ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.76 by root, Wed Nov 7 18:47:26 2007 UTC vs.
Revision 1.227 by root, Fri May 2 07:20:01 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <fcntl.h> 136#include <fcntl.h>
66#include <sys/types.h> 143#include <sys/types.h>
67#include <time.h> 144#include <time.h>
68 145
69#include <signal.h> 146#include <signal.h>
70 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
71#ifndef WIN32 154#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 155# include <sys/time.h>
74# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
75#endif 163# endif
76/**/ 164#endif
165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
77 167
78#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
80#endif 178#endif
81 179
82#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
84#endif 182#endif
85 183
86#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
88#endif 190#endif
89 191
90#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
91# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
92#endif 198#endif
93 199
94#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
96#endif 202#endif
97 203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
98#ifndef EV_USE_WIN32 208#ifndef EV_USE_INOTIFY
99# ifdef WIN32 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1 210# define EV_USE_INOTIFY 1
103# else 211# else
104# define EV_USE_WIN32 0 212# define EV_USE_INOTIFY 0
105# endif 213# endif
106#endif 214#endif
107 215
108#ifndef EV_USE_REALTIME 216#ifndef EV_PID_HASHSIZE
109# define EV_USE_REALTIME 1 217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
110#endif 221# endif
222#endif
111 223
112/**/ 224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
113 241
114#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
117#endif 245#endif
119#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
122#endif 250#endif
123 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
124/**/ 283/**/
125 284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
130 298
131#include "ev.h"
132
133#if __GNUC__ >= 3 299#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 301# define noinline __attribute__ ((noinline))
136#else 302#else
137# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
138# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
139#endif 308#endif
140 309
141#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
143 319
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
146 322
323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325
147typedef struct ev_watcher *W; 326typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
150 329
330#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif
152 335
336#ifdef _WIN32
153#include "ev_win32.c" 337# include "ev_win32.c"
338#endif
154 339
155/*****************************************************************************/ 340/*****************************************************************************/
156 341
157static void (*syserr_cb)(const char *msg); 342static void (*syserr_cb)(const char *msg);
158 343
344void
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 345ev_set_syserr_cb (void (*cb)(const char *msg))
160{ 346{
161 syserr_cb = cb; 347 syserr_cb = cb;
162} 348}
163 349
164static void 350static void noinline
165syserr (const char *msg) 351syserr (const char *msg)
166{ 352{
167 if (!msg) 353 if (!msg)
168 msg = "(libev) system error"; 354 msg = "(libev) system error";
169 355
174 perror (msg); 360 perror (msg);
175 abort (); 361 abort ();
176 } 362 }
177} 363}
178 364
365static void *
366ev_realloc_emul (void *ptr, long size)
367{
368 /* some systems, notably openbsd and darwin, fail to properly
369 * implement realloc (x, 0) (as required by both ansi c-98 and
370 * the single unix specification, so work around them here.
371 */
372
373 if (size)
374 return realloc (ptr, size);
375
376 free (ptr);
377 return 0;
378}
379
179static void *(*alloc)(void *ptr, long size); 380static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
180 381
382void
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 383ev_set_allocator (void *(*cb)(void *ptr, long size))
182{ 384{
183 alloc = cb; 385 alloc = cb;
184} 386}
185 387
186static void * 388inline_speed void *
187ev_realloc (void *ptr, long size) 389ev_realloc (void *ptr, long size)
188{ 390{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 391 ptr = alloc (ptr, size);
190 392
191 if (!ptr && size) 393 if (!ptr && size)
192 { 394 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 395 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort (); 396 abort ();
205typedef struct 407typedef struct
206{ 408{
207 WL head; 409 WL head;
208 unsigned char events; 410 unsigned char events;
209 unsigned char reify; 411 unsigned char reify;
412#if EV_SELECT_IS_WINSOCKET
413 SOCKET handle;
414#endif
210} ANFD; 415} ANFD;
211 416
212typedef struct 417typedef struct
213{ 418{
214 W w; 419 W w;
215 int events; 420 int events;
216} ANPENDING; 421} ANPENDING;
217 422
423#if EV_USE_INOTIFY
424typedef struct
425{
426 WL head;
427} ANFS;
428#endif
429
218#if EV_MULTIPLICITY 430#if EV_MULTIPLICITY
219 431
220struct ev_loop 432 struct ev_loop
221{ 433 {
434 ev_tstamp ev_rt_now;
435 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 436 #define VAR(name,decl) decl;
223# include "ev_vars.h" 437 #include "ev_vars.h"
224};
225# undef VAR 438 #undef VAR
439 };
226# include "ev_wrap.h" 440 #include "ev_wrap.h"
441
442 static struct ev_loop default_loop_struct;
443 struct ev_loop *ev_default_loop_ptr;
227 444
228#else 445#else
229 446
447 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 448 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 449 #include "ev_vars.h"
232# undef VAR 450 #undef VAR
451
452 static int ev_default_loop_ptr;
233 453
234#endif 454#endif
235 455
236/*****************************************************************************/ 456/*****************************************************************************/
237 457
238inline ev_tstamp 458ev_tstamp
239ev_time (void) 459ev_time (void)
240{ 460{
241#if EV_USE_REALTIME 461#if EV_USE_REALTIME
242 struct timespec ts; 462 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 463 clock_gettime (CLOCK_REALTIME, &ts);
247 gettimeofday (&tv, 0); 467 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 468 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif 469#endif
250} 470}
251 471
252inline ev_tstamp 472ev_tstamp inline_size
253get_clock (void) 473get_clock (void)
254{ 474{
255#if EV_USE_MONOTONIC 475#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 476 if (expect_true (have_monotonic))
257 { 477 {
262#endif 482#endif
263 483
264 return ev_time (); 484 return ev_time ();
265} 485}
266 486
487#if EV_MULTIPLICITY
267ev_tstamp 488ev_tstamp
268ev_now (EV_P) 489ev_now (EV_P)
269{ 490{
270 return rt_now; 491 return ev_rt_now;
271} 492}
493#endif
272 494
273#define array_roundsize(type,n) ((n) | 4 & ~3) 495void
496ev_sleep (ev_tstamp delay)
497{
498 if (delay > 0.)
499 {
500#if EV_USE_NANOSLEEP
501 struct timespec ts;
502
503 ts.tv_sec = (time_t)delay;
504 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
505
506 nanosleep (&ts, 0);
507#elif defined(_WIN32)
508 Sleep ((unsigned long)(delay * 1e3));
509#else
510 struct timeval tv;
511
512 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514
515 select (0, 0, 0, 0, &tv);
516#endif
517 }
518}
519
520/*****************************************************************************/
521
522int inline_size
523array_nextsize (int elem, int cur, int cnt)
524{
525 int ncur = cur + 1;
526
527 do
528 ncur <<= 1;
529 while (cnt > ncur);
530
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096)
533 {
534 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
536 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem;
538 }
539
540 return ncur;
541}
542
543static noinline void *
544array_realloc (int elem, void *base, int *cur, int cnt)
545{
546 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur);
548}
274 549
275#define array_needsize(type,base,cur,cnt,init) \ 550#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 551 if (expect_false ((cnt) > (cur))) \
277 { \ 552 { \
278 int newcnt = cur; \ 553 int ocur_ = (cur); \
279 do \ 554 (base) = (type *)array_realloc \
280 { \ 555 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 556 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 557 }
289 558
559#if 0
290#define array_slim(type,stem) \ 560#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 561 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 562 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 563 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 564 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 565 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 566 }
297 567#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 568
303#define array_free(stem, idx) \ 569#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 570 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
305 571
306/*****************************************************************************/ 572/*****************************************************************************/
307 573
308static void 574void noinline
575ev_feed_event (EV_P_ void *w, int revents)
576{
577 W w_ = (W)w;
578 int pri = ABSPRI (w_);
579
580 if (expect_false (w_->pending))
581 pendings [pri][w_->pending - 1].events |= revents;
582 else
583 {
584 w_->pending = ++pendingcnt [pri];
585 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
586 pendings [pri][w_->pending - 1].w = w_;
587 pendings [pri][w_->pending - 1].events = revents;
588 }
589}
590
591void inline_speed
592queue_events (EV_P_ W *events, int eventcnt, int type)
593{
594 int i;
595
596 for (i = 0; i < eventcnt; ++i)
597 ev_feed_event (EV_A_ events [i], type);
598}
599
600/*****************************************************************************/
601
602void inline_size
309anfds_init (ANFD *base, int count) 603anfds_init (ANFD *base, int count)
310{ 604{
311 while (count--) 605 while (count--)
312 { 606 {
313 base->head = 0; 607 base->head = 0;
316 610
317 ++base; 611 ++base;
318 } 612 }
319} 613}
320 614
321static void 615void inline_speed
322event (EV_P_ W w, int events)
323{
324 if (w->pending)
325 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events;
327 return;
328 }
329
330 w->pending = ++pendingcnt [ABSPRI (w)];
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w;
333 pendings [ABSPRI (w)][w->pending - 1].events = events;
334}
335
336static void
337queue_events (EV_P_ W *events, int eventcnt, int type)
338{
339 int i;
340
341 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type);
343}
344
345static void
346fd_event (EV_P_ int fd, int events) 616fd_event (EV_P_ int fd, int revents)
347{ 617{
348 ANFD *anfd = anfds + fd; 618 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 619 ev_io *w;
350 620
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 621 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
352 { 622 {
353 int ev = w->events & events; 623 int ev = w->events & revents;
354 624
355 if (ev) 625 if (ev)
356 event (EV_A_ (W)w, ev); 626 ev_feed_event (EV_A_ (W)w, ev);
357 } 627 }
358} 628}
359 629
360/*****************************************************************************/ 630void
631ev_feed_fd_event (EV_P_ int fd, int revents)
632{
633 if (fd >= 0 && fd < anfdmax)
634 fd_event (EV_A_ fd, revents);
635}
361 636
362static void 637void inline_size
363fd_reify (EV_P) 638fd_reify (EV_P)
364{ 639{
365 int i; 640 int i;
366 641
367 for (i = 0; i < fdchangecnt; ++i) 642 for (i = 0; i < fdchangecnt; ++i)
368 { 643 {
369 int fd = fdchanges [i]; 644 int fd = fdchanges [i];
370 ANFD *anfd = anfds + fd; 645 ANFD *anfd = anfds + fd;
371 struct ev_io *w; 646 ev_io *w;
372 647
373 int events = 0; 648 unsigned char events = 0;
374 649
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 650 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
376 events |= w->events; 651 events |= (unsigned char)w->events;
377 652
653#if EV_SELECT_IS_WINSOCKET
654 if (events)
655 {
656 unsigned long argp;
657 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else
660 anfd->handle = _get_osfhandle (fd);
661 #endif
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
663 }
664#endif
665
666 {
667 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify;
669
378 anfd->reify = 0; 670 anfd->reify = 0;
379
380 method_modify (EV_A_ fd, anfd->events, events);
381 anfd->events = events; 671 anfd->events = events;
672
673 if (o_events != events || o_reify & EV_IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events);
675 }
382 } 676 }
383 677
384 fdchangecnt = 0; 678 fdchangecnt = 0;
385} 679}
386 680
387static void 681void inline_size
388fd_change (EV_P_ int fd) 682fd_change (EV_P_ int fd, int flags)
389{ 683{
390 if (anfds [fd].reify) 684 unsigned char reify = anfds [fd].reify;
391 return;
392
393 anfds [fd].reify = 1; 685 anfds [fd].reify |= flags;
394 686
687 if (expect_true (!reify))
688 {
395 ++fdchangecnt; 689 ++fdchangecnt;
396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
397 fdchanges [fdchangecnt - 1] = fd; 691 fdchanges [fdchangecnt - 1] = fd;
692 }
398} 693}
399 694
400static void 695void inline_speed
401fd_kill (EV_P_ int fd) 696fd_kill (EV_P_ int fd)
402{ 697{
403 struct ev_io *w; 698 ev_io *w;
404 699
405 while ((w = (struct ev_io *)anfds [fd].head)) 700 while ((w = (ev_io *)anfds [fd].head))
406 { 701 {
407 ev_io_stop (EV_A_ w); 702 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 703 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 704 }
410} 705}
411 706
412static int 707int inline_size
413fd_valid (int fd) 708fd_valid (int fd)
414{ 709{
415#ifdef WIN32 710#ifdef _WIN32
416 return !!win32_get_osfhandle (fd); 711 return _get_osfhandle (fd) != -1;
417#else 712#else
418 return fcntl (fd, F_GETFD) != -1; 713 return fcntl (fd, F_GETFD) != -1;
419#endif 714#endif
420} 715}
421 716
422/* called on EBADF to verify fds */ 717/* called on EBADF to verify fds */
423static void 718static void noinline
424fd_ebadf (EV_P) 719fd_ebadf (EV_P)
425{ 720{
426 int fd; 721 int fd;
427 722
428 for (fd = 0; fd < anfdmax; ++fd) 723 for (fd = 0; fd < anfdmax; ++fd)
430 if (!fd_valid (fd) == -1 && errno == EBADF) 725 if (!fd_valid (fd) == -1 && errno == EBADF)
431 fd_kill (EV_A_ fd); 726 fd_kill (EV_A_ fd);
432} 727}
433 728
434/* called on ENOMEM in select/poll to kill some fds and retry */ 729/* called on ENOMEM in select/poll to kill some fds and retry */
435static void 730static void noinline
436fd_enomem (EV_P) 731fd_enomem (EV_P)
437{ 732{
438 int fd; 733 int fd;
439 734
440 for (fd = anfdmax; fd--; ) 735 for (fd = anfdmax; fd--; )
443 fd_kill (EV_A_ fd); 738 fd_kill (EV_A_ fd);
444 return; 739 return;
445 } 740 }
446} 741}
447 742
448/* usually called after fork if method needs to re-arm all fds from scratch */ 743/* usually called after fork if backend needs to re-arm all fds from scratch */
449static void 744static void noinline
450fd_rearm_all (EV_P) 745fd_rearm_all (EV_P)
451{ 746{
452 int fd; 747 int fd;
453 748
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd) 749 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events) 750 if (anfds [fd].events)
457 { 751 {
458 anfds [fd].events = 0; 752 anfds [fd].events = 0;
459 fd_change (EV_A_ fd); 753 fd_change (EV_A_ fd, EV_IOFDSET | 1);
460 } 754 }
461} 755}
462 756
463/*****************************************************************************/ 757/*****************************************************************************/
464 758
465static void 759/* towards the root */
760void inline_speed
466upheap (WT *heap, int k) 761upheap (WT *heap, int k)
467{ 762{
468 WT w = heap [k]; 763 WT w = heap [k];
469 764
470 while (k && heap [k >> 1]->at > w->at) 765 while (k)
471 { 766 {
767 int p = (k - 1) >> 1;
768
769 if (heap [p]->at <= w->at)
770 break;
771
472 heap [k] = heap [k >> 1]; 772 heap [k] = heap [p];
473 ((W)heap [k])->active = k + 1; 773 ((W)heap [k])->active = k + 1;
474 k >>= 1; 774 k = p;
475 } 775 }
476 776
477 heap [k] = w; 777 heap [k] = w;
478 ((W)heap [k])->active = k + 1; 778 ((W)heap [k])->active = k + 1;
479
480} 779}
481 780
482static void 781/* away from the root */
782void inline_speed
483downheap (WT *heap, int N, int k) 783downheap (WT *heap, int N, int k)
484{ 784{
485 WT w = heap [k]; 785 WT w = heap [k];
486 786
487 while (k < (N >> 1)) 787 for (;;)
488 { 788 {
489 int j = k << 1; 789 int c = (k << 1) + 1;
490 790
491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 791 if (c >= N)
492 ++j;
493
494 if (w->at <= heap [j]->at)
495 break; 792 break;
496 793
794 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
795 ? 1 : 0;
796
797 if (w->at <= heap [c]->at)
798 break;
799
497 heap [k] = heap [j]; 800 heap [k] = heap [c];
498 ((W)heap [k])->active = k + 1; 801 ((W)heap [k])->active = k + 1;
802
499 k = j; 803 k = c;
500 } 804 }
501 805
502 heap [k] = w; 806 heap [k] = w;
503 ((W)heap [k])->active = k + 1; 807 ((W)heap [k])->active = k + 1;
504} 808}
505 809
810void inline_size
811adjustheap (WT *heap, int N, int k)
812{
813 upheap (heap, k);
814 downheap (heap, N, k);
815}
816
506/*****************************************************************************/ 817/*****************************************************************************/
507 818
508typedef struct 819typedef struct
509{ 820{
510 WL head; 821 WL head;
511 sig_atomic_t volatile gotsig; 822 EV_ATOMIC_T gotsig;
512} ANSIG; 823} ANSIG;
513 824
514static ANSIG *signals; 825static ANSIG *signals;
515static int signalmax; 826static int signalmax;
516 827
517static int sigpipe [2]; 828static EV_ATOMIC_T gotsig;
518static sig_atomic_t volatile gotsig;
519static struct ev_io sigev;
520 829
521static void 830void inline_size
522signals_init (ANSIG *base, int count) 831signals_init (ANSIG *base, int count)
523{ 832{
524 while (count--) 833 while (count--)
525 { 834 {
526 base->head = 0; 835 base->head = 0;
528 837
529 ++base; 838 ++base;
530 } 839 }
531} 840}
532 841
842/*****************************************************************************/
843
844void inline_speed
845fd_intern (int fd)
846{
847#ifdef _WIN32
848 int arg = 1;
849 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
850#else
851 fcntl (fd, F_SETFD, FD_CLOEXEC);
852 fcntl (fd, F_SETFL, O_NONBLOCK);
853#endif
854}
855
856static void noinline
857evpipe_init (EV_P)
858{
859 if (!ev_is_active (&pipeev))
860 {
861#if EV_USE_EVENTFD
862 if ((evfd = eventfd (0, 0)) >= 0)
863 {
864 evpipe [0] = -1;
865 fd_intern (evfd);
866 ev_io_set (&pipeev, evfd, EV_READ);
867 }
868 else
869#endif
870 {
871 while (pipe (evpipe))
872 syserr ("(libev) error creating signal/async pipe");
873
874 fd_intern (evpipe [0]);
875 fd_intern (evpipe [1]);
876 ev_io_set (&pipeev, evpipe [0], EV_READ);
877 }
878
879 ev_io_start (EV_A_ &pipeev);
880 ev_unref (EV_A); /* watcher should not keep loop alive */
881 }
882}
883
884void inline_size
885evpipe_write (EV_P_ EV_ATOMIC_T *flag)
886{
887 if (!*flag)
888 {
889 int old_errno = errno; /* save errno because write might clobber it */
890
891 *flag = 1;
892
893#if EV_USE_EVENTFD
894 if (evfd >= 0)
895 {
896 uint64_t counter = 1;
897 write (evfd, &counter, sizeof (uint64_t));
898 }
899 else
900#endif
901 write (evpipe [1], &old_errno, 1);
902
903 errno = old_errno;
904 }
905}
906
533static void 907static void
908pipecb (EV_P_ ev_io *iow, int revents)
909{
910#if EV_USE_EVENTFD
911 if (evfd >= 0)
912 {
913 uint64_t counter = 1;
914 read (evfd, &counter, sizeof (uint64_t));
915 }
916 else
917#endif
918 {
919 char dummy;
920 read (evpipe [0], &dummy, 1);
921 }
922
923 if (gotsig && ev_is_default_loop (EV_A))
924 {
925 int signum;
926 gotsig = 0;
927
928 for (signum = signalmax; signum--; )
929 if (signals [signum].gotsig)
930 ev_feed_signal_event (EV_A_ signum + 1);
931 }
932
933#if EV_ASYNC_ENABLE
934 if (gotasync)
935 {
936 int i;
937 gotasync = 0;
938
939 for (i = asynccnt; i--; )
940 if (asyncs [i]->sent)
941 {
942 asyncs [i]->sent = 0;
943 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
944 }
945 }
946#endif
947}
948
949/*****************************************************************************/
950
951static void
534sighandler (int signum) 952ev_sighandler (int signum)
535{ 953{
954#if EV_MULTIPLICITY
955 struct ev_loop *loop = &default_loop_struct;
956#endif
957
536#if WIN32 958#if _WIN32
537 signal (signum, sighandler); 959 signal (signum, ev_sighandler);
538#endif 960#endif
539 961
540 signals [signum - 1].gotsig = 1; 962 signals [signum - 1].gotsig = 1;
541 963 evpipe_write (EV_A_ &gotsig);
542 if (!gotsig)
543 {
544 int old_errno = errno;
545 gotsig = 1;
546#ifdef WIN32
547 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
548#else
549 write (sigpipe [1], &signum, 1);
550#endif
551 errno = old_errno;
552 }
553} 964}
554 965
555static void 966void noinline
556sigcb (EV_P_ struct ev_io *iow, int revents) 967ev_feed_signal_event (EV_P_ int signum)
557{ 968{
558 WL w; 969 WL w;
970
971#if EV_MULTIPLICITY
972 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
973#endif
974
559 int signum; 975 --signum;
560 976
561#ifdef WIN32 977 if (signum < 0 || signum >= signalmax)
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 978 return;
563#else
564 read (sigpipe [0], &revents, 1);
565#endif
566 gotsig = 0;
567 979
568 for (signum = signalmax; signum--; )
569 if (signals [signum].gotsig)
570 {
571 signals [signum].gotsig = 0; 980 signals [signum].gotsig = 0;
572 981
573 for (w = signals [signum].head; w; w = w->next) 982 for (w = signals [signum].head; w; w = w->next)
574 event (EV_A_ (W)w, EV_SIGNAL); 983 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
575 }
576}
577
578static void
579siginit (EV_P)
580{
581#ifndef WIN32
582 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
583 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
584
585 /* rather than sort out wether we really need nb, set it */
586 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
587 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
588#endif
589
590 ev_io_set (&sigev, sigpipe [0], EV_READ);
591 ev_io_start (EV_A_ &sigev);
592 ev_unref (EV_A); /* child watcher should not keep loop alive */
593} 984}
594 985
595/*****************************************************************************/ 986/*****************************************************************************/
596 987
597static struct ev_child *childs [PID_HASHSIZE]; 988static WL childs [EV_PID_HASHSIZE];
598 989
599#ifndef WIN32 990#ifndef _WIN32
600 991
601static struct ev_signal childev; 992static ev_signal childev;
993
994#ifndef WIFCONTINUED
995# define WIFCONTINUED(status) 0
996#endif
997
998void inline_speed
999child_reap (EV_P_ int chain, int pid, int status)
1000{
1001 ev_child *w;
1002 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1003
1004 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1005 {
1006 if ((w->pid == pid || !w->pid)
1007 && (!traced || (w->flags & 1)))
1008 {
1009 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1010 w->rpid = pid;
1011 w->rstatus = status;
1012 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1013 }
1014 }
1015}
602 1016
603#ifndef WCONTINUED 1017#ifndef WCONTINUED
604# define WCONTINUED 0 1018# define WCONTINUED 0
605#endif 1019#endif
606 1020
607static void 1021static void
608child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
609{
610 struct ev_child *w;
611
612 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
613 if (w->pid == pid || !w->pid)
614 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid;
617 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD);
619 }
620}
621
622static void
623childcb (EV_P_ struct ev_signal *sw, int revents) 1022childcb (EV_P_ ev_signal *sw, int revents)
624{ 1023{
625 int pid, status; 1024 int pid, status;
626 1025
1026 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1027 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
628 { 1028 if (!WCONTINUED
1029 || errno != EINVAL
1030 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1031 return;
1032
629 /* make sure we are called again until all childs have been reaped */ 1033 /* make sure we are called again until all children have been reaped */
1034 /* we need to do it this way so that the callback gets called before we continue */
630 event (EV_A_ (W)sw, EV_SIGNAL); 1035 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
631 1036
632 child_reap (EV_A_ sw, pid, pid, status); 1037 child_reap (EV_A_ pid, pid, status);
1038 if (EV_PID_HASHSIZE > 1)
633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1039 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
634 }
635} 1040}
636 1041
637#endif 1042#endif
638 1043
639/*****************************************************************************/ 1044/*****************************************************************************/
640 1045
1046#if EV_USE_PORT
1047# include "ev_port.c"
1048#endif
641#if EV_USE_KQUEUE 1049#if EV_USE_KQUEUE
642# include "ev_kqueue.c" 1050# include "ev_kqueue.c"
643#endif 1051#endif
644#if EV_USE_EPOLL 1052#if EV_USE_EPOLL
645# include "ev_epoll.c" 1053# include "ev_epoll.c"
662{ 1070{
663 return EV_VERSION_MINOR; 1071 return EV_VERSION_MINOR;
664} 1072}
665 1073
666/* return true if we are running with elevated privileges and should ignore env variables */ 1074/* return true if we are running with elevated privileges and should ignore env variables */
667static int 1075int inline_size
668enable_secure (void) 1076enable_secure (void)
669{ 1077{
670#ifdef WIN32 1078#ifdef _WIN32
671 return 0; 1079 return 0;
672#else 1080#else
673 return getuid () != geteuid () 1081 return getuid () != geteuid ()
674 || getgid () != getegid (); 1082 || getgid () != getegid ();
675#endif 1083#endif
676} 1084}
677 1085
678int 1086unsigned int
679ev_method (EV_P) 1087ev_supported_backends (void)
680{ 1088{
681 return method; 1089 unsigned int flags = 0;
682}
683 1090
684static void 1091 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
685loop_init (EV_P_ int methods) 1092 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1093 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1094 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1095 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1096
1097 return flags;
1098}
1099
1100unsigned int
1101ev_recommended_backends (void)
686{ 1102{
687 if (!method) 1103 unsigned int flags = ev_supported_backends ();
1104
1105#ifndef __NetBSD__
1106 /* kqueue is borked on everything but netbsd apparently */
1107 /* it usually doesn't work correctly on anything but sockets and pipes */
1108 flags &= ~EVBACKEND_KQUEUE;
1109#endif
1110#ifdef __APPLE__
1111 // flags &= ~EVBACKEND_KQUEUE; for documentation
1112 flags &= ~EVBACKEND_POLL;
1113#endif
1114
1115 return flags;
1116}
1117
1118unsigned int
1119ev_embeddable_backends (void)
1120{
1121 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1122
1123 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1124 /* please fix it and tell me how to detect the fix */
1125 flags &= ~EVBACKEND_EPOLL;
1126
1127 return flags;
1128}
1129
1130unsigned int
1131ev_backend (EV_P)
1132{
1133 return backend;
1134}
1135
1136unsigned int
1137ev_loop_count (EV_P)
1138{
1139 return loop_count;
1140}
1141
1142void
1143ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1144{
1145 io_blocktime = interval;
1146}
1147
1148void
1149ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1150{
1151 timeout_blocktime = interval;
1152}
1153
1154static void noinline
1155loop_init (EV_P_ unsigned int flags)
1156{
1157 if (!backend)
688 { 1158 {
689#if EV_USE_MONOTONIC 1159#if EV_USE_MONOTONIC
690 { 1160 {
691 struct timespec ts; 1161 struct timespec ts;
692 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1162 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
693 have_monotonic = 1; 1163 have_monotonic = 1;
694 } 1164 }
695#endif 1165#endif
696 1166
697 rt_now = ev_time (); 1167 ev_rt_now = ev_time ();
698 mn_now = get_clock (); 1168 mn_now = get_clock ();
699 now_floor = mn_now; 1169 now_floor = mn_now;
700 rtmn_diff = rt_now - mn_now; 1170 rtmn_diff = ev_rt_now - mn_now;
701 1171
702 if (methods == EVMETHOD_AUTO) 1172 io_blocktime = 0.;
703 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1173 timeout_blocktime = 0.;
1174 backend = 0;
1175 backend_fd = -1;
1176 gotasync = 0;
1177#if EV_USE_INOTIFY
1178 fs_fd = -2;
1179#endif
1180
1181 /* pid check not overridable via env */
1182#ifndef _WIN32
1183 if (flags & EVFLAG_FORKCHECK)
1184 curpid = getpid ();
1185#endif
1186
1187 if (!(flags & EVFLAG_NOENV)
1188 && !enable_secure ()
1189 && getenv ("LIBEV_FLAGS"))
704 methods = atoi (getenv ("LIBEV_METHODS")); 1190 flags = atoi (getenv ("LIBEV_FLAGS"));
705 else
706 methods = EVMETHOD_ANY;
707 1191
708 method = 0; 1192 if (!(flags & 0x0000ffffU))
709#if EV_USE_WIN32 1193 flags |= ev_recommended_backends ();
710 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1194
1195#if EV_USE_PORT
1196 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
711#endif 1197#endif
712#if EV_USE_KQUEUE 1198#if EV_USE_KQUEUE
713 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1199 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
714#endif 1200#endif
715#if EV_USE_EPOLL 1201#if EV_USE_EPOLL
716 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1202 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
717#endif 1203#endif
718#if EV_USE_POLL 1204#if EV_USE_POLL
719 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1205 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
720#endif 1206#endif
721#if EV_USE_SELECT 1207#if EV_USE_SELECT
722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1208 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
723#endif 1209#endif
724 1210
725 ev_watcher_init (&sigev, sigcb); 1211 ev_init (&pipeev, pipecb);
726 ev_set_priority (&sigev, EV_MAXPRI); 1212 ev_set_priority (&pipeev, EV_MAXPRI);
727 } 1213 }
728} 1214}
729 1215
730void 1216static void noinline
731loop_destroy (EV_P) 1217loop_destroy (EV_P)
732{ 1218{
733 int i; 1219 int i;
734 1220
1221 if (ev_is_active (&pipeev))
1222 {
1223 ev_ref (EV_A); /* signal watcher */
1224 ev_io_stop (EV_A_ &pipeev);
1225
1226#if EV_USE_EVENTFD
1227 if (evfd >= 0)
1228 close (evfd);
1229#endif
1230
1231 if (evpipe [0] >= 0)
1232 {
1233 close (evpipe [0]);
1234 close (evpipe [1]);
1235 }
1236 }
1237
735#if EV_USE_WIN32 1238#if EV_USE_INOTIFY
736 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1239 if (fs_fd >= 0)
1240 close (fs_fd);
1241#endif
1242
1243 if (backend_fd >= 0)
1244 close (backend_fd);
1245
1246#if EV_USE_PORT
1247 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
737#endif 1248#endif
738#if EV_USE_KQUEUE 1249#if EV_USE_KQUEUE
739 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1250 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
740#endif 1251#endif
741#if EV_USE_EPOLL 1252#if EV_USE_EPOLL
742 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1253 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
743#endif 1254#endif
744#if EV_USE_POLL 1255#if EV_USE_POLL
745 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1256 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
746#endif 1257#endif
747#if EV_USE_SELECT 1258#if EV_USE_SELECT
748 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1259 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
749#endif 1260#endif
750 1261
751 for (i = NUMPRI; i--; ) 1262 for (i = NUMPRI; i--; )
1263 {
752 array_free (pending, [i]); 1264 array_free (pending, [i]);
1265#if EV_IDLE_ENABLE
1266 array_free (idle, [i]);
1267#endif
1268 }
1269
1270 ev_free (anfds); anfdmax = 0;
753 1271
754 /* have to use the microsoft-never-gets-it-right macro */ 1272 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange); 1273 array_free (fdchange, EMPTY);
756 array_free_microshit (timer); 1274 array_free (timer, EMPTY);
757 array_free_microshit (periodic); 1275#if EV_PERIODIC_ENABLE
758 array_free_microshit (idle); 1276 array_free (periodic, EMPTY);
759 array_free_microshit (prepare); 1277#endif
760 array_free_microshit (check); 1278#if EV_FORK_ENABLE
1279 array_free (fork, EMPTY);
1280#endif
1281 array_free (prepare, EMPTY);
1282 array_free (check, EMPTY);
1283#if EV_ASYNC_ENABLE
1284 array_free (async, EMPTY);
1285#endif
761 1286
762 method = 0; 1287 backend = 0;
763} 1288}
764 1289
765static void 1290#if EV_USE_INOTIFY
1291void inline_size infy_fork (EV_P);
1292#endif
1293
1294void inline_size
766loop_fork (EV_P) 1295loop_fork (EV_P)
767{ 1296{
1297#if EV_USE_PORT
1298 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1299#endif
1300#if EV_USE_KQUEUE
1301 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1302#endif
768#if EV_USE_EPOLL 1303#if EV_USE_EPOLL
769 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1304 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
770#endif 1305#endif
771#if EV_USE_KQUEUE 1306#if EV_USE_INOTIFY
772 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1307 infy_fork (EV_A);
773#endif 1308#endif
774 1309
775 if (ev_is_active (&sigev)) 1310 if (ev_is_active (&pipeev))
776 { 1311 {
777 /* default loop */ 1312 /* this "locks" the handlers against writing to the pipe */
1313 /* while we modify the fd vars */
1314 gotsig = 1;
1315#if EV_ASYNC_ENABLE
1316 gotasync = 1;
1317#endif
778 1318
779 ev_ref (EV_A); 1319 ev_ref (EV_A);
780 ev_io_stop (EV_A_ &sigev); 1320 ev_io_stop (EV_A_ &pipeev);
1321
1322#if EV_USE_EVENTFD
1323 if (evfd >= 0)
1324 close (evfd);
1325#endif
1326
1327 if (evpipe [0] >= 0)
1328 {
781 close (sigpipe [0]); 1329 close (evpipe [0]);
782 close (sigpipe [1]); 1330 close (evpipe [1]);
1331 }
783 1332
784 while (pipe (sigpipe))
785 syserr ("(libev) error creating pipe");
786
787 siginit (EV_A); 1333 evpipe_init (EV_A);
1334 /* now iterate over everything, in case we missed something */
1335 pipecb (EV_A_ &pipeev, EV_READ);
788 } 1336 }
789 1337
790 postfork = 0; 1338 postfork = 0;
791} 1339}
792 1340
793#if EV_MULTIPLICITY 1341#if EV_MULTIPLICITY
794struct ev_loop * 1342struct ev_loop *
795ev_loop_new (int methods) 1343ev_loop_new (unsigned int flags)
796{ 1344{
797 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1345 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
798 1346
799 memset (loop, 0, sizeof (struct ev_loop)); 1347 memset (loop, 0, sizeof (struct ev_loop));
800 1348
801 loop_init (EV_A_ methods); 1349 loop_init (EV_A_ flags);
802 1350
803 if (ev_method (EV_A)) 1351 if (ev_backend (EV_A))
804 return loop; 1352 return loop;
805 1353
806 return 0; 1354 return 0;
807} 1355}
808 1356
814} 1362}
815 1363
816void 1364void
817ev_loop_fork (EV_P) 1365ev_loop_fork (EV_P)
818{ 1366{
819 postfork = 1; 1367 postfork = 1; /* must be in line with ev_default_fork */
820} 1368}
821 1369
822#endif 1370#endif
823 1371
824#if EV_MULTIPLICITY 1372#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop * 1373struct ev_loop *
1374ev_default_loop_init (unsigned int flags)
829#else 1375#else
830static int default_loop;
831
832int 1376int
1377ev_default_loop (unsigned int flags)
833#endif 1378#endif
834ev_default_loop (int methods)
835{ 1379{
836 if (sigpipe [0] == sigpipe [1])
837 if (pipe (sigpipe))
838 return 0;
839
840 if (!default_loop) 1380 if (!ev_default_loop_ptr)
841 { 1381 {
842#if EV_MULTIPLICITY 1382#if EV_MULTIPLICITY
843 struct ev_loop *loop = default_loop = &default_loop_struct; 1383 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
844#else 1384#else
845 default_loop = 1; 1385 ev_default_loop_ptr = 1;
846#endif 1386#endif
847 1387
848 loop_init (EV_A_ methods); 1388 loop_init (EV_A_ flags);
849 1389
850 if (ev_method (EV_A)) 1390 if (ev_backend (EV_A))
851 { 1391 {
852 siginit (EV_A);
853
854#ifndef WIN32 1392#ifndef _WIN32
855 ev_signal_init (&childev, childcb, SIGCHLD); 1393 ev_signal_init (&childev, childcb, SIGCHLD);
856 ev_set_priority (&childev, EV_MAXPRI); 1394 ev_set_priority (&childev, EV_MAXPRI);
857 ev_signal_start (EV_A_ &childev); 1395 ev_signal_start (EV_A_ &childev);
858 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1396 ev_unref (EV_A); /* child watcher should not keep loop alive */
859#endif 1397#endif
860 } 1398 }
861 else 1399 else
862 default_loop = 0; 1400 ev_default_loop_ptr = 0;
863 } 1401 }
864 1402
865 return default_loop; 1403 return ev_default_loop_ptr;
866} 1404}
867 1405
868void 1406void
869ev_default_destroy (void) 1407ev_default_destroy (void)
870{ 1408{
871#if EV_MULTIPLICITY 1409#if EV_MULTIPLICITY
872 struct ev_loop *loop = default_loop; 1410 struct ev_loop *loop = ev_default_loop_ptr;
873#endif 1411#endif
874 1412
875#ifndef WIN32 1413#ifndef _WIN32
876 ev_ref (EV_A); /* child watcher */ 1414 ev_ref (EV_A); /* child watcher */
877 ev_signal_stop (EV_A_ &childev); 1415 ev_signal_stop (EV_A_ &childev);
878#endif 1416#endif
879 1417
880 ev_ref (EV_A); /* signal watcher */
881 ev_io_stop (EV_A_ &sigev);
882
883 close (sigpipe [0]); sigpipe [0] = 0;
884 close (sigpipe [1]); sigpipe [1] = 0;
885
886 loop_destroy (EV_A); 1418 loop_destroy (EV_A);
887} 1419}
888 1420
889void 1421void
890ev_default_fork (void) 1422ev_default_fork (void)
891{ 1423{
892#if EV_MULTIPLICITY 1424#if EV_MULTIPLICITY
893 struct ev_loop *loop = default_loop; 1425 struct ev_loop *loop = ev_default_loop_ptr;
894#endif 1426#endif
895 1427
896 if (method) 1428 if (backend)
897 postfork = 1; 1429 postfork = 1; /* must be in line with ev_loop_fork */
898} 1430}
899 1431
900/*****************************************************************************/ 1432/*****************************************************************************/
901 1433
902static int 1434void
903any_pending (EV_P) 1435ev_invoke (EV_P_ void *w, int revents)
904{ 1436{
905 int pri; 1437 EV_CB_INVOKE ((W)w, revents);
906
907 for (pri = NUMPRI; pri--; )
908 if (pendingcnt [pri])
909 return 1;
910
911 return 0;
912} 1438}
913 1439
914static void 1440void inline_speed
915call_pending (EV_P) 1441call_pending (EV_P)
916{ 1442{
917 int pri; 1443 int pri;
918 1444
919 for (pri = NUMPRI; pri--; ) 1445 for (pri = NUMPRI; pri--; )
920 while (pendingcnt [pri]) 1446 while (pendingcnt [pri])
921 { 1447 {
922 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1448 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
923 1449
924 if (p->w) 1450 if (expect_true (p->w))
925 { 1451 {
1452 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1453
926 p->w->pending = 0; 1454 p->w->pending = 0;
927 p->w->cb (EV_A_ p->w, p->events); 1455 EV_CB_INVOKE (p->w, p->events);
928 } 1456 }
929 } 1457 }
930} 1458}
931 1459
932static void 1460void inline_size
933timers_reify (EV_P) 1461timers_reify (EV_P)
934{ 1462{
935 while (timercnt && ((WT)timers [0])->at <= mn_now) 1463 while (timercnt && ((WT)timers [0])->at <= mn_now)
936 { 1464 {
937 struct ev_timer *w = timers [0]; 1465 ev_timer *w = (ev_timer *)timers [0];
938 1466
939 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1467 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
940 1468
941 /* first reschedule or stop timer */ 1469 /* first reschedule or stop timer */
942 if (w->repeat) 1470 if (w->repeat)
943 { 1471 {
944 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1472 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1473
945 ((WT)w)->at = mn_now + w->repeat; 1474 ((WT)w)->at += w->repeat;
1475 if (((WT)w)->at < mn_now)
1476 ((WT)w)->at = mn_now;
1477
946 downheap ((WT *)timers, timercnt, 0); 1478 downheap (timers, timercnt, 0);
947 } 1479 }
948 else 1480 else
949 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1481 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
950 1482
951 event (EV_A_ (W)w, EV_TIMEOUT); 1483 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
952 } 1484 }
953} 1485}
954 1486
955static void 1487#if EV_PERIODIC_ENABLE
1488void inline_size
956periodics_reify (EV_P) 1489periodics_reify (EV_P)
957{ 1490{
958 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1491 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
959 { 1492 {
960 struct ev_periodic *w = periodics [0]; 1493 ev_periodic *w = (ev_periodic *)periodics [0];
961 1494
962 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1495 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
963 1496
964 /* first reschedule or stop timer */ 1497 /* first reschedule or stop timer */
965 if (w->interval) 1498 if (w->reschedule_cb)
966 { 1499 {
1500 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1501 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1502 downheap (periodics, periodiccnt, 0);
1503 }
1504 else if (w->interval)
1505 {
967 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
968 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1508 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
969 downheap ((WT *)periodics, periodiccnt, 0); 1509 downheap (periodics, periodiccnt, 0);
970 } 1510 }
971 else 1511 else
972 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1512 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
973 1513
974 event (EV_A_ (W)w, EV_PERIODIC); 1514 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
975 } 1515 }
976} 1516}
977 1517
978static void 1518static void noinline
979periodics_reschedule (EV_P) 1519periodics_reschedule (EV_P)
980{ 1520{
981 int i; 1521 int i;
982 1522
983 /* adjust periodics after time jump */ 1523 /* adjust periodics after time jump */
984 for (i = 0; i < periodiccnt; ++i) 1524 for (i = 0; i < periodiccnt; ++i)
985 { 1525 {
986 struct ev_periodic *w = periodics [i]; 1526 ev_periodic *w = (ev_periodic *)periodics [i];
987 1527
1528 if (w->reschedule_cb)
1529 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
988 if (w->interval) 1530 else if (w->interval)
1531 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1532 }
1533
1534 /* now rebuild the heap */
1535 for (i = periodiccnt >> 1; i--; )
1536 downheap (periodics, periodiccnt, i);
1537}
1538#endif
1539
1540#if EV_IDLE_ENABLE
1541void inline_size
1542idle_reify (EV_P)
1543{
1544 if (expect_false (idleall))
1545 {
1546 int pri;
1547
1548 for (pri = NUMPRI; pri--; )
989 { 1549 {
990 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1550 if (pendingcnt [pri])
1551 break;
991 1552
992 if (fabs (diff) >= 1e-4) 1553 if (idlecnt [pri])
993 { 1554 {
994 ev_periodic_stop (EV_A_ w); 1555 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
995 ev_periodic_start (EV_A_ w); 1556 break;
996
997 i = 0; /* restart loop, inefficient, but time jumps should be rare */
998 } 1557 }
999 } 1558 }
1000 } 1559 }
1001} 1560}
1561#endif
1002 1562
1003inline int 1563void inline_speed
1004time_update_monotonic (EV_P) 1564time_update (EV_P_ ev_tstamp max_block)
1005{
1006 mn_now = get_clock ();
1007
1008 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1009 {
1010 rt_now = rtmn_diff + mn_now;
1011 return 0;
1012 }
1013 else
1014 {
1015 now_floor = mn_now;
1016 rt_now = ev_time ();
1017 return 1;
1018 }
1019}
1020
1021static void
1022time_update (EV_P)
1023{ 1565{
1024 int i; 1566 int i;
1025 1567
1026#if EV_USE_MONOTONIC 1568#if EV_USE_MONOTONIC
1027 if (expect_true (have_monotonic)) 1569 if (expect_true (have_monotonic))
1028 { 1570 {
1029 if (time_update_monotonic (EV_A)) 1571 ev_tstamp odiff = rtmn_diff;
1572
1573 mn_now = get_clock ();
1574
1575 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1576 /* interpolate in the meantime */
1577 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1030 { 1578 {
1031 ev_tstamp odiff = rtmn_diff; 1579 ev_rt_now = rtmn_diff + mn_now;
1580 return;
1581 }
1032 1582
1583 now_floor = mn_now;
1584 ev_rt_now = ev_time ();
1585
1033 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1586 /* loop a few times, before making important decisions.
1587 * on the choice of "4": one iteration isn't enough,
1588 * in case we get preempted during the calls to
1589 * ev_time and get_clock. a second call is almost guaranteed
1590 * to succeed in that case, though. and looping a few more times
1591 * doesn't hurt either as we only do this on time-jumps or
1592 * in the unlikely event of having been preempted here.
1593 */
1594 for (i = 4; --i; )
1034 { 1595 {
1035 rtmn_diff = rt_now - mn_now; 1596 rtmn_diff = ev_rt_now - mn_now;
1036 1597
1037 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1598 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1038 return; /* all is well */ 1599 return; /* all is well */
1039 1600
1040 rt_now = ev_time (); 1601 ev_rt_now = ev_time ();
1041 mn_now = get_clock (); 1602 mn_now = get_clock ();
1042 now_floor = mn_now; 1603 now_floor = mn_now;
1043 } 1604 }
1044 1605
1606# if EV_PERIODIC_ENABLE
1607 periodics_reschedule (EV_A);
1608# endif
1609 /* no timer adjustment, as the monotonic clock doesn't jump */
1610 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1611 }
1612 else
1613#endif
1614 {
1615 ev_rt_now = ev_time ();
1616
1617 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1618 {
1619#if EV_PERIODIC_ENABLE
1045 periodics_reschedule (EV_A); 1620 periodics_reschedule (EV_A);
1046 /* no timer adjustment, as the monotonic clock doesn't jump */ 1621#endif
1047 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1622 /* adjust timers. this is easy, as the offset is the same for all of them */
1623 for (i = 0; i < timercnt; ++i)
1624 ((WT)timers [i])->at += ev_rt_now - mn_now;
1048 } 1625 }
1049 }
1050 else
1051#endif
1052 {
1053 rt_now = ev_time ();
1054 1626
1055 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1056 {
1057 periodics_reschedule (EV_A);
1058
1059 /* adjust timers. this is easy, as the offset is the same for all */
1060 for (i = 0; i < timercnt; ++i)
1061 ((WT)timers [i])->at += rt_now - mn_now;
1062 }
1063
1064 mn_now = rt_now; 1627 mn_now = ev_rt_now;
1065 } 1628 }
1066} 1629}
1067 1630
1068void 1631void
1069ev_ref (EV_P) 1632ev_ref (EV_P)
1080static int loop_done; 1643static int loop_done;
1081 1644
1082void 1645void
1083ev_loop (EV_P_ int flags) 1646ev_loop (EV_P_ int flags)
1084{ 1647{
1085 double block; 1648 loop_done = EVUNLOOP_CANCEL;
1086 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1649
1650 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1087 1651
1088 do 1652 do
1089 { 1653 {
1654#ifndef _WIN32
1655 if (expect_false (curpid)) /* penalise the forking check even more */
1656 if (expect_false (getpid () != curpid))
1657 {
1658 curpid = getpid ();
1659 postfork = 1;
1660 }
1661#endif
1662
1663#if EV_FORK_ENABLE
1664 /* we might have forked, so queue fork handlers */
1665 if (expect_false (postfork))
1666 if (forkcnt)
1667 {
1668 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1669 call_pending (EV_A);
1670 }
1671#endif
1672
1090 /* queue check watchers (and execute them) */ 1673 /* queue prepare watchers (and execute them) */
1091 if (expect_false (preparecnt)) 1674 if (expect_false (preparecnt))
1092 { 1675 {
1093 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1676 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1094 call_pending (EV_A); 1677 call_pending (EV_A);
1095 } 1678 }
1096 1679
1680 if (expect_false (!activecnt))
1681 break;
1682
1097 /* we might have forked, so reify kernel state if necessary */ 1683 /* we might have forked, so reify kernel state if necessary */
1098 if (expect_false (postfork)) 1684 if (expect_false (postfork))
1099 loop_fork (EV_A); 1685 loop_fork (EV_A);
1100 1686
1101 /* update fd-related kernel structures */ 1687 /* update fd-related kernel structures */
1102 fd_reify (EV_A); 1688 fd_reify (EV_A);
1103 1689
1104 /* calculate blocking time */ 1690 /* calculate blocking time */
1691 {
1692 ev_tstamp waittime = 0.;
1693 ev_tstamp sleeptime = 0.;
1105 1694
1106 /* we only need this for !monotonic clock or timers, but as we basically 1695 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1107 always have timers, we just calculate it always */
1108#if EV_USE_MONOTONIC
1109 if (expect_true (have_monotonic))
1110 time_update_monotonic (EV_A);
1111 else
1112#endif
1113 { 1696 {
1114 rt_now = ev_time (); 1697 /* update time to cancel out callback processing overhead */
1115 mn_now = rt_now; 1698 time_update (EV_A_ 1e100);
1116 }
1117 1699
1118 if (flags & EVLOOP_NONBLOCK || idlecnt)
1119 block = 0.;
1120 else
1121 {
1122 block = MAX_BLOCKTIME; 1700 waittime = MAX_BLOCKTIME;
1123 1701
1124 if (timercnt) 1702 if (timercnt)
1125 { 1703 {
1126 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1704 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1127 if (block > to) block = to; 1705 if (waittime > to) waittime = to;
1128 } 1706 }
1129 1707
1708#if EV_PERIODIC_ENABLE
1130 if (periodiccnt) 1709 if (periodiccnt)
1131 { 1710 {
1132 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1711 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1133 if (block > to) block = to; 1712 if (waittime > to) waittime = to;
1134 } 1713 }
1714#endif
1135 1715
1136 if (block < 0.) block = 0.; 1716 if (expect_false (waittime < timeout_blocktime))
1717 waittime = timeout_blocktime;
1718
1719 sleeptime = waittime - backend_fudge;
1720
1721 if (expect_true (sleeptime > io_blocktime))
1722 sleeptime = io_blocktime;
1723
1724 if (sleeptime)
1725 {
1726 ev_sleep (sleeptime);
1727 waittime -= sleeptime;
1728 }
1137 } 1729 }
1138 1730
1139 method_poll (EV_A_ block); 1731 ++loop_count;
1732 backend_poll (EV_A_ waittime);
1140 1733
1141 /* update rt_now, do magic */ 1734 /* update ev_rt_now, do magic */
1142 time_update (EV_A); 1735 time_update (EV_A_ waittime + sleeptime);
1736 }
1143 1737
1144 /* queue pending timers and reschedule them */ 1738 /* queue pending timers and reschedule them */
1145 timers_reify (EV_A); /* relative timers called last */ 1739 timers_reify (EV_A); /* relative timers called last */
1740#if EV_PERIODIC_ENABLE
1146 periodics_reify (EV_A); /* absolute timers called first */ 1741 periodics_reify (EV_A); /* absolute timers called first */
1742#endif
1147 1743
1744#if EV_IDLE_ENABLE
1148 /* queue idle watchers unless io or timers are pending */ 1745 /* queue idle watchers unless other events are pending */
1149 if (idlecnt && !any_pending (EV_A)) 1746 idle_reify (EV_A);
1150 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1747#endif
1151 1748
1152 /* queue check watchers, to be executed first */ 1749 /* queue check watchers, to be executed first */
1153 if (checkcnt) 1750 if (expect_false (checkcnt))
1154 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1751 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1155 1752
1156 call_pending (EV_A); 1753 call_pending (EV_A);
1157 } 1754 }
1158 while (activecnt && !loop_done); 1755 while (expect_true (
1756 activecnt
1757 && !loop_done
1758 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1759 ));
1159 1760
1160 if (loop_done != 2) 1761 if (loop_done == EVUNLOOP_ONE)
1161 loop_done = 0; 1762 loop_done = EVUNLOOP_CANCEL;
1162} 1763}
1163 1764
1164void 1765void
1165ev_unloop (EV_P_ int how) 1766ev_unloop (EV_P_ int how)
1166{ 1767{
1167 loop_done = how; 1768 loop_done = how;
1168} 1769}
1169 1770
1170/*****************************************************************************/ 1771/*****************************************************************************/
1171 1772
1172inline void 1773void inline_size
1173wlist_add (WL *head, WL elem) 1774wlist_add (WL *head, WL elem)
1174{ 1775{
1175 elem->next = *head; 1776 elem->next = *head;
1176 *head = elem; 1777 *head = elem;
1177} 1778}
1178 1779
1179inline void 1780void inline_size
1180wlist_del (WL *head, WL elem) 1781wlist_del (WL *head, WL elem)
1181{ 1782{
1182 while (*head) 1783 while (*head)
1183 { 1784 {
1184 if (*head == elem) 1785 if (*head == elem)
1189 1790
1190 head = &(*head)->next; 1791 head = &(*head)->next;
1191 } 1792 }
1192} 1793}
1193 1794
1194inline void 1795void inline_speed
1195ev_clear_pending (EV_P_ W w) 1796clear_pending (EV_P_ W w)
1196{ 1797{
1197 if (w->pending) 1798 if (w->pending)
1198 { 1799 {
1199 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1800 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1200 w->pending = 0; 1801 w->pending = 0;
1201 } 1802 }
1202} 1803}
1203 1804
1204inline void 1805int
1806ev_clear_pending (EV_P_ void *w)
1807{
1808 W w_ = (W)w;
1809 int pending = w_->pending;
1810
1811 if (expect_true (pending))
1812 {
1813 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1814 w_->pending = 0;
1815 p->w = 0;
1816 return p->events;
1817 }
1818 else
1819 return 0;
1820}
1821
1822void inline_size
1823pri_adjust (EV_P_ W w)
1824{
1825 int pri = w->priority;
1826 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1827 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1828 w->priority = pri;
1829}
1830
1831void inline_speed
1205ev_start (EV_P_ W w, int active) 1832ev_start (EV_P_ W w, int active)
1206{ 1833{
1207 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1834 pri_adjust (EV_A_ w);
1208 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1209
1210 w->active = active; 1835 w->active = active;
1211 ev_ref (EV_A); 1836 ev_ref (EV_A);
1212} 1837}
1213 1838
1214inline void 1839void inline_size
1215ev_stop (EV_P_ W w) 1840ev_stop (EV_P_ W w)
1216{ 1841{
1217 ev_unref (EV_A); 1842 ev_unref (EV_A);
1218 w->active = 0; 1843 w->active = 0;
1219} 1844}
1220 1845
1221/*****************************************************************************/ 1846/*****************************************************************************/
1222 1847
1223void 1848void noinline
1224ev_io_start (EV_P_ struct ev_io *w) 1849ev_io_start (EV_P_ ev_io *w)
1225{ 1850{
1226 int fd = w->fd; 1851 int fd = w->fd;
1227 1852
1228 if (ev_is_active (w)) 1853 if (expect_false (ev_is_active (w)))
1229 return; 1854 return;
1230 1855
1231 assert (("ev_io_start called with negative fd", fd >= 0)); 1856 assert (("ev_io_start called with negative fd", fd >= 0));
1232 1857
1233 ev_start (EV_A_ (W)w, 1); 1858 ev_start (EV_A_ (W)w, 1);
1234 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1859 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1235 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1860 wlist_add (&anfds[fd].head, (WL)w);
1236 1861
1237 fd_change (EV_A_ fd); 1862 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1863 w->events &= ~EV_IOFDSET;
1238} 1864}
1239 1865
1240void 1866void noinline
1241ev_io_stop (EV_P_ struct ev_io *w) 1867ev_io_stop (EV_P_ ev_io *w)
1242{ 1868{
1243 ev_clear_pending (EV_A_ (W)w); 1869 clear_pending (EV_A_ (W)w);
1244 if (!ev_is_active (w)) 1870 if (expect_false (!ev_is_active (w)))
1245 return; 1871 return;
1246 1872
1873 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1874
1247 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1875 wlist_del (&anfds[w->fd].head, (WL)w);
1248 ev_stop (EV_A_ (W)w); 1876 ev_stop (EV_A_ (W)w);
1249 1877
1250 fd_change (EV_A_ w->fd); 1878 fd_change (EV_A_ w->fd, 1);
1251} 1879}
1252 1880
1253void 1881void noinline
1254ev_timer_start (EV_P_ struct ev_timer *w) 1882ev_timer_start (EV_P_ ev_timer *w)
1255{ 1883{
1256 if (ev_is_active (w)) 1884 if (expect_false (ev_is_active (w)))
1257 return; 1885 return;
1258 1886
1259 ((WT)w)->at += mn_now; 1887 ((WT)w)->at += mn_now;
1260 1888
1261 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1889 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1262 1890
1263 ev_start (EV_A_ (W)w, ++timercnt); 1891 ev_start (EV_A_ (W)w, ++timercnt);
1264 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1892 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1265 timers [timercnt - 1] = w; 1893 timers [timercnt - 1] = (WT)w;
1266 upheap ((WT *)timers, timercnt - 1); 1894 upheap (timers, timercnt - 1);
1267 1895
1268 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1896 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1269} 1897}
1270 1898
1271void 1899void noinline
1272ev_timer_stop (EV_P_ struct ev_timer *w) 1900ev_timer_stop (EV_P_ ev_timer *w)
1273{ 1901{
1274 ev_clear_pending (EV_A_ (W)w); 1902 clear_pending (EV_A_ (W)w);
1275 if (!ev_is_active (w)) 1903 if (expect_false (!ev_is_active (w)))
1276 return; 1904 return;
1277 1905
1278 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1906 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1279 1907
1280 if (((W)w)->active < timercnt--) 1908 {
1909 int active = ((W)w)->active;
1910
1911 if (expect_true (--active < --timercnt))
1281 { 1912 {
1282 timers [((W)w)->active - 1] = timers [timercnt]; 1913 timers [active] = timers [timercnt];
1283 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1914 adjustheap (timers, timercnt, active);
1284 } 1915 }
1916 }
1285 1917
1286 ((WT)w)->at = w->repeat; 1918 ((WT)w)->at -= mn_now;
1287 1919
1288 ev_stop (EV_A_ (W)w); 1920 ev_stop (EV_A_ (W)w);
1289} 1921}
1290 1922
1291void 1923void noinline
1292ev_timer_again (EV_P_ struct ev_timer *w) 1924ev_timer_again (EV_P_ ev_timer *w)
1293{ 1925{
1294 if (ev_is_active (w)) 1926 if (ev_is_active (w))
1295 { 1927 {
1296 if (w->repeat) 1928 if (w->repeat)
1297 { 1929 {
1298 ((WT)w)->at = mn_now + w->repeat; 1930 ((WT)w)->at = mn_now + w->repeat;
1299 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1931 adjustheap (timers, timercnt, ((W)w)->active - 1);
1300 } 1932 }
1301 else 1933 else
1302 ev_timer_stop (EV_A_ w); 1934 ev_timer_stop (EV_A_ w);
1303 } 1935 }
1304 else if (w->repeat) 1936 else if (w->repeat)
1937 {
1938 w->at = w->repeat;
1305 ev_timer_start (EV_A_ w); 1939 ev_timer_start (EV_A_ w);
1940 }
1306} 1941}
1307 1942
1308void 1943#if EV_PERIODIC_ENABLE
1944void noinline
1309ev_periodic_start (EV_P_ struct ev_periodic *w) 1945ev_periodic_start (EV_P_ ev_periodic *w)
1310{ 1946{
1311 if (ev_is_active (w)) 1947 if (expect_false (ev_is_active (w)))
1312 return; 1948 return;
1313 1949
1950 if (w->reschedule_cb)
1951 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1952 else if (w->interval)
1953 {
1314 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1954 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1315
1316 /* this formula differs from the one in periodic_reify because we do not always round up */ 1955 /* this formula differs from the one in periodic_reify because we do not always round up */
1317 if (w->interval)
1318 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1956 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1957 }
1958 else
1959 ((WT)w)->at = w->offset;
1319 1960
1320 ev_start (EV_A_ (W)w, ++periodiccnt); 1961 ev_start (EV_A_ (W)w, ++periodiccnt);
1321 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1962 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1322 periodics [periodiccnt - 1] = w; 1963 periodics [periodiccnt - 1] = (WT)w;
1323 upheap ((WT *)periodics, periodiccnt - 1); 1964 upheap (periodics, periodiccnt - 1);
1324 1965
1325 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1966 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1326} 1967}
1327 1968
1328void 1969void noinline
1329ev_periodic_stop (EV_P_ struct ev_periodic *w) 1970ev_periodic_stop (EV_P_ ev_periodic *w)
1330{ 1971{
1331 ev_clear_pending (EV_A_ (W)w); 1972 clear_pending (EV_A_ (W)w);
1332 if (!ev_is_active (w)) 1973 if (expect_false (!ev_is_active (w)))
1333 return; 1974 return;
1334 1975
1335 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1976 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1336 1977
1337 if (((W)w)->active < periodiccnt--) 1978 {
1979 int active = ((W)w)->active;
1980
1981 if (expect_true (--active < --periodiccnt))
1338 { 1982 {
1339 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1983 periodics [active] = periodics [periodiccnt];
1340 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1984 adjustheap (periodics, periodiccnt, active);
1341 } 1985 }
1986 }
1342 1987
1343 ev_stop (EV_A_ (W)w); 1988 ev_stop (EV_A_ (W)w);
1344} 1989}
1345 1990
1346void 1991void noinline
1347ev_idle_start (EV_P_ struct ev_idle *w) 1992ev_periodic_again (EV_P_ ev_periodic *w)
1348{ 1993{
1349 if (ev_is_active (w)) 1994 /* TODO: use adjustheap and recalculation */
1350 return;
1351
1352 ev_start (EV_A_ (W)w, ++idlecnt);
1353 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1354 idles [idlecnt - 1] = w;
1355}
1356
1357void
1358ev_idle_stop (EV_P_ struct ev_idle *w)
1359{
1360 ev_clear_pending (EV_A_ (W)w);
1361 if (ev_is_active (w))
1362 return;
1363
1364 idles [((W)w)->active - 1] = idles [--idlecnt];
1365 ev_stop (EV_A_ (W)w); 1995 ev_periodic_stop (EV_A_ w);
1996 ev_periodic_start (EV_A_ w);
1366} 1997}
1367 1998#endif
1368void
1369ev_prepare_start (EV_P_ struct ev_prepare *w)
1370{
1371 if (ev_is_active (w))
1372 return;
1373
1374 ev_start (EV_A_ (W)w, ++preparecnt);
1375 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1376 prepares [preparecnt - 1] = w;
1377}
1378
1379void
1380ev_prepare_stop (EV_P_ struct ev_prepare *w)
1381{
1382 ev_clear_pending (EV_A_ (W)w);
1383 if (ev_is_active (w))
1384 return;
1385
1386 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1387 ev_stop (EV_A_ (W)w);
1388}
1389
1390void
1391ev_check_start (EV_P_ struct ev_check *w)
1392{
1393 if (ev_is_active (w))
1394 return;
1395
1396 ev_start (EV_A_ (W)w, ++checkcnt);
1397 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1398 checks [checkcnt - 1] = w;
1399}
1400
1401void
1402ev_check_stop (EV_P_ struct ev_check *w)
1403{
1404 ev_clear_pending (EV_A_ (W)w);
1405 if (ev_is_active (w))
1406 return;
1407
1408 checks [((W)w)->active - 1] = checks [--checkcnt];
1409 ev_stop (EV_A_ (W)w);
1410}
1411 1999
1412#ifndef SA_RESTART 2000#ifndef SA_RESTART
1413# define SA_RESTART 0 2001# define SA_RESTART 0
1414#endif 2002#endif
1415 2003
1416void 2004void noinline
1417ev_signal_start (EV_P_ struct ev_signal *w) 2005ev_signal_start (EV_P_ ev_signal *w)
1418{ 2006{
1419#if EV_MULTIPLICITY 2007#if EV_MULTIPLICITY
1420 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2008 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1421#endif 2009#endif
1422 if (ev_is_active (w)) 2010 if (expect_false (ev_is_active (w)))
1423 return; 2011 return;
1424 2012
1425 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2013 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1426 2014
2015 evpipe_init (EV_A);
2016
2017 {
2018#ifndef _WIN32
2019 sigset_t full, prev;
2020 sigfillset (&full);
2021 sigprocmask (SIG_SETMASK, &full, &prev);
2022#endif
2023
2024 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2025
2026#ifndef _WIN32
2027 sigprocmask (SIG_SETMASK, &prev, 0);
2028#endif
2029 }
2030
1427 ev_start (EV_A_ (W)w, 1); 2031 ev_start (EV_A_ (W)w, 1);
1428 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1429 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2032 wlist_add (&signals [w->signum - 1].head, (WL)w);
1430 2033
1431 if (!((WL)w)->next) 2034 if (!((WL)w)->next)
1432 { 2035 {
1433#if WIN32 2036#if _WIN32
1434 signal (w->signum, sighandler); 2037 signal (w->signum, ev_sighandler);
1435#else 2038#else
1436 struct sigaction sa; 2039 struct sigaction sa;
1437 sa.sa_handler = sighandler; 2040 sa.sa_handler = ev_sighandler;
1438 sigfillset (&sa.sa_mask); 2041 sigfillset (&sa.sa_mask);
1439 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2042 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1440 sigaction (w->signum, &sa, 0); 2043 sigaction (w->signum, &sa, 0);
1441#endif 2044#endif
1442 } 2045 }
1443} 2046}
1444 2047
1445void 2048void noinline
1446ev_signal_stop (EV_P_ struct ev_signal *w) 2049ev_signal_stop (EV_P_ ev_signal *w)
1447{ 2050{
1448 ev_clear_pending (EV_A_ (W)w); 2051 clear_pending (EV_A_ (W)w);
1449 if (!ev_is_active (w)) 2052 if (expect_false (!ev_is_active (w)))
1450 return; 2053 return;
1451 2054
1452 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2055 wlist_del (&signals [w->signum - 1].head, (WL)w);
1453 ev_stop (EV_A_ (W)w); 2056 ev_stop (EV_A_ (W)w);
1454 2057
1455 if (!signals [w->signum - 1].head) 2058 if (!signals [w->signum - 1].head)
1456 signal (w->signum, SIG_DFL); 2059 signal (w->signum, SIG_DFL);
1457} 2060}
1458 2061
1459void 2062void
1460ev_child_start (EV_P_ struct ev_child *w) 2063ev_child_start (EV_P_ ev_child *w)
1461{ 2064{
1462#if EV_MULTIPLICITY 2065#if EV_MULTIPLICITY
1463 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2066 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1464#endif 2067#endif
1465 if (ev_is_active (w)) 2068 if (expect_false (ev_is_active (w)))
1466 return; 2069 return;
1467 2070
1468 ev_start (EV_A_ (W)w, 1); 2071 ev_start (EV_A_ (W)w, 1);
1469 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2072 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1470} 2073}
1471 2074
1472void 2075void
1473ev_child_stop (EV_P_ struct ev_child *w) 2076ev_child_stop (EV_P_ ev_child *w)
1474{ 2077{
1475 ev_clear_pending (EV_A_ (W)w); 2078 clear_pending (EV_A_ (W)w);
1476 if (ev_is_active (w)) 2079 if (expect_false (!ev_is_active (w)))
1477 return; 2080 return;
1478 2081
1479 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2082 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1480 ev_stop (EV_A_ (W)w); 2083 ev_stop (EV_A_ (W)w);
1481} 2084}
1482 2085
2086#if EV_STAT_ENABLE
2087
2088# ifdef _WIN32
2089# undef lstat
2090# define lstat(a,b) _stati64 (a,b)
2091# endif
2092
2093#define DEF_STAT_INTERVAL 5.0074891
2094#define MIN_STAT_INTERVAL 0.1074891
2095
2096static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2097
2098#if EV_USE_INOTIFY
2099# define EV_INOTIFY_BUFSIZE 8192
2100
2101static void noinline
2102infy_add (EV_P_ ev_stat *w)
2103{
2104 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2105
2106 if (w->wd < 0)
2107 {
2108 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2109
2110 /* monitor some parent directory for speedup hints */
2111 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2112 {
2113 char path [4096];
2114 strcpy (path, w->path);
2115
2116 do
2117 {
2118 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2119 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2120
2121 char *pend = strrchr (path, '/');
2122
2123 if (!pend)
2124 break; /* whoops, no '/', complain to your admin */
2125
2126 *pend = 0;
2127 w->wd = inotify_add_watch (fs_fd, path, mask);
2128 }
2129 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2130 }
2131 }
2132 else
2133 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2134
2135 if (w->wd >= 0)
2136 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2137}
2138
2139static void noinline
2140infy_del (EV_P_ ev_stat *w)
2141{
2142 int slot;
2143 int wd = w->wd;
2144
2145 if (wd < 0)
2146 return;
2147
2148 w->wd = -2;
2149 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2150 wlist_del (&fs_hash [slot].head, (WL)w);
2151
2152 /* remove this watcher, if others are watching it, they will rearm */
2153 inotify_rm_watch (fs_fd, wd);
2154}
2155
2156static void noinline
2157infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2158{
2159 if (slot < 0)
2160 /* overflow, need to check for all hahs slots */
2161 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2162 infy_wd (EV_A_ slot, wd, ev);
2163 else
2164 {
2165 WL w_;
2166
2167 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2168 {
2169 ev_stat *w = (ev_stat *)w_;
2170 w_ = w_->next; /* lets us remove this watcher and all before it */
2171
2172 if (w->wd == wd || wd == -1)
2173 {
2174 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2175 {
2176 w->wd = -1;
2177 infy_add (EV_A_ w); /* re-add, no matter what */
2178 }
2179
2180 stat_timer_cb (EV_A_ &w->timer, 0);
2181 }
2182 }
2183 }
2184}
2185
2186static void
2187infy_cb (EV_P_ ev_io *w, int revents)
2188{
2189 char buf [EV_INOTIFY_BUFSIZE];
2190 struct inotify_event *ev = (struct inotify_event *)buf;
2191 int ofs;
2192 int len = read (fs_fd, buf, sizeof (buf));
2193
2194 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2195 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2196}
2197
2198void inline_size
2199infy_init (EV_P)
2200{
2201 if (fs_fd != -2)
2202 return;
2203
2204 fs_fd = inotify_init ();
2205
2206 if (fs_fd >= 0)
2207 {
2208 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2209 ev_set_priority (&fs_w, EV_MAXPRI);
2210 ev_io_start (EV_A_ &fs_w);
2211 }
2212}
2213
2214void inline_size
2215infy_fork (EV_P)
2216{
2217 int slot;
2218
2219 if (fs_fd < 0)
2220 return;
2221
2222 close (fs_fd);
2223 fs_fd = inotify_init ();
2224
2225 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2226 {
2227 WL w_ = fs_hash [slot].head;
2228 fs_hash [slot].head = 0;
2229
2230 while (w_)
2231 {
2232 ev_stat *w = (ev_stat *)w_;
2233 w_ = w_->next; /* lets us add this watcher */
2234
2235 w->wd = -1;
2236
2237 if (fs_fd >= 0)
2238 infy_add (EV_A_ w); /* re-add, no matter what */
2239 else
2240 ev_timer_start (EV_A_ &w->timer);
2241 }
2242
2243 }
2244}
2245
2246#endif
2247
2248void
2249ev_stat_stat (EV_P_ ev_stat *w)
2250{
2251 if (lstat (w->path, &w->attr) < 0)
2252 w->attr.st_nlink = 0;
2253 else if (!w->attr.st_nlink)
2254 w->attr.st_nlink = 1;
2255}
2256
2257static void noinline
2258stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2259{
2260 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2261
2262 /* we copy this here each the time so that */
2263 /* prev has the old value when the callback gets invoked */
2264 w->prev = w->attr;
2265 ev_stat_stat (EV_A_ w);
2266
2267 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2268 if (
2269 w->prev.st_dev != w->attr.st_dev
2270 || w->prev.st_ino != w->attr.st_ino
2271 || w->prev.st_mode != w->attr.st_mode
2272 || w->prev.st_nlink != w->attr.st_nlink
2273 || w->prev.st_uid != w->attr.st_uid
2274 || w->prev.st_gid != w->attr.st_gid
2275 || w->prev.st_rdev != w->attr.st_rdev
2276 || w->prev.st_size != w->attr.st_size
2277 || w->prev.st_atime != w->attr.st_atime
2278 || w->prev.st_mtime != w->attr.st_mtime
2279 || w->prev.st_ctime != w->attr.st_ctime
2280 ) {
2281 #if EV_USE_INOTIFY
2282 infy_del (EV_A_ w);
2283 infy_add (EV_A_ w);
2284 ev_stat_stat (EV_A_ w); /* avoid race... */
2285 #endif
2286
2287 ev_feed_event (EV_A_ w, EV_STAT);
2288 }
2289}
2290
2291void
2292ev_stat_start (EV_P_ ev_stat *w)
2293{
2294 if (expect_false (ev_is_active (w)))
2295 return;
2296
2297 /* since we use memcmp, we need to clear any padding data etc. */
2298 memset (&w->prev, 0, sizeof (ev_statdata));
2299 memset (&w->attr, 0, sizeof (ev_statdata));
2300
2301 ev_stat_stat (EV_A_ w);
2302
2303 if (w->interval < MIN_STAT_INTERVAL)
2304 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2305
2306 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2307 ev_set_priority (&w->timer, ev_priority (w));
2308
2309#if EV_USE_INOTIFY
2310 infy_init (EV_A);
2311
2312 if (fs_fd >= 0)
2313 infy_add (EV_A_ w);
2314 else
2315#endif
2316 ev_timer_start (EV_A_ &w->timer);
2317
2318 ev_start (EV_A_ (W)w, 1);
2319}
2320
2321void
2322ev_stat_stop (EV_P_ ev_stat *w)
2323{
2324 clear_pending (EV_A_ (W)w);
2325 if (expect_false (!ev_is_active (w)))
2326 return;
2327
2328#if EV_USE_INOTIFY
2329 infy_del (EV_A_ w);
2330#endif
2331 ev_timer_stop (EV_A_ &w->timer);
2332
2333 ev_stop (EV_A_ (W)w);
2334}
2335#endif
2336
2337#if EV_IDLE_ENABLE
2338void
2339ev_idle_start (EV_P_ ev_idle *w)
2340{
2341 if (expect_false (ev_is_active (w)))
2342 return;
2343
2344 pri_adjust (EV_A_ (W)w);
2345
2346 {
2347 int active = ++idlecnt [ABSPRI (w)];
2348
2349 ++idleall;
2350 ev_start (EV_A_ (W)w, active);
2351
2352 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2353 idles [ABSPRI (w)][active - 1] = w;
2354 }
2355}
2356
2357void
2358ev_idle_stop (EV_P_ ev_idle *w)
2359{
2360 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w)))
2362 return;
2363
2364 {
2365 int active = ((W)w)->active;
2366
2367 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2368 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2369
2370 ev_stop (EV_A_ (W)w);
2371 --idleall;
2372 }
2373}
2374#endif
2375
2376void
2377ev_prepare_start (EV_P_ ev_prepare *w)
2378{
2379 if (expect_false (ev_is_active (w)))
2380 return;
2381
2382 ev_start (EV_A_ (W)w, ++preparecnt);
2383 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2384 prepares [preparecnt - 1] = w;
2385}
2386
2387void
2388ev_prepare_stop (EV_P_ ev_prepare *w)
2389{
2390 clear_pending (EV_A_ (W)w);
2391 if (expect_false (!ev_is_active (w)))
2392 return;
2393
2394 {
2395 int active = ((W)w)->active;
2396 prepares [active - 1] = prepares [--preparecnt];
2397 ((W)prepares [active - 1])->active = active;
2398 }
2399
2400 ev_stop (EV_A_ (W)w);
2401}
2402
2403void
2404ev_check_start (EV_P_ ev_check *w)
2405{
2406 if (expect_false (ev_is_active (w)))
2407 return;
2408
2409 ev_start (EV_A_ (W)w, ++checkcnt);
2410 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2411 checks [checkcnt - 1] = w;
2412}
2413
2414void
2415ev_check_stop (EV_P_ ev_check *w)
2416{
2417 clear_pending (EV_A_ (W)w);
2418 if (expect_false (!ev_is_active (w)))
2419 return;
2420
2421 {
2422 int active = ((W)w)->active;
2423 checks [active - 1] = checks [--checkcnt];
2424 ((W)checks [active - 1])->active = active;
2425 }
2426
2427 ev_stop (EV_A_ (W)w);
2428}
2429
2430#if EV_EMBED_ENABLE
2431void noinline
2432ev_embed_sweep (EV_P_ ev_embed *w)
2433{
2434 ev_loop (w->other, EVLOOP_NONBLOCK);
2435}
2436
2437static void
2438embed_io_cb (EV_P_ ev_io *io, int revents)
2439{
2440 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2441
2442 if (ev_cb (w))
2443 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2444 else
2445 ev_loop (w->other, EVLOOP_NONBLOCK);
2446}
2447
2448static void
2449embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2450{
2451 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2452
2453 {
2454 struct ev_loop *loop = w->other;
2455
2456 while (fdchangecnt)
2457 {
2458 fd_reify (EV_A);
2459 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2460 }
2461 }
2462}
2463
2464#if 0
2465static void
2466embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2467{
2468 ev_idle_stop (EV_A_ idle);
2469}
2470#endif
2471
2472void
2473ev_embed_start (EV_P_ ev_embed *w)
2474{
2475 if (expect_false (ev_is_active (w)))
2476 return;
2477
2478 {
2479 struct ev_loop *loop = w->other;
2480 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2481 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2482 }
2483
2484 ev_set_priority (&w->io, ev_priority (w));
2485 ev_io_start (EV_A_ &w->io);
2486
2487 ev_prepare_init (&w->prepare, embed_prepare_cb);
2488 ev_set_priority (&w->prepare, EV_MINPRI);
2489 ev_prepare_start (EV_A_ &w->prepare);
2490
2491 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2492
2493 ev_start (EV_A_ (W)w, 1);
2494}
2495
2496void
2497ev_embed_stop (EV_P_ ev_embed *w)
2498{
2499 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w)))
2501 return;
2502
2503 ev_io_stop (EV_A_ &w->io);
2504 ev_prepare_stop (EV_A_ &w->prepare);
2505
2506 ev_stop (EV_A_ (W)w);
2507}
2508#endif
2509
2510#if EV_FORK_ENABLE
2511void
2512ev_fork_start (EV_P_ ev_fork *w)
2513{
2514 if (expect_false (ev_is_active (w)))
2515 return;
2516
2517 ev_start (EV_A_ (W)w, ++forkcnt);
2518 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2519 forks [forkcnt - 1] = w;
2520}
2521
2522void
2523ev_fork_stop (EV_P_ ev_fork *w)
2524{
2525 clear_pending (EV_A_ (W)w);
2526 if (expect_false (!ev_is_active (w)))
2527 return;
2528
2529 {
2530 int active = ((W)w)->active;
2531 forks [active - 1] = forks [--forkcnt];
2532 ((W)forks [active - 1])->active = active;
2533 }
2534
2535 ev_stop (EV_A_ (W)w);
2536}
2537#endif
2538
2539#if EV_ASYNC_ENABLE
2540void
2541ev_async_start (EV_P_ ev_async *w)
2542{
2543 if (expect_false (ev_is_active (w)))
2544 return;
2545
2546 evpipe_init (EV_A);
2547
2548 ev_start (EV_A_ (W)w, ++asynccnt);
2549 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2550 asyncs [asynccnt - 1] = w;
2551}
2552
2553void
2554ev_async_stop (EV_P_ ev_async *w)
2555{
2556 clear_pending (EV_A_ (W)w);
2557 if (expect_false (!ev_is_active (w)))
2558 return;
2559
2560 {
2561 int active = ((W)w)->active;
2562 asyncs [active - 1] = asyncs [--asynccnt];
2563 ((W)asyncs [active - 1])->active = active;
2564 }
2565
2566 ev_stop (EV_A_ (W)w);
2567}
2568
2569void
2570ev_async_send (EV_P_ ev_async *w)
2571{
2572 w->sent = 1;
2573 evpipe_write (EV_A_ &gotasync);
2574}
2575#endif
2576
1483/*****************************************************************************/ 2577/*****************************************************************************/
1484 2578
1485struct ev_once 2579struct ev_once
1486{ 2580{
1487 struct ev_io io; 2581 ev_io io;
1488 struct ev_timer to; 2582 ev_timer to;
1489 void (*cb)(int revents, void *arg); 2583 void (*cb)(int revents, void *arg);
1490 void *arg; 2584 void *arg;
1491}; 2585};
1492 2586
1493static void 2587static void
1502 2596
1503 cb (revents, arg); 2597 cb (revents, arg);
1504} 2598}
1505 2599
1506static void 2600static void
1507once_cb_io (EV_P_ struct ev_io *w, int revents) 2601once_cb_io (EV_P_ ev_io *w, int revents)
1508{ 2602{
1509 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2603 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1510} 2604}
1511 2605
1512static void 2606static void
1513once_cb_to (EV_P_ struct ev_timer *w, int revents) 2607once_cb_to (EV_P_ ev_timer *w, int revents)
1514{ 2608{
1515 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2609 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1516} 2610}
1517 2611
1518void 2612void
1519ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2613ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1520{ 2614{
1521 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2615 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1522 2616
1523 if (!once) 2617 if (expect_false (!once))
2618 {
1524 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2619 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1525 else 2620 return;
1526 { 2621 }
2622
1527 once->cb = cb; 2623 once->cb = cb;
1528 once->arg = arg; 2624 once->arg = arg;
1529 2625
1530 ev_watcher_init (&once->io, once_cb_io); 2626 ev_init (&once->io, once_cb_io);
1531 if (fd >= 0) 2627 if (fd >= 0)
1532 { 2628 {
1533 ev_io_set (&once->io, fd, events); 2629 ev_io_set (&once->io, fd, events);
1534 ev_io_start (EV_A_ &once->io); 2630 ev_io_start (EV_A_ &once->io);
1535 } 2631 }
1536 2632
1537 ev_watcher_init (&once->to, once_cb_to); 2633 ev_init (&once->to, once_cb_to);
1538 if (timeout >= 0.) 2634 if (timeout >= 0.)
1539 { 2635 {
1540 ev_timer_set (&once->to, timeout, 0.); 2636 ev_timer_set (&once->to, timeout, 0.);
1541 ev_timer_start (EV_A_ &once->to); 2637 ev_timer_start (EV_A_ &once->to);
1542 }
1543 } 2638 }
1544} 2639}
1545 2640
2641#if EV_MULTIPLICITY
2642 #include "ev_wrap.h"
2643#endif
2644
2645#ifdef __cplusplus
2646}
2647#endif
2648

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines