ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.75 by root, Tue Nov 6 19:29:20 2007 UTC vs.
Revision 1.97 by root, Sun Nov 11 01:53:07 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 139
140#ifdef EV_H
141# include EV_H
142#else
131#include "ev.h" 143# include "ev.h"
144#endif
132 145
133#if __GNUC__ >= 3 146#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 148# define inline inline
136#else 149#else
215 int events; 228 int events;
216} ANPENDING; 229} ANPENDING;
217 230
218#if EV_MULTIPLICITY 231#if EV_MULTIPLICITY
219 232
220struct ev_loop 233 struct ev_loop
221{ 234 {
235 ev_tstamp ev_rt_now;
222# define VAR(name,decl) decl; 236 #define VAR(name,decl) decl;
223# include "ev_vars.h" 237 #include "ev_vars.h"
224};
225# undef VAR 238 #undef VAR
239 };
226# include "ev_wrap.h" 240 #include "ev_wrap.h"
241
242 struct ev_loop default_loop_struct;
243 static struct ev_loop *default_loop;
227 244
228#else 245#else
229 246
247 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 248 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 249 #include "ev_vars.h"
232# undef VAR 250 #undef VAR
251
252 static int default_loop;
233 253
234#endif 254#endif
235 255
236/*****************************************************************************/ 256/*****************************************************************************/
237 257
238inline ev_tstamp 258ev_tstamp
239ev_time (void) 259ev_time (void)
240{ 260{
241#if EV_USE_REALTIME 261#if EV_USE_REALTIME
242 struct timespec ts; 262 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 263 clock_gettime (CLOCK_REALTIME, &ts);
262#endif 282#endif
263 283
264 return ev_time (); 284 return ev_time ();
265} 285}
266 286
287#if EV_MULTIPLICITY
267ev_tstamp 288ev_tstamp
268ev_now (EV_P) 289ev_now (EV_P)
269{ 290{
270 return rt_now; 291 return ev_rt_now;
271} 292}
293#endif
272 294
273#define array_roundsize(type,n) ((n) | 4 & ~3) 295#define array_roundsize(type,n) ((n) | 4 & ~3)
274 296
275#define array_needsize(type,base,cur,cnt,init) \ 297#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 298 if (expect_false ((cnt) > cur)) \
316 338
317 ++base; 339 ++base;
318 } 340 }
319} 341}
320 342
321static void 343void
322event (EV_P_ W w, int events) 344ev_feed_event (EV_P_ void *w, int revents)
323{ 345{
346 W w_ = (W)w;
347
324 if (w->pending) 348 if (w_->pending)
325 { 349 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 350 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
327 return; 351 return;
328 } 352 }
329 353
330 w->pending = ++pendingcnt [ABSPRI (w)]; 354 w_->pending = ++pendingcnt [ABSPRI (w_)];
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 355 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w; 356 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
333 pendings [ABSPRI (w)][w->pending - 1].events = events; 357 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
334} 358}
335 359
336static void 360static void
337queue_events (EV_P_ W *events, int eventcnt, int type) 361queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 362{
339 int i; 363 int i;
340 364
341 for (i = 0; i < eventcnt; ++i) 365 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 366 ev_feed_event (EV_A_ events [i], type);
343} 367}
344 368
345static void 369inline void
346fd_event (EV_P_ int fd, int events) 370fd_event (EV_P_ int fd, int revents)
347{ 371{
348 ANFD *anfd = anfds + fd; 372 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 373 struct ev_io *w;
350 374
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
352 { 376 {
353 int ev = w->events & events; 377 int ev = w->events & revents;
354 378
355 if (ev) 379 if (ev)
356 event (EV_A_ (W)w, ev); 380 ev_feed_event (EV_A_ (W)w, ev);
357 } 381 }
382}
383
384void
385ev_feed_fd_event (EV_P_ int fd, int revents)
386{
387 fd_event (EV_A_ fd, revents);
358} 388}
359 389
360/*****************************************************************************/ 390/*****************************************************************************/
361 391
362static void 392static void
403 struct ev_io *w; 433 struct ev_io *w;
404 434
405 while ((w = (struct ev_io *)anfds [fd].head)) 435 while ((w = (struct ev_io *)anfds [fd].head))
406 { 436 {
407 ev_io_stop (EV_A_ w); 437 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 438 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 439 }
410} 440}
411 441
412static int 442static int
413fd_valid (int fd) 443fd_valid (int fd)
501 531
502 heap [k] = w; 532 heap [k] = w;
503 ((W)heap [k])->active = k + 1; 533 ((W)heap [k])->active = k + 1;
504} 534}
505 535
536inline void
537adjustheap (WT *heap, int N, int k, ev_tstamp at)
538{
539 ev_tstamp old_at = heap [k]->at;
540 heap [k]->at = at;
541
542 if (old_at < at)
543 downheap (heap, N, k);
544 else
545 upheap (heap, k);
546}
547
506/*****************************************************************************/ 548/*****************************************************************************/
507 549
508typedef struct 550typedef struct
509{ 551{
510 WL head; 552 WL head;
550#endif 592#endif
551 errno = old_errno; 593 errno = old_errno;
552 } 594 }
553} 595}
554 596
597void
598ev_feed_signal_event (EV_P_ int signum)
599{
600 WL w;
601
602#if EV_MULTIPLICITY
603 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
604#endif
605
606 --signum;
607
608 if (signum < 0 || signum >= signalmax)
609 return;
610
611 signals [signum].gotsig = 0;
612
613 for (w = signals [signum].head; w; w = w->next)
614 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
615}
616
555static void 617static void
556sigcb (EV_P_ struct ev_io *iow, int revents) 618sigcb (EV_P_ struct ev_io *iow, int revents)
557{ 619{
558 WL w;
559 int signum; 620 int signum;
560 621
561#ifdef WIN32 622#ifdef WIN32
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 623 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
563#else 624#else
565#endif 626#endif
566 gotsig = 0; 627 gotsig = 0;
567 628
568 for (signum = signalmax; signum--; ) 629 for (signum = signalmax; signum--; )
569 if (signals [signum].gotsig) 630 if (signals [signum].gotsig)
570 { 631 ev_feed_signal_event (EV_A_ signum + 1);
571 signals [signum].gotsig = 0;
572
573 for (w = signals [signum].head; w; w = w->next)
574 event (EV_A_ (W)w, EV_SIGNAL);
575 }
576} 632}
577 633
578static void 634static void
579siginit (EV_P) 635siginit (EV_P)
580{ 636{
613 if (w->pid == pid || !w->pid) 669 if (w->pid == pid || !w->pid)
614 { 670 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 671 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid; 672 w->rpid = pid;
617 w->rstatus = status; 673 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD); 674 ev_feed_event (EV_A_ (W)w, EV_CHILD);
619 } 675 }
620} 676}
621 677
622static void 678static void
623childcb (EV_P_ struct ev_signal *sw, int revents) 679childcb (EV_P_ struct ev_signal *sw, int revents)
625 int pid, status; 681 int pid, status;
626 682
627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 683 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
628 { 684 {
629 /* make sure we are called again until all childs have been reaped */ 685 /* make sure we are called again until all childs have been reaped */
630 event (EV_A_ (W)sw, EV_SIGNAL); 686 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
631 687
632 child_reap (EV_A_ sw, pid, pid, status); 688 child_reap (EV_A_ sw, pid, pid, status);
633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 689 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
634 } 690 }
635} 691}
692 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 748 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
693 have_monotonic = 1; 749 have_monotonic = 1;
694 } 750 }
695#endif 751#endif
696 752
697 rt_now = ev_time (); 753 ev_rt_now = ev_time ();
698 mn_now = get_clock (); 754 mn_now = get_clock ();
699 now_floor = mn_now; 755 now_floor = mn_now;
700 rtmn_diff = rt_now - mn_now; 756 rtmn_diff = ev_rt_now - mn_now;
701 757
702 if (methods == EVMETHOD_AUTO) 758 if (methods == EVMETHOD_AUTO)
703 if (!enable_secure () && getenv ("LIBEV_METHODS")) 759 if (!enable_secure () && getenv ("LIBEV_METHODS"))
704 methods = atoi (getenv ("LIBEV_METHODS")); 760 methods = atoi (getenv ("LIBEV_METHODS"));
705 else 761 else
720#endif 776#endif
721#if EV_USE_SELECT 777#if EV_USE_SELECT
722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 778 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
723#endif 779#endif
724 780
725 ev_watcher_init (&sigev, sigcb); 781 ev_init (&sigev, sigcb);
726 ev_set_priority (&sigev, EV_MAXPRI); 782 ev_set_priority (&sigev, EV_MAXPRI);
727 } 783 }
728} 784}
729 785
730void 786void
752 array_free (pending, [i]); 808 array_free (pending, [i]);
753 809
754 /* have to use the microsoft-never-gets-it-right macro */ 810 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange); 811 array_free_microshit (fdchange);
756 array_free_microshit (timer); 812 array_free_microshit (timer);
813#if EV_PERIODICS
757 array_free_microshit (periodic); 814 array_free_microshit (periodic);
815#endif
758 array_free_microshit (idle); 816 array_free_microshit (idle);
759 array_free_microshit (prepare); 817 array_free_microshit (prepare);
760 array_free_microshit (check); 818 array_free_microshit (check);
761 819
762 method = 0; 820 method = 0;
820} 878}
821 879
822#endif 880#endif
823 881
824#if EV_MULTIPLICITY 882#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop * 883struct ev_loop *
829#else 884#else
830static int default_loop;
831
832int 885int
833#endif 886#endif
834ev_default_loop (int methods) 887ev_default_loop (int methods)
835{ 888{
836 if (sigpipe [0] == sigpipe [1]) 889 if (sigpipe [0] == sigpipe [1])
897 postfork = 1; 950 postfork = 1;
898} 951}
899 952
900/*****************************************************************************/ 953/*****************************************************************************/
901 954
955static int
956any_pending (EV_P)
957{
958 int pri;
959
960 for (pri = NUMPRI; pri--; )
961 if (pendingcnt [pri])
962 return 1;
963
964 return 0;
965}
966
902static void 967static void
903call_pending (EV_P) 968call_pending (EV_P)
904{ 969{
905 int pri; 970 int pri;
906 971
910 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 975 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
911 976
912 if (p->w) 977 if (p->w)
913 { 978 {
914 p->w->pending = 0; 979 p->w->pending = 0;
915 p->w->cb (EV_A_ p->w, p->events); 980 EV_CB_INVOKE (p->w, p->events);
916 } 981 }
917 } 982 }
918} 983}
919 984
920static void 985static void
928 993
929 /* first reschedule or stop timer */ 994 /* first reschedule or stop timer */
930 if (w->repeat) 995 if (w->repeat)
931 { 996 {
932 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 997 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
998
933 ((WT)w)->at = mn_now + w->repeat; 999 ((WT)w)->at += w->repeat;
1000 if (((WT)w)->at < mn_now)
1001 ((WT)w)->at = mn_now;
1002
934 downheap ((WT *)timers, timercnt, 0); 1003 downheap ((WT *)timers, timercnt, 0);
935 } 1004 }
936 else 1005 else
937 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1006 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
938 1007
939 event (EV_A_ (W)w, EV_TIMEOUT); 1008 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
940 } 1009 }
941} 1010}
942 1011
1012#if EV_PERIODICS
943static void 1013static void
944periodics_reify (EV_P) 1014periodics_reify (EV_P)
945{ 1015{
946 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1016 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
947 { 1017 {
948 struct ev_periodic *w = periodics [0]; 1018 struct ev_periodic *w = periodics [0];
949 1019
950 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1020 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
951 1021
952 /* first reschedule or stop timer */ 1022 /* first reschedule or stop timer */
953 if (w->interval) 1023 if (w->reschedule_cb)
954 { 1024 {
1025 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1026
1027 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1028 downheap ((WT *)periodics, periodiccnt, 0);
1029 }
1030 else if (w->interval)
1031 {
955 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1032 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
956 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1033 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
957 downheap ((WT *)periodics, periodiccnt, 0); 1034 downheap ((WT *)periodics, periodiccnt, 0);
958 } 1035 }
959 else 1036 else
960 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1037 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
961 1038
962 event (EV_A_ (W)w, EV_PERIODIC); 1039 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
963 } 1040 }
964} 1041}
965 1042
966static void 1043static void
967periodics_reschedule (EV_P) 1044periodics_reschedule (EV_P)
971 /* adjust periodics after time jump */ 1048 /* adjust periodics after time jump */
972 for (i = 0; i < periodiccnt; ++i) 1049 for (i = 0; i < periodiccnt; ++i)
973 { 1050 {
974 struct ev_periodic *w = periodics [i]; 1051 struct ev_periodic *w = periodics [i];
975 1052
1053 if (w->reschedule_cb)
1054 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
976 if (w->interval) 1055 else if (w->interval)
977 {
978 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1056 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
979
980 if (fabs (diff) >= 1e-4)
981 {
982 ev_periodic_stop (EV_A_ w);
983 ev_periodic_start (EV_A_ w);
984
985 i = 0; /* restart loop, inefficient, but time jumps should be rare */
986 }
987 }
988 } 1057 }
1058
1059 /* now rebuild the heap */
1060 for (i = periodiccnt >> 1; i--; )
1061 downheap ((WT *)periodics, periodiccnt, i);
989} 1062}
1063#endif
990 1064
991inline int 1065inline int
992time_update_monotonic (EV_P) 1066time_update_monotonic (EV_P)
993{ 1067{
994 mn_now = get_clock (); 1068 mn_now = get_clock ();
995 1069
996 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1070 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
997 { 1071 {
998 rt_now = rtmn_diff + mn_now; 1072 ev_rt_now = rtmn_diff + mn_now;
999 return 0; 1073 return 0;
1000 } 1074 }
1001 else 1075 else
1002 { 1076 {
1003 now_floor = mn_now; 1077 now_floor = mn_now;
1004 rt_now = ev_time (); 1078 ev_rt_now = ev_time ();
1005 return 1; 1079 return 1;
1006 } 1080 }
1007} 1081}
1008 1082
1009static void 1083static void
1018 { 1092 {
1019 ev_tstamp odiff = rtmn_diff; 1093 ev_tstamp odiff = rtmn_diff;
1020 1094
1021 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1095 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1022 { 1096 {
1023 rtmn_diff = rt_now - mn_now; 1097 rtmn_diff = ev_rt_now - mn_now;
1024 1098
1025 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1099 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1026 return; /* all is well */ 1100 return; /* all is well */
1027 1101
1028 rt_now = ev_time (); 1102 ev_rt_now = ev_time ();
1029 mn_now = get_clock (); 1103 mn_now = get_clock ();
1030 now_floor = mn_now; 1104 now_floor = mn_now;
1031 } 1105 }
1032 1106
1107# if EV_PERIODICS
1033 periodics_reschedule (EV_A); 1108 periodics_reschedule (EV_A);
1109# endif
1034 /* no timer adjustment, as the monotonic clock doesn't jump */ 1110 /* no timer adjustment, as the monotonic clock doesn't jump */
1035 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1111 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1036 } 1112 }
1037 } 1113 }
1038 else 1114 else
1039#endif 1115#endif
1040 { 1116 {
1041 rt_now = ev_time (); 1117 ev_rt_now = ev_time ();
1042 1118
1043 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1119 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1044 { 1120 {
1121#if EV_PERIODICS
1045 periodics_reschedule (EV_A); 1122 periodics_reschedule (EV_A);
1123#endif
1046 1124
1047 /* adjust timers. this is easy, as the offset is the same for all */ 1125 /* adjust timers. this is easy, as the offset is the same for all */
1048 for (i = 0; i < timercnt; ++i) 1126 for (i = 0; i < timercnt; ++i)
1049 ((WT)timers [i])->at += rt_now - mn_now; 1127 ((WT)timers [i])->at += ev_rt_now - mn_now;
1050 } 1128 }
1051 1129
1052 mn_now = rt_now; 1130 mn_now = ev_rt_now;
1053 } 1131 }
1054} 1132}
1055 1133
1056void 1134void
1057ev_ref (EV_P) 1135ev_ref (EV_P)
1089 /* update fd-related kernel structures */ 1167 /* update fd-related kernel structures */
1090 fd_reify (EV_A); 1168 fd_reify (EV_A);
1091 1169
1092 /* calculate blocking time */ 1170 /* calculate blocking time */
1093 1171
1094 /* we only need this for !monotonic clockor timers, but as we basically 1172 /* we only need this for !monotonic clock or timers, but as we basically
1095 always have timers, we just calculate it always */ 1173 always have timers, we just calculate it always */
1096#if EV_USE_MONOTONIC 1174#if EV_USE_MONOTONIC
1097 if (expect_true (have_monotonic)) 1175 if (expect_true (have_monotonic))
1098 time_update_monotonic (EV_A); 1176 time_update_monotonic (EV_A);
1099 else 1177 else
1100#endif 1178#endif
1101 { 1179 {
1102 rt_now = ev_time (); 1180 ev_rt_now = ev_time ();
1103 mn_now = rt_now; 1181 mn_now = ev_rt_now;
1104 } 1182 }
1105 1183
1106 if (flags & EVLOOP_NONBLOCK || idlecnt) 1184 if (flags & EVLOOP_NONBLOCK || idlecnt)
1107 block = 0.; 1185 block = 0.;
1108 else 1186 else
1113 { 1191 {
1114 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1192 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1115 if (block > to) block = to; 1193 if (block > to) block = to;
1116 } 1194 }
1117 1195
1196#if EV_PERIODICS
1118 if (periodiccnt) 1197 if (periodiccnt)
1119 { 1198 {
1120 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1199 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1121 if (block > to) block = to; 1200 if (block > to) block = to;
1122 } 1201 }
1202#endif
1123 1203
1124 if (block < 0.) block = 0.; 1204 if (block < 0.) block = 0.;
1125 } 1205 }
1126 1206
1127 method_poll (EV_A_ block); 1207 method_poll (EV_A_ block);
1128 1208
1129 /* update rt_now, do magic */ 1209 /* update ev_rt_now, do magic */
1130 time_update (EV_A); 1210 time_update (EV_A);
1131 1211
1132 /* queue pending timers and reschedule them */ 1212 /* queue pending timers and reschedule them */
1133 timers_reify (EV_A); /* relative timers called last */ 1213 timers_reify (EV_A); /* relative timers called last */
1214#if EV_PERIODICS
1134 periodics_reify (EV_A); /* absolute timers called first */ 1215 periodics_reify (EV_A); /* absolute timers called first */
1216#endif
1135 1217
1136 /* queue idle watchers unless io or timers are pending */ 1218 /* queue idle watchers unless io or timers are pending */
1137 if (!pendingcnt) 1219 if (idlecnt && !any_pending (EV_A))
1138 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1220 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1139 1221
1140 /* queue check watchers, to be executed first */ 1222 /* queue check watchers, to be executed first */
1141 if (checkcnt) 1223 if (checkcnt)
1142 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1224 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1230{ 1312{
1231 ev_clear_pending (EV_A_ (W)w); 1313 ev_clear_pending (EV_A_ (W)w);
1232 if (!ev_is_active (w)) 1314 if (!ev_is_active (w))
1233 return; 1315 return;
1234 1316
1317 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1318
1235 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1319 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1236 ev_stop (EV_A_ (W)w); 1320 ev_stop (EV_A_ (W)w);
1237 1321
1238 fd_change (EV_A_ w->fd); 1322 fd_change (EV_A_ w->fd);
1239} 1323}
1269 { 1353 {
1270 timers [((W)w)->active - 1] = timers [timercnt]; 1354 timers [((W)w)->active - 1] = timers [timercnt];
1271 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1355 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1272 } 1356 }
1273 1357
1274 ((WT)w)->at = w->repeat; 1358 ((WT)w)->at -= mn_now;
1275 1359
1276 ev_stop (EV_A_ (W)w); 1360 ev_stop (EV_A_ (W)w);
1277} 1361}
1278 1362
1279void 1363void
1280ev_timer_again (EV_P_ struct ev_timer *w) 1364ev_timer_again (EV_P_ struct ev_timer *w)
1281{ 1365{
1282 if (ev_is_active (w)) 1366 if (ev_is_active (w))
1283 { 1367 {
1284 if (w->repeat) 1368 if (w->repeat)
1285 {
1286 ((WT)w)->at = mn_now + w->repeat;
1287 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1288 }
1289 else 1370 else
1290 ev_timer_stop (EV_A_ w); 1371 ev_timer_stop (EV_A_ w);
1291 } 1372 }
1292 else if (w->repeat) 1373 else if (w->repeat)
1293 ev_timer_start (EV_A_ w); 1374 ev_timer_start (EV_A_ w);
1294} 1375}
1295 1376
1377#if EV_PERIODICS
1296void 1378void
1297ev_periodic_start (EV_P_ struct ev_periodic *w) 1379ev_periodic_start (EV_P_ struct ev_periodic *w)
1298{ 1380{
1299 if (ev_is_active (w)) 1381 if (ev_is_active (w))
1300 return; 1382 return;
1301 1383
1384 if (w->reschedule_cb)
1385 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1386 else if (w->interval)
1387 {
1302 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1388 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1303
1304 /* this formula differs from the one in periodic_reify because we do not always round up */ 1389 /* this formula differs from the one in periodic_reify because we do not always round up */
1305 if (w->interval)
1306 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1390 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1391 }
1307 1392
1308 ev_start (EV_A_ (W)w, ++periodiccnt); 1393 ev_start (EV_A_ (W)w, ++periodiccnt);
1309 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1394 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1310 periodics [periodiccnt - 1] = w; 1395 periodics [periodiccnt - 1] = w;
1311 upheap ((WT *)periodics, periodiccnt - 1); 1396 upheap ((WT *)periodics, periodiccnt - 1);
1330 1415
1331 ev_stop (EV_A_ (W)w); 1416 ev_stop (EV_A_ (W)w);
1332} 1417}
1333 1418
1334void 1419void
1420ev_periodic_again (EV_P_ struct ev_periodic *w)
1421{
1422 /* TODO: use adjustheap and recalculation */
1423 ev_periodic_stop (EV_A_ w);
1424 ev_periodic_start (EV_A_ w);
1425}
1426#endif
1427
1428void
1335ev_idle_start (EV_P_ struct ev_idle *w) 1429ev_idle_start (EV_P_ struct ev_idle *w)
1336{ 1430{
1337 if (ev_is_active (w)) 1431 if (ev_is_active (w))
1338 return; 1432 return;
1339 1433
1388 1482
1389void 1483void
1390ev_check_stop (EV_P_ struct ev_check *w) 1484ev_check_stop (EV_P_ struct ev_check *w)
1391{ 1485{
1392 ev_clear_pending (EV_A_ (W)w); 1486 ev_clear_pending (EV_A_ (W)w);
1393 if (ev_is_active (w)) 1487 if (!ev_is_active (w))
1394 return; 1488 return;
1395 1489
1396 checks [((W)w)->active - 1] = checks [--checkcnt]; 1490 checks [((W)w)->active - 1] = checks [--checkcnt];
1397 ev_stop (EV_A_ (W)w); 1491 ev_stop (EV_A_ (W)w);
1398} 1492}
1459 1553
1460void 1554void
1461ev_child_stop (EV_P_ struct ev_child *w) 1555ev_child_stop (EV_P_ struct ev_child *w)
1462{ 1556{
1463 ev_clear_pending (EV_A_ (W)w); 1557 ev_clear_pending (EV_A_ (W)w);
1464 if (ev_is_active (w)) 1558 if (!ev_is_active (w))
1465 return; 1559 return;
1466 1560
1467 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1561 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1468 ev_stop (EV_A_ (W)w); 1562 ev_stop (EV_A_ (W)w);
1469} 1563}
1513 else 1607 else
1514 { 1608 {
1515 once->cb = cb; 1609 once->cb = cb;
1516 once->arg = arg; 1610 once->arg = arg;
1517 1611
1518 ev_watcher_init (&once->io, once_cb_io); 1612 ev_init (&once->io, once_cb_io);
1519 if (fd >= 0) 1613 if (fd >= 0)
1520 { 1614 {
1521 ev_io_set (&once->io, fd, events); 1615 ev_io_set (&once->io, fd, events);
1522 ev_io_start (EV_A_ &once->io); 1616 ev_io_start (EV_A_ &once->io);
1523 } 1617 }
1524 1618
1525 ev_watcher_init (&once->to, once_cb_to); 1619 ev_init (&once->to, once_cb_to);
1526 if (timeout >= 0.) 1620 if (timeout >= 0.)
1527 { 1621 {
1528 ev_timer_set (&once->to, timeout, 0.); 1622 ev_timer_set (&once->to, timeout, 0.);
1529 ev_timer_start (EV_A_ &once->to); 1623 ev_timer_start (EV_A_ &once->to);
1530 } 1624 }
1531 } 1625 }
1532} 1626}
1533 1627
1628#ifdef __cplusplus
1629}
1630#endif
1631

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines