ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.76 by root, Wed Nov 7 18:47:26 2007 UTC vs.
Revision 1.250 by root, Thu May 22 02:44:57 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <fcntl.h> 136#include <fcntl.h>
66#include <sys/types.h> 143#include <sys/types.h>
67#include <time.h> 144#include <time.h>
68 145
69#include <signal.h> 146#include <signal.h>
70 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
71#ifndef WIN32 154#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 155# include <sys/time.h>
74# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
75#endif 163# endif
76/**/ 164#endif
165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
77 167
78#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
80#endif 178#endif
81 179
82#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
84#endif 182#endif
85 183
86#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
88#endif 190#endif
89 191
90#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
91# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
92#endif 198#endif
93 199
94#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
96#endif 202#endif
97 203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
98#ifndef EV_USE_WIN32 208#ifndef EV_USE_INOTIFY
99# ifdef WIN32 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1 210# define EV_USE_INOTIFY 1
103# else 211# else
104# define EV_USE_WIN32 0 212# define EV_USE_INOTIFY 0
105# endif 213# endif
106#endif 214#endif
107 215
108#ifndef EV_USE_REALTIME 216#ifndef EV_PID_HASHSIZE
109# define EV_USE_REALTIME 1 217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
110#endif 221# endif
222#endif
111 223
112/**/ 224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
113 259
114#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
117#endif 263#endif
119#ifndef CLOCK_REALTIME 265#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 266# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 267# define EV_USE_REALTIME 0
122#endif 268#endif
123 269
270#if !EV_STAT_ENABLE
271# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0
273#endif
274
275#if !EV_USE_NANOSLEEP
276# ifndef _WIN32
277# include <sys/select.h>
278# endif
279#endif
280
281#if EV_USE_INOTIFY
282# include <sys/inotify.h>
283#endif
284
285#if EV_SELECT_IS_WINSOCKET
286# include <winsock.h>
287#endif
288
289#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
294# endif
295int eventfd (unsigned int initval, int flags);
296# ifdef __cplusplus
297}
298# endif
299#endif
300
124/**/ 301/**/
125 302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
308
309/*
310 * This is used to avoid floating point rounding problems.
311 * It is added to ev_rt_now when scheduling periodics
312 * to ensure progress, time-wise, even when rounding
313 * errors are against us.
314 * This value is good at least till the year 4000.
315 * Better solutions welcome.
316 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
318
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
130 322
131#include "ev.h"
132
133#if __GNUC__ >= 3 323#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 325# define noinline __attribute__ ((noinline))
136#else 326#else
137# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
138# define inline static 328# define noinline
329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
330# define inline
331# endif
139#endif 332#endif
140 333
141#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 335#define expect_true(expr) expect ((expr) != 0, 1)
336#define inline_size static inline
337
338#if EV_MINIMAL
339# define inline_speed static noinline
340#else
341# define inline_speed static inline
342#endif
143 343
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
146 346
347#define EMPTY /* required for microsofts broken pseudo-c compiler */
348#define EMPTY2(a,b) /* used to suppress some warnings */
349
147typedef struct ev_watcher *W; 350typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
150 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
357#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361#endif
152 362
363#ifdef _WIN32
153#include "ev_win32.c" 364# include "ev_win32.c"
365#endif
154 366
155/*****************************************************************************/ 367/*****************************************************************************/
156 368
157static void (*syserr_cb)(const char *msg); 369static void (*syserr_cb)(const char *msg);
158 370
371void
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 372ev_set_syserr_cb (void (*cb)(const char *msg))
160{ 373{
161 syserr_cb = cb; 374 syserr_cb = cb;
162} 375}
163 376
164static void 377static void noinline
165syserr (const char *msg) 378syserr (const char *msg)
166{ 379{
167 if (!msg) 380 if (!msg)
168 msg = "(libev) system error"; 381 msg = "(libev) system error";
169 382
174 perror (msg); 387 perror (msg);
175 abort (); 388 abort ();
176 } 389 }
177} 390}
178 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
179static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
180 408
409void
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
182{ 411{
183 alloc = cb; 412 alloc = cb;
184} 413}
185 414
186static void * 415inline_speed void *
187ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
188{ 417{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
190 419
191 if (!ptr && size) 420 if (!ptr && size)
192 { 421 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort (); 423 abort ();
205typedef struct 434typedef struct
206{ 435{
207 WL head; 436 WL head;
208 unsigned char events; 437 unsigned char events;
209 unsigned char reify; 438 unsigned char reify;
439#if EV_SELECT_IS_WINSOCKET
440 SOCKET handle;
441#endif
210} ANFD; 442} ANFD;
211 443
212typedef struct 444typedef struct
213{ 445{
214 W w; 446 W w;
215 int events; 447 int events;
216} ANPENDING; 448} ANPENDING;
217 449
450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
452typedef struct
453{
454 WL head;
455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
474#endif
475
218#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
219 477
220struct ev_loop 478 struct ev_loop
221{ 479 {
480 ev_tstamp ev_rt_now;
481 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 482 #define VAR(name,decl) decl;
223# include "ev_vars.h" 483 #include "ev_vars.h"
224};
225# undef VAR 484 #undef VAR
485 };
226# include "ev_wrap.h" 486 #include "ev_wrap.h"
487
488 static struct ev_loop default_loop_struct;
489 struct ev_loop *ev_default_loop_ptr;
227 490
228#else 491#else
229 492
493 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 494 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 495 #include "ev_vars.h"
232# undef VAR 496 #undef VAR
497
498 static int ev_default_loop_ptr;
233 499
234#endif 500#endif
235 501
236/*****************************************************************************/ 502/*****************************************************************************/
237 503
238inline ev_tstamp 504ev_tstamp
239ev_time (void) 505ev_time (void)
240{ 506{
241#if EV_USE_REALTIME 507#if EV_USE_REALTIME
242 struct timespec ts; 508 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 509 clock_gettime (CLOCK_REALTIME, &ts);
247 gettimeofday (&tv, 0); 513 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 514 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif 515#endif
250} 516}
251 517
252inline ev_tstamp 518ev_tstamp inline_size
253get_clock (void) 519get_clock (void)
254{ 520{
255#if EV_USE_MONOTONIC 521#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 522 if (expect_true (have_monotonic))
257 { 523 {
262#endif 528#endif
263 529
264 return ev_time (); 530 return ev_time ();
265} 531}
266 532
533#if EV_MULTIPLICITY
267ev_tstamp 534ev_tstamp
268ev_now (EV_P) 535ev_now (EV_P)
269{ 536{
270 return rt_now; 537 return ev_rt_now;
271} 538}
539#endif
272 540
273#define array_roundsize(type,n) ((n) | 4 & ~3) 541void
542ev_sleep (ev_tstamp delay)
543{
544 if (delay > 0.)
545 {
546#if EV_USE_NANOSLEEP
547 struct timespec ts;
548
549 ts.tv_sec = (time_t)delay;
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0);
553#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3));
555#else
556 struct timeval tv;
557
558 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560
561 select (0, 0, 0, 0, &tv);
562#endif
563 }
564}
565
566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
570int inline_size
571array_nextsize (int elem, int cur, int cnt)
572{
573 int ncur = cur + 1;
574
575 do
576 ncur <<= 1;
577 while (cnt > ncur);
578
579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
581 {
582 ncur *= elem;
583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
584 ncur = ncur - sizeof (void *) * 4;
585 ncur /= elem;
586 }
587
588 return ncur;
589}
590
591static noinline void *
592array_realloc (int elem, void *base, int *cur, int cnt)
593{
594 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur);
596}
274 597
275#define array_needsize(type,base,cur,cnt,init) \ 598#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 599 if (expect_false ((cnt) > (cur))) \
277 { \ 600 { \
278 int newcnt = cur; \ 601 int ocur_ = (cur); \
279 do \ 602 (base) = (type *)array_realloc \
280 { \ 603 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 604 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 605 }
289 606
607#if 0
290#define array_slim(type,stem) \ 608#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 609 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 610 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 611 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 612 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 614 }
297 615#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 616
303#define array_free(stem, idx) \ 617#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
305 619
306/*****************************************************************************/ 620/*****************************************************************************/
307 621
308static void 622void noinline
623ev_feed_event (EV_P_ void *w, int revents)
624{
625 W w_ = (W)w;
626 int pri = ABSPRI (w_);
627
628 if (expect_false (w_->pending))
629 pendings [pri][w_->pending - 1].events |= revents;
630 else
631 {
632 w_->pending = ++pendingcnt [pri];
633 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
634 pendings [pri][w_->pending - 1].w = w_;
635 pendings [pri][w_->pending - 1].events = revents;
636 }
637}
638
639void inline_speed
640queue_events (EV_P_ W *events, int eventcnt, int type)
641{
642 int i;
643
644 for (i = 0; i < eventcnt; ++i)
645 ev_feed_event (EV_A_ events [i], type);
646}
647
648/*****************************************************************************/
649
650void inline_size
309anfds_init (ANFD *base, int count) 651anfds_init (ANFD *base, int count)
310{ 652{
311 while (count--) 653 while (count--)
312 { 654 {
313 base->head = 0; 655 base->head = 0;
316 658
317 ++base; 659 ++base;
318 } 660 }
319} 661}
320 662
321static void 663void inline_speed
322event (EV_P_ W w, int events)
323{
324 if (w->pending)
325 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events;
327 return;
328 }
329
330 w->pending = ++pendingcnt [ABSPRI (w)];
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w;
333 pendings [ABSPRI (w)][w->pending - 1].events = events;
334}
335
336static void
337queue_events (EV_P_ W *events, int eventcnt, int type)
338{
339 int i;
340
341 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type);
343}
344
345static void
346fd_event (EV_P_ int fd, int events) 664fd_event (EV_P_ int fd, int revents)
347{ 665{
348 ANFD *anfd = anfds + fd; 666 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 667 ev_io *w;
350 668
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 669 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
352 { 670 {
353 int ev = w->events & events; 671 int ev = w->events & revents;
354 672
355 if (ev) 673 if (ev)
356 event (EV_A_ (W)w, ev); 674 ev_feed_event (EV_A_ (W)w, ev);
357 } 675 }
358} 676}
359 677
360/*****************************************************************************/ 678void
679ev_feed_fd_event (EV_P_ int fd, int revents)
680{
681 if (fd >= 0 && fd < anfdmax)
682 fd_event (EV_A_ fd, revents);
683}
361 684
362static void 685void inline_size
363fd_reify (EV_P) 686fd_reify (EV_P)
364{ 687{
365 int i; 688 int i;
366 689
367 for (i = 0; i < fdchangecnt; ++i) 690 for (i = 0; i < fdchangecnt; ++i)
368 { 691 {
369 int fd = fdchanges [i]; 692 int fd = fdchanges [i];
370 ANFD *anfd = anfds + fd; 693 ANFD *anfd = anfds + fd;
371 struct ev_io *w; 694 ev_io *w;
372 695
373 int events = 0; 696 unsigned char events = 0;
374 697
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
376 events |= w->events; 699 events |= (unsigned char)w->events;
377 700
701#if EV_SELECT_IS_WINSOCKET
702 if (events)
703 {
704 unsigned long argp;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
708 anfd->handle = _get_osfhandle (fd);
709 #endif
710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
711 }
712#endif
713
714 {
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
378 anfd->reify = 0; 718 anfd->reify = 0;
379
380 method_modify (EV_A_ fd, anfd->events, events);
381 anfd->events = events; 719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events);
723 }
382 } 724 }
383 725
384 fdchangecnt = 0; 726 fdchangecnt = 0;
385} 727}
386 728
387static void 729void inline_size
388fd_change (EV_P_ int fd) 730fd_change (EV_P_ int fd, int flags)
389{ 731{
390 if (anfds [fd].reify) 732 unsigned char reify = anfds [fd].reify;
391 return;
392
393 anfds [fd].reify = 1; 733 anfds [fd].reify |= flags;
394 734
735 if (expect_true (!reify))
736 {
395 ++fdchangecnt; 737 ++fdchangecnt;
396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
397 fdchanges [fdchangecnt - 1] = fd; 739 fdchanges [fdchangecnt - 1] = fd;
740 }
398} 741}
399 742
400static void 743void inline_speed
401fd_kill (EV_P_ int fd) 744fd_kill (EV_P_ int fd)
402{ 745{
403 struct ev_io *w; 746 ev_io *w;
404 747
405 while ((w = (struct ev_io *)anfds [fd].head)) 748 while ((w = (ev_io *)anfds [fd].head))
406 { 749 {
407 ev_io_stop (EV_A_ w); 750 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 751 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 752 }
410} 753}
411 754
412static int 755int inline_size
413fd_valid (int fd) 756fd_valid (int fd)
414{ 757{
415#ifdef WIN32 758#ifdef _WIN32
416 return !!win32_get_osfhandle (fd); 759 return _get_osfhandle (fd) != -1;
417#else 760#else
418 return fcntl (fd, F_GETFD) != -1; 761 return fcntl (fd, F_GETFD) != -1;
419#endif 762#endif
420} 763}
421 764
422/* called on EBADF to verify fds */ 765/* called on EBADF to verify fds */
423static void 766static void noinline
424fd_ebadf (EV_P) 767fd_ebadf (EV_P)
425{ 768{
426 int fd; 769 int fd;
427 770
428 for (fd = 0; fd < anfdmax; ++fd) 771 for (fd = 0; fd < anfdmax; ++fd)
430 if (!fd_valid (fd) == -1 && errno == EBADF) 773 if (!fd_valid (fd) == -1 && errno == EBADF)
431 fd_kill (EV_A_ fd); 774 fd_kill (EV_A_ fd);
432} 775}
433 776
434/* called on ENOMEM in select/poll to kill some fds and retry */ 777/* called on ENOMEM in select/poll to kill some fds and retry */
435static void 778static void noinline
436fd_enomem (EV_P) 779fd_enomem (EV_P)
437{ 780{
438 int fd; 781 int fd;
439 782
440 for (fd = anfdmax; fd--; ) 783 for (fd = anfdmax; fd--; )
443 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
444 return; 787 return;
445 } 788 }
446} 789}
447 790
448/* usually called after fork if method needs to re-arm all fds from scratch */ 791/* usually called after fork if backend needs to re-arm all fds from scratch */
449static void 792static void noinline
450fd_rearm_all (EV_P) 793fd_rearm_all (EV_P)
451{ 794{
452 int fd; 795 int fd;
453 796
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd) 797 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events) 798 if (anfds [fd].events)
457 { 799 {
458 anfds [fd].events = 0; 800 anfds [fd].events = 0;
459 fd_change (EV_A_ fd); 801 fd_change (EV_A_ fd, EV_IOFDSET | 1);
460 } 802 }
461} 803}
462 804
463/*****************************************************************************/ 805/*****************************************************************************/
464 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
827void inline_speed
828downheap (ANHE *heap, int N, int k)
829{
830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
832
833 for (;;)
834 {
835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
838
839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
855 break;
856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
919 heap [k] = heap [p];
920 ev_active (ANHE_w (heap [k])) = k;
921 k = p;
922 }
923
924 heap [k] = he;
925 ev_active (ANHE_w (he)) = k;
926}
927
928void inline_size
929adjustheap (ANHE *heap, int N, int k)
930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
932 upheap (heap, k);
933 else
934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
943 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
944 for (i = 0; i < N; ++i)
945 upheap (heap, i + HEAP0);
946}
947
948#if EV_VERIFY
465static void 949static void
466upheap (WT *heap, int k) 950checkheap (ANHE *heap, int N)
467{ 951{
468 WT w = heap [k]; 952 int i;
469 953
470 while (k && heap [k >> 1]->at > w->at) 954 for (i = HEAP0; i < N + HEAP0; ++i)
471 {
472 heap [k] = heap [k >> 1];
473 ((W)heap [k])->active = k + 1;
474 k >>= 1;
475 } 955 {
476 956 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
477 heap [k] = w; 957 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
478 ((W)heap [k])->active = k + 1; 958 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
479
480}
481
482static void
483downheap (WT *heap, int N, int k)
484{
485 WT w = heap [k];
486
487 while (k < (N >> 1))
488 { 959 }
489 int j = k << 1;
490
491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
492 ++j;
493
494 if (w->at <= heap [j]->at)
495 break;
496
497 heap [k] = heap [j];
498 ((W)heap [k])->active = k + 1;
499 k = j;
500 }
501
502 heap [k] = w;
503 ((W)heap [k])->active = k + 1;
504} 960}
961#endif
505 962
506/*****************************************************************************/ 963/*****************************************************************************/
507 964
508typedef struct 965typedef struct
509{ 966{
510 WL head; 967 WL head;
511 sig_atomic_t volatile gotsig; 968 EV_ATOMIC_T gotsig;
512} ANSIG; 969} ANSIG;
513 970
514static ANSIG *signals; 971static ANSIG *signals;
515static int signalmax; 972static int signalmax;
516 973
517static int sigpipe [2]; 974static EV_ATOMIC_T gotsig;
518static sig_atomic_t volatile gotsig;
519static struct ev_io sigev;
520 975
521static void 976void inline_size
522signals_init (ANSIG *base, int count) 977signals_init (ANSIG *base, int count)
523{ 978{
524 while (count--) 979 while (count--)
525 { 980 {
526 base->head = 0; 981 base->head = 0;
528 983
529 ++base; 984 ++base;
530 } 985 }
531} 986}
532 987
988/*****************************************************************************/
989
990void inline_speed
991fd_intern (int fd)
992{
993#ifdef _WIN32
994 int arg = 1;
995 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
996#else
997 fcntl (fd, F_SETFD, FD_CLOEXEC);
998 fcntl (fd, F_SETFL, O_NONBLOCK);
999#endif
1000}
1001
1002static void noinline
1003evpipe_init (EV_P)
1004{
1005 if (!ev_is_active (&pipeev))
1006 {
1007#if EV_USE_EVENTFD
1008 if ((evfd = eventfd (0, 0)) >= 0)
1009 {
1010 evpipe [0] = -1;
1011 fd_intern (evfd);
1012 ev_io_set (&pipeev, evfd, EV_READ);
1013 }
1014 else
1015#endif
1016 {
1017 while (pipe (evpipe))
1018 syserr ("(libev) error creating signal/async pipe");
1019
1020 fd_intern (evpipe [0]);
1021 fd_intern (evpipe [1]);
1022 ev_io_set (&pipeev, evpipe [0], EV_READ);
1023 }
1024
1025 ev_io_start (EV_A_ &pipeev);
1026 ev_unref (EV_A); /* watcher should not keep loop alive */
1027 }
1028}
1029
1030void inline_size
1031evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1032{
1033 if (!*flag)
1034 {
1035 int old_errno = errno; /* save errno because write might clobber it */
1036
1037 *flag = 1;
1038
1039#if EV_USE_EVENTFD
1040 if (evfd >= 0)
1041 {
1042 uint64_t counter = 1;
1043 write (evfd, &counter, sizeof (uint64_t));
1044 }
1045 else
1046#endif
1047 write (evpipe [1], &old_errno, 1);
1048
1049 errno = old_errno;
1050 }
1051}
1052
533static void 1053static void
1054pipecb (EV_P_ ev_io *iow, int revents)
1055{
1056#if EV_USE_EVENTFD
1057 if (evfd >= 0)
1058 {
1059 uint64_t counter;
1060 read (evfd, &counter, sizeof (uint64_t));
1061 }
1062 else
1063#endif
1064 {
1065 char dummy;
1066 read (evpipe [0], &dummy, 1);
1067 }
1068
1069 if (gotsig && ev_is_default_loop (EV_A))
1070 {
1071 int signum;
1072 gotsig = 0;
1073
1074 for (signum = signalmax; signum--; )
1075 if (signals [signum].gotsig)
1076 ev_feed_signal_event (EV_A_ signum + 1);
1077 }
1078
1079#if EV_ASYNC_ENABLE
1080 if (gotasync)
1081 {
1082 int i;
1083 gotasync = 0;
1084
1085 for (i = asynccnt; i--; )
1086 if (asyncs [i]->sent)
1087 {
1088 asyncs [i]->sent = 0;
1089 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1090 }
1091 }
1092#endif
1093}
1094
1095/*****************************************************************************/
1096
1097static void
534sighandler (int signum) 1098ev_sighandler (int signum)
535{ 1099{
1100#if EV_MULTIPLICITY
1101 struct ev_loop *loop = &default_loop_struct;
1102#endif
1103
536#if WIN32 1104#if _WIN32
537 signal (signum, sighandler); 1105 signal (signum, ev_sighandler);
538#endif 1106#endif
539 1107
540 signals [signum - 1].gotsig = 1; 1108 signals [signum - 1].gotsig = 1;
541 1109 evpipe_write (EV_A_ &gotsig);
542 if (!gotsig)
543 {
544 int old_errno = errno;
545 gotsig = 1;
546#ifdef WIN32
547 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
548#else
549 write (sigpipe [1], &signum, 1);
550#endif
551 errno = old_errno;
552 }
553} 1110}
554 1111
555static void 1112void noinline
556sigcb (EV_P_ struct ev_io *iow, int revents) 1113ev_feed_signal_event (EV_P_ int signum)
557{ 1114{
558 WL w; 1115 WL w;
1116
1117#if EV_MULTIPLICITY
1118 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1119#endif
1120
559 int signum; 1121 --signum;
560 1122
561#ifdef WIN32 1123 if (signum < 0 || signum >= signalmax)
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1124 return;
563#else
564 read (sigpipe [0], &revents, 1);
565#endif
566 gotsig = 0;
567 1125
568 for (signum = signalmax; signum--; )
569 if (signals [signum].gotsig)
570 {
571 signals [signum].gotsig = 0; 1126 signals [signum].gotsig = 0;
572 1127
573 for (w = signals [signum].head; w; w = w->next) 1128 for (w = signals [signum].head; w; w = w->next)
574 event (EV_A_ (W)w, EV_SIGNAL); 1129 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
575 }
576}
577
578static void
579siginit (EV_P)
580{
581#ifndef WIN32
582 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
583 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
584
585 /* rather than sort out wether we really need nb, set it */
586 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
587 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
588#endif
589
590 ev_io_set (&sigev, sigpipe [0], EV_READ);
591 ev_io_start (EV_A_ &sigev);
592 ev_unref (EV_A); /* child watcher should not keep loop alive */
593} 1130}
594 1131
595/*****************************************************************************/ 1132/*****************************************************************************/
596 1133
597static struct ev_child *childs [PID_HASHSIZE]; 1134static WL childs [EV_PID_HASHSIZE];
598 1135
599#ifndef WIN32 1136#ifndef _WIN32
600 1137
601static struct ev_signal childev; 1138static ev_signal childev;
1139
1140#ifndef WIFCONTINUED
1141# define WIFCONTINUED(status) 0
1142#endif
1143
1144void inline_speed
1145child_reap (EV_P_ int chain, int pid, int status)
1146{
1147 ev_child *w;
1148 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1149
1150 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1151 {
1152 if ((w->pid == pid || !w->pid)
1153 && (!traced || (w->flags & 1)))
1154 {
1155 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1156 w->rpid = pid;
1157 w->rstatus = status;
1158 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1159 }
1160 }
1161}
602 1162
603#ifndef WCONTINUED 1163#ifndef WCONTINUED
604# define WCONTINUED 0 1164# define WCONTINUED 0
605#endif 1165#endif
606 1166
607static void 1167static void
608child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
609{
610 struct ev_child *w;
611
612 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
613 if (w->pid == pid || !w->pid)
614 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid;
617 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD);
619 }
620}
621
622static void
623childcb (EV_P_ struct ev_signal *sw, int revents) 1168childcb (EV_P_ ev_signal *sw, int revents)
624{ 1169{
625 int pid, status; 1170 int pid, status;
626 1171
1172 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1173 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
628 { 1174 if (!WCONTINUED
1175 || errno != EINVAL
1176 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1177 return;
1178
629 /* make sure we are called again until all childs have been reaped */ 1179 /* make sure we are called again until all children have been reaped */
1180 /* we need to do it this way so that the callback gets called before we continue */
630 event (EV_A_ (W)sw, EV_SIGNAL); 1181 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
631 1182
632 child_reap (EV_A_ sw, pid, pid, status); 1183 child_reap (EV_A_ pid, pid, status);
1184 if (EV_PID_HASHSIZE > 1)
633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1185 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
634 }
635} 1186}
636 1187
637#endif 1188#endif
638 1189
639/*****************************************************************************/ 1190/*****************************************************************************/
640 1191
1192#if EV_USE_PORT
1193# include "ev_port.c"
1194#endif
641#if EV_USE_KQUEUE 1195#if EV_USE_KQUEUE
642# include "ev_kqueue.c" 1196# include "ev_kqueue.c"
643#endif 1197#endif
644#if EV_USE_EPOLL 1198#if EV_USE_EPOLL
645# include "ev_epoll.c" 1199# include "ev_epoll.c"
662{ 1216{
663 return EV_VERSION_MINOR; 1217 return EV_VERSION_MINOR;
664} 1218}
665 1219
666/* return true if we are running with elevated privileges and should ignore env variables */ 1220/* return true if we are running with elevated privileges and should ignore env variables */
667static int 1221int inline_size
668enable_secure (void) 1222enable_secure (void)
669{ 1223{
670#ifdef WIN32 1224#ifdef _WIN32
671 return 0; 1225 return 0;
672#else 1226#else
673 return getuid () != geteuid () 1227 return getuid () != geteuid ()
674 || getgid () != getegid (); 1228 || getgid () != getegid ();
675#endif 1229#endif
676} 1230}
677 1231
678int 1232unsigned int
679ev_method (EV_P) 1233ev_supported_backends (void)
680{ 1234{
681 return method; 1235 unsigned int flags = 0;
682}
683 1236
684static void 1237 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
685loop_init (EV_P_ int methods) 1238 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1239 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1240 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1241 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1242
1243 return flags;
1244}
1245
1246unsigned int
1247ev_recommended_backends (void)
686{ 1248{
687 if (!method) 1249 unsigned int flags = ev_supported_backends ();
1250
1251#ifndef __NetBSD__
1252 /* kqueue is borked on everything but netbsd apparently */
1253 /* it usually doesn't work correctly on anything but sockets and pipes */
1254 flags &= ~EVBACKEND_KQUEUE;
1255#endif
1256#ifdef __APPLE__
1257 // flags &= ~EVBACKEND_KQUEUE; for documentation
1258 flags &= ~EVBACKEND_POLL;
1259#endif
1260
1261 return flags;
1262}
1263
1264unsigned int
1265ev_embeddable_backends (void)
1266{
1267 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1268
1269 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1270 /* please fix it and tell me how to detect the fix */
1271 flags &= ~EVBACKEND_EPOLL;
1272
1273 return flags;
1274}
1275
1276unsigned int
1277ev_backend (EV_P)
1278{
1279 return backend;
1280}
1281
1282unsigned int
1283ev_loop_count (EV_P)
1284{
1285 return loop_count;
1286}
1287
1288void
1289ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1290{
1291 io_blocktime = interval;
1292}
1293
1294void
1295ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1296{
1297 timeout_blocktime = interval;
1298}
1299
1300static void noinline
1301loop_init (EV_P_ unsigned int flags)
1302{
1303 if (!backend)
688 { 1304 {
689#if EV_USE_MONOTONIC 1305#if EV_USE_MONOTONIC
690 { 1306 {
691 struct timespec ts; 1307 struct timespec ts;
692 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1308 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
693 have_monotonic = 1; 1309 have_monotonic = 1;
694 } 1310 }
695#endif 1311#endif
696 1312
697 rt_now = ev_time (); 1313 ev_rt_now = ev_time ();
698 mn_now = get_clock (); 1314 mn_now = get_clock ();
699 now_floor = mn_now; 1315 now_floor = mn_now;
700 rtmn_diff = rt_now - mn_now; 1316 rtmn_diff = ev_rt_now - mn_now;
701 1317
702 if (methods == EVMETHOD_AUTO) 1318 io_blocktime = 0.;
703 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1319 timeout_blocktime = 0.;
1320 backend = 0;
1321 backend_fd = -1;
1322 gotasync = 0;
1323#if EV_USE_INOTIFY
1324 fs_fd = -2;
1325#endif
1326
1327 /* pid check not overridable via env */
1328#ifndef _WIN32
1329 if (flags & EVFLAG_FORKCHECK)
1330 curpid = getpid ();
1331#endif
1332
1333 if (!(flags & EVFLAG_NOENV)
1334 && !enable_secure ()
1335 && getenv ("LIBEV_FLAGS"))
704 methods = atoi (getenv ("LIBEV_METHODS")); 1336 flags = atoi (getenv ("LIBEV_FLAGS"));
705 else
706 methods = EVMETHOD_ANY;
707 1337
708 method = 0; 1338 if (!(flags & 0x0000ffffU))
709#if EV_USE_WIN32 1339 flags |= ev_recommended_backends ();
710 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1340
1341#if EV_USE_PORT
1342 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
711#endif 1343#endif
712#if EV_USE_KQUEUE 1344#if EV_USE_KQUEUE
713 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1345 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
714#endif 1346#endif
715#if EV_USE_EPOLL 1347#if EV_USE_EPOLL
716 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1348 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
717#endif 1349#endif
718#if EV_USE_POLL 1350#if EV_USE_POLL
719 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1351 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
720#endif 1352#endif
721#if EV_USE_SELECT 1353#if EV_USE_SELECT
722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1354 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
723#endif 1355#endif
724 1356
725 ev_watcher_init (&sigev, sigcb); 1357 ev_init (&pipeev, pipecb);
726 ev_set_priority (&sigev, EV_MAXPRI); 1358 ev_set_priority (&pipeev, EV_MAXPRI);
727 } 1359 }
728} 1360}
729 1361
730void 1362static void noinline
731loop_destroy (EV_P) 1363loop_destroy (EV_P)
732{ 1364{
733 int i; 1365 int i;
734 1366
1367 if (ev_is_active (&pipeev))
1368 {
1369 ev_ref (EV_A); /* signal watcher */
1370 ev_io_stop (EV_A_ &pipeev);
1371
1372#if EV_USE_EVENTFD
1373 if (evfd >= 0)
1374 close (evfd);
1375#endif
1376
1377 if (evpipe [0] >= 0)
1378 {
1379 close (evpipe [0]);
1380 close (evpipe [1]);
1381 }
1382 }
1383
735#if EV_USE_WIN32 1384#if EV_USE_INOTIFY
736 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1385 if (fs_fd >= 0)
1386 close (fs_fd);
1387#endif
1388
1389 if (backend_fd >= 0)
1390 close (backend_fd);
1391
1392#if EV_USE_PORT
1393 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
737#endif 1394#endif
738#if EV_USE_KQUEUE 1395#if EV_USE_KQUEUE
739 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1396 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
740#endif 1397#endif
741#if EV_USE_EPOLL 1398#if EV_USE_EPOLL
742 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1399 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
743#endif 1400#endif
744#if EV_USE_POLL 1401#if EV_USE_POLL
745 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1402 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
746#endif 1403#endif
747#if EV_USE_SELECT 1404#if EV_USE_SELECT
748 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1405 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
749#endif 1406#endif
750 1407
751 for (i = NUMPRI; i--; ) 1408 for (i = NUMPRI; i--; )
1409 {
752 array_free (pending, [i]); 1410 array_free (pending, [i]);
1411#if EV_IDLE_ENABLE
1412 array_free (idle, [i]);
1413#endif
1414 }
1415
1416 ev_free (anfds); anfdmax = 0;
753 1417
754 /* have to use the microsoft-never-gets-it-right macro */ 1418 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange); 1419 array_free (fdchange, EMPTY);
756 array_free_microshit (timer); 1420 array_free (timer, EMPTY);
757 array_free_microshit (periodic); 1421#if EV_PERIODIC_ENABLE
758 array_free_microshit (idle); 1422 array_free (periodic, EMPTY);
759 array_free_microshit (prepare); 1423#endif
760 array_free_microshit (check); 1424#if EV_FORK_ENABLE
1425 array_free (fork, EMPTY);
1426#endif
1427 array_free (prepare, EMPTY);
1428 array_free (check, EMPTY);
1429#if EV_ASYNC_ENABLE
1430 array_free (async, EMPTY);
1431#endif
761 1432
762 method = 0; 1433 backend = 0;
763} 1434}
764 1435
1436#if EV_USE_INOTIFY
1437void inline_size infy_fork (EV_P);
1438#endif
1439
1440void inline_size
1441loop_fork (EV_P)
1442{
1443#if EV_USE_PORT
1444 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1445#endif
1446#if EV_USE_KQUEUE
1447 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1448#endif
1449#if EV_USE_EPOLL
1450 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1451#endif
1452#if EV_USE_INOTIFY
1453 infy_fork (EV_A);
1454#endif
1455
1456 if (ev_is_active (&pipeev))
1457 {
1458 /* this "locks" the handlers against writing to the pipe */
1459 /* while we modify the fd vars */
1460 gotsig = 1;
1461#if EV_ASYNC_ENABLE
1462 gotasync = 1;
1463#endif
1464
1465 ev_ref (EV_A);
1466 ev_io_stop (EV_A_ &pipeev);
1467
1468#if EV_USE_EVENTFD
1469 if (evfd >= 0)
1470 close (evfd);
1471#endif
1472
1473 if (evpipe [0] >= 0)
1474 {
1475 close (evpipe [0]);
1476 close (evpipe [1]);
1477 }
1478
1479 evpipe_init (EV_A);
1480 /* now iterate over everything, in case we missed something */
1481 pipecb (EV_A_ &pipeev, EV_READ);
1482 }
1483
1484 postfork = 0;
1485}
1486
1487#if EV_MULTIPLICITY
1488
1489struct ev_loop *
1490ev_loop_new (unsigned int flags)
1491{
1492 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1493
1494 memset (loop, 0, sizeof (struct ev_loop));
1495
1496 loop_init (EV_A_ flags);
1497
1498 if (ev_backend (EV_A))
1499 return loop;
1500
1501 return 0;
1502}
1503
1504void
1505ev_loop_destroy (EV_P)
1506{
1507 loop_destroy (EV_A);
1508 ev_free (loop);
1509}
1510
1511void
1512ev_loop_fork (EV_P)
1513{
1514 postfork = 1; /* must be in line with ev_default_fork */
1515}
1516
1517#if EV_VERIFY
765static void 1518static void
766loop_fork (EV_P) 1519array_check (W **ws, int cnt)
767{ 1520{
768#if EV_USE_EPOLL 1521 while (cnt--)
769 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
770#endif
771#if EV_USE_KQUEUE
772 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
773#endif
774
775 if (ev_is_active (&sigev))
776 {
777 /* default loop */
778
779 ev_ref (EV_A);
780 ev_io_stop (EV_A_ &sigev);
781 close (sigpipe [0]);
782 close (sigpipe [1]);
783
784 while (pipe (sigpipe))
785 syserr ("(libev) error creating pipe");
786
787 siginit (EV_A);
788 }
789
790 postfork = 0;
791} 1523}
1524#endif
1525
1526void
1527ev_loop_verify (EV_P)
1528{
1529#if EV_VERIFY
1530 int i;
1531
1532 checkheap (timers, timercnt);
1533#if EV_PERIODIC_ENABLE
1534 checkheap (periodics, periodiccnt);
1535#endif
1536
1537#if EV_IDLE_ENABLE
1538 for (i = NUMPRI; i--; )
1539 array_check ((W **)idles [i], idlecnt [i]);
1540#endif
1541#if EV_FORK_ENABLE
1542 array_check ((W **)forks, forkcnt);
1543#endif
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547 array_check ((W **)prepares, preparecnt);
1548 array_check ((W **)checks, checkcnt);
1549#endif
1550}
1551
1552#endif /* multiplicity */
792 1553
793#if EV_MULTIPLICITY 1554#if EV_MULTIPLICITY
794struct ev_loop * 1555struct ev_loop *
795ev_loop_new (int methods) 1556ev_default_loop_init (unsigned int flags)
796{ 1557#else
797 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1558int
798 1559ev_default_loop (unsigned int flags)
799 memset (loop, 0, sizeof (struct ev_loop));
800
801 loop_init (EV_A_ methods);
802
803 if (ev_method (EV_A))
804 return loop;
805
806 return 0;
807}
808
809void
810ev_loop_destroy (EV_P)
811{
812 loop_destroy (EV_A);
813 ev_free (loop);
814}
815
816void
817ev_loop_fork (EV_P)
818{
819 postfork = 1;
820}
821
822#endif 1560#endif
823 1561{
1562 if (!ev_default_loop_ptr)
1563 {
824#if EV_MULTIPLICITY 1564#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct; 1565 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop *
829#else 1566#else
830static int default_loop;
831
832int
833#endif
834ev_default_loop (int methods)
835{
836 if (sigpipe [0] == sigpipe [1])
837 if (pipe (sigpipe))
838 return 0;
839
840 if (!default_loop)
841 {
842#if EV_MULTIPLICITY
843 struct ev_loop *loop = default_loop = &default_loop_struct;
844#else
845 default_loop = 1; 1567 ev_default_loop_ptr = 1;
846#endif 1568#endif
847 1569
848 loop_init (EV_A_ methods); 1570 loop_init (EV_A_ flags);
849 1571
850 if (ev_method (EV_A)) 1572 if (ev_backend (EV_A))
851 { 1573 {
852 siginit (EV_A);
853
854#ifndef WIN32 1574#ifndef _WIN32
855 ev_signal_init (&childev, childcb, SIGCHLD); 1575 ev_signal_init (&childev, childcb, SIGCHLD);
856 ev_set_priority (&childev, EV_MAXPRI); 1576 ev_set_priority (&childev, EV_MAXPRI);
857 ev_signal_start (EV_A_ &childev); 1577 ev_signal_start (EV_A_ &childev);
858 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1578 ev_unref (EV_A); /* child watcher should not keep loop alive */
859#endif 1579#endif
860 } 1580 }
861 else 1581 else
862 default_loop = 0; 1582 ev_default_loop_ptr = 0;
863 } 1583 }
864 1584
865 return default_loop; 1585 return ev_default_loop_ptr;
866} 1586}
867 1587
868void 1588void
869ev_default_destroy (void) 1589ev_default_destroy (void)
870{ 1590{
871#if EV_MULTIPLICITY 1591#if EV_MULTIPLICITY
872 struct ev_loop *loop = default_loop; 1592 struct ev_loop *loop = ev_default_loop_ptr;
873#endif 1593#endif
874 1594
875#ifndef WIN32 1595#ifndef _WIN32
876 ev_ref (EV_A); /* child watcher */ 1596 ev_ref (EV_A); /* child watcher */
877 ev_signal_stop (EV_A_ &childev); 1597 ev_signal_stop (EV_A_ &childev);
878#endif 1598#endif
879 1599
880 ev_ref (EV_A); /* signal watcher */
881 ev_io_stop (EV_A_ &sigev);
882
883 close (sigpipe [0]); sigpipe [0] = 0;
884 close (sigpipe [1]); sigpipe [1] = 0;
885
886 loop_destroy (EV_A); 1600 loop_destroy (EV_A);
887} 1601}
888 1602
889void 1603void
890ev_default_fork (void) 1604ev_default_fork (void)
891{ 1605{
892#if EV_MULTIPLICITY 1606#if EV_MULTIPLICITY
893 struct ev_loop *loop = default_loop; 1607 struct ev_loop *loop = ev_default_loop_ptr;
894#endif 1608#endif
895 1609
896 if (method) 1610 if (backend)
897 postfork = 1; 1611 postfork = 1; /* must be in line with ev_loop_fork */
898} 1612}
899 1613
900/*****************************************************************************/ 1614/*****************************************************************************/
901 1615
902static int 1616void
903any_pending (EV_P) 1617ev_invoke (EV_P_ void *w, int revents)
904{ 1618{
905 int pri; 1619 EV_CB_INVOKE ((W)w, revents);
906
907 for (pri = NUMPRI; pri--; )
908 if (pendingcnt [pri])
909 return 1;
910
911 return 0;
912} 1620}
913 1621
914static void 1622void inline_speed
915call_pending (EV_P) 1623call_pending (EV_P)
916{ 1624{
917 int pri; 1625 int pri;
918 1626
919 for (pri = NUMPRI; pri--; ) 1627 for (pri = NUMPRI; pri--; )
920 while (pendingcnt [pri]) 1628 while (pendingcnt [pri])
921 { 1629 {
922 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1630 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
923 1631
924 if (p->w) 1632 if (expect_true (p->w))
925 { 1633 {
1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1635
926 p->w->pending = 0; 1636 p->w->pending = 0;
927 p->w->cb (EV_A_ p->w, p->events); 1637 EV_CB_INVOKE (p->w, p->events);
1638 EV_FREQUENT_CHECK;
928 } 1639 }
929 } 1640 }
930} 1641}
931 1642
932static void 1643#if EV_IDLE_ENABLE
1644void inline_size
1645idle_reify (EV_P)
1646{
1647 if (expect_false (idleall))
1648 {
1649 int pri;
1650
1651 for (pri = NUMPRI; pri--; )
1652 {
1653 if (pendingcnt [pri])
1654 break;
1655
1656 if (idlecnt [pri])
1657 {
1658 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1659 break;
1660 }
1661 }
1662 }
1663}
1664#endif
1665
1666void inline_size
933timers_reify (EV_P) 1667timers_reify (EV_P)
934{ 1668{
1669 EV_FREQUENT_CHECK;
1670
935 while (timercnt && ((WT)timers [0])->at <= mn_now) 1671 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
936 { 1672 {
937 struct ev_timer *w = timers [0]; 1673 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
938 1674
939 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1675 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
940 1676
941 /* first reschedule or stop timer */ 1677 /* first reschedule or stop timer */
942 if (w->repeat) 1678 if (w->repeat)
943 { 1679 {
1680 ev_at (w) += w->repeat;
1681 if (ev_at (w) < mn_now)
1682 ev_at (w) = mn_now;
1683
944 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1684 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
945 ((WT)w)->at = mn_now + w->repeat; 1685
1686 ANHE_at_cache (timers [HEAP0]);
946 downheap ((WT *)timers, timercnt, 0); 1687 downheap (timers, timercnt, HEAP0);
947 } 1688 }
948 else 1689 else
949 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1690 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
950 1691
1692 EV_FREQUENT_CHECK;
951 event (EV_A_ (W)w, EV_TIMEOUT); 1693 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
952 } 1694 }
953} 1695}
954 1696
955static void 1697#if EV_PERIODIC_ENABLE
1698void inline_size
956periodics_reify (EV_P) 1699periodics_reify (EV_P)
957{ 1700{
1701 EV_FREQUENT_CHECK;
1702
958 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
959 { 1704 {
960 struct ev_periodic *w = periodics [0]; 1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
961 1706
962 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
963 1708
964 /* first reschedule or stop timer */ 1709 /* first reschedule or stop timer */
965 if (w->interval) 1710 if (w->reschedule_cb)
966 { 1711 {
967 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
968 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1713
1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
969 downheap ((WT *)periodics, periodiccnt, 0); 1717 downheap (periodics, periodiccnt, HEAP0);
1718 }
1719 else if (w->interval)
1720 {
1721 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1722 /* if next trigger time is not sufficiently in the future, put it there */
1723 /* this might happen because of floating point inexactness */
1724 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1725 {
1726 ev_at (w) += w->interval;
1727
1728 /* if interval is unreasonably low we might still have a time in the past */
1729 /* so correct this. this will make the periodic very inexact, but the user */
1730 /* has effectively asked to get triggered more often than possible */
1731 if (ev_at (w) < ev_rt_now)
1732 ev_at (w) = ev_rt_now;
1733 }
1734
1735 ANHE_at_cache (periodics [HEAP0]);
1736 downheap (periodics, periodiccnt, HEAP0);
970 } 1737 }
971 else 1738 else
972 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
973 1740
1741 EV_FREQUENT_CHECK;
974 event (EV_A_ (W)w, EV_PERIODIC); 1742 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
975 } 1743 }
976} 1744}
977 1745
978static void 1746static void noinline
979periodics_reschedule (EV_P) 1747periodics_reschedule (EV_P)
980{ 1748{
981 int i; 1749 int i;
982 1750
983 /* adjust periodics after time jump */ 1751 /* adjust periodics after time jump */
984 for (i = 0; i < periodiccnt; ++i) 1752 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
985 { 1753 {
986 struct ev_periodic *w = periodics [i]; 1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
987 1755
1756 if (w->reschedule_cb)
1757 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
988 if (w->interval) 1758 else if (w->interval)
1759 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1760
1761 ANHE_at_cache (periodics [i]);
1762 }
1763
1764 reheap (periodics, periodiccnt);
1765}
1766#endif
1767
1768void inline_speed
1769time_update (EV_P_ ev_tstamp max_block)
1770{
1771 int i;
1772
1773#if EV_USE_MONOTONIC
1774 if (expect_true (have_monotonic))
1775 {
1776 ev_tstamp odiff = rtmn_diff;
1777
1778 mn_now = get_clock ();
1779
1780 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1781 /* interpolate in the meantime */
1782 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
989 { 1783 {
990 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1784 ev_rt_now = rtmn_diff + mn_now;
1785 return;
1786 }
991 1787
992 if (fabs (diff) >= 1e-4) 1788 now_floor = mn_now;
1789 ev_rt_now = ev_time ();
1790
1791 /* loop a few times, before making important decisions.
1792 * on the choice of "4": one iteration isn't enough,
1793 * in case we get preempted during the calls to
1794 * ev_time and get_clock. a second call is almost guaranteed
1795 * to succeed in that case, though. and looping a few more times
1796 * doesn't hurt either as we only do this on time-jumps or
1797 * in the unlikely event of having been preempted here.
1798 */
1799 for (i = 4; --i; )
1800 {
1801 rtmn_diff = ev_rt_now - mn_now;
1802
1803 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1804 return; /* all is well */
1805
1806 ev_rt_now = ev_time ();
1807 mn_now = get_clock ();
1808 now_floor = mn_now;
1809 }
1810
1811# if EV_PERIODIC_ENABLE
1812 periodics_reschedule (EV_A);
1813# endif
1814 /* no timer adjustment, as the monotonic clock doesn't jump */
1815 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1816 }
1817 else
1818#endif
1819 {
1820 ev_rt_now = ev_time ();
1821
1822 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1823 {
1824#if EV_PERIODIC_ENABLE
1825 periodics_reschedule (EV_A);
1826#endif
1827 /* adjust timers. this is easy, as the offset is the same for all of them */
1828 for (i = 0; i < timercnt; ++i)
993 { 1829 {
994 ev_periodic_stop (EV_A_ w); 1830 ANHE *he = timers + i + HEAP0;
995 ev_periodic_start (EV_A_ w); 1831 ANHE_w (*he)->at += ev_rt_now - mn_now;
996 1832 ANHE_at_cache (*he);
997 i = 0; /* restart loop, inefficient, but time jumps should be rare */
998 } 1833 }
999 } 1834 }
1000 }
1001}
1002 1835
1003inline int
1004time_update_monotonic (EV_P)
1005{
1006 mn_now = get_clock ();
1007
1008 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1009 {
1010 rt_now = rtmn_diff + mn_now;
1011 return 0;
1012 }
1013 else
1014 {
1015 now_floor = mn_now;
1016 rt_now = ev_time ();
1017 return 1;
1018 }
1019}
1020
1021static void
1022time_update (EV_P)
1023{
1024 int i;
1025
1026#if EV_USE_MONOTONIC
1027 if (expect_true (have_monotonic))
1028 {
1029 if (time_update_monotonic (EV_A))
1030 {
1031 ev_tstamp odiff = rtmn_diff;
1032
1033 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1034 {
1035 rtmn_diff = rt_now - mn_now;
1036
1037 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1038 return; /* all is well */
1039
1040 rt_now = ev_time ();
1041 mn_now = get_clock ();
1042 now_floor = mn_now;
1043 }
1044
1045 periodics_reschedule (EV_A);
1046 /* no timer adjustment, as the monotonic clock doesn't jump */
1047 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1048 }
1049 }
1050 else
1051#endif
1052 {
1053 rt_now = ev_time ();
1054
1055 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1056 {
1057 periodics_reschedule (EV_A);
1058
1059 /* adjust timers. this is easy, as the offset is the same for all */
1060 for (i = 0; i < timercnt; ++i)
1061 ((WT)timers [i])->at += rt_now - mn_now;
1062 }
1063
1064 mn_now = rt_now; 1836 mn_now = ev_rt_now;
1065 } 1837 }
1066} 1838}
1067 1839
1068void 1840void
1069ev_ref (EV_P) 1841ev_ref (EV_P)
1080static int loop_done; 1852static int loop_done;
1081 1853
1082void 1854void
1083ev_loop (EV_P_ int flags) 1855ev_loop (EV_P_ int flags)
1084{ 1856{
1085 double block; 1857 loop_done = EVUNLOOP_CANCEL;
1086 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1858
1859 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1087 1860
1088 do 1861 do
1089 { 1862 {
1863#if EV_VERIFY >= 2
1864 ev_loop_verify (EV_A);
1865#endif
1866
1867#ifndef _WIN32
1868 if (expect_false (curpid)) /* penalise the forking check even more */
1869 if (expect_false (getpid () != curpid))
1870 {
1871 curpid = getpid ();
1872 postfork = 1;
1873 }
1874#endif
1875
1876#if EV_FORK_ENABLE
1877 /* we might have forked, so queue fork handlers */
1878 if (expect_false (postfork))
1879 if (forkcnt)
1880 {
1881 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1882 call_pending (EV_A);
1883 }
1884#endif
1885
1090 /* queue check watchers (and execute them) */ 1886 /* queue prepare watchers (and execute them) */
1091 if (expect_false (preparecnt)) 1887 if (expect_false (preparecnt))
1092 { 1888 {
1093 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1889 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1094 call_pending (EV_A); 1890 call_pending (EV_A);
1095 } 1891 }
1096 1892
1893 if (expect_false (!activecnt))
1894 break;
1895
1097 /* we might have forked, so reify kernel state if necessary */ 1896 /* we might have forked, so reify kernel state if necessary */
1098 if (expect_false (postfork)) 1897 if (expect_false (postfork))
1099 loop_fork (EV_A); 1898 loop_fork (EV_A);
1100 1899
1101 /* update fd-related kernel structures */ 1900 /* update fd-related kernel structures */
1102 fd_reify (EV_A); 1901 fd_reify (EV_A);
1103 1902
1104 /* calculate blocking time */ 1903 /* calculate blocking time */
1904 {
1905 ev_tstamp waittime = 0.;
1906 ev_tstamp sleeptime = 0.;
1105 1907
1106 /* we only need this for !monotonic clock or timers, but as we basically 1908 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1107 always have timers, we just calculate it always */
1108#if EV_USE_MONOTONIC
1109 if (expect_true (have_monotonic))
1110 time_update_monotonic (EV_A);
1111 else
1112#endif
1113 { 1909 {
1114 rt_now = ev_time (); 1910 /* update time to cancel out callback processing overhead */
1115 mn_now = rt_now; 1911 time_update (EV_A_ 1e100);
1116 }
1117 1912
1118 if (flags & EVLOOP_NONBLOCK || idlecnt)
1119 block = 0.;
1120 else
1121 {
1122 block = MAX_BLOCKTIME; 1913 waittime = MAX_BLOCKTIME;
1123 1914
1124 if (timercnt) 1915 if (timercnt)
1125 { 1916 {
1126 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1917 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1127 if (block > to) block = to; 1918 if (waittime > to) waittime = to;
1128 } 1919 }
1129 1920
1921#if EV_PERIODIC_ENABLE
1130 if (periodiccnt) 1922 if (periodiccnt)
1131 { 1923 {
1132 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1924 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1133 if (block > to) block = to; 1925 if (waittime > to) waittime = to;
1134 } 1926 }
1927#endif
1135 1928
1136 if (block < 0.) block = 0.; 1929 if (expect_false (waittime < timeout_blocktime))
1930 waittime = timeout_blocktime;
1931
1932 sleeptime = waittime - backend_fudge;
1933
1934 if (expect_true (sleeptime > io_blocktime))
1935 sleeptime = io_blocktime;
1936
1937 if (sleeptime)
1938 {
1939 ev_sleep (sleeptime);
1940 waittime -= sleeptime;
1941 }
1137 } 1942 }
1138 1943
1139 method_poll (EV_A_ block); 1944 ++loop_count;
1945 backend_poll (EV_A_ waittime);
1140 1946
1141 /* update rt_now, do magic */ 1947 /* update ev_rt_now, do magic */
1142 time_update (EV_A); 1948 time_update (EV_A_ waittime + sleeptime);
1949 }
1143 1950
1144 /* queue pending timers and reschedule them */ 1951 /* queue pending timers and reschedule them */
1145 timers_reify (EV_A); /* relative timers called last */ 1952 timers_reify (EV_A); /* relative timers called last */
1953#if EV_PERIODIC_ENABLE
1146 periodics_reify (EV_A); /* absolute timers called first */ 1954 periodics_reify (EV_A); /* absolute timers called first */
1955#endif
1147 1956
1957#if EV_IDLE_ENABLE
1148 /* queue idle watchers unless io or timers are pending */ 1958 /* queue idle watchers unless other events are pending */
1149 if (idlecnt && !any_pending (EV_A)) 1959 idle_reify (EV_A);
1150 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1960#endif
1151 1961
1152 /* queue check watchers, to be executed first */ 1962 /* queue check watchers, to be executed first */
1153 if (checkcnt) 1963 if (expect_false (checkcnt))
1154 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1964 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1155 1965
1156 call_pending (EV_A); 1966 call_pending (EV_A);
1157 } 1967 }
1158 while (activecnt && !loop_done); 1968 while (expect_true (
1969 activecnt
1970 && !loop_done
1971 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1972 ));
1159 1973
1160 if (loop_done != 2) 1974 if (loop_done == EVUNLOOP_ONE)
1161 loop_done = 0; 1975 loop_done = EVUNLOOP_CANCEL;
1162} 1976}
1163 1977
1164void 1978void
1165ev_unloop (EV_P_ int how) 1979ev_unloop (EV_P_ int how)
1166{ 1980{
1167 loop_done = how; 1981 loop_done = how;
1168} 1982}
1169 1983
1170/*****************************************************************************/ 1984/*****************************************************************************/
1171 1985
1172inline void 1986void inline_size
1173wlist_add (WL *head, WL elem) 1987wlist_add (WL *head, WL elem)
1174{ 1988{
1175 elem->next = *head; 1989 elem->next = *head;
1176 *head = elem; 1990 *head = elem;
1177} 1991}
1178 1992
1179inline void 1993void inline_size
1180wlist_del (WL *head, WL elem) 1994wlist_del (WL *head, WL elem)
1181{ 1995{
1182 while (*head) 1996 while (*head)
1183 { 1997 {
1184 if (*head == elem) 1998 if (*head == elem)
1189 2003
1190 head = &(*head)->next; 2004 head = &(*head)->next;
1191 } 2005 }
1192} 2006}
1193 2007
1194inline void 2008void inline_speed
1195ev_clear_pending (EV_P_ W w) 2009clear_pending (EV_P_ W w)
1196{ 2010{
1197 if (w->pending) 2011 if (w->pending)
1198 { 2012 {
1199 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2013 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1200 w->pending = 0; 2014 w->pending = 0;
1201 } 2015 }
1202} 2016}
1203 2017
1204inline void 2018int
2019ev_clear_pending (EV_P_ void *w)
2020{
2021 W w_ = (W)w;
2022 int pending = w_->pending;
2023
2024 if (expect_true (pending))
2025 {
2026 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2027 w_->pending = 0;
2028 p->w = 0;
2029 return p->events;
2030 }
2031 else
2032 return 0;
2033}
2034
2035void inline_size
2036pri_adjust (EV_P_ W w)
2037{
2038 int pri = w->priority;
2039 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2040 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2041 w->priority = pri;
2042}
2043
2044void inline_speed
1205ev_start (EV_P_ W w, int active) 2045ev_start (EV_P_ W w, int active)
1206{ 2046{
1207 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2047 pri_adjust (EV_A_ w);
1208 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1209
1210 w->active = active; 2048 w->active = active;
1211 ev_ref (EV_A); 2049 ev_ref (EV_A);
1212} 2050}
1213 2051
1214inline void 2052void inline_size
1215ev_stop (EV_P_ W w) 2053ev_stop (EV_P_ W w)
1216{ 2054{
1217 ev_unref (EV_A); 2055 ev_unref (EV_A);
1218 w->active = 0; 2056 w->active = 0;
1219} 2057}
1220 2058
1221/*****************************************************************************/ 2059/*****************************************************************************/
1222 2060
1223void 2061void noinline
1224ev_io_start (EV_P_ struct ev_io *w) 2062ev_io_start (EV_P_ ev_io *w)
1225{ 2063{
1226 int fd = w->fd; 2064 int fd = w->fd;
1227 2065
1228 if (ev_is_active (w)) 2066 if (expect_false (ev_is_active (w)))
1229 return; 2067 return;
1230 2068
1231 assert (("ev_io_start called with negative fd", fd >= 0)); 2069 assert (("ev_io_start called with negative fd", fd >= 0));
2070
2071 EV_FREQUENT_CHECK;
1232 2072
1233 ev_start (EV_A_ (W)w, 1); 2073 ev_start (EV_A_ (W)w, 1);
1234 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2074 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1235 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2075 wlist_add (&anfds[fd].head, (WL)w);
1236 2076
1237 fd_change (EV_A_ fd); 2077 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1238} 2078 w->events &= ~EV_IOFDSET;
1239 2079
1240void 2080 EV_FREQUENT_CHECK;
2081}
2082
2083void noinline
1241ev_io_stop (EV_P_ struct ev_io *w) 2084ev_io_stop (EV_P_ ev_io *w)
1242{ 2085{
1243 ev_clear_pending (EV_A_ (W)w); 2086 clear_pending (EV_A_ (W)w);
1244 if (!ev_is_active (w)) 2087 if (expect_false (!ev_is_active (w)))
1245 return; 2088 return;
1246 2089
2090 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2091
2092 EV_FREQUENT_CHECK;
2093
1247 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2094 wlist_del (&anfds[w->fd].head, (WL)w);
1248 ev_stop (EV_A_ (W)w); 2095 ev_stop (EV_A_ (W)w);
1249 2096
1250 fd_change (EV_A_ w->fd); 2097 fd_change (EV_A_ w->fd, 1);
1251}
1252 2098
1253void 2099 EV_FREQUENT_CHECK;
2100}
2101
2102void noinline
1254ev_timer_start (EV_P_ struct ev_timer *w) 2103ev_timer_start (EV_P_ ev_timer *w)
1255{ 2104{
1256 if (ev_is_active (w)) 2105 if (expect_false (ev_is_active (w)))
1257 return; 2106 return;
1258 2107
1259 ((WT)w)->at += mn_now; 2108 ev_at (w) += mn_now;
1260 2109
1261 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2110 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1262 2111
2112 EV_FREQUENT_CHECK;
2113
2114 ++timercnt;
1263 ev_start (EV_A_ (W)w, ++timercnt); 2115 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1264 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2116 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1265 timers [timercnt - 1] = w; 2117 ANHE_w (timers [ev_active (w)]) = (WT)w;
1266 upheap ((WT *)timers, timercnt - 1); 2118 ANHE_at_cache (timers [ev_active (w)]);
2119 upheap (timers, ev_active (w));
1267 2120
2121 EV_FREQUENT_CHECK;
2122
1268 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2123 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1269} 2124}
1270 2125
1271void 2126void noinline
1272ev_timer_stop (EV_P_ struct ev_timer *w) 2127ev_timer_stop (EV_P_ ev_timer *w)
1273{ 2128{
1274 ev_clear_pending (EV_A_ (W)w); 2129 clear_pending (EV_A_ (W)w);
1275 if (!ev_is_active (w)) 2130 if (expect_false (!ev_is_active (w)))
1276 return; 2131 return;
1277 2132
2133 EV_FREQUENT_CHECK;
2134
2135 {
2136 int active = ev_active (w);
2137
1278 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2138 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1279 2139
1280 if (((W)w)->active < timercnt--) 2140 --timercnt;
2141
2142 if (expect_true (active < timercnt + HEAP0))
1281 { 2143 {
1282 timers [((W)w)->active - 1] = timers [timercnt]; 2144 timers [active] = timers [timercnt + HEAP0];
1283 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2145 adjustheap (timers, timercnt, active);
1284 } 2146 }
2147 }
1285 2148
1286 ((WT)w)->at = w->repeat; 2149 EV_FREQUENT_CHECK;
2150
2151 ev_at (w) -= mn_now;
1287 2152
1288 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1289} 2154}
1290 2155
1291void 2156void noinline
1292ev_timer_again (EV_P_ struct ev_timer *w) 2157ev_timer_again (EV_P_ ev_timer *w)
1293{ 2158{
2159 EV_FREQUENT_CHECK;
2160
1294 if (ev_is_active (w)) 2161 if (ev_is_active (w))
1295 { 2162 {
1296 if (w->repeat) 2163 if (w->repeat)
1297 { 2164 {
1298 ((WT)w)->at = mn_now + w->repeat; 2165 ev_at (w) = mn_now + w->repeat;
1299 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2166 ANHE_at_cache (timers [ev_active (w)]);
2167 adjustheap (timers, timercnt, ev_active (w));
1300 } 2168 }
1301 else 2169 else
1302 ev_timer_stop (EV_A_ w); 2170 ev_timer_stop (EV_A_ w);
1303 } 2171 }
1304 else if (w->repeat) 2172 else if (w->repeat)
2173 {
2174 ev_at (w) = w->repeat;
1305 ev_timer_start (EV_A_ w); 2175 ev_timer_start (EV_A_ w);
1306} 2176 }
1307 2177
1308void 2178 EV_FREQUENT_CHECK;
2179}
2180
2181#if EV_PERIODIC_ENABLE
2182void noinline
1309ev_periodic_start (EV_P_ struct ev_periodic *w) 2183ev_periodic_start (EV_P_ ev_periodic *w)
1310{ 2184{
1311 if (ev_is_active (w)) 2185 if (expect_false (ev_is_active (w)))
1312 return; 2186 return;
1313 2187
2188 if (w->reschedule_cb)
2189 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2190 else if (w->interval)
2191 {
1314 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2192 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1315
1316 /* this formula differs from the one in periodic_reify because we do not always round up */ 2193 /* this formula differs from the one in periodic_reify because we do not always round up */
1317 if (w->interval)
1318 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2194 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2195 }
2196 else
2197 ev_at (w) = w->offset;
1319 2198
2199 EV_FREQUENT_CHECK;
2200
2201 ++periodiccnt;
1320 ev_start (EV_A_ (W)w, ++periodiccnt); 2202 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1321 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2203 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1322 periodics [periodiccnt - 1] = w; 2204 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1323 upheap ((WT *)periodics, periodiccnt - 1); 2205 ANHE_at_cache (periodics [ev_active (w)]);
2206 upheap (periodics, ev_active (w));
1324 2207
2208 EV_FREQUENT_CHECK;
2209
1325 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2210 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1326} 2211}
1327 2212
1328void 2213void noinline
1329ev_periodic_stop (EV_P_ struct ev_periodic *w) 2214ev_periodic_stop (EV_P_ ev_periodic *w)
1330{ 2215{
1331 ev_clear_pending (EV_A_ (W)w); 2216 clear_pending (EV_A_ (W)w);
1332 if (!ev_is_active (w)) 2217 if (expect_false (!ev_is_active (w)))
1333 return; 2218 return;
1334 2219
2220 EV_FREQUENT_CHECK;
2221
2222 {
2223 int active = ev_active (w);
2224
1335 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2225 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1336 2226
1337 if (((W)w)->active < periodiccnt--) 2227 --periodiccnt;
2228
2229 if (expect_true (active < periodiccnt + HEAP0))
1338 { 2230 {
1339 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2231 periodics [active] = periodics [periodiccnt + HEAP0];
1340 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2232 adjustheap (periodics, periodiccnt, active);
1341 } 2233 }
2234 }
2235
2236 EV_FREQUENT_CHECK;
1342 2237
1343 ev_stop (EV_A_ (W)w); 2238 ev_stop (EV_A_ (W)w);
1344} 2239}
1345 2240
1346void 2241void noinline
1347ev_idle_start (EV_P_ struct ev_idle *w) 2242ev_periodic_again (EV_P_ ev_periodic *w)
1348{ 2243{
1349 if (ev_is_active (w)) 2244 /* TODO: use adjustheap and recalculation */
1350 return;
1351
1352 ev_start (EV_A_ (W)w, ++idlecnt);
1353 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1354 idles [idlecnt - 1] = w;
1355}
1356
1357void
1358ev_idle_stop (EV_P_ struct ev_idle *w)
1359{
1360 ev_clear_pending (EV_A_ (W)w);
1361 if (ev_is_active (w))
1362 return;
1363
1364 idles [((W)w)->active - 1] = idles [--idlecnt];
1365 ev_stop (EV_A_ (W)w); 2245 ev_periodic_stop (EV_A_ w);
2246 ev_periodic_start (EV_A_ w);
1366} 2247}
1367 2248#endif
1368void
1369ev_prepare_start (EV_P_ struct ev_prepare *w)
1370{
1371 if (ev_is_active (w))
1372 return;
1373
1374 ev_start (EV_A_ (W)w, ++preparecnt);
1375 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1376 prepares [preparecnt - 1] = w;
1377}
1378
1379void
1380ev_prepare_stop (EV_P_ struct ev_prepare *w)
1381{
1382 ev_clear_pending (EV_A_ (W)w);
1383 if (ev_is_active (w))
1384 return;
1385
1386 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1387 ev_stop (EV_A_ (W)w);
1388}
1389
1390void
1391ev_check_start (EV_P_ struct ev_check *w)
1392{
1393 if (ev_is_active (w))
1394 return;
1395
1396 ev_start (EV_A_ (W)w, ++checkcnt);
1397 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1398 checks [checkcnt - 1] = w;
1399}
1400
1401void
1402ev_check_stop (EV_P_ struct ev_check *w)
1403{
1404 ev_clear_pending (EV_A_ (W)w);
1405 if (ev_is_active (w))
1406 return;
1407
1408 checks [((W)w)->active - 1] = checks [--checkcnt];
1409 ev_stop (EV_A_ (W)w);
1410}
1411 2249
1412#ifndef SA_RESTART 2250#ifndef SA_RESTART
1413# define SA_RESTART 0 2251# define SA_RESTART 0
1414#endif 2252#endif
1415 2253
1416void 2254void noinline
1417ev_signal_start (EV_P_ struct ev_signal *w) 2255ev_signal_start (EV_P_ ev_signal *w)
1418{ 2256{
1419#if EV_MULTIPLICITY 2257#if EV_MULTIPLICITY
1420 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2258 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1421#endif 2259#endif
1422 if (ev_is_active (w)) 2260 if (expect_false (ev_is_active (w)))
1423 return; 2261 return;
1424 2262
1425 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2263 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1426 2264
2265 evpipe_init (EV_A);
2266
2267 EV_FREQUENT_CHECK;
2268
2269 {
2270#ifndef _WIN32
2271 sigset_t full, prev;
2272 sigfillset (&full);
2273 sigprocmask (SIG_SETMASK, &full, &prev);
2274#endif
2275
2276 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2277
2278#ifndef _WIN32
2279 sigprocmask (SIG_SETMASK, &prev, 0);
2280#endif
2281 }
2282
1427 ev_start (EV_A_ (W)w, 1); 2283 ev_start (EV_A_ (W)w, 1);
1428 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1429 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2284 wlist_add (&signals [w->signum - 1].head, (WL)w);
1430 2285
1431 if (!((WL)w)->next) 2286 if (!((WL)w)->next)
1432 { 2287 {
1433#if WIN32 2288#if _WIN32
1434 signal (w->signum, sighandler); 2289 signal (w->signum, ev_sighandler);
1435#else 2290#else
1436 struct sigaction sa; 2291 struct sigaction sa;
1437 sa.sa_handler = sighandler; 2292 sa.sa_handler = ev_sighandler;
1438 sigfillset (&sa.sa_mask); 2293 sigfillset (&sa.sa_mask);
1439 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2294 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1440 sigaction (w->signum, &sa, 0); 2295 sigaction (w->signum, &sa, 0);
1441#endif 2296#endif
1442 } 2297 }
1443}
1444 2298
1445void 2299 EV_FREQUENT_CHECK;
2300}
2301
2302void noinline
1446ev_signal_stop (EV_P_ struct ev_signal *w) 2303ev_signal_stop (EV_P_ ev_signal *w)
1447{ 2304{
1448 ev_clear_pending (EV_A_ (W)w); 2305 clear_pending (EV_A_ (W)w);
1449 if (!ev_is_active (w)) 2306 if (expect_false (!ev_is_active (w)))
1450 return; 2307 return;
1451 2308
2309 EV_FREQUENT_CHECK;
2310
1452 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2311 wlist_del (&signals [w->signum - 1].head, (WL)w);
1453 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
1454 2313
1455 if (!signals [w->signum - 1].head) 2314 if (!signals [w->signum - 1].head)
1456 signal (w->signum, SIG_DFL); 2315 signal (w->signum, SIG_DFL);
1457}
1458 2316
2317 EV_FREQUENT_CHECK;
2318}
2319
1459void 2320void
1460ev_child_start (EV_P_ struct ev_child *w) 2321ev_child_start (EV_P_ ev_child *w)
1461{ 2322{
1462#if EV_MULTIPLICITY 2323#if EV_MULTIPLICITY
1463 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2324 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1464#endif 2325#endif
1465 if (ev_is_active (w)) 2326 if (expect_false (ev_is_active (w)))
1466 return; 2327 return;
1467 2328
2329 EV_FREQUENT_CHECK;
2330
1468 ev_start (EV_A_ (W)w, 1); 2331 ev_start (EV_A_ (W)w, 1);
1469 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2332 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1470}
1471 2333
2334 EV_FREQUENT_CHECK;
2335}
2336
1472void 2337void
1473ev_child_stop (EV_P_ struct ev_child *w) 2338ev_child_stop (EV_P_ ev_child *w)
1474{ 2339{
1475 ev_clear_pending (EV_A_ (W)w); 2340 clear_pending (EV_A_ (W)w);
1476 if (ev_is_active (w)) 2341 if (expect_false (!ev_is_active (w)))
1477 return; 2342 return;
1478 2343
2344 EV_FREQUENT_CHECK;
2345
1479 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2346 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1480 ev_stop (EV_A_ (W)w); 2347 ev_stop (EV_A_ (W)w);
2348
2349 EV_FREQUENT_CHECK;
1481} 2350}
2351
2352#if EV_STAT_ENABLE
2353
2354# ifdef _WIN32
2355# undef lstat
2356# define lstat(a,b) _stati64 (a,b)
2357# endif
2358
2359#define DEF_STAT_INTERVAL 5.0074891
2360#define MIN_STAT_INTERVAL 0.1074891
2361
2362static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2363
2364#if EV_USE_INOTIFY
2365# define EV_INOTIFY_BUFSIZE 8192
2366
2367static void noinline
2368infy_add (EV_P_ ev_stat *w)
2369{
2370 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2371
2372 if (w->wd < 0)
2373 {
2374 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2375
2376 /* monitor some parent directory for speedup hints */
2377 /* note that exceeding the hardcoded limit is not a correctness issue, */
2378 /* but an efficiency issue only */
2379 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2380 {
2381 char path [4096];
2382 strcpy (path, w->path);
2383
2384 do
2385 {
2386 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2387 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2388
2389 char *pend = strrchr (path, '/');
2390
2391 if (!pend)
2392 break; /* whoops, no '/', complain to your admin */
2393
2394 *pend = 0;
2395 w->wd = inotify_add_watch (fs_fd, path, mask);
2396 }
2397 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2398 }
2399 }
2400 else
2401 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2402
2403 if (w->wd >= 0)
2404 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2405}
2406
2407static void noinline
2408infy_del (EV_P_ ev_stat *w)
2409{
2410 int slot;
2411 int wd = w->wd;
2412
2413 if (wd < 0)
2414 return;
2415
2416 w->wd = -2;
2417 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2418 wlist_del (&fs_hash [slot].head, (WL)w);
2419
2420 /* remove this watcher, if others are watching it, they will rearm */
2421 inotify_rm_watch (fs_fd, wd);
2422}
2423
2424static void noinline
2425infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2426{
2427 if (slot < 0)
2428 /* overflow, need to check for all hahs slots */
2429 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2430 infy_wd (EV_A_ slot, wd, ev);
2431 else
2432 {
2433 WL w_;
2434
2435 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2436 {
2437 ev_stat *w = (ev_stat *)w_;
2438 w_ = w_->next; /* lets us remove this watcher and all before it */
2439
2440 if (w->wd == wd || wd == -1)
2441 {
2442 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2443 {
2444 w->wd = -1;
2445 infy_add (EV_A_ w); /* re-add, no matter what */
2446 }
2447
2448 stat_timer_cb (EV_A_ &w->timer, 0);
2449 }
2450 }
2451 }
2452}
2453
2454static void
2455infy_cb (EV_P_ ev_io *w, int revents)
2456{
2457 char buf [EV_INOTIFY_BUFSIZE];
2458 struct inotify_event *ev = (struct inotify_event *)buf;
2459 int ofs;
2460 int len = read (fs_fd, buf, sizeof (buf));
2461
2462 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2463 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2464}
2465
2466void inline_size
2467infy_init (EV_P)
2468{
2469 if (fs_fd != -2)
2470 return;
2471
2472 fs_fd = inotify_init ();
2473
2474 if (fs_fd >= 0)
2475 {
2476 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2477 ev_set_priority (&fs_w, EV_MAXPRI);
2478 ev_io_start (EV_A_ &fs_w);
2479 }
2480}
2481
2482void inline_size
2483infy_fork (EV_P)
2484{
2485 int slot;
2486
2487 if (fs_fd < 0)
2488 return;
2489
2490 close (fs_fd);
2491 fs_fd = inotify_init ();
2492
2493 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2494 {
2495 WL w_ = fs_hash [slot].head;
2496 fs_hash [slot].head = 0;
2497
2498 while (w_)
2499 {
2500 ev_stat *w = (ev_stat *)w_;
2501 w_ = w_->next; /* lets us add this watcher */
2502
2503 w->wd = -1;
2504
2505 if (fs_fd >= 0)
2506 infy_add (EV_A_ w); /* re-add, no matter what */
2507 else
2508 ev_timer_start (EV_A_ &w->timer);
2509 }
2510
2511 }
2512}
2513
2514#endif
2515
2516void
2517ev_stat_stat (EV_P_ ev_stat *w)
2518{
2519 if (lstat (w->path, &w->attr) < 0)
2520 w->attr.st_nlink = 0;
2521 else if (!w->attr.st_nlink)
2522 w->attr.st_nlink = 1;
2523}
2524
2525static void noinline
2526stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2527{
2528 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2529
2530 /* we copy this here each the time so that */
2531 /* prev has the old value when the callback gets invoked */
2532 w->prev = w->attr;
2533 ev_stat_stat (EV_A_ w);
2534
2535 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2536 if (
2537 w->prev.st_dev != w->attr.st_dev
2538 || w->prev.st_ino != w->attr.st_ino
2539 || w->prev.st_mode != w->attr.st_mode
2540 || w->prev.st_nlink != w->attr.st_nlink
2541 || w->prev.st_uid != w->attr.st_uid
2542 || w->prev.st_gid != w->attr.st_gid
2543 || w->prev.st_rdev != w->attr.st_rdev
2544 || w->prev.st_size != w->attr.st_size
2545 || w->prev.st_atime != w->attr.st_atime
2546 || w->prev.st_mtime != w->attr.st_mtime
2547 || w->prev.st_ctime != w->attr.st_ctime
2548 ) {
2549 #if EV_USE_INOTIFY
2550 infy_del (EV_A_ w);
2551 infy_add (EV_A_ w);
2552 ev_stat_stat (EV_A_ w); /* avoid race... */
2553 #endif
2554
2555 ev_feed_event (EV_A_ w, EV_STAT);
2556 }
2557}
2558
2559void
2560ev_stat_start (EV_P_ ev_stat *w)
2561{
2562 if (expect_false (ev_is_active (w)))
2563 return;
2564
2565 /* since we use memcmp, we need to clear any padding data etc. */
2566 memset (&w->prev, 0, sizeof (ev_statdata));
2567 memset (&w->attr, 0, sizeof (ev_statdata));
2568
2569 ev_stat_stat (EV_A_ w);
2570
2571 if (w->interval < MIN_STAT_INTERVAL)
2572 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2573
2574 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2575 ev_set_priority (&w->timer, ev_priority (w));
2576
2577#if EV_USE_INOTIFY
2578 infy_init (EV_A);
2579
2580 if (fs_fd >= 0)
2581 infy_add (EV_A_ w);
2582 else
2583#endif
2584 ev_timer_start (EV_A_ &w->timer);
2585
2586 ev_start (EV_A_ (W)w, 1);
2587
2588 EV_FREQUENT_CHECK;
2589}
2590
2591void
2592ev_stat_stop (EV_P_ ev_stat *w)
2593{
2594 clear_pending (EV_A_ (W)w);
2595 if (expect_false (!ev_is_active (w)))
2596 return;
2597
2598 EV_FREQUENT_CHECK;
2599
2600#if EV_USE_INOTIFY
2601 infy_del (EV_A_ w);
2602#endif
2603 ev_timer_stop (EV_A_ &w->timer);
2604
2605 ev_stop (EV_A_ (W)w);
2606
2607 EV_FREQUENT_CHECK;
2608}
2609#endif
2610
2611#if EV_IDLE_ENABLE
2612void
2613ev_idle_start (EV_P_ ev_idle *w)
2614{
2615 if (expect_false (ev_is_active (w)))
2616 return;
2617
2618 pri_adjust (EV_A_ (W)w);
2619
2620 EV_FREQUENT_CHECK;
2621
2622 {
2623 int active = ++idlecnt [ABSPRI (w)];
2624
2625 ++idleall;
2626 ev_start (EV_A_ (W)w, active);
2627
2628 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2629 idles [ABSPRI (w)][active - 1] = w;
2630 }
2631
2632 EV_FREQUENT_CHECK;
2633}
2634
2635void
2636ev_idle_stop (EV_P_ ev_idle *w)
2637{
2638 clear_pending (EV_A_ (W)w);
2639 if (expect_false (!ev_is_active (w)))
2640 return;
2641
2642 EV_FREQUENT_CHECK;
2643
2644 {
2645 int active = ev_active (w);
2646
2647 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2648 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2649
2650 ev_stop (EV_A_ (W)w);
2651 --idleall;
2652 }
2653
2654 EV_FREQUENT_CHECK;
2655}
2656#endif
2657
2658void
2659ev_prepare_start (EV_P_ ev_prepare *w)
2660{
2661 if (expect_false (ev_is_active (w)))
2662 return;
2663
2664 EV_FREQUENT_CHECK;
2665
2666 ev_start (EV_A_ (W)w, ++preparecnt);
2667 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2668 prepares [preparecnt - 1] = w;
2669
2670 EV_FREQUENT_CHECK;
2671}
2672
2673void
2674ev_prepare_stop (EV_P_ ev_prepare *w)
2675{
2676 clear_pending (EV_A_ (W)w);
2677 if (expect_false (!ev_is_active (w)))
2678 return;
2679
2680 EV_FREQUENT_CHECK;
2681
2682 {
2683 int active = ev_active (w);
2684
2685 prepares [active - 1] = prepares [--preparecnt];
2686 ev_active (prepares [active - 1]) = active;
2687 }
2688
2689 ev_stop (EV_A_ (W)w);
2690
2691 EV_FREQUENT_CHECK;
2692}
2693
2694void
2695ev_check_start (EV_P_ ev_check *w)
2696{
2697 if (expect_false (ev_is_active (w)))
2698 return;
2699
2700 EV_FREQUENT_CHECK;
2701
2702 ev_start (EV_A_ (W)w, ++checkcnt);
2703 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2704 checks [checkcnt - 1] = w;
2705
2706 EV_FREQUENT_CHECK;
2707}
2708
2709void
2710ev_check_stop (EV_P_ ev_check *w)
2711{
2712 clear_pending (EV_A_ (W)w);
2713 if (expect_false (!ev_is_active (w)))
2714 return;
2715
2716 EV_FREQUENT_CHECK;
2717
2718 {
2719 int active = ev_active (w);
2720
2721 checks [active - 1] = checks [--checkcnt];
2722 ev_active (checks [active - 1]) = active;
2723 }
2724
2725 ev_stop (EV_A_ (W)w);
2726
2727 EV_FREQUENT_CHECK;
2728}
2729
2730#if EV_EMBED_ENABLE
2731void noinline
2732ev_embed_sweep (EV_P_ ev_embed *w)
2733{
2734 ev_loop (w->other, EVLOOP_NONBLOCK);
2735}
2736
2737static void
2738embed_io_cb (EV_P_ ev_io *io, int revents)
2739{
2740 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2741
2742 if (ev_cb (w))
2743 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2744 else
2745 ev_loop (w->other, EVLOOP_NONBLOCK);
2746}
2747
2748static void
2749embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2750{
2751 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2752
2753 {
2754 struct ev_loop *loop = w->other;
2755
2756 while (fdchangecnt)
2757 {
2758 fd_reify (EV_A);
2759 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2760 }
2761 }
2762}
2763
2764#if 0
2765static void
2766embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2767{
2768 ev_idle_stop (EV_A_ idle);
2769}
2770#endif
2771
2772void
2773ev_embed_start (EV_P_ ev_embed *w)
2774{
2775 if (expect_false (ev_is_active (w)))
2776 return;
2777
2778 {
2779 struct ev_loop *loop = w->other;
2780 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2781 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2782 }
2783
2784 EV_FREQUENT_CHECK;
2785
2786 ev_set_priority (&w->io, ev_priority (w));
2787 ev_io_start (EV_A_ &w->io);
2788
2789 ev_prepare_init (&w->prepare, embed_prepare_cb);
2790 ev_set_priority (&w->prepare, EV_MINPRI);
2791 ev_prepare_start (EV_A_ &w->prepare);
2792
2793 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2794
2795 ev_start (EV_A_ (W)w, 1);
2796
2797 EV_FREQUENT_CHECK;
2798}
2799
2800void
2801ev_embed_stop (EV_P_ ev_embed *w)
2802{
2803 clear_pending (EV_A_ (W)w);
2804 if (expect_false (!ev_is_active (w)))
2805 return;
2806
2807 EV_FREQUENT_CHECK;
2808
2809 ev_io_stop (EV_A_ &w->io);
2810 ev_prepare_stop (EV_A_ &w->prepare);
2811
2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2815}
2816#endif
2817
2818#if EV_FORK_ENABLE
2819void
2820ev_fork_start (EV_P_ ev_fork *w)
2821{
2822 if (expect_false (ev_is_active (w)))
2823 return;
2824
2825 EV_FREQUENT_CHECK;
2826
2827 ev_start (EV_A_ (W)w, ++forkcnt);
2828 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2829 forks [forkcnt - 1] = w;
2830
2831 EV_FREQUENT_CHECK;
2832}
2833
2834void
2835ev_fork_stop (EV_P_ ev_fork *w)
2836{
2837 clear_pending (EV_A_ (W)w);
2838 if (expect_false (!ev_is_active (w)))
2839 return;
2840
2841 EV_FREQUENT_CHECK;
2842
2843 {
2844 int active = ev_active (w);
2845
2846 forks [active - 1] = forks [--forkcnt];
2847 ev_active (forks [active - 1]) = active;
2848 }
2849
2850 ev_stop (EV_A_ (W)w);
2851
2852 EV_FREQUENT_CHECK;
2853}
2854#endif
2855
2856#if EV_ASYNC_ENABLE
2857void
2858ev_async_start (EV_P_ ev_async *w)
2859{
2860 if (expect_false (ev_is_active (w)))
2861 return;
2862
2863 evpipe_init (EV_A);
2864
2865 EV_FREQUENT_CHECK;
2866
2867 ev_start (EV_A_ (W)w, ++asynccnt);
2868 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2869 asyncs [asynccnt - 1] = w;
2870
2871 EV_FREQUENT_CHECK;
2872}
2873
2874void
2875ev_async_stop (EV_P_ ev_async *w)
2876{
2877 clear_pending (EV_A_ (W)w);
2878 if (expect_false (!ev_is_active (w)))
2879 return;
2880
2881 EV_FREQUENT_CHECK;
2882
2883 {
2884 int active = ev_active (w);
2885
2886 asyncs [active - 1] = asyncs [--asynccnt];
2887 ev_active (asyncs [active - 1]) = active;
2888 }
2889
2890 ev_stop (EV_A_ (W)w);
2891
2892 EV_FREQUENT_CHECK;
2893}
2894
2895void
2896ev_async_send (EV_P_ ev_async *w)
2897{
2898 w->sent = 1;
2899 evpipe_write (EV_A_ &gotasync);
2900}
2901#endif
1482 2902
1483/*****************************************************************************/ 2903/*****************************************************************************/
1484 2904
1485struct ev_once 2905struct ev_once
1486{ 2906{
1487 struct ev_io io; 2907 ev_io io;
1488 struct ev_timer to; 2908 ev_timer to;
1489 void (*cb)(int revents, void *arg); 2909 void (*cb)(int revents, void *arg);
1490 void *arg; 2910 void *arg;
1491}; 2911};
1492 2912
1493static void 2913static void
1502 2922
1503 cb (revents, arg); 2923 cb (revents, arg);
1504} 2924}
1505 2925
1506static void 2926static void
1507once_cb_io (EV_P_ struct ev_io *w, int revents) 2927once_cb_io (EV_P_ ev_io *w, int revents)
1508{ 2928{
1509 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2929 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1510} 2930}
1511 2931
1512static void 2932static void
1513once_cb_to (EV_P_ struct ev_timer *w, int revents) 2933once_cb_to (EV_P_ ev_timer *w, int revents)
1514{ 2934{
1515 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2935 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1516} 2936}
1517 2937
1518void 2938void
1519ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2939ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1520{ 2940{
1521 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2941 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1522 2942
1523 if (!once) 2943 if (expect_false (!once))
2944 {
1524 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2945 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1525 else 2946 return;
1526 { 2947 }
2948
1527 once->cb = cb; 2949 once->cb = cb;
1528 once->arg = arg; 2950 once->arg = arg;
1529 2951
1530 ev_watcher_init (&once->io, once_cb_io); 2952 ev_init (&once->io, once_cb_io);
1531 if (fd >= 0) 2953 if (fd >= 0)
1532 { 2954 {
1533 ev_io_set (&once->io, fd, events); 2955 ev_io_set (&once->io, fd, events);
1534 ev_io_start (EV_A_ &once->io); 2956 ev_io_start (EV_A_ &once->io);
1535 } 2957 }
1536 2958
1537 ev_watcher_init (&once->to, once_cb_to); 2959 ev_init (&once->to, once_cb_to);
1538 if (timeout >= 0.) 2960 if (timeout >= 0.)
1539 { 2961 {
1540 ev_timer_set (&once->to, timeout, 0.); 2962 ev_timer_set (&once->to, timeout, 0.);
1541 ev_timer_start (EV_A_ &once->to); 2963 ev_timer_start (EV_A_ &once->to);
1542 }
1543 } 2964 }
1544} 2965}
1545 2966
2967#if EV_MULTIPLICITY
2968 #include "ev_wrap.h"
2969#endif
2970
2971#ifdef __cplusplus
2972}
2973#endif
2974

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines