162#else
2163 write (evpipe [1], &(evpipe [1]), 1);
2164#endif
2165 }
2166
2167 errno = old_errno;
2168 }
2169}
2170
2171/* called whenever the libev signal pipe */
2172/* got some events (signal, async) */
465static void 2173static void
466upheap (WT *heap, int k) 2174pipecb (EV_P_ ev_io *iow, int revents)
467{ 2175{
468 WT w = heap [k]; 2176 int i;
469 2177
470 while (k && heap [k >> 1]->at > w->at) 2178 if (revents & EV_READ)
471 {
472 heap [k] = heap [k >> 1];
473 ((W)heap [k])->active = k + 1;
474 k >>= 1;
475 } 2179 {
2180#if EV_USE_EVENTFD
2181 if (evpipe [0] < 0)
2182 {
2183 uint64_t counter;
2184 read (evpipe [1], &counter, sizeof (uint64_t));
2185 }
2186 else
2187#endif
2188 {
2189 char dummy[4];
2190#ifdef _WIN32
2191 WSABUF buf;
2192 DWORD recvd;
2193 DWORD flags = 0;
2194 buf.buf = dummy;
2195 buf.len = sizeof (dummy);
2196 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2197#else
2198 read (evpipe [0], &dummy, sizeof (dummy));
2199#endif
2200 }
2201 }
476 2202
477 heap [k] = w; 2203 pipe_write_skipped = 0;
478 ((W)heap [k])->active = k + 1;
479 2204
2205 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2206
2207#if EV_SIGNAL_ENABLE
2208 if (sig_pending)
2209 {
2210 sig_pending = 0;
2211
2212 ECB_MEMORY_FENCE;
2213
2214 for (i = EV_NSIG - 1; i--; )
2215 if (expect_false (signals [i].pending))
2216 ev_feed_signal_event (EV_A_ i + 1);
2217 }
2218#endif
2219
2220#if EV_ASYNC_ENABLE
2221 if (async_pending)
2222 {
2223 async_pending = 0;
2224
2225 ECB_MEMORY_FENCE;
2226
2227 for (i = asynccnt; i--; )
2228 if (asyncs [i]->sent)
2229 {
2230 asyncs [i]->sent = 0;
2231 ECB_MEMORY_FENCE_RELEASE;
2232 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2233 }
2234 }
2235#endif
2236}
2237
2238/*****************************************************************************/
2239
2240void
2241ev_feed_signal (int signum) EV_THROW
2242{
2243#if EV_MULTIPLICITY
2244 EV_P;
2245 ECB_MEMORY_FENCE_ACQUIRE;
2246 EV_A = signals [signum - 1].loop;
2247
2248 if (!EV_A)
2249 return;
2250#endif
2251
2252 signals [signum - 1].pending = 1;
2253 evpipe_write (EV_A_ &sig_pending);
480} 2254}
481 2255
482static void 2256static void
483downheap (WT *heap, int N, int k) 2257ev_sighandler (int signum)
484{ 2258{
485 WT w = heap [k]; 2259#ifdef _WIN32
2260 signal (signum, ev_sighandler);
2261#endif
486 2262
487 while (k < (N >> 1)) 2263 ev_feed_signal (signum);
488 { 2264}
489 int j = k << 1;
490 2265
491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 2266void noinline
492 ++j; 2267ev_feed_signal_event (EV_P_ int signum) EV_THROW
2268{
2269 WL w;
493 2270
494 if (w->at <= heap [j]->at) 2271 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2272 return;
2273
2274 --signum;
2275
2276#if EV_MULTIPLICITY
2277 /* it is permissible to try to feed a signal to the wrong loop */
2278 /* or, likely more useful, feeding a signal nobody is waiting for */
2279
2280 if (expect_false (signals [signum].loop != EV_A))
2281 return;
2282#endif
2283
2284 signals [signum].pending = 0;
2285 ECB_MEMORY_FENCE_RELEASE;
2286
2287 for (w = signals [signum].head; w; w = w->next)
2288 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2289}
2290
2291#if EV_USE_SIGNALFD
2292static void
2293sigfdcb (EV_P_ ev_io *iow, int revents)
2294{
2295 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2296
2297 for (;;)
2298 {
2299 ssize_t res = read (sigfd, si, sizeof (si));
2300
2301 /* not ISO-C, as res might be -1, but works with SuS */
2302 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2303 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2304
2305 if (res < (ssize_t)sizeof (si))
495 break; 2306 break;
496
497 heap [k] = heap [j];
498 ((W)heap [k])->active = k + 1;
499 k = j;
500 } 2307 }
501
502 heap [k] = w;
503 ((W)heap [k])->active = k + 1;
504} 2308}
2309#endif
2310
2311#endif
505 2312
506/*****************************************************************************/ 2313/*****************************************************************************/
507 2314
508typedef struct 2315#if EV_CHILD_ENABLE
509{ 2316static WL childs [EV_PID_HASHSIZE];
510 WL head;
511 sig_atomic_t volatile gotsig;
512} ANSIG;
513 2317
514static ANSIG *signals;
515static int signalmax;
516
517static int sigpipe [2];
518static sig_atomic_t volatile gotsig;
519static struct ev_io sigev;
520
521static void
522signals_init (ANSIG *base, int count)
523{
524 while (count--)
525 {
526 base->head = 0;
527 base->gotsig = 0;
528
529 ++base;
530 }
531}
532
533static void
534sighandler (int signum)
535{
536#if WIN32
537 signal (signum, sighandler);
538#endif
539
540 signals [signum - 1].gotsig = 1;
541
542 if (!gotsig)
543 {
544 int old_errno = errno;
545 gotsig = 1;
546#ifdef WIN32
547 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
548#else
549 write (sigpipe [1], &signum, 1);
550#endif
551 errno = old_errno;
552 }
553}
554
555static void
556sigcb (EV_P_ struct ev_io *iow, int revents)
557{
558 WL w;
559 int signum;
560
561#ifdef WIN32
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
563#else
564 read (sigpipe [0], &revents, 1);
565#endif
566 gotsig = 0;
567
568 for (signum = signalmax; signum--; )
569 if (signals [signum].gotsig)
570 {
571 signals [signum].gotsig = 0;
572
573 for (w = signals [signum].head; w; w = w->next)
574 event (EV_A_ (W)w, EV_SIGNAL);
575 }
576}
577
578static void
579siginit (EV_P)
580{
581#ifndef WIN32
582 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
583 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
584
585 /* rather than sort out wether we really need nb, set it */
586 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
587 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
588#endif
589
590 ev_io_set (&sigev, sigpipe [0], EV_READ);
591 ev_io_start (EV_A_ &sigev);
592 ev_unref (EV_A); /* child watcher should not keep loop alive */
593}
594
595/*****************************************************************************/
596
597static struct ev_child *childs [PID_HASHSIZE];
598
599#ifndef WIN32
600
601static struct ev_signal childev; 2318static ev_signal childev;
2319
2320#ifndef WIFCONTINUED
2321# define WIFCONTINUED(status) 0
2322#endif
2323
2324/* handle a single child status event */
2325inline_speed void
2326child_reap (EV_P_ int chain, int pid, int status)
2327{
2328 ev_child *w;
2329 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2330
2331 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2332 {
2333 if ((w->pid == pid || !w->pid)
2334 && (!traced || (w->flags & 1)))
2335 {
2336 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2337 w->rpid = pid;
2338 w->rstatus = status;
2339 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2340 }
2341 }
2342}
602 2343
603#ifndef WCONTINUED 2344#ifndef WCONTINUED
604# define WCONTINUED 0 2345# define WCONTINUED 0
605#endif 2346#endif
606 2347
2348/* called on sigchld etc., calls waitpid */
607static void 2349static void
608child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
609{
610 struct ev_child *w;
611
612 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
613 if (w->pid == pid || !w->pid)
614 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid;
617 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD);
619 }
620}
621
622static void
623childcb (EV_P_ struct ev_signal *sw, int revents) 2350childcb (EV_P_ ev_signal *sw, int revents)
624{ 2351{
625 int pid, status; 2352 int pid, status;
626 2353
2354 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2355 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
628 { 2356 if (!WCONTINUED
2357 || errno != EINVAL
2358 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2359 return;
2360
629 /* make sure we are called again until all childs have been reaped */ 2361 /* make sure we are called again until all children have been reaped */
2362 /* we need to do it this way so that the callback gets called before we continue */
630 event (EV_A_ (W)sw, EV_SIGNAL); 2363 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
631 2364
632 child_reap (EV_A_ sw, pid, pid, status); 2365 child_reap (EV_A_ pid, pid, status);
2366 if ((EV_PID_HASHSIZE) > 1)
633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2367 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
634 }
635} 2368}
636 2369
637#endif 2370#endif
638 2371
639/*****************************************************************************/ 2372/*****************************************************************************/
640 2373
2374#if EV_USE_IOCP
2375# include "ev_iocp.c"
2376#endif
2377#if EV_USE_PORT
2378# include "ev_port.c"
2379#endif
641#if EV_USE_KQUEUE 2380#if EV_USE_KQUEUE
642# include "ev_kqueue.c" 2381# include "ev_kqueue.c"
643#endif 2382#endif
644#if EV_USE_EPOLL 2383#if EV_USE_EPOLL
645# include "ev_epoll.c" 2384# include "ev_epoll.c"
649#endif 2388#endif
650#if EV_USE_SELECT 2389#if EV_USE_SELECT
651# include "ev_select.c" 2390# include "ev_select.c"
652#endif 2391#endif
653 2392
654int 2393int ecb_cold
655ev_version_major (void) 2394ev_version_major (void) EV_THROW
656{ 2395{
657 return EV_VERSION_MAJOR; 2396 return EV_VERSION_MAJOR;
658} 2397}
659 2398
660int 2399int ecb_cold
661ev_version_minor (void) 2400ev_version_minor (void) EV_THROW
662{ 2401{
663 return EV_VERSION_MINOR; 2402 return EV_VERSION_MINOR;
664} 2403}
665 2404
666/* return true if we are running with elevated privileges and should ignore env variables */ 2405/* return true if we are running with elevated privileges and should ignore env variables */
667static int 2406int inline_size ecb_cold
668enable_secure (void) 2407enable_secure (void)
669{ 2408{
670#ifdef WIN32 2409#ifdef _WIN32
671 return 0; 2410 return 0;
672#else 2411#else
673 return getuid () != geteuid () 2412 return getuid () != geteuid ()
674 || getgid () != getegid (); 2413 || getgid () != getegid ();
675#endif 2414#endif
676} 2415}
677 2416
2417unsigned int ecb_cold
2418ev_supported_backends (void) EV_THROW
2419{
2420 unsigned int flags = 0;
2421
2422 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2423 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2424 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2425 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2426 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2427
2428 return flags;
2429}
2430
2431unsigned int ecb_cold
2432ev_recommended_backends (void) EV_THROW
2433{
2434 unsigned int flags = ev_supported_backends ();
2435
2436#ifndef __NetBSD__
2437 /* kqueue is borked on everything but netbsd apparently */
2438 /* it usually doesn't work correctly on anything but sockets and pipes */
2439 flags &= ~EVBACKEND_KQUEUE;
2440#endif
2441#ifdef __APPLE__
2442 /* only select works correctly on that "unix-certified" platform */
2443 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2444 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2445#endif
2446#ifdef __FreeBSD__
2447 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2448#endif
2449
2450 return flags;
2451}
2452
2453unsigned int ecb_cold
2454ev_embeddable_backends (void) EV_THROW
2455{
2456 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2457
2458 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2459 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2460 flags &= ~EVBACKEND_EPOLL;
2461
2462 return flags;
2463}
2464
2465unsigned int
2466ev_backend (EV_P) EV_THROW
2467{
2468 return backend;
2469}
2470
2471#if EV_FEATURE_API
2472unsigned int
2473ev_iteration (EV_P) EV_THROW
2474{
2475 return loop_count;
2476}
2477
2478unsigned int
2479ev_depth (EV_P) EV_THROW
2480{
2481 return loop_depth;
2482}
2483
2484void
2485ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2486{
2487 io_blocktime = interval;
2488}
2489
2490void
2491ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2492{
2493 timeout_blocktime = interval;
2494}
2495
2496void
2497ev_set_userdata (EV_P_ void *data) EV_THROW
2498{
2499 userdata = data;
2500}
2501
2502void *
2503ev_userdata (EV_P) EV_THROW
2504{
2505 return userdata;
2506}
2507
2508void
2509ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2510{
2511 invoke_cb = invoke_pending_cb;
2512}
2513
2514void
2515ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2516{
2517 release_cb = release;
2518 acquire_cb = acquire;
2519}
2520#endif
2521
2522/* initialise a loop structure, must be zero-initialised */
2523static void noinline ecb_cold
2524loop_init (EV_P_ unsigned int flags) EV_THROW
2525{
2526 if (!backend)
2527 {
2528 origflags = flags;
2529
2530#if EV_USE_REALTIME
2531 if (!have_realtime)
2532 {
2533 struct timespec ts;
2534
2535 if (!clock_gettime (CLOCK_REALTIME, &ts))
2536 have_realtime = 1;
2537 }
2538#endif
2539
2540#if EV_USE_MONOTONIC
2541 if (!have_monotonic)
2542 {
2543 struct timespec ts;
2544
2545 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2546 have_monotonic = 1;
2547 }
2548#endif
2549
2550 /* pid check not overridable via env */
2551#ifndef _WIN32
2552 if (flags & EVFLAG_FORKCHECK)
2553 curpid = getpid ();
2554#endif
2555
2556 if (!(flags & EVFLAG_NOENV)
2557 && !enable_secure ()
2558 && getenv ("LIBEV_FLAGS"))
2559 flags = atoi (getenv ("LIBEV_FLAGS"));
2560
2561 ev_rt_now = ev_time ();
2562 mn_now = get_clock ();
2563 now_floor = mn_now;
2564 rtmn_diff = ev_rt_now - mn_now;
2565#if EV_FEATURE_API
2566 invoke_cb = ev_invoke_pending;
2567#endif
2568
2569 io_blocktime = 0.;
2570 timeout_blocktime = 0.;
2571 backend = 0;
2572 backend_fd = -1;
2573 sig_pending = 0;
2574#if EV_ASYNC_ENABLE
2575 async_pending = 0;
2576#endif
2577 pipe_write_skipped = 0;
2578 pipe_write_wanted = 0;
2579 evpipe [0] = -1;
2580 evpipe [1] = -1;
2581#if EV_USE_INOTIFY
2582 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2583#endif
2584#if EV_USE_SIGNALFD
2585 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2586#endif
2587
2588 if (!(flags & EVBACKEND_MASK))
2589 flags |= ev_recommended_backends ();
2590
2591#if EV_USE_IOCP
2592 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2593#endif
2594#if EV_USE_PORT
2595 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2596#endif
2597#if EV_USE_KQUEUE
2598 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2599#endif
2600#if EV_USE_EPOLL
2601 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2602#endif
2603#if EV_USE_POLL
2604 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2605#endif
2606#if EV_USE_SELECT
2607 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2608#endif
2609
2610 ev_prepare_init (&pending_w, pendingcb);
2611
2612#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2613 ev_init (&pipe_w, pipecb);
2614 ev_set_priority (&pipe_w, EV_MAXPRI);
2615#endif
2616 }
2617}
2618
2619/* free up a loop structure */
2620void ecb_cold
2621ev_loop_destroy (EV_P)
2622{
2623 int i;
2624
2625#if EV_MULTIPLICITY
2626 /* mimic free (0) */
2627 if (!EV_A)
2628 return;
2629#endif
2630
2631#if EV_CLEANUP_ENABLE
2632 /* queue cleanup watchers (and execute them) */
2633 if (expect_false (cleanupcnt))
2634 {
2635 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2636 EV_INVOKE_PENDING;
2637 }
2638#endif
2639
2640#if EV_CHILD_ENABLE
2641 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2642 {
2643 ev_ref (EV_A); /* child watcher */
2644 ev_signal_stop (EV_A_ &childev);
2645 }
2646#endif
2647
2648 if (ev_is_active (&pipe_w))
2649 {
2650 /*ev_ref (EV_A);*/
2651 /*ev_io_stop (EV_A_ &pipe_w);*/
2652
2653 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2654 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2655 }
2656
2657#if EV_USE_SIGNALFD
2658 if (ev_is_active (&sigfd_w))
2659 close (sigfd);
2660#endif
2661
2662#if EV_USE_INOTIFY
2663 if (fs_fd >= 0)
2664 close (fs_fd);
2665#endif
2666
2667 if (backend_fd >= 0)
2668 close (backend_fd);
2669
2670#if EV_USE_IOCP
2671 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2672#endif
2673#if EV_USE_PORT
2674 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2675#endif
2676#if EV_USE_KQUEUE
2677 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2678#endif
2679#if EV_USE_EPOLL
2680 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2681#endif
2682#if EV_USE_POLL
2683 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2684#endif
2685#if EV_USE_SELECT
2686 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2687#endif
2688
2689 for (i = NUMPRI; i--; )
2690 {
2691 array_free (pending, [i]);
2692#if EV_IDLE_ENABLE
2693 array_free (idle, [i]);
2694#endif
2695 }
2696
2697 ev_free (anfds); anfds = 0; anfdmax = 0;
2698
2699 /* have to use the microsoft-never-gets-it-right macro */
2700 array_free (rfeed, EMPTY);
2701 array_free (fdchange, EMPTY);
2702 array_free (timer, EMPTY);
2703#if EV_PERIODIC_ENABLE
2704 array_free (periodic, EMPTY);
2705#endif
2706#if EV_FORK_ENABLE
2707 array_free (fork, EMPTY);
2708#endif
2709#if EV_CLEANUP_ENABLE
2710 array_free (cleanup, EMPTY);
2711#endif
2712 array_free (prepare, EMPTY);
2713 array_free (check, EMPTY);
2714#if EV_ASYNC_ENABLE
2715 array_free (async, EMPTY);
2716#endif
2717
2718 backend = 0;
2719
2720#if EV_MULTIPLICITY
2721 if (ev_is_default_loop (EV_A))
2722#endif
2723 ev_default_loop_ptr = 0;
2724#if EV_MULTIPLICITY
2725 else
2726 ev_free (EV_A);
2727#endif
2728}
2729
2730#if EV_USE_INOTIFY
2731inline_size void infy_fork (EV_P);
2732#endif
2733
2734inline_size void
2735loop_fork (EV_P)
2736{
2737#if EV_USE_PORT
2738 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2739#endif
2740#if EV_USE_KQUEUE
2741 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2742#endif
2743#if EV_USE_EPOLL
2744 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2745#endif
2746#if EV_USE_INOTIFY
2747 infy_fork (EV_A);
2748#endif
2749
2750#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2751 if (ev_is_active (&pipe_w))
2752 {
2753 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2754
2755 ev_ref (EV_A);
2756 ev_io_stop (EV_A_ &pipe_w);
2757
2758 if (evpipe [0] >= 0)
2759 EV_WIN32_CLOSE_FD (evpipe [0]);
2760
2761 evpipe_init (EV_A);
2762 /* iterate over everything, in case we missed something before */
2763 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2764 }
2765#endif
2766
2767 postfork = 0;
2768}
2769
2770#if EV_MULTIPLICITY
2771
2772struct ev_loop * ecb_cold
2773ev_loop_new (unsigned int flags) EV_THROW
2774{
2775 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2776
2777 memset (EV_A, 0, sizeof (struct ev_loop));
2778 loop_init (EV_A_ flags);
2779
2780 if (ev_backend (EV_A))
2781 return EV_A;
2782
2783 ev_free (EV_A);
2784 return 0;
2785}
2786
2787#endif /* multiplicity */
2788
2789#if EV_VERIFY
2790static void noinline ecb_cold
2791verify_watcher (EV_P_ W w)
2792{
2793 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2794
2795 if (w->pending)
2796 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2797}
2798
2799static void noinline ecb_cold
2800verify_heap (EV_P_ ANHE *heap, int N)
2801{
2802 int i;
2803
2804 for (i = HEAP0; i < N + HEAP0; ++i)
2805 {
2806 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2807 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2808 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2809
2810 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2811 }
2812}
2813
2814static void noinline ecb_cold
2815array_verify (EV_P_ W *ws, int cnt)
2816{
2817 while (cnt--)
2818 {
2819 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2820 verify_watcher (EV_A_ ws [cnt]);
2821 }
2822}
2823#endif
2824
2825#if EV_FEATURE_API
2826void ecb_cold
2827ev_verify (EV_P) EV_THROW
2828{
2829#if EV_VERIFY
2830 int i;
2831 WL w, w2;
2832
2833 assert (activecnt >= -1);
2834
2835 assert (fdchangemax >= fdchangecnt);
2836 for (i = 0; i < fdchangecnt; ++i)
2837 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2838
2839 assert (anfdmax >= 0);
2840 for (i = 0; i < anfdmax; ++i)
2841 {
2842 int j = 0;
2843
2844 for (w = w2 = anfds [i].head; w; w = w->next)
2845 {
2846 verify_watcher (EV_A_ (W)w);
2847
2848 if (j++ & 1)
2849 {
2850 assert (("libev: io watcher list contains a loop", w != w2));
2851 w2 = w2->next;
2852 }
2853
2854 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2855 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2856 }
2857 }
2858
2859 assert (timermax >= timercnt);
2860 verify_heap (EV_A_ timers, timercnt);
2861
2862#if EV_PERIODIC_ENABLE
2863 assert (periodicmax >= periodiccnt);
2864 verify_heap (EV_A_ periodics, periodiccnt);
2865#endif
2866
2867 for (i = NUMPRI; i--; )
2868 {
2869 assert (pendingmax [i] >= pendingcnt [i]);
2870#if EV_IDLE_ENABLE
2871 assert (idleall >= 0);
2872 assert (idlemax [i] >= idlecnt [i]);
2873 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2874#endif
2875 }
2876
2877#if EV_FORK_ENABLE
2878 assert (forkmax >= forkcnt);
2879 array_verify (EV_A_ (W *)forks, forkcnt);
2880#endif
2881
2882#if EV_CLEANUP_ENABLE
2883 assert (cleanupmax >= cleanupcnt);
2884 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2885#endif
2886
2887#if EV_ASYNC_ENABLE
2888 assert (asyncmax >= asynccnt);
2889 array_verify (EV_A_ (W *)asyncs, asynccnt);
2890#endif
2891
2892#if EV_PREPARE_ENABLE
2893 assert (preparemax >= preparecnt);
2894 array_verify (EV_A_ (W *)prepares, preparecnt);
2895#endif
2896
2897#if EV_CHECK_ENABLE
2898 assert (checkmax >= checkcnt);
2899 array_verify (EV_A_ (W *)checks, checkcnt);
2900#endif
2901
2902# if 0
2903#if EV_CHILD_ENABLE
2904 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2905 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2906#endif
2907# endif
2908#endif
2909}
2910#endif
2911
2912#if EV_MULTIPLICITY
2913struct ev_loop * ecb_cold
2914#else
678int 2915int
679ev_method (EV_P) 2916#endif
2917ev_default_loop (unsigned int flags) EV_THROW
680{ 2918{
681 return method; 2919 if (!ev_default_loop_ptr)
682}
683
684static void
685loop_init (EV_P_ int methods)
686{
687 if (!method)
688 {
689#if EV_USE_MONOTONIC
690 { 2920 {
691 struct timespec ts;
692 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
693 have_monotonic = 1;
694 }
695#endif
696
697 rt_now = ev_time ();
698 mn_now = get_clock ();
699 now_floor = mn_now;
700 rtmn_diff = rt_now - mn_now;
701
702 if (methods == EVMETHOD_AUTO)
703 if (!enable_secure () && getenv ("LIBEV_METHODS"))
704 methods = atoi (getenv ("LIBEV_METHODS"));
705 else
706 methods = EVMETHOD_ANY;
707
708 method = 0;
709#if EV_USE_WIN32
710 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
711#endif
712#if EV_USE_KQUEUE
713 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
714#endif
715#if EV_USE_EPOLL
716 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
717#endif
718#if EV_USE_POLL
719 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
720#endif
721#if EV_USE_SELECT
722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
723#endif
724
725 ev_watcher_init (&sigev, sigcb);
726 ev_set_priority (&sigev, EV_MAXPRI);
727 }
728}
729
730void
731loop_destroy (EV_P)
732{
733 int i;
734
735#if EV_USE_WIN32
736 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
737#endif
738#if EV_USE_KQUEUE
739 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
740#endif
741#if EV_USE_EPOLL
742 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
743#endif
744#if EV_USE_POLL
745 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
746#endif
747#if EV_USE_SELECT
748 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
749#endif
750
751 for (i = NUMPRI; i--; )
752 array_free (pending, [i]);
753
754 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange);
756 array_free_microshit (timer);
757 array_free_microshit (periodic);
758 array_free_microshit (idle);
759 array_free_microshit (prepare);
760 array_free_microshit (check);
761
762 method = 0;
763}
764
765static void
766loop_fork (EV_P)
767{
768#if EV_USE_EPOLL
769 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
770#endif
771#if EV_USE_KQUEUE
772 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
773#endif
774
775 if (ev_is_active (&sigev))
776 {
777 /* default loop */
778
779 ev_ref (EV_A);
780 ev_io_stop (EV_A_ &sigev);
781 close (sigpipe [0]);
782 close (sigpipe [1]);
783
784 while (pipe (sigpipe))
785 syserr ("(libev) error creating pipe");
786
787 siginit (EV_A);
788 }
789
790 postfork = 0;
791}
792
793#if EV_MULTIPLICITY 2921#if EV_MULTIPLICITY
794struct ev_loop * 2922 EV_P = ev_default_loop_ptr = &default_loop_struct;
795ev_loop_new (int methods)
796{
797 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
798
799 memset (loop, 0, sizeof (struct ev_loop));
800
801 loop_init (EV_A_ methods);
802
803 if (ev_method (EV_A))
804 return loop;
805
806 return 0;
807}
808
809void
810ev_loop_destroy (EV_P)
811{
812 loop_destroy (EV_A);
813 ev_free (loop);
814}
815
816void
817ev_loop_fork (EV_P)
818{
819 postfork = 1;
820}
821
822#endif
823
824#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop *
829#else 2923#else
830static int default_loop;
831
832int
833#endif
834ev_default_loop (int methods)
835{
836 if (sigpipe [0] == sigpipe [1])
837 if (pipe (sigpipe))
838 return 0;
839
840 if (!default_loop)
841 {
842#if EV_MULTIPLICITY
843 struct ev_loop *loop = default_loop = &default_loop_struct;
844#else
845 default_loop = 1; 2924 ev_default_loop_ptr = 1;
846#endif 2925#endif
847 2926
848 loop_init (EV_A_ methods); 2927 loop_init (EV_A_ flags);
849 2928
850 if (ev_method (EV_A)) 2929 if (ev_backend (EV_A))
851 { 2930 {
852 siginit (EV_A); 2931#if EV_CHILD_ENABLE
853
854#ifndef WIN32
855 ev_signal_init (&childev, childcb, SIGCHLD); 2932 ev_signal_init (&childev, childcb, SIGCHLD);
856 ev_set_priority (&childev, EV_MAXPRI); 2933 ev_set_priority (&childev, EV_MAXPRI);
857 ev_signal_start (EV_A_ &childev); 2934 ev_signal_start (EV_A_ &childev);
858 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2935 ev_unref (EV_A); /* child watcher should not keep loop alive */
859#endif 2936#endif
860 } 2937 }
861 else 2938 else
862 default_loop = 0; 2939 ev_default_loop_ptr = 0;
863 } 2940 }
864 2941
865 return default_loop; 2942 return ev_default_loop_ptr;
866} 2943}
867 2944
868void 2945void
869ev_default_destroy (void) 2946ev_loop_fork (EV_P) EV_THROW
870{ 2947{
871#if EV_MULTIPLICITY 2948 postfork = 1;
872 struct ev_loop *loop = default_loop;
873#endif
874
875#ifndef WIN32
876 ev_ref (EV_A); /* child watcher */
877 ev_signal_stop (EV_A_ &childev);
878#endif
879
880 ev_ref (EV_A); /* signal watcher */
881 ev_io_stop (EV_A_ &sigev);
882
883 close (sigpipe [0]); sigpipe [0] = 0;
884 close (sigpipe [1]); sigpipe [1] = 0;
885
886 loop_destroy (EV_A);
887} 2949}
2950
2951/*****************************************************************************/
888 2952
889void 2953void
890ev_default_fork (void) 2954ev_invoke (EV_P_ void *w, int revents)
891{ 2955{
892#if EV_MULTIPLICITY 2956 EV_CB_INVOKE ((W)w, revents);
893 struct ev_loop *loop = default_loop;
894#endif
895
896 if (method)
897 postfork = 1;
898} 2957}
899 2958
900/*****************************************************************************/ 2959unsigned int
901 2960ev_pending_count (EV_P) EV_THROW
902static void
903call_pending (EV_P)
904{ 2961{
905 int pri; 2962 int pri;
2963 unsigned int count = 0;
906 2964
907 for (pri = NUMPRI; pri--; ) 2965 for (pri = NUMPRI; pri--; )
2966 count += pendingcnt [pri];
2967
2968 return count;
2969}
2970
2971void noinline
2972ev_invoke_pending (EV_P)
2973{
2974 pendingpri = NUMPRI;
2975
2976 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2977 {
2978 --pendingpri;
2979
908 while (pendingcnt [pri]) 2980 while (pendingcnt [pendingpri])
909 {
910 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
911
912 if (p->w)
913 {
914 p->w->pending = 0;
915 p->w->cb (EV_A_ p->w, p->events);
916 }
917 }
918}
919
920static void
921timers_reify (EV_P)
922{
923 while (timercnt && ((WT)timers [0])->at <= mn_now)
924 {
925 struct ev_timer *w = timers [0];
926
927 assert (("inactive timer on timer heap detected", ev_is_active (w)));
928
929 /* first reschedule or stop timer */
930 if (w->repeat)
931 { 2981 {
932 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2982 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
933 ((WT)w)->at = mn_now + w->repeat; 2983
934 downheap ((WT *)timers, timercnt, 0); 2984 p->w->pending = 0;
2985 EV_CB_INVOKE (p->w, p->events);
2986 EV_FREQUENT_CHECK;
935 } 2987 }
936 else
937 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
938
939 event (EV_A_ (W)w, EV_TIMEOUT);
940 }
941}
942
943static void
944periodics_reify (EV_P)
945{
946 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
947 { 2988 }
948 struct ev_periodic *w = periodics [0]; 2989}
949 2990
950 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2991#if EV_IDLE_ENABLE
2992/* make idle watchers pending. this handles the "call-idle */
2993/* only when higher priorities are idle" logic */
2994inline_size void
2995idle_reify (EV_P)
2996{
2997 if (expect_false (idleall))
2998 {
2999 int pri;
951 3000
952 /* first reschedule or stop timer */ 3001 for (pri = NUMPRI; pri--; )
953 if (w->interval)
954 { 3002 {
955 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 3003 if (pendingcnt [pri])
956 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 3004 break;
957 downheap ((WT *)periodics, periodiccnt, 0);
958 }
959 else
960 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
961 3005
962 event (EV_A_ (W)w, EV_PERIODIC); 3006 if (idlecnt [pri])
963 }
964}
965
966static void
967periodics_reschedule (EV_P)
968{
969 int i;
970
971 /* adjust periodics after time jump */
972 for (i = 0; i < periodiccnt; ++i)
973 {
974 struct ev_periodic *w = periodics [i];
975
976 if (w->interval)
977 {
978 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
979
980 if (fabs (diff) >= 1e-4)
981 { 3007 {
982 ev_periodic_stop (EV_A_ w); 3008 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
983 ev_periodic_start (EV_A_ w); 3009 break;
984
985 i = 0; /* restart loop, inefficient, but time jumps should be rare */
986 } 3010 }
987 } 3011 }
988 } 3012 }
989} 3013}
3014#endif
990 3015
991inline int 3016/* make timers pending */
992time_update_monotonic (EV_P) 3017inline_size void
3018timers_reify (EV_P)
993{ 3019{
994 mn_now = get_clock (); 3020 EV_FREQUENT_CHECK;
995 3021
996 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3022 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
997 {
998 rt_now = rtmn_diff + mn_now;
999 return 0;
1000 } 3023 {
1001 else 3024 do
3025 {
3026 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3027
3028 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3029
3030 /* first reschedule or stop timer */
3031 if (w->repeat)
3032 {
3033 ev_at (w) += w->repeat;
3034 if (ev_at (w) < mn_now)
3035 ev_at (w) = mn_now;
3036
3037 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3038
3039 ANHE_at_cache (timers [HEAP0]);
3040 downheap (timers, timercnt, HEAP0);
3041 }
3042 else
3043 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3044
3045 EV_FREQUENT_CHECK;
3046 feed_reverse (EV_A_ (W)w);
3047 }
3048 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3049
3050 feed_reverse_done (EV_A_ EV_TIMER);
1002 { 3051 }
1003 now_floor = mn_now; 3052}
1004 rt_now = ev_time (); 3053
1005 return 1; 3054#if EV_PERIODIC_ENABLE
3055
3056static void noinline
3057periodic_recalc (EV_P_ ev_periodic *w)
3058{
3059 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3060 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3061
3062 /* the above almost always errs on the low side */
3063 while (at <= ev_rt_now)
1006 } 3064 {
1007} 3065 ev_tstamp nat = at + w->interval;
1008 3066
1009static void 3067 /* when resolution fails us, we use ev_rt_now */
1010time_update (EV_P) 3068 if (expect_false (nat == at))
3069 {
3070 at = ev_rt_now;
3071 break;
3072 }
3073
3074 at = nat;
3075 }
3076
3077 ev_at (w) = at;
3078}
3079
3080/* make periodics pending */
3081inline_size void
3082periodics_reify (EV_P)
3083{
3084 EV_FREQUENT_CHECK;
3085
3086 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3087 {
3088 do
3089 {
3090 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3091
3092 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3093
3094 /* first reschedule or stop timer */
3095 if (w->reschedule_cb)
3096 {
3097 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3098
3099 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3100
3101 ANHE_at_cache (periodics [HEAP0]);
3102 downheap (periodics, periodiccnt, HEAP0);
3103 }
3104 else if (w->interval)
3105 {
3106 periodic_recalc (EV_A_ w);
3107 ANHE_at_cache (periodics [HEAP0]);
3108 downheap (periodics, periodiccnt, HEAP0);
3109 }
3110 else
3111 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3112
3113 EV_FREQUENT_CHECK;
3114 feed_reverse (EV_A_ (W)w);
3115 }
3116 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3117
3118 feed_reverse_done (EV_A_ EV_PERIODIC);
3119 }
3120}
3121
3122/* simply recalculate all periodics */
3123/* TODO: maybe ensure that at least one event happens when jumping forward? */
3124static void noinline ecb_cold
3125periodics_reschedule (EV_P)
1011{ 3126{
1012 int i; 3127 int i;
1013 3128
3129 /* adjust periodics after time jump */
3130 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3131 {
3132 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3133
3134 if (w->reschedule_cb)
3135 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3136 else if (w->interval)
3137 periodic_recalc (EV_A_ w);
3138
3139 ANHE_at_cache (periodics [i]);
3140 }
3141
3142 reheap (periodics, periodiccnt);
3143}
3144#endif
3145
3146/* adjust all timers by a given offset */
3147static void noinline ecb_cold
3148timers_reschedule (EV_P_ ev_tstamp adjust)
3149{
3150 int i;
3151
3152 for (i = 0; i < timercnt; ++i)
3153 {
3154 ANHE *he = timers + i + HEAP0;
3155 ANHE_w (*he)->at += adjust;
3156 ANHE_at_cache (*he);
3157 }
3158}
3159
3160/* fetch new monotonic and realtime times from the kernel */
3161/* also detect if there was a timejump, and act accordingly */
3162inline_speed void
3163time_update (EV_P_ ev_tstamp max_block)
3164{
1014#if EV_USE_MONOTONIC 3165#if EV_USE_MONOTONIC
1015 if (expect_true (have_monotonic)) 3166 if (expect_true (have_monotonic))
1016 { 3167 {
1017 if (time_update_monotonic (EV_A)) 3168 int i;
3169 ev_tstamp odiff = rtmn_diff;
3170
3171 mn_now = get_clock ();
3172
3173 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3174 /* interpolate in the meantime */
3175 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1018 { 3176 {
1019 ev_tstamp odiff = rtmn_diff; 3177 ev_rt_now = rtmn_diff + mn_now;
3178 return;
3179 }
1020 3180
3181 now_floor = mn_now;
3182 ev_rt_now = ev_time ();
3183
1021 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 3184 /* loop a few times, before making important decisions.
3185 * on the choice of "4": one iteration isn't enough,
3186 * in case we get preempted during the calls to
3187 * ev_time and get_clock. a second call is almost guaranteed
3188 * to succeed in that case, though. and looping a few more times
3189 * doesn't hurt either as we only do this on time-jumps or
3190 * in the unlikely event of having been preempted here.
3191 */
3192 for (i = 4; --i; )
1022 { 3193 {
3194 ev_tstamp diff;
1023 rtmn_diff = rt_now - mn_now; 3195 rtmn_diff = ev_rt_now - mn_now;
1024 3196
1025 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3197 diff = odiff - rtmn_diff;
3198
3199 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1026 return; /* all is well */ 3200 return; /* all is well */
1027 3201
1028 rt_now = ev_time (); 3202 ev_rt_now = ev_time ();
1029 mn_now = get_clock (); 3203 mn_now = get_clock ();
1030 now_floor = mn_now; 3204 now_floor = mn_now;
1031 } 3205 }
1032 3206
3207 /* no timer adjustment, as the monotonic clock doesn't jump */
3208 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3209# if EV_PERIODIC_ENABLE
3210 periodics_reschedule (EV_A);
3211# endif
3212 }
3213 else
3214#endif
3215 {
3216 ev_rt_now = ev_time ();
3217
3218 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3219 {
3220 /* adjust timers. this is easy, as the offset is the same for all of them */
3221 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3222#if EV_PERIODIC_ENABLE
1033 periodics_reschedule (EV_A); 3223 periodics_reschedule (EV_A);
1034 /* no timer adjustment, as the monotonic clock doesn't jump */ 3224#endif
1035 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1036 } 3225 }
1037 }
1038 else
1039#endif
1040 {
1041 rt_now = ev_time ();
1042 3226
1043 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1044 {
1045 periodics_reschedule (EV_A);
1046
1047 /* adjust timers. this is easy, as the offset is the same for all */
1048 for (i = 0; i < timercnt; ++i)
1049 ((WT)timers [i])->at += rt_now - mn_now;
1050 }
1051
1052 mn_now = rt_now; 3227 mn_now = ev_rt_now;
1053 } 3228 }
1054} 3229}
1055 3230
1056void 3231int
1057ev_ref (EV_P)
1058{
1059 ++activecnt;
1060}
1061
1062void
1063ev_unref (EV_P)
1064{
1065 --activecnt;
1066}
1067
1068static int loop_done;
1069
1070void
1071ev_loop (EV_P_ int flags) 3232ev_run (EV_P_ int flags)
1072{ 3233{
1073 double block; 3234#if EV_FEATURE_API
1074 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3235 ++loop_depth;
3236#endif
3237
3238 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3239
3240 loop_done = EVBREAK_CANCEL;
3241
3242 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1075 3243
1076 do 3244 do
1077 { 3245 {
3246#if EV_VERIFY >= 2
3247 ev_verify (EV_A);
3248#endif
3249
3250#ifndef _WIN32
3251 if (expect_false (curpid)) /* penalise the forking check even more */
3252 if (expect_false (getpid () != curpid))
3253 {
3254 curpid = getpid ();
3255 postfork = 1;
3256 }
3257#endif
3258
3259#if EV_FORK_ENABLE
3260 /* we might have forked, so queue fork handlers */
3261 if (expect_false (postfork))
3262 if (forkcnt)
3263 {
3264 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3265 EV_INVOKE_PENDING;
3266 }
3267#endif
3268
3269#if EV_PREPARE_ENABLE
1078 /* queue check watchers (and execute them) */ 3270 /* queue prepare watchers (and execute them) */
1079 if (expect_false (preparecnt)) 3271 if (expect_false (preparecnt))
1080 { 3272 {
1081 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3273 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1082 call_pending (EV_A); 3274 EV_INVOKE_PENDING;
1083 } 3275 }
3276#endif
3277
3278 if (expect_false (loop_done))
3279 break;
1084 3280
1085 /* we might have forked, so reify kernel state if necessary */ 3281 /* we might have forked, so reify kernel state if necessary */
1086 if (expect_false (postfork)) 3282 if (expect_false (postfork))
1087 loop_fork (EV_A); 3283 loop_fork (EV_A);
1088 3284
1089 /* update fd-related kernel structures */ 3285 /* update fd-related kernel structures */
1090 fd_reify (EV_A); 3286 fd_reify (EV_A);
1091 3287
1092 /* calculate blocking time */ 3288 /* calculate blocking time */
3289 {
3290 ev_tstamp waittime = 0.;
3291 ev_tstamp sleeptime = 0.;
1093 3292
1094 /* we only need this for !monotonic clockor timers, but as we basically 3293 /* remember old timestamp for io_blocktime calculation */
1095 always have timers, we just calculate it always */ 3294 ev_tstamp prev_mn_now = mn_now;
1096#if EV_USE_MONOTONIC 3295
1097 if (expect_true (have_monotonic)) 3296 /* update time to cancel out callback processing overhead */
1098 time_update_monotonic (EV_A); 3297 time_update (EV_A_ 1e100);
1099 else 3298
1100#endif 3299 /* from now on, we want a pipe-wake-up */
3300 pipe_write_wanted = 1;
3301
3302 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3303
3304 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1101 { 3305 {
1102 rt_now = ev_time ();
1103 mn_now = rt_now;
1104 }
1105
1106 if (flags & EVLOOP_NONBLOCK || idlecnt)
1107 block = 0.;
1108 else
1109 {
1110 block = MAX_BLOCKTIME; 3306 waittime = MAX_BLOCKTIME;
1111 3307
1112 if (timercnt) 3308 if (timercnt)
1113 { 3309 {
1114 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3310 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1115 if (block > to) block = to; 3311 if (waittime > to) waittime = to;
1116 } 3312 }
1117 3313
3314#if EV_PERIODIC_ENABLE
1118 if (periodiccnt) 3315 if (periodiccnt)
1119 { 3316 {
1120 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 3317 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1121 if (block > to) block = to; 3318 if (waittime > to) waittime = to;
1122 } 3319 }
3320#endif
1123 3321
1124 if (block < 0.) block = 0.; 3322 /* don't let timeouts decrease the waittime below timeout_blocktime */
3323 if (expect_false (waittime < timeout_blocktime))
3324 waittime = timeout_blocktime;
3325
3326 /* at this point, we NEED to wait, so we have to ensure */
3327 /* to pass a minimum nonzero value to the backend */
3328 if (expect_false (waittime < backend_mintime))
3329 waittime = backend_mintime;
3330
3331 /* extra check because io_blocktime is commonly 0 */
3332 if (expect_false (io_blocktime))
3333 {
3334 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3335
3336 if (sleeptime > waittime - backend_mintime)
3337 sleeptime = waittime - backend_mintime;
3338
3339 if (expect_true (sleeptime > 0.))
3340 {
3341 ev_sleep (sleeptime);
3342 waittime -= sleeptime;
3343 }
3344 }
1125 } 3345 }
1126 3346
1127 method_poll (EV_A_ block); 3347#if EV_FEATURE_API
3348 ++loop_count;
3349#endif
3350 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3351 backend_poll (EV_A_ waittime);
3352 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1128 3353
3354 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3355
3356 ECB_MEMORY_FENCE_ACQUIRE;
3357 if (pipe_write_skipped)
3358 {
3359 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3360 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3361 }
3362
3363
1129 /* update rt_now, do magic */ 3364 /* update ev_rt_now, do magic */
1130 time_update (EV_A); 3365 time_update (EV_A_ waittime + sleeptime);
3366 }
1131 3367
1132 /* queue pending timers and reschedule them */ 3368 /* queue pending timers and reschedule them */
1133 timers_reify (EV_A); /* relative timers called last */ 3369 timers_reify (EV_A); /* relative timers called last */
3370#if EV_PERIODIC_ENABLE
1134 periodics_reify (EV_A); /* absolute timers called first */ 3371 periodics_reify (EV_A); /* absolute timers called first */
3372#endif
1135 3373
3374#if EV_IDLE_ENABLE
1136 /* queue idle watchers unless io or timers are pending */ 3375 /* queue idle watchers unless other events are pending */
1137 if (!pendingcnt) 3376 idle_reify (EV_A);
1138 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3377#endif
1139 3378
3379#if EV_CHECK_ENABLE
1140 /* queue check watchers, to be executed first */ 3380 /* queue check watchers, to be executed first */
1141 if (checkcnt) 3381 if (expect_false (checkcnt))
1142 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3382 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3383#endif
1143 3384
1144 call_pending (EV_A); 3385 EV_INVOKE_PENDING;
1145 } 3386 }
1146 while (activecnt && !loop_done); 3387 while (expect_true (
3388 activecnt
3389 && !loop_done
3390 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3391 ));
1147 3392
1148 if (loop_done != 2) 3393 if (loop_done == EVBREAK_ONE)
1149 loop_done = 0; 3394 loop_done = EVBREAK_CANCEL;
3395
3396#if EV_FEATURE_API
3397 --loop_depth;
3398#endif
3399
3400 return activecnt;
1150} 3401}
1151 3402
1152void 3403void
1153ev_unloop (EV_P_ int how) 3404ev_break (EV_P_ int how) EV_THROW
1154{ 3405{
1155 loop_done = how; 3406 loop_done = how;
1156} 3407}
1157 3408
3409void
3410ev_ref (EV_P) EV_THROW
3411{
3412 ++activecnt;
3413}
3414
3415void
3416ev_unref (EV_P) EV_THROW
3417{
3418 --activecnt;
3419}
3420
3421void
3422ev_now_update (EV_P) EV_THROW
3423{
3424 time_update (EV_A_ 1e100);
3425}
3426
3427void
3428ev_suspend (EV_P) EV_THROW
3429{
3430 ev_now_update (EV_A);
3431}
3432
3433void
3434ev_resume (EV_P) EV_THROW
3435{
3436 ev_tstamp mn_prev = mn_now;
3437
3438 ev_now_update (EV_A);
3439 timers_reschedule (EV_A_ mn_now - mn_prev);
3440#if EV_PERIODIC_ENABLE
3441 /* TODO: really do this? */
3442 periodics_reschedule (EV_A);
3443#endif
3444}
3445
1158/*****************************************************************************/ 3446/*****************************************************************************/
3447/* singly-linked list management, used when the expected list length is short */
1159 3448
1160inline void 3449inline_size void
1161wlist_add (WL *head, WL elem) 3450wlist_add (WL *head, WL elem)
1162{ 3451{
1163 elem->next = *head; 3452 elem->next = *head;
1164 *head = elem; 3453 *head = elem;
1165} 3454}
1166 3455
1167inline void 3456inline_size void
1168wlist_del (WL *head, WL elem) 3457wlist_del (WL *head, WL elem)
1169{ 3458{
1170 while (*head) 3459 while (*head)
1171 { 3460 {
1172 if (*head == elem) 3461 if (expect_true (*head == elem))
1173 { 3462 {
1174 *head = elem->next; 3463 *head = elem->next;
1175 return; 3464 break;
1176 } 3465 }
1177 3466
1178 head = &(*head)->next; 3467 head = &(*head)->next;
1179 } 3468 }
1180} 3469}
1181 3470
3471/* internal, faster, version of ev_clear_pending */
1182inline void 3472inline_speed void
1183ev_clear_pending (EV_P_ W w) 3473clear_pending (EV_P_ W w)
1184{ 3474{
1185 if (w->pending) 3475 if (w->pending)
1186 { 3476 {
1187 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3477 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1188 w->pending = 0; 3478 w->pending = 0;
1189 } 3479 }
1190} 3480}
1191 3481
3482int
3483ev_clear_pending (EV_P_ void *w) EV_THROW
3484{
3485 W w_ = (W)w;
3486 int pending = w_->pending;
3487
3488 if (expect_true (pending))
3489 {
3490 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3491 p->w = (W)&pending_w;
3492 w_->pending = 0;
3493 return p->events;
3494 }
3495 else
3496 return 0;
3497}
3498
1192inline void 3499inline_size void
3500pri_adjust (EV_P_ W w)
3501{
3502 int pri = ev_priority (w);
3503 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3504 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3505 ev_set_priority (w, pri);
3506}
3507
3508inline_speed void
1193ev_start (EV_P_ W w, int active) 3509ev_start (EV_P_ W w, int active)
1194{ 3510{
1195 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3511 pri_adjust (EV_A_ w);
1196 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1197
1198 w->active = active; 3512 w->active = active;
1199 ev_ref (EV_A); 3513 ev_ref (EV_A);
1200} 3514}
1201 3515
1202inline void 3516inline_size void
1203ev_stop (EV_P_ W w) 3517ev_stop (EV_P_ W w)
1204{ 3518{
1205 ev_unref (EV_A); 3519 ev_unref (EV_A);
1206 w->active = 0; 3520 w->active = 0;
1207} 3521}
1208 3522
1209/*****************************************************************************/ 3523/*****************************************************************************/
1210 3524
1211void 3525void noinline
1212ev_io_start (EV_P_ struct ev_io *w) 3526ev_io_start (EV_P_ ev_io *w) EV_THROW
1213{ 3527{
1214 int fd = w->fd; 3528 int fd = w->fd;
1215 3529
1216 if (ev_is_active (w)) 3530 if (expect_false (ev_is_active (w)))
1217 return; 3531 return;
1218 3532
1219 assert (("ev_io_start called with negative fd", fd >= 0)); 3533 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3534 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3535
3536 EV_FREQUENT_CHECK;
1220 3537
1221 ev_start (EV_A_ (W)w, 1); 3538 ev_start (EV_A_ (W)w, 1);
1222 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3539 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1223 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3540 wlist_add (&anfds[fd].head, (WL)w);
1224 3541
1225 fd_change (EV_A_ fd); 3542 /* common bug, apparently */
1226} 3543 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1227 3544
1228void 3545 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3546 w->events &= ~EV__IOFDSET;
3547
3548 EV_FREQUENT_CHECK;
3549}
3550
3551void noinline
1229ev_io_stop (EV_P_ struct ev_io *w) 3552ev_io_stop (EV_P_ ev_io *w) EV_THROW
1230{ 3553{
1231 ev_clear_pending (EV_A_ (W)w); 3554 clear_pending (EV_A_ (W)w);
1232 if (!ev_is_active (w)) 3555 if (expect_false (!ev_is_active (w)))
1233 return; 3556 return;
1234 3557
3558 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3559
3560 EV_FREQUENT_CHECK;
3561
1235 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3562 wlist_del (&anfds[w->fd].head, (WL)w);
1236 ev_stop (EV_A_ (W)w); 3563 ev_stop (EV_A_ (W)w);
1237 3564
1238 fd_change (EV_A_ w->fd); 3565 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1239}
1240 3566
1241void 3567 EV_FREQUENT_CHECK;
3568}
3569
3570void noinline
1242ev_timer_start (EV_P_ struct ev_timer *w) 3571ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1243{ 3572{
1244 if (ev_is_active (w)) 3573 if (expect_false (ev_is_active (w)))
1245 return; 3574 return;
1246 3575
1247 ((WT)w)->at += mn_now; 3576 ev_at (w) += mn_now;
1248 3577
1249 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3578 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1250 3579
3580 EV_FREQUENT_CHECK;
3581
3582 ++timercnt;
1251 ev_start (EV_A_ (W)w, ++timercnt); 3583 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1252 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 3584 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1253 timers [timercnt - 1] = w; 3585 ANHE_w (timers [ev_active (w)]) = (WT)w;
1254 upheap ((WT *)timers, timercnt - 1); 3586 ANHE_at_cache (timers [ev_active (w)]);
3587 upheap (timers, ev_active (w));
1255 3588
3589 EV_FREQUENT_CHECK;
3590
1256 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3591 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1257} 3592}
1258 3593
1259void 3594void noinline
1260ev_timer_stop (EV_P_ struct ev_timer *w) 3595ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1261{ 3596{
1262 ev_clear_pending (EV_A_ (W)w); 3597 clear_pending (EV_A_ (W)w);
1263 if (!ev_is_active (w)) 3598 if (expect_false (!ev_is_active (w)))
1264 return; 3599 return;
1265 3600
3601 EV_FREQUENT_CHECK;
3602
3603 {
3604 int active = ev_active (w);
3605
1266 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3606 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1267 3607
1268 if (((W)w)->active < timercnt--) 3608 --timercnt;
3609
3610 if (expect_true (active < timercnt + HEAP0))
1269 { 3611 {
1270 timers [((W)w)->active - 1] = timers [timercnt]; 3612 timers [active] = timers [timercnt + HEAP0];
1271 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3613 adjustheap (timers, timercnt, active);
1272 } 3614 }
3615 }
1273 3616
1274 ((WT)w)->at = w->repeat; 3617 ev_at (w) -= mn_now;
1275 3618
1276 ev_stop (EV_A_ (W)w); 3619 ev_stop (EV_A_ (W)w);
1277}
1278 3620
1279void 3621 EV_FREQUENT_CHECK;
3622}
3623
3624void noinline
1280ev_timer_again (EV_P_ struct ev_timer *w) 3625ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1281{ 3626{
3627 EV_FREQUENT_CHECK;
3628
3629 clear_pending (EV_A_ (W)w);
3630
1282 if (ev_is_active (w)) 3631 if (ev_is_active (w))
1283 { 3632 {
1284 if (w->repeat) 3633 if (w->repeat)
1285 { 3634 {
1286 ((WT)w)->at = mn_now + w->repeat; 3635 ev_at (w) = mn_now + w->repeat;
1287 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3636 ANHE_at_cache (timers [ev_active (w)]);
3637 adjustheap (timers, timercnt, ev_active (w));
1288 } 3638 }
1289 else 3639 else
1290 ev_timer_stop (EV_A_ w); 3640 ev_timer_stop (EV_A_ w);
1291 } 3641 }
1292 else if (w->repeat) 3642 else if (w->repeat)
3643 {
3644 ev_at (w) = w->repeat;
1293 ev_timer_start (EV_A_ w); 3645 ev_timer_start (EV_A_ w);
1294} 3646 }
1295 3647
1296void 3648 EV_FREQUENT_CHECK;
3649}
3650
3651ev_tstamp
3652ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3653{
3654 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3655}
3656
3657#if EV_PERIODIC_ENABLE
3658void noinline
1297ev_periodic_start (EV_P_ struct ev_periodic *w) 3659ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1298{ 3660{
1299 if (ev_is_active (w)) 3661 if (expect_false (ev_is_active (w)))
1300 return; 3662 return;
1301 3663
3664 if (w->reschedule_cb)
3665 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3666 else if (w->interval)
3667 {
1302 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3668 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3669 periodic_recalc (EV_A_ w);
3670 }
3671 else
3672 ev_at (w) = w->offset;
1303 3673
1304 /* this formula differs from the one in periodic_reify because we do not always round up */ 3674 EV_FREQUENT_CHECK;
1305 if (w->interval)
1306 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1307 3675
3676 ++periodiccnt;
1308 ev_start (EV_A_ (W)w, ++periodiccnt); 3677 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1309 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 3678 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1310 periodics [periodiccnt - 1] = w; 3679 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1311 upheap ((WT *)periodics, periodiccnt - 1); 3680 ANHE_at_cache (periodics [ev_active (w)]);
3681 upheap (periodics, ev_active (w));
1312 3682
3683 EV_FREQUENT_CHECK;
3684
1313 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3685 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1314} 3686}
1315 3687
1316void 3688void noinline
1317ev_periodic_stop (EV_P_ struct ev_periodic *w) 3689ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1318{ 3690{
1319 ev_clear_pending (EV_A_ (W)w); 3691 clear_pending (EV_A_ (W)w);
1320 if (!ev_is_active (w)) 3692 if (expect_false (!ev_is_active (w)))
1321 return; 3693 return;
1322 3694
3695 EV_FREQUENT_CHECK;
3696
3697 {
3698 int active = ev_active (w);
3699
1323 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3700 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1324 3701
1325 if (((W)w)->active < periodiccnt--) 3702 --periodiccnt;
3703
3704 if (expect_true (active < periodiccnt + HEAP0))
1326 { 3705 {
1327 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3706 periodics [active] = periodics [periodiccnt + HEAP0];
1328 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3707 adjustheap (periodics, periodiccnt, active);
1329 } 3708 }
3709 }
1330 3710
1331 ev_stop (EV_A_ (W)w); 3711 ev_stop (EV_A_ (W)w);
1332}
1333 3712
1334void 3713 EV_FREQUENT_CHECK;
1335ev_idle_start (EV_P_ struct ev_idle *w)
1336{
1337 if (ev_is_active (w))
1338 return;
1339
1340 ev_start (EV_A_ (W)w, ++idlecnt);
1341 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1342 idles [idlecnt - 1] = w;
1343} 3714}
1344 3715
1345void 3716void noinline
1346ev_idle_stop (EV_P_ struct ev_idle *w) 3717ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1347{ 3718{
1348 ev_clear_pending (EV_A_ (W)w); 3719 /* TODO: use adjustheap and recalculation */
1349 if (ev_is_active (w))
1350 return;
1351
1352 idles [((W)w)->active - 1] = idles [--idlecnt];
1353 ev_stop (EV_A_ (W)w); 3720 ev_periodic_stop (EV_A_ w);
3721 ev_periodic_start (EV_A_ w);
1354} 3722}
1355 3723#endif
1356void
1357ev_prepare_start (EV_P_ struct ev_prepare *w)
1358{
1359 if (ev_is_active (w))
1360 return;
1361
1362 ev_start (EV_A_ (W)w, ++preparecnt);
1363 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1364 prepares [preparecnt - 1] = w;
1365}
1366
1367void
1368ev_prepare_stop (EV_P_ struct ev_prepare *w)
1369{
1370 ev_clear_pending (EV_A_ (W)w);
1371 if (ev_is_active (w))
1372 return;
1373
1374 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1375 ev_stop (EV_A_ (W)w);
1376}
1377
1378void
1379ev_check_start (EV_P_ struct ev_check *w)
1380{
1381 if (ev_is_active (w))
1382 return;
1383
1384 ev_start (EV_A_ (W)w, ++checkcnt);
1385 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1386 checks [checkcnt - 1] = w;
1387}
1388
1389void
1390ev_check_stop (EV_P_ struct ev_check *w)
1391{
1392 ev_clear_pending (EV_A_ (W)w);
1393 if (ev_is_active (w))
1394 return;
1395
1396 checks [((W)w)->active - 1] = checks [--checkcnt];
1397 ev_stop (EV_A_ (W)w);
1398}
1399 3724
1400#ifndef SA_RESTART 3725#ifndef SA_RESTART
1401# define SA_RESTART 0 3726# define SA_RESTART 0
1402#endif 3727#endif
1403 3728
3729#if EV_SIGNAL_ENABLE
3730
3731void noinline
3732ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3733{
3734 if (expect_false (ev_is_active (w)))
3735 return;
3736
3737 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3738
3739#if EV_MULTIPLICITY
3740 assert (("libev: a signal must not be attached to two different loops",
3741 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3742
3743 signals [w->signum - 1].loop = EV_A;
3744 ECB_MEMORY_FENCE_RELEASE;
3745#endif
3746
3747 EV_FREQUENT_CHECK;
3748
3749#if EV_USE_SIGNALFD
3750 if (sigfd == -2)
3751 {
3752 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3753 if (sigfd < 0 && errno == EINVAL)
3754 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3755
3756 if (sigfd >= 0)
3757 {
3758 fd_intern (sigfd); /* doing it twice will not hurt */
3759
3760 sigemptyset (&sigfd_set);
3761
3762 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3763 ev_set_priority (&sigfd_w, EV_MAXPRI);
3764 ev_io_start (EV_A_ &sigfd_w);
3765 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3766 }
3767 }
3768
3769 if (sigfd >= 0)
3770 {
3771 /* TODO: check .head */
3772 sigaddset (&sigfd_set, w->signum);
3773 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3774
3775 signalfd (sigfd, &sigfd_set, 0);
3776 }
3777#endif
3778
3779 ev_start (EV_A_ (W)w, 1);
3780 wlist_add (&signals [w->signum - 1].head, (WL)w);
3781
3782 if (!((WL)w)->next)
3783# if EV_USE_SIGNALFD
3784 if (sigfd < 0) /*TODO*/
3785# endif
3786 {
3787# ifdef _WIN32
3788 evpipe_init (EV_A);
3789
3790 signal (w->signum, ev_sighandler);
3791# else
3792 struct sigaction sa;
3793
3794 evpipe_init (EV_A);
3795
3796 sa.sa_handler = ev_sighandler;
3797 sigfillset (&sa.sa_mask);
3798 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3799 sigaction (w->signum, &sa, 0);
3800
3801 if (origflags & EVFLAG_NOSIGMASK)
3802 {
3803 sigemptyset (&sa.sa_mask);
3804 sigaddset (&sa.sa_mask, w->signum);
3805 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3806 }
3807#endif
3808 }
3809
3810 EV_FREQUENT_CHECK;
3811}
3812
3813void noinline
3814ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3815{
3816 clear_pending (EV_A_ (W)w);
3817 if (expect_false (!ev_is_active (w)))
3818 return;
3819
3820 EV_FREQUENT_CHECK;
3821
3822 wlist_del (&signals [w->signum - 1].head, (WL)w);
3823 ev_stop (EV_A_ (W)w);
3824
3825 if (!signals [w->signum - 1].head)
3826 {
3827#if EV_MULTIPLICITY
3828 signals [w->signum - 1].loop = 0; /* unattach from signal */
3829#endif
3830#if EV_USE_SIGNALFD
3831 if (sigfd >= 0)
3832 {
3833 sigset_t ss;
3834
3835 sigemptyset (&ss);
3836 sigaddset (&ss, w->signum);
3837 sigdelset (&sigfd_set, w->signum);
3838
3839 signalfd (sigfd, &sigfd_set, 0);
3840 sigprocmask (SIG_UNBLOCK, &ss, 0);
3841 }
3842 else
3843#endif
3844 signal (w->signum, SIG_DFL);
3845 }
3846
3847 EV_FREQUENT_CHECK;
3848}
3849
3850#endif
3851
3852#if EV_CHILD_ENABLE
3853
1404void 3854void
1405ev_signal_start (EV_P_ struct ev_signal *w) 3855ev_child_start (EV_P_ ev_child *w) EV_THROW
1406{ 3856{
1407#if EV_MULTIPLICITY 3857#if EV_MULTIPLICITY
1408 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3858 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1409#endif 3859#endif
1410 if (ev_is_active (w)) 3860 if (expect_false (ev_is_active (w)))
1411 return; 3861 return;
1412 3862
1413 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3863 EV_FREQUENT_CHECK;
1414 3864
1415 ev_start (EV_A_ (W)w, 1); 3865 ev_start (EV_A_ (W)w, 1);
1416 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3866 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1417 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1418 3867
1419 if (!((WL)w)->next) 3868 EV_FREQUENT_CHECK;
3869}
3870
3871void
3872ev_child_stop (EV_P_ ev_child *w) EV_THROW
3873{
3874 clear_pending (EV_A_ (W)w);
3875 if (expect_false (!ev_is_active (w)))
3876 return;
3877
3878 EV_FREQUENT_CHECK;
3879
3880 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3881 ev_stop (EV_A_ (W)w);
3882
3883 EV_FREQUENT_CHECK;
3884}
3885
3886#endif
3887
3888#if EV_STAT_ENABLE
3889
3890# ifdef _WIN32
3891# undef lstat
3892# define lstat(a,b) _stati64 (a,b)
3893# endif
3894
3895#define DEF_STAT_INTERVAL 5.0074891
3896#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3897#define MIN_STAT_INTERVAL 0.1074891
3898
3899static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3900
3901#if EV_USE_INOTIFY
3902
3903/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3904# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3905
3906static void noinline
3907infy_add (EV_P_ ev_stat *w)
3908{
3909 w->wd = inotify_add_watch (fs_fd, w->path,
3910 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3911 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3912 | IN_DONT_FOLLOW | IN_MASK_ADD);
3913
3914 if (w->wd >= 0)
3915 {
3916 struct statfs sfs;
3917
3918 /* now local changes will be tracked by inotify, but remote changes won't */
3919 /* unless the filesystem is known to be local, we therefore still poll */
3920 /* also do poll on <2.6.25, but with normal frequency */
3921
3922 if (!fs_2625)
3923 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3924 else if (!statfs (w->path, &sfs)
3925 && (sfs.f_type == 0x1373 /* devfs */
3926 || sfs.f_type == 0x4006 /* fat */
3927 || sfs.f_type == 0x4d44 /* msdos */
3928 || sfs.f_type == 0xEF53 /* ext2/3 */
3929 || sfs.f_type == 0x72b6 /* jffs2 */
3930 || sfs.f_type == 0x858458f6 /* ramfs */
3931 || sfs.f_type == 0x5346544e /* ntfs */
3932 || sfs.f_type == 0x3153464a /* jfs */
3933 || sfs.f_type == 0x9123683e /* btrfs */
3934 || sfs.f_type == 0x52654973 /* reiser3 */
3935 || sfs.f_type == 0x01021994 /* tmpfs */
3936 || sfs.f_type == 0x58465342 /* xfs */))
3937 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3938 else
3939 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1420 { 3940 }
1421#if WIN32 3941 else
1422 signal (w->signum, sighandler); 3942 {
3943 /* can't use inotify, continue to stat */
3944 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3945
3946 /* if path is not there, monitor some parent directory for speedup hints */
3947 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3948 /* but an efficiency issue only */
3949 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3950 {
3951 char path [4096];
3952 strcpy (path, w->path);
3953
3954 do
3955 {
3956 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3957 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3958
3959 char *pend = strrchr (path, '/');
3960
3961 if (!pend || pend == path)
3962 break;
3963
3964 *pend = 0;
3965 w->wd = inotify_add_watch (fs_fd, path, mask);
3966 }
3967 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3968 }
3969 }
3970
3971 if (w->wd >= 0)
3972 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3973
3974 /* now re-arm timer, if required */
3975 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3976 ev_timer_again (EV_A_ &w->timer);
3977 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3978}
3979
3980static void noinline
3981infy_del (EV_P_ ev_stat *w)
3982{
3983 int slot;
3984 int wd = w->wd;
3985
3986 if (wd < 0)
3987 return;
3988
3989 w->wd = -2;
3990 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3991 wlist_del (&fs_hash [slot].head, (WL)w);
3992
3993 /* remove this watcher, if others are watching it, they will rearm */
3994 inotify_rm_watch (fs_fd, wd);
3995}
3996
3997static void noinline
3998infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3999{
4000 if (slot < 0)
4001 /* overflow, need to check for all hash slots */
4002 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4003 infy_wd (EV_A_ slot, wd, ev);
4004 else
4005 {
4006 WL w_;
4007
4008 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4009 {
4010 ev_stat *w = (ev_stat *)w_;
4011 w_ = w_->next; /* lets us remove this watcher and all before it */
4012
4013 if (w->wd == wd || wd == -1)
4014 {
4015 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4016 {
4017 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4018 w->wd = -1;
4019 infy_add (EV_A_ w); /* re-add, no matter what */
4020 }
4021
4022 stat_timer_cb (EV_A_ &w->timer, 0);
4023 }
4024 }
4025 }
4026}
4027
4028static void
4029infy_cb (EV_P_ ev_io *w, int revents)
4030{
4031 char buf [EV_INOTIFY_BUFSIZE];
4032 int ofs;
4033 int len = read (fs_fd, buf, sizeof (buf));
4034
4035 for (ofs = 0; ofs < len; )
4036 {
4037 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4038 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4039 ofs += sizeof (struct inotify_event) + ev->len;
4040 }
4041}
4042
4043inline_size void ecb_cold
4044ev_check_2625 (EV_P)
4045{
4046 /* kernels < 2.6.25 are borked
4047 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4048 */
4049 if (ev_linux_version () < 0x020619)
4050 return;
4051
4052 fs_2625 = 1;
4053}
4054
4055inline_size int
4056infy_newfd (void)
4057{
4058#if defined IN_CLOEXEC && defined IN_NONBLOCK
4059 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4060 if (fd >= 0)
4061 return fd;
4062#endif
4063 return inotify_init ();
4064}
4065
4066inline_size void
4067infy_init (EV_P)
4068{
4069 if (fs_fd != -2)
4070 return;
4071
4072 fs_fd = -1;
4073
4074 ev_check_2625 (EV_A);
4075
4076 fs_fd = infy_newfd ();
4077
4078 if (fs_fd >= 0)
4079 {
4080 fd_intern (fs_fd);
4081 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4082 ev_set_priority (&fs_w, EV_MAXPRI);
4083 ev_io_start (EV_A_ &fs_w);
4084 ev_unref (EV_A);
4085 }
4086}
4087
4088inline_size void
4089infy_fork (EV_P)
4090{
4091 int slot;
4092
4093 if (fs_fd < 0)
4094 return;
4095
4096 ev_ref (EV_A);
4097 ev_io_stop (EV_A_ &fs_w);
4098 close (fs_fd);
4099 fs_fd = infy_newfd ();
4100
4101 if (fs_fd >= 0)
4102 {
4103 fd_intern (fs_fd);
4104 ev_io_set (&fs_w, fs_fd, EV_READ);
4105 ev_io_start (EV_A_ &fs_w);
4106 ev_unref (EV_A);
4107 }
4108
4109 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4110 {
4111 WL w_ = fs_hash [slot].head;
4112 fs_hash [slot].head = 0;
4113
4114 while (w_)
4115 {
4116 ev_stat *w = (ev_stat *)w_;
4117 w_ = w_->next; /* lets us add this watcher */
4118
4119 w->wd = -1;
4120
4121 if (fs_fd >= 0)
4122 infy_add (EV_A_ w); /* re-add, no matter what */
4123 else
4124 {
4125 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4126 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4127 ev_timer_again (EV_A_ &w->timer);
4128 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4129 }
4130 }
4131 }
4132}
4133
4134#endif
4135
4136#ifdef _WIN32
4137# define EV_LSTAT(p,b) _stati64 (p, b)
1423#else 4138#else
1424 struct sigaction sa; 4139# define EV_LSTAT(p,b) lstat (p, b)
1425 sa.sa_handler = sighandler;
1426 sigfillset (&sa.sa_mask);
1427 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1428 sigaction (w->signum, &sa, 0);
1429#endif 4140#endif
1430 }
1431}
1432 4141
1433void 4142void
1434ev_signal_stop (EV_P_ struct ev_signal *w) 4143ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1435{ 4144{
1436 ev_clear_pending (EV_A_ (W)w); 4145 if (lstat (w->path, &w->attr) < 0)
1437 if (!ev_is_active (w)) 4146 w->attr.st_nlink = 0;
4147 else if (!w->attr.st_nlink)
4148 w->attr.st_nlink = 1;
4149}
4150
4151static void noinline
4152stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4153{
4154 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4155
4156 ev_statdata prev = w->attr;
4157 ev_stat_stat (EV_A_ w);
4158
4159 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4160 if (
4161 prev.st_dev != w->attr.st_dev
4162 || prev.st_ino != w->attr.st_ino
4163 || prev.st_mode != w->attr.st_mode
4164 || prev.st_nlink != w->attr.st_nlink
4165 || prev.st_uid != w->attr.st_uid
4166 || prev.st_gid != w->attr.st_gid
4167 || prev.st_rdev != w->attr.st_rdev
4168 || prev.st_size != w->attr.st_size
4169 || prev.st_atime != w->attr.st_atime
4170 || prev.st_mtime != w->attr.st_mtime
4171 || prev.st_ctime != w->attr.st_ctime
4172 ) {
4173 /* we only update w->prev on actual differences */
4174 /* in case we test more often than invoke the callback, */
4175 /* to ensure that prev is always different to attr */
4176 w->prev = prev;
4177
4178 #if EV_USE_INOTIFY
4179 if (fs_fd >= 0)
4180 {
4181 infy_del (EV_A_ w);
4182 infy_add (EV_A_ w);
4183 ev_stat_stat (EV_A_ w); /* avoid race... */
4184 }
4185 #endif
4186
4187 ev_feed_event (EV_A_ w, EV_STAT);
4188 }
4189}
4190
4191void
4192ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4193{
4194 if (expect_false (ev_is_active (w)))
1438 return; 4195 return;
1439 4196
1440 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4197 ev_stat_stat (EV_A_ w);
4198
4199 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4200 w->interval = MIN_STAT_INTERVAL;
4201
4202 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4203 ev_set_priority (&w->timer, ev_priority (w));
4204
4205#if EV_USE_INOTIFY
4206 infy_init (EV_A);
4207
4208 if (fs_fd >= 0)
4209 infy_add (EV_A_ w);
4210 else
4211#endif
4212 {
4213 ev_timer_again (EV_A_ &w->timer);
4214 ev_unref (EV_A);
4215 }
4216
4217 ev_start (EV_A_ (W)w, 1);
4218
4219 EV_FREQUENT_CHECK;
4220}
4221
4222void
4223ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4224{
4225 clear_pending (EV_A_ (W)w);
4226 if (expect_false (!ev_is_active (w)))
4227 return;
4228
4229 EV_FREQUENT_CHECK;
4230
4231#if EV_USE_INOTIFY
4232 infy_del (EV_A_ w);
4233#endif
4234
4235 if (ev_is_active (&w->timer))
4236 {
4237 ev_ref (EV_A);
4238 ev_timer_stop (EV_A_ &w->timer);
4239 }
4240
1441 ev_stop (EV_A_ (W)w); 4241 ev_stop (EV_A_ (W)w);
1442 4242
1443 if (!signals [w->signum - 1].head) 4243 EV_FREQUENT_CHECK;
1444 signal (w->signum, SIG_DFL);
1445} 4244}
4245#endif
1446 4246
4247#if EV_IDLE_ENABLE
1447void 4248void
1448ev_child_start (EV_P_ struct ev_child *w) 4249ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1449{ 4250{
1450#if EV_MULTIPLICITY
1451 assert (("child watchers are only supported in the default loop", loop == default_loop));
1452#endif
1453 if (ev_is_active (w)) 4251 if (expect_false (ev_is_active (w)))
1454 return; 4252 return;
1455 4253
4254 pri_adjust (EV_A_ (W)w);
4255
4256 EV_FREQUENT_CHECK;
4257
4258 {
4259 int active = ++idlecnt [ABSPRI (w)];
4260
4261 ++idleall;
4262 ev_start (EV_A_ (W)w, active);
4263
4264 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4265 idles [ABSPRI (w)][active - 1] = w;
4266 }
4267
4268 EV_FREQUENT_CHECK;
4269}
4270
4271void
4272ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4273{
4274 clear_pending (EV_A_ (W)w);
4275 if (expect_false (!ev_is_active (w)))
4276 return;
4277
4278 EV_FREQUENT_CHECK;
4279
4280 {
4281 int active = ev_active (w);
4282
4283 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4284 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4285
4286 ev_stop (EV_A_ (W)w);
4287 --idleall;
4288 }
4289
4290 EV_FREQUENT_CHECK;
4291}
4292#endif
4293
4294#if EV_PREPARE_ENABLE
4295void
4296ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4297{
4298 if (expect_false (ev_is_active (w)))
4299 return;
4300
4301 EV_FREQUENT_CHECK;
4302
4303 ev_start (EV_A_ (W)w, ++preparecnt);
4304 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4305 prepares [preparecnt - 1] = w;
4306
4307 EV_FREQUENT_CHECK;
4308}
4309
4310void
4311ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4312{
4313 clear_pending (EV_A_ (W)w);
4314 if (expect_false (!ev_is_active (w)))
4315 return;
4316
4317 EV_FREQUENT_CHECK;
4318
4319 {
4320 int active = ev_active (w);
4321
4322 prepares [active - 1] = prepares [--preparecnt];
4323 ev_active (prepares [active - 1]) = active;
4324 }
4325
4326 ev_stop (EV_A_ (W)w);
4327
4328 EV_FREQUENT_CHECK;
4329}
4330#endif
4331
4332#if EV_CHECK_ENABLE
4333void
4334ev_check_start (EV_P_ ev_check *w) EV_THROW
4335{
4336 if (expect_false (ev_is_active (w)))
4337 return;
4338
4339 EV_FREQUENT_CHECK;
4340
4341 ev_start (EV_A_ (W)w, ++checkcnt);
4342 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4343 checks [checkcnt - 1] = w;
4344
4345 EV_FREQUENT_CHECK;
4346}
4347
4348void
4349ev_check_stop (EV_P_ ev_check *w) EV_THROW
4350{
4351 clear_pending (EV_A_ (W)w);
4352 if (expect_false (!ev_is_active (w)))
4353 return;
4354
4355 EV_FREQUENT_CHECK;
4356
4357 {
4358 int active = ev_active (w);
4359
4360 checks [active - 1] = checks [--checkcnt];
4361 ev_active (checks [active - 1]) = active;
4362 }
4363
4364 ev_stop (EV_A_ (W)w);
4365
4366 EV_FREQUENT_CHECK;
4367}
4368#endif
4369
4370#if EV_EMBED_ENABLE
4371void noinline
4372ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4373{
4374 ev_run (w->other, EVRUN_NOWAIT);
4375}
4376
4377static void
4378embed_io_cb (EV_P_ ev_io *io, int revents)
4379{
4380 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4381
4382 if (ev_cb (w))
4383 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4384 else
4385 ev_run (w->other, EVRUN_NOWAIT);
4386}
4387
4388static void
4389embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4390{
4391 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4392
4393 {
4394 EV_P = w->other;
4395
4396 while (fdchangecnt)
4397 {
4398 fd_reify (EV_A);
4399 ev_run (EV_A_ EVRUN_NOWAIT);
4400 }
4401 }
4402}
4403
4404static void
4405embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4406{
4407 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4408
4409 ev_embed_stop (EV_A_ w);
4410
4411 {
4412 EV_P = w->other;
4413
4414 ev_loop_fork (EV_A);
4415 ev_run (EV_A_ EVRUN_NOWAIT);
4416 }
4417
4418 ev_embed_start (EV_A_ w);
4419}
4420
4421#if 0
4422static void
4423embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4424{
4425 ev_idle_stop (EV_A_ idle);
4426}
4427#endif
4428
4429void
4430ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4431{
4432 if (expect_false (ev_is_active (w)))
4433 return;
4434
4435 {
4436 EV_P = w->other;
4437 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4438 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4439 }
4440
4441 EV_FREQUENT_CHECK;
4442
4443 ev_set_priority (&w->io, ev_priority (w));
4444 ev_io_start (EV_A_ &w->io);
4445
4446 ev_prepare_init (&w->prepare, embed_prepare_cb);
4447 ev_set_priority (&w->prepare, EV_MINPRI);
4448 ev_prepare_start (EV_A_ &w->prepare);
4449
4450 ev_fork_init (&w->fork, embed_fork_cb);
4451 ev_fork_start (EV_A_ &w->fork);
4452
4453 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4454
1456 ev_start (EV_A_ (W)w, 1); 4455 ev_start (EV_A_ (W)w, 1);
1457 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4456
4457 EV_FREQUENT_CHECK;
1458} 4458}
1459 4459
1460void 4460void
1461ev_child_stop (EV_P_ struct ev_child *w) 4461ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
1462{ 4462{
1463 ev_clear_pending (EV_A_ (W)w); 4463 clear_pending (EV_A_ (W)w);
1464 if (ev_is_active (w)) 4464 if (expect_false (!ev_is_active (w)))
1465 return; 4465 return;
1466 4466
1467 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4467 EV_FREQUENT_CHECK;
4468
4469 ev_io_stop (EV_A_ &w->io);
4470 ev_prepare_stop (EV_A_ &w->prepare);
4471 ev_fork_stop (EV_A_ &w->fork);
4472
1468 ev_stop (EV_A_ (W)w); 4473 ev_stop (EV_A_ (W)w);
4474
4475 EV_FREQUENT_CHECK;
1469} 4476}
4477#endif
4478
4479#if EV_FORK_ENABLE
4480void
4481ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4482{
4483 if (expect_false (ev_is_active (w)))
4484 return;
4485
4486 EV_FREQUENT_CHECK;
4487
4488 ev_start (EV_A_ (W)w, ++forkcnt);
4489 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4490 forks [forkcnt - 1] = w;
4491
4492 EV_FREQUENT_CHECK;
4493}
4494
4495void
4496ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4497{
4498 clear_pending (EV_A_ (W)w);
4499 if (expect_false (!ev_is_active (w)))
4500 return;
4501
4502 EV_FREQUENT_CHECK;
4503
4504 {
4505 int active = ev_active (w);
4506
4507 forks [active - 1] = forks [--forkcnt];
4508 ev_active (forks [active - 1]) = active;
4509 }
4510
4511 ev_stop (EV_A_ (W)w);
4512
4513 EV_FREQUENT_CHECK;
4514}
4515#endif
4516
4517#if EV_CLEANUP_ENABLE
4518void
4519ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4520{
4521 if (expect_false (ev_is_active (w)))
4522 return;
4523
4524 EV_FREQUENT_CHECK;
4525
4526 ev_start (EV_A_ (W)w, ++cleanupcnt);
4527 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4528 cleanups [cleanupcnt - 1] = w;
4529
4530 /* cleanup watchers should never keep a refcount on the loop */
4531 ev_unref (EV_A);
4532 EV_FREQUENT_CHECK;
4533}
4534
4535void
4536ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4537{
4538 clear_pending (EV_A_ (W)w);
4539 if (expect_false (!ev_is_active (w)))
4540 return;
4541
4542 EV_FREQUENT_CHECK;
4543 ev_ref (EV_A);
4544
4545 {
4546 int active = ev_active (w);
4547
4548 cleanups [active - 1] = cleanups [--cleanupcnt];
4549 ev_active (cleanups [active - 1]) = active;
4550 }
4551
4552 ev_stop (EV_A_ (W)w);
4553
4554 EV_FREQUENT_CHECK;
4555}
4556#endif
4557
4558#if EV_ASYNC_ENABLE
4559void
4560ev_async_start (EV_P_ ev_async *w) EV_THROW
4561{
4562 if (expect_false (ev_is_active (w)))
4563 return;
4564
4565 w->sent = 0;
4566
4567 evpipe_init (EV_A);
4568
4569 EV_FREQUENT_CHECK;
4570
4571 ev_start (EV_A_ (W)w, ++asynccnt);
4572 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4573 asyncs [asynccnt - 1] = w;
4574
4575 EV_FREQUENT_CHECK;
4576}
4577
4578void
4579ev_async_stop (EV_P_ ev_async *w) EV_THROW
4580{
4581 clear_pending (EV_A_ (W)w);
4582 if (expect_false (!ev_is_active (w)))
4583 return;
4584
4585 EV_FREQUENT_CHECK;
4586
4587 {
4588 int active = ev_active (w);
4589
4590 asyncs [active - 1] = asyncs [--asynccnt];
4591 ev_active (asyncs [active - 1]) = active;
4592 }
4593
4594 ev_stop (EV_A_ (W)w);
4595
4596 EV_FREQUENT_CHECK;
4597}
4598
4599void
4600ev_async_send (EV_P_ ev_async *w) EV_THROW
4601{
4602 w->sent = 1;
4603 evpipe_write (EV_A_ &async_pending);
4604}
4605#endif
1470 4606
1471/*****************************************************************************/ 4607/*****************************************************************************/
1472 4608
1473struct ev_once 4609struct ev_once
1474{ 4610{
1475 struct ev_io io; 4611 ev_io io;
1476 struct ev_timer to; 4612 ev_timer to;
1477 void (*cb)(int revents, void *arg); 4613 void (*cb)(int revents, void *arg);
1478 void *arg; 4614 void *arg;
1479}; 4615};
1480 4616
1481static void 4617static void
1482once_cb (EV_P_ struct ev_once *once, int revents) 4618once_cb (EV_P_ struct ev_once *once, int revents)
1483{ 4619{
1484 void (*cb)(int revents, void *arg) = once->cb; 4620 void (*cb)(int revents, void *arg) = once->cb;
1485 void *arg = once->arg; 4621 void *arg = once->arg;
1486 4622
1487 ev_io_stop (EV_A_ &once->io); 4623 ev_io_stop (EV_A_ &once->io);
1488 ev_timer_stop (EV_A_ &once->to); 4624 ev_timer_stop (EV_A_ &once->to);
1489 ev_free (once); 4625 ev_free (once);
1490 4626
1491 cb (revents, arg); 4627 cb (revents, arg);
1492} 4628}
1493 4629
1494static void 4630static void
1495once_cb_io (EV_P_ struct ev_io *w, int revents) 4631once_cb_io (EV_P_ ev_io *w, int revents)
1496{ 4632{
1497 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4633 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4634
4635 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1498} 4636}
1499 4637
1500static void 4638static void
1501once_cb_to (EV_P_ struct ev_timer *w, int revents) 4639once_cb_to (EV_P_ ev_timer *w, int revents)
1502{ 4640{
1503 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4641 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4642
4643 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1504} 4644}
1505 4645
1506void 4646void
1507ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4647ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1508{ 4648{
1509 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4649 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1510 4650
1511 if (!once) 4651 if (expect_false (!once))
4652 {
1512 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4653 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1513 else 4654 return;
1514 { 4655 }
4656
1515 once->cb = cb; 4657 once->cb = cb;
1516 once->arg = arg; 4658 once->arg = arg;
1517 4659
1518 ev_watcher_init (&once->io, once_cb_io); 4660 ev_init (&once->io, once_cb_io);
1519 if (fd >= 0) 4661 if (fd >= 0)
4662 {
4663 ev_io_set (&once->io, fd, events);
4664 ev_io_start (EV_A_ &once->io);
4665 }
4666
4667 ev_init (&once->to, once_cb_to);
4668 if (timeout >= 0.)
4669 {
4670 ev_timer_set (&once->to, timeout, 0.);
4671 ev_timer_start (EV_A_ &once->to);
4672 }
4673}
4674
4675/*****************************************************************************/
4676
4677#if EV_WALK_ENABLE
4678void ecb_cold
4679ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4680{
4681 int i, j;
4682 ev_watcher_list *wl, *wn;
4683
4684 if (types & (EV_IO | EV_EMBED))
4685 for (i = 0; i < anfdmax; ++i)
4686 for (wl = anfds [i].head; wl; )
1520 { 4687 {
1521 ev_io_set (&once->io, fd, events); 4688 wn = wl->next;
1522 ev_io_start (EV_A_ &once->io); 4689
4690#if EV_EMBED_ENABLE
4691 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4692 {
4693 if (types & EV_EMBED)
4694 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4695 }
4696 else
4697#endif
4698#if EV_USE_INOTIFY
4699 if (ev_cb ((ev_io *)wl) == infy_cb)
4700 ;
4701 else
4702#endif
4703 if ((ev_io *)wl != &pipe_w)
4704 if (types & EV_IO)
4705 cb (EV_A_ EV_IO, wl);
4706
4707 wl = wn;
1523 } 4708 }
1524 4709
1525 ev_watcher_init (&once->to, once_cb_to); 4710 if (types & (EV_TIMER | EV_STAT))
1526 if (timeout >= 0.) 4711 for (i = timercnt + HEAP0; i-- > HEAP0; )
4712#if EV_STAT_ENABLE
4713 /*TODO: timer is not always active*/
4714 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1527 { 4715 {
1528 ev_timer_set (&once->to, timeout, 0.); 4716 if (types & EV_STAT)
1529 ev_timer_start (EV_A_ &once->to); 4717 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1530 } 4718 }
1531 } 4719 else
1532} 4720#endif
4721 if (types & EV_TIMER)
4722 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1533 4723
4724#if EV_PERIODIC_ENABLE
4725 if (types & EV_PERIODIC)
4726 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4727 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4728#endif
4729
4730#if EV_IDLE_ENABLE
4731 if (types & EV_IDLE)
4732 for (j = NUMPRI; j--; )
4733 for (i = idlecnt [j]; i--; )
4734 cb (EV_A_ EV_IDLE, idles [j][i]);
4735#endif
4736
4737#if EV_FORK_ENABLE
4738 if (types & EV_FORK)
4739 for (i = forkcnt; i--; )
4740 if (ev_cb (forks [i]) != embed_fork_cb)
4741 cb (EV_A_ EV_FORK, forks [i]);
4742#endif
4743
4744#if EV_ASYNC_ENABLE
4745 if (types & EV_ASYNC)
4746 for (i = asynccnt; i--; )
4747 cb (EV_A_ EV_ASYNC, asyncs [i]);
4748#endif
4749
4750#if EV_PREPARE_ENABLE
4751 if (types & EV_PREPARE)
4752 for (i = preparecnt; i--; )
4753# if EV_EMBED_ENABLE
4754 if (ev_cb (prepares [i]) != embed_prepare_cb)
4755# endif
4756 cb (EV_A_ EV_PREPARE, prepares [i]);
4757#endif
4758
4759#if EV_CHECK_ENABLE
4760 if (types & EV_CHECK)
4761 for (i = checkcnt; i--; )
4762 cb (EV_A_ EV_CHECK, checks [i]);
4763#endif
4764
4765#if EV_SIGNAL_ENABLE
4766 if (types & EV_SIGNAL)
4767 for (i = 0; i < EV_NSIG - 1; ++i)
4768 for (wl = signals [i].head; wl; )
4769 {
4770 wn = wl->next;
4771 cb (EV_A_ EV_SIGNAL, wl);
4772 wl = wn;
4773 }
4774#endif
4775
4776#if EV_CHILD_ENABLE
4777 if (types & EV_CHILD)
4778 for (i = (EV_PID_HASHSIZE); i--; )
4779 for (wl = childs [i]; wl; )
4780 {
4781 wn = wl->next;
4782 cb (EV_A_ EV_CHILD, wl);
4783 wl = wn;
4784 }
4785#endif
4786/* EV_STAT 0x00001000 /* stat data changed */
4787/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4788}
4789#endif
4790
4791#if EV_MULTIPLICITY
4792 #include "ev_wrap.h"
4793#endif
4794

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines