ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.77 by root, Thu Nov 8 00:44:17 2007 UTC vs.
Revision 1.241 by root, Fri May 9 13:57:00 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <fcntl.h> 136#include <fcntl.h>
66#include <sys/types.h> 143#include <sys/types.h>
67#include <time.h> 144#include <time.h>
68 145
69#include <signal.h> 146#include <signal.h>
70 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
71#ifndef WIN32 154#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 155# include <sys/time.h>
74# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
75#endif 163# endif
76/**/ 164#endif
165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
77 167
78#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
80#endif 178#endif
81 179
82#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
84#endif 182#endif
85 183
86#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
88#endif 190#endif
89 191
90#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
91# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
92#endif 198#endif
93 199
94#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
96#endif 202#endif
97 203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
98#ifndef EV_USE_WIN32 208#ifndef EV_USE_INOTIFY
99# ifdef WIN32 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1 210# define EV_USE_INOTIFY 1
103# else 211# else
104# define EV_USE_WIN32 0 212# define EV_USE_INOTIFY 0
105# endif 213# endif
106#endif 214#endif
107 215
108#ifndef EV_USE_REALTIME 216#ifndef EV_PID_HASHSIZE
109# define EV_USE_REALTIME 1 217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
110#endif 221# endif
222#endif
111 223
112/**/ 224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
113 241
114#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
117#endif 245#endif
119#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
122#endif 250#endif
123 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
124/**/ 283/**/
125 284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
130 298
131#include "ev.h"
132
133#if __GNUC__ >= 3 299#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 301# define noinline __attribute__ ((noinline))
136#else 302#else
137# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
138# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
139#endif 308#endif
140 309
141#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
143 319
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
146 322
323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325
147typedef struct ev_watcher *W; 326typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
150 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
152 338
339#ifdef _WIN32
153#include "ev_win32.c" 340# include "ev_win32.c"
341#endif
154 342
155/*****************************************************************************/ 343/*****************************************************************************/
156 344
157static void (*syserr_cb)(const char *msg); 345static void (*syserr_cb)(const char *msg);
158 346
347void
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 348ev_set_syserr_cb (void (*cb)(const char *msg))
160{ 349{
161 syserr_cb = cb; 350 syserr_cb = cb;
162} 351}
163 352
164static void 353static void noinline
165syserr (const char *msg) 354syserr (const char *msg)
166{ 355{
167 if (!msg) 356 if (!msg)
168 msg = "(libev) system error"; 357 msg = "(libev) system error";
169 358
174 perror (msg); 363 perror (msg);
175 abort (); 364 abort ();
176 } 365 }
177} 366}
178 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
179static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
180 384
385void
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
182{ 387{
183 alloc = cb; 388 alloc = cb;
184} 389}
185 390
186static void * 391inline_speed void *
187ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
188{ 393{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
190 395
191 if (!ptr && size) 396 if (!ptr && size)
192 { 397 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort (); 399 abort ();
205typedef struct 410typedef struct
206{ 411{
207 WL head; 412 WL head;
208 unsigned char events; 413 unsigned char events;
209 unsigned char reify; 414 unsigned char reify;
415#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle;
417#endif
210} ANFD; 418} ANFD;
211 419
212typedef struct 420typedef struct
213{ 421{
214 W w; 422 W w;
215 int events; 423 int events;
216} ANPENDING; 424} ANPENDING;
217 425
426#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */
428typedef struct
429{
430 WL head;
431} ANFS;
432#endif
433
434/* Heap Entry */
435#if EV_HEAP_CACHE_AT
436 typedef struct {
437 WT w;
438 ev_tstamp at;
439 } ANHE;
440
441 #define ANHE_w(he) (he) /* access watcher, read-write */
442 #define ANHE_at(he) (he)->at /* acces cahced at, read-only */
443 #define ANHE_at_set(he) (he)->at = (he)->w->at /* update at from watcher */
444#else
445 typedef WT ANHE;
446
447 #define ANHE_w(he) (he)
448 #define ANHE_at(he) (he)->at
449 #define ANHE_at_set(he)
450#endif
451
218#if EV_MULTIPLICITY 452#if EV_MULTIPLICITY
219 453
220struct ev_loop 454 struct ev_loop
221{ 455 {
456 ev_tstamp ev_rt_now;
457 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 458 #define VAR(name,decl) decl;
223# include "ev_vars.h" 459 #include "ev_vars.h"
224};
225# undef VAR 460 #undef VAR
461 };
226# include "ev_wrap.h" 462 #include "ev_wrap.h"
463
464 static struct ev_loop default_loop_struct;
465 struct ev_loop *ev_default_loop_ptr;
227 466
228#else 467#else
229 468
469 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 470 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 471 #include "ev_vars.h"
232# undef VAR 472 #undef VAR
473
474 static int ev_default_loop_ptr;
233 475
234#endif 476#endif
235 477
236/*****************************************************************************/ 478/*****************************************************************************/
237 479
238inline ev_tstamp 480ev_tstamp
239ev_time (void) 481ev_time (void)
240{ 482{
241#if EV_USE_REALTIME 483#if EV_USE_REALTIME
242 struct timespec ts; 484 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 485 clock_gettime (CLOCK_REALTIME, &ts);
247 gettimeofday (&tv, 0); 489 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 490 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif 491#endif
250} 492}
251 493
252inline ev_tstamp 494ev_tstamp inline_size
253get_clock (void) 495get_clock (void)
254{ 496{
255#if EV_USE_MONOTONIC 497#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 498 if (expect_true (have_monotonic))
257 { 499 {
262#endif 504#endif
263 505
264 return ev_time (); 506 return ev_time ();
265} 507}
266 508
509#if EV_MULTIPLICITY
267ev_tstamp 510ev_tstamp
268ev_now (EV_P) 511ev_now (EV_P)
269{ 512{
270 return rt_now; 513 return ev_rt_now;
271} 514}
515#endif
272 516
273#define array_roundsize(type,n) ((n) | 4 & ~3) 517void
518ev_sleep (ev_tstamp delay)
519{
520 if (delay > 0.)
521 {
522#if EV_USE_NANOSLEEP
523 struct timespec ts;
524
525 ts.tv_sec = (time_t)delay;
526 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
527
528 nanosleep (&ts, 0);
529#elif defined(_WIN32)
530 Sleep ((unsigned long)(delay * 1e3));
531#else
532 struct timeval tv;
533
534 tv.tv_sec = (time_t)delay;
535 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
536
537 select (0, 0, 0, 0, &tv);
538#endif
539 }
540}
541
542/*****************************************************************************/
543
544#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
545
546int inline_size
547array_nextsize (int elem, int cur, int cnt)
548{
549 int ncur = cur + 1;
550
551 do
552 ncur <<= 1;
553 while (cnt > ncur);
554
555 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
556 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
557 {
558 ncur *= elem;
559 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
560 ncur = ncur - sizeof (void *) * 4;
561 ncur /= elem;
562 }
563
564 return ncur;
565}
566
567static noinline void *
568array_realloc (int elem, void *base, int *cur, int cnt)
569{
570 *cur = array_nextsize (elem, *cur, cnt);
571 return ev_realloc (base, elem * *cur);
572}
274 573
275#define array_needsize(type,base,cur,cnt,init) \ 574#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 575 if (expect_false ((cnt) > (cur))) \
277 { \ 576 { \
278 int newcnt = cur; \ 577 int ocur_ = (cur); \
279 do \ 578 (base) = (type *)array_realloc \
280 { \ 579 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 580 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 581 }
289 582
583#if 0
290#define array_slim(type,stem) \ 584#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 585 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 586 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 587 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 588 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 589 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 590 }
297 591#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 592
303#define array_free(stem, idx) \ 593#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 594 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
305 595
306/*****************************************************************************/ 596/*****************************************************************************/
307 597
308static void 598void noinline
599ev_feed_event (EV_P_ void *w, int revents)
600{
601 W w_ = (W)w;
602 int pri = ABSPRI (w_);
603
604 if (expect_false (w_->pending))
605 pendings [pri][w_->pending - 1].events |= revents;
606 else
607 {
608 w_->pending = ++pendingcnt [pri];
609 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
610 pendings [pri][w_->pending - 1].w = w_;
611 pendings [pri][w_->pending - 1].events = revents;
612 }
613}
614
615void inline_speed
616queue_events (EV_P_ W *events, int eventcnt, int type)
617{
618 int i;
619
620 for (i = 0; i < eventcnt; ++i)
621 ev_feed_event (EV_A_ events [i], type);
622}
623
624/*****************************************************************************/
625
626void inline_size
309anfds_init (ANFD *base, int count) 627anfds_init (ANFD *base, int count)
310{ 628{
311 while (count--) 629 while (count--)
312 { 630 {
313 base->head = 0; 631 base->head = 0;
316 634
317 ++base; 635 ++base;
318 } 636 }
319} 637}
320 638
321static void 639void inline_speed
322event (EV_P_ W w, int events)
323{
324 if (w->pending)
325 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events;
327 return;
328 }
329
330 w->pending = ++pendingcnt [ABSPRI (w)];
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w;
333 pendings [ABSPRI (w)][w->pending - 1].events = events;
334}
335
336static void
337queue_events (EV_P_ W *events, int eventcnt, int type)
338{
339 int i;
340
341 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type);
343}
344
345static void
346fd_event (EV_P_ int fd, int events) 640fd_event (EV_P_ int fd, int revents)
347{ 641{
348 ANFD *anfd = anfds + fd; 642 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 643 ev_io *w;
350 644
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 645 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
352 { 646 {
353 int ev = w->events & events; 647 int ev = w->events & revents;
354 648
355 if (ev) 649 if (ev)
356 event (EV_A_ (W)w, ev); 650 ev_feed_event (EV_A_ (W)w, ev);
357 } 651 }
358} 652}
359 653
360/*****************************************************************************/ 654void
655ev_feed_fd_event (EV_P_ int fd, int revents)
656{
657 if (fd >= 0 && fd < anfdmax)
658 fd_event (EV_A_ fd, revents);
659}
361 660
362static void 661void inline_size
363fd_reify (EV_P) 662fd_reify (EV_P)
364{ 663{
365 int i; 664 int i;
366 665
367 for (i = 0; i < fdchangecnt; ++i) 666 for (i = 0; i < fdchangecnt; ++i)
368 { 667 {
369 int fd = fdchanges [i]; 668 int fd = fdchanges [i];
370 ANFD *anfd = anfds + fd; 669 ANFD *anfd = anfds + fd;
371 struct ev_io *w; 670 ev_io *w;
372 671
373 int events = 0; 672 unsigned char events = 0;
374 673
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 674 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
376 events |= w->events; 675 events |= (unsigned char)w->events;
377 676
677#if EV_SELECT_IS_WINSOCKET
678 if (events)
679 {
680 unsigned long argp;
681 #ifdef EV_FD_TO_WIN32_HANDLE
682 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
683 #else
684 anfd->handle = _get_osfhandle (fd);
685 #endif
686 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
687 }
688#endif
689
690 {
691 unsigned char o_events = anfd->events;
692 unsigned char o_reify = anfd->reify;
693
378 anfd->reify = 0; 694 anfd->reify = 0;
379
380 method_modify (EV_A_ fd, anfd->events, events);
381 anfd->events = events; 695 anfd->events = events;
696
697 if (o_events != events || o_reify & EV_IOFDSET)
698 backend_modify (EV_A_ fd, o_events, events);
699 }
382 } 700 }
383 701
384 fdchangecnt = 0; 702 fdchangecnt = 0;
385} 703}
386 704
387static void 705void inline_size
388fd_change (EV_P_ int fd) 706fd_change (EV_P_ int fd, int flags)
389{ 707{
390 if (anfds [fd].reify) 708 unsigned char reify = anfds [fd].reify;
391 return;
392
393 anfds [fd].reify = 1; 709 anfds [fd].reify |= flags;
394 710
711 if (expect_true (!reify))
712 {
395 ++fdchangecnt; 713 ++fdchangecnt;
396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 714 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
397 fdchanges [fdchangecnt - 1] = fd; 715 fdchanges [fdchangecnt - 1] = fd;
716 }
398} 717}
399 718
400static void 719void inline_speed
401fd_kill (EV_P_ int fd) 720fd_kill (EV_P_ int fd)
402{ 721{
403 struct ev_io *w; 722 ev_io *w;
404 723
405 while ((w = (struct ev_io *)anfds [fd].head)) 724 while ((w = (ev_io *)anfds [fd].head))
406 { 725 {
407 ev_io_stop (EV_A_ w); 726 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 727 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 728 }
410} 729}
411 730
412static int 731int inline_size
413fd_valid (int fd) 732fd_valid (int fd)
414{ 733{
415#ifdef WIN32 734#ifdef _WIN32
416 return !!win32_get_osfhandle (fd); 735 return _get_osfhandle (fd) != -1;
417#else 736#else
418 return fcntl (fd, F_GETFD) != -1; 737 return fcntl (fd, F_GETFD) != -1;
419#endif 738#endif
420} 739}
421 740
422/* called on EBADF to verify fds */ 741/* called on EBADF to verify fds */
423static void 742static void noinline
424fd_ebadf (EV_P) 743fd_ebadf (EV_P)
425{ 744{
426 int fd; 745 int fd;
427 746
428 for (fd = 0; fd < anfdmax; ++fd) 747 for (fd = 0; fd < anfdmax; ++fd)
430 if (!fd_valid (fd) == -1 && errno == EBADF) 749 if (!fd_valid (fd) == -1 && errno == EBADF)
431 fd_kill (EV_A_ fd); 750 fd_kill (EV_A_ fd);
432} 751}
433 752
434/* called on ENOMEM in select/poll to kill some fds and retry */ 753/* called on ENOMEM in select/poll to kill some fds and retry */
435static void 754static void noinline
436fd_enomem (EV_P) 755fd_enomem (EV_P)
437{ 756{
438 int fd; 757 int fd;
439 758
440 for (fd = anfdmax; fd--; ) 759 for (fd = anfdmax; fd--; )
443 fd_kill (EV_A_ fd); 762 fd_kill (EV_A_ fd);
444 return; 763 return;
445 } 764 }
446} 765}
447 766
448/* usually called after fork if method needs to re-arm all fds from scratch */ 767/* usually called after fork if backend needs to re-arm all fds from scratch */
449static void 768static void noinline
450fd_rearm_all (EV_P) 769fd_rearm_all (EV_P)
451{ 770{
452 int fd; 771 int fd;
453 772
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd) 773 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events) 774 if (anfds [fd].events)
457 { 775 {
458 anfds [fd].events = 0; 776 anfds [fd].events = 0;
459 fd_change (EV_A_ fd); 777 fd_change (EV_A_ fd, EV_IOFDSET | 1);
460 } 778 }
461} 779}
462 780
463/*****************************************************************************/ 781/*****************************************************************************/
464 782
465static void 783/*
784 * the heap functions want a real array index. array index 0 uis guaranteed to not
785 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
786 * the branching factor of the d-tree.
787 */
788
789/*
790 * at the moment we allow libev the luxury of two heaps,
791 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
792 * which is more cache-efficient.
793 * the difference is about 5% with 50000+ watchers.
794 */
795#define EV_USE_4HEAP !EV_MINIMAL
796#if EV_USE_4HEAP
797
798#define DHEAP 4
799#define HEAP0 (DHEAP - 1) /* index of first element in heap */
800
801/* towards the root */
802void inline_speed
466upheap (WT *heap, int k) 803upheap (ANHE *heap, int k)
467{ 804{
468 WT w = heap [k]; 805 ANHE he = heap [k];
469 806
470 while (k && heap [k >> 1]->at > w->at) 807 for (;;)
471 { 808 {
809 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
810
811 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
812 break;
813
472 heap [k] = heap [k >> 1]; 814 heap [k] = heap [p];
473 ((W)heap [k])->active = k + 1; 815 ev_active (ANHE_w (heap [k])) = k;
474 k >>= 1; 816 k = p;
817 }
818
819 ev_active (ANHE_w (he)) = k;
820 heap [k] = he;
821}
822
823/* away from the root */
824void inline_speed
825downheap (ANHE *heap, int N, int k)
826{
827 ANHE he = heap [k];
828 ANHE *E = heap + N + HEAP0;
829
830 for (;;)
831 {
832 ev_tstamp minat;
833 ANHE *minpos;
834 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
835
836 // find minimum child
837 if (expect_true (pos + DHEAP - 1 < E))
838 {
839 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
840 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
843 }
844 else if (pos < E)
845 {
846 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else
852 break;
853
854 if (ANHE_at (he) <= minat)
855 break;
856
857 ev_active (ANHE_w (*minpos)) = k;
858 heap [k] = *minpos;
859
860 k = minpos - heap;
861 }
862
863 ev_active (ANHE_w (he)) = k;
864 heap [k] = he;
865}
866
867#else // 4HEAP
868
869#define HEAP0 1
870
871/* towards the root */
872void inline_speed
873upheap (ANHE *heap, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int p = k >> 1;
880
881 /* maybe we could use a dummy element at heap [0]? */
882 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
883 break;
884
885 heap [k] = heap [p];
886 ev_active (ANHE_w (heap [k])) = k;
887 k = p;
475 } 888 }
476 889
477 heap [k] = w; 890 heap [k] = w;
478 ((W)heap [k])->active = k + 1; 891 ev_active (ANHE_w (heap [k])) = k;
479
480} 892}
481 893
482static void 894/* away from the root */
895void inline_speed
483downheap (WT *heap, int N, int k) 896downheap (ANHE *heap, int N, int k)
484{ 897{
485 WT w = heap [k]; 898 ANHE he = heap [k];
486 899
487 while (k < (N >> 1)) 900 for (;;)
488 { 901 {
489 int j = k << 1; 902 int c = k << 1;
490 903
491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 904 if (c > N)
492 ++j;
493
494 if (w->at <= heap [j]->at)
495 break; 905 break;
496 906
907 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0;
909
910 if (w->at <= ANHE_at (heap [c]))
911 break;
912
497 heap [k] = heap [j]; 913 heap [k] = heap [c];
498 ((W)heap [k])->active = k + 1; 914 ev_active (ANHE_w (heap [k])) = k;
915
499 k = j; 916 k = c;
500 } 917 }
501 918
502 heap [k] = w; 919 heap [k] = he;
503 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (he)) = k;
921}
922#endif
923
924void inline_size
925adjustheap (ANHE *heap, int N, int k)
926{
927 upheap (heap, k);
928 downheap (heap, N, k);
504} 929}
505 930
506/*****************************************************************************/ 931/*****************************************************************************/
507 932
508typedef struct 933typedef struct
509{ 934{
510 WL head; 935 WL head;
511 sig_atomic_t volatile gotsig; 936 EV_ATOMIC_T gotsig;
512} ANSIG; 937} ANSIG;
513 938
514static ANSIG *signals; 939static ANSIG *signals;
515static int signalmax; 940static int signalmax;
516 941
517static int sigpipe [2]; 942static EV_ATOMIC_T gotsig;
518static sig_atomic_t volatile gotsig;
519static struct ev_io sigev;
520 943
521static void 944void inline_size
522signals_init (ANSIG *base, int count) 945signals_init (ANSIG *base, int count)
523{ 946{
524 while (count--) 947 while (count--)
525 { 948 {
526 base->head = 0; 949 base->head = 0;
528 951
529 ++base; 952 ++base;
530 } 953 }
531} 954}
532 955
956/*****************************************************************************/
957
958void inline_speed
959fd_intern (int fd)
960{
961#ifdef _WIN32
962 int arg = 1;
963 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
964#else
965 fcntl (fd, F_SETFD, FD_CLOEXEC);
966 fcntl (fd, F_SETFL, O_NONBLOCK);
967#endif
968}
969
970static void noinline
971evpipe_init (EV_P)
972{
973 if (!ev_is_active (&pipeev))
974 {
975#if EV_USE_EVENTFD
976 if ((evfd = eventfd (0, 0)) >= 0)
977 {
978 evpipe [0] = -1;
979 fd_intern (evfd);
980 ev_io_set (&pipeev, evfd, EV_READ);
981 }
982 else
983#endif
984 {
985 while (pipe (evpipe))
986 syserr ("(libev) error creating signal/async pipe");
987
988 fd_intern (evpipe [0]);
989 fd_intern (evpipe [1]);
990 ev_io_set (&pipeev, evpipe [0], EV_READ);
991 }
992
993 ev_io_start (EV_A_ &pipeev);
994 ev_unref (EV_A); /* watcher should not keep loop alive */
995 }
996}
997
998void inline_size
999evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1000{
1001 if (!*flag)
1002 {
1003 int old_errno = errno; /* save errno because write might clobber it */
1004
1005 *flag = 1;
1006
1007#if EV_USE_EVENTFD
1008 if (evfd >= 0)
1009 {
1010 uint64_t counter = 1;
1011 write (evfd, &counter, sizeof (uint64_t));
1012 }
1013 else
1014#endif
1015 write (evpipe [1], &old_errno, 1);
1016
1017 errno = old_errno;
1018 }
1019}
1020
533static void 1021static void
1022pipecb (EV_P_ ev_io *iow, int revents)
1023{
1024#if EV_USE_EVENTFD
1025 if (evfd >= 0)
1026 {
1027 uint64_t counter;
1028 read (evfd, &counter, sizeof (uint64_t));
1029 }
1030 else
1031#endif
1032 {
1033 char dummy;
1034 read (evpipe [0], &dummy, 1);
1035 }
1036
1037 if (gotsig && ev_is_default_loop (EV_A))
1038 {
1039 int signum;
1040 gotsig = 0;
1041
1042 for (signum = signalmax; signum--; )
1043 if (signals [signum].gotsig)
1044 ev_feed_signal_event (EV_A_ signum + 1);
1045 }
1046
1047#if EV_ASYNC_ENABLE
1048 if (gotasync)
1049 {
1050 int i;
1051 gotasync = 0;
1052
1053 for (i = asynccnt; i--; )
1054 if (asyncs [i]->sent)
1055 {
1056 asyncs [i]->sent = 0;
1057 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1058 }
1059 }
1060#endif
1061}
1062
1063/*****************************************************************************/
1064
1065static void
534sighandler (int signum) 1066ev_sighandler (int signum)
535{ 1067{
1068#if EV_MULTIPLICITY
1069 struct ev_loop *loop = &default_loop_struct;
1070#endif
1071
536#if WIN32 1072#if _WIN32
537 signal (signum, sighandler); 1073 signal (signum, ev_sighandler);
538#endif 1074#endif
539 1075
540 signals [signum - 1].gotsig = 1; 1076 signals [signum - 1].gotsig = 1;
541 1077 evpipe_write (EV_A_ &gotsig);
542 if (!gotsig)
543 {
544 int old_errno = errno;
545 gotsig = 1;
546#ifdef WIN32
547 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
548#else
549 write (sigpipe [1], &signum, 1);
550#endif
551 errno = old_errno;
552 }
553} 1078}
554 1079
555static void 1080void noinline
556sigcb (EV_P_ struct ev_io *iow, int revents) 1081ev_feed_signal_event (EV_P_ int signum)
557{ 1082{
558 WL w; 1083 WL w;
1084
1085#if EV_MULTIPLICITY
1086 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1087#endif
1088
559 int signum; 1089 --signum;
560 1090
561#ifdef WIN32 1091 if (signum < 0 || signum >= signalmax)
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1092 return;
563#else
564 read (sigpipe [0], &revents, 1);
565#endif
566 gotsig = 0;
567 1093
568 for (signum = signalmax; signum--; )
569 if (signals [signum].gotsig)
570 {
571 signals [signum].gotsig = 0; 1094 signals [signum].gotsig = 0;
572 1095
573 for (w = signals [signum].head; w; w = w->next) 1096 for (w = signals [signum].head; w; w = w->next)
574 event (EV_A_ (W)w, EV_SIGNAL); 1097 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
575 }
576}
577
578static void
579siginit (EV_P)
580{
581#ifndef WIN32
582 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
583 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
584
585 /* rather than sort out wether we really need nb, set it */
586 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
587 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
588#endif
589
590 ev_io_set (&sigev, sigpipe [0], EV_READ);
591 ev_io_start (EV_A_ &sigev);
592 ev_unref (EV_A); /* child watcher should not keep loop alive */
593} 1098}
594 1099
595/*****************************************************************************/ 1100/*****************************************************************************/
596 1101
597static struct ev_child *childs [PID_HASHSIZE]; 1102static WL childs [EV_PID_HASHSIZE];
598 1103
599#ifndef WIN32 1104#ifndef _WIN32
600 1105
601static struct ev_signal childev; 1106static ev_signal childev;
1107
1108#ifndef WIFCONTINUED
1109# define WIFCONTINUED(status) 0
1110#endif
1111
1112void inline_speed
1113child_reap (EV_P_ int chain, int pid, int status)
1114{
1115 ev_child *w;
1116 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1117
1118 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1119 {
1120 if ((w->pid == pid || !w->pid)
1121 && (!traced || (w->flags & 1)))
1122 {
1123 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1124 w->rpid = pid;
1125 w->rstatus = status;
1126 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1127 }
1128 }
1129}
602 1130
603#ifndef WCONTINUED 1131#ifndef WCONTINUED
604# define WCONTINUED 0 1132# define WCONTINUED 0
605#endif 1133#endif
606 1134
607static void 1135static void
608child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
609{
610 struct ev_child *w;
611
612 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
613 if (w->pid == pid || !w->pid)
614 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid;
617 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD);
619 }
620}
621
622static void
623childcb (EV_P_ struct ev_signal *sw, int revents) 1136childcb (EV_P_ ev_signal *sw, int revents)
624{ 1137{
625 int pid, status; 1138 int pid, status;
626 1139
1140 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1141 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
628 { 1142 if (!WCONTINUED
1143 || errno != EINVAL
1144 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1145 return;
1146
629 /* make sure we are called again until all childs have been reaped */ 1147 /* make sure we are called again until all children have been reaped */
1148 /* we need to do it this way so that the callback gets called before we continue */
630 event (EV_A_ (W)sw, EV_SIGNAL); 1149 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
631 1150
632 child_reap (EV_A_ sw, pid, pid, status); 1151 child_reap (EV_A_ pid, pid, status);
1152 if (EV_PID_HASHSIZE > 1)
633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1153 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
634 }
635} 1154}
636 1155
637#endif 1156#endif
638 1157
639/*****************************************************************************/ 1158/*****************************************************************************/
640 1159
1160#if EV_USE_PORT
1161# include "ev_port.c"
1162#endif
641#if EV_USE_KQUEUE 1163#if EV_USE_KQUEUE
642# include "ev_kqueue.c" 1164# include "ev_kqueue.c"
643#endif 1165#endif
644#if EV_USE_EPOLL 1166#if EV_USE_EPOLL
645# include "ev_epoll.c" 1167# include "ev_epoll.c"
662{ 1184{
663 return EV_VERSION_MINOR; 1185 return EV_VERSION_MINOR;
664} 1186}
665 1187
666/* return true if we are running with elevated privileges and should ignore env variables */ 1188/* return true if we are running with elevated privileges and should ignore env variables */
667static int 1189int inline_size
668enable_secure (void) 1190enable_secure (void)
669{ 1191{
670#ifdef WIN32 1192#ifdef _WIN32
671 return 0; 1193 return 0;
672#else 1194#else
673 return getuid () != geteuid () 1195 return getuid () != geteuid ()
674 || getgid () != getegid (); 1196 || getgid () != getegid ();
675#endif 1197#endif
676} 1198}
677 1199
678int 1200unsigned int
679ev_method (EV_P) 1201ev_supported_backends (void)
680{ 1202{
681 return method; 1203 unsigned int flags = 0;
682}
683 1204
684static void 1205 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
685loop_init (EV_P_ int methods) 1206 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1207 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1208 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1209 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1210
1211 return flags;
1212}
1213
1214unsigned int
1215ev_recommended_backends (void)
686{ 1216{
687 if (!method) 1217 unsigned int flags = ev_supported_backends ();
1218
1219#ifndef __NetBSD__
1220 /* kqueue is borked on everything but netbsd apparently */
1221 /* it usually doesn't work correctly on anything but sockets and pipes */
1222 flags &= ~EVBACKEND_KQUEUE;
1223#endif
1224#ifdef __APPLE__
1225 // flags &= ~EVBACKEND_KQUEUE; for documentation
1226 flags &= ~EVBACKEND_POLL;
1227#endif
1228
1229 return flags;
1230}
1231
1232unsigned int
1233ev_embeddable_backends (void)
1234{
1235 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1236
1237 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1238 /* please fix it and tell me how to detect the fix */
1239 flags &= ~EVBACKEND_EPOLL;
1240
1241 return flags;
1242}
1243
1244unsigned int
1245ev_backend (EV_P)
1246{
1247 return backend;
1248}
1249
1250unsigned int
1251ev_loop_count (EV_P)
1252{
1253 return loop_count;
1254}
1255
1256void
1257ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1258{
1259 io_blocktime = interval;
1260}
1261
1262void
1263ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1264{
1265 timeout_blocktime = interval;
1266}
1267
1268static void noinline
1269loop_init (EV_P_ unsigned int flags)
1270{
1271 if (!backend)
688 { 1272 {
689#if EV_USE_MONOTONIC 1273#if EV_USE_MONOTONIC
690 { 1274 {
691 struct timespec ts; 1275 struct timespec ts;
692 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1276 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
693 have_monotonic = 1; 1277 have_monotonic = 1;
694 } 1278 }
695#endif 1279#endif
696 1280
697 rt_now = ev_time (); 1281 ev_rt_now = ev_time ();
698 mn_now = get_clock (); 1282 mn_now = get_clock ();
699 now_floor = mn_now; 1283 now_floor = mn_now;
700 rtmn_diff = rt_now - mn_now; 1284 rtmn_diff = ev_rt_now - mn_now;
701 1285
702 if (methods == EVMETHOD_AUTO) 1286 io_blocktime = 0.;
703 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1287 timeout_blocktime = 0.;
1288 backend = 0;
1289 backend_fd = -1;
1290 gotasync = 0;
1291#if EV_USE_INOTIFY
1292 fs_fd = -2;
1293#endif
1294
1295 /* pid check not overridable via env */
1296#ifndef _WIN32
1297 if (flags & EVFLAG_FORKCHECK)
1298 curpid = getpid ();
1299#endif
1300
1301 if (!(flags & EVFLAG_NOENV)
1302 && !enable_secure ()
1303 && getenv ("LIBEV_FLAGS"))
704 methods = atoi (getenv ("LIBEV_METHODS")); 1304 flags = atoi (getenv ("LIBEV_FLAGS"));
705 else
706 methods = EVMETHOD_ANY;
707 1305
708 method = 0; 1306 if (!(flags & 0x0000ffffU))
709#if EV_USE_WIN32 1307 flags |= ev_recommended_backends ();
710 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1308
1309#if EV_USE_PORT
1310 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
711#endif 1311#endif
712#if EV_USE_KQUEUE 1312#if EV_USE_KQUEUE
713 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1313 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
714#endif 1314#endif
715#if EV_USE_EPOLL 1315#if EV_USE_EPOLL
716 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1316 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
717#endif 1317#endif
718#if EV_USE_POLL 1318#if EV_USE_POLL
719 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1319 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
720#endif 1320#endif
721#if EV_USE_SELECT 1321#if EV_USE_SELECT
722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1322 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
723#endif 1323#endif
724 1324
725 ev_watcher_init (&sigev, sigcb); 1325 ev_init (&pipeev, pipecb);
726 ev_set_priority (&sigev, EV_MAXPRI); 1326 ev_set_priority (&pipeev, EV_MAXPRI);
727 } 1327 }
728} 1328}
729 1329
730void 1330static void noinline
731loop_destroy (EV_P) 1331loop_destroy (EV_P)
732{ 1332{
733 int i; 1333 int i;
734 1334
1335 if (ev_is_active (&pipeev))
1336 {
1337 ev_ref (EV_A); /* signal watcher */
1338 ev_io_stop (EV_A_ &pipeev);
1339
1340#if EV_USE_EVENTFD
1341 if (evfd >= 0)
1342 close (evfd);
1343#endif
1344
1345 if (evpipe [0] >= 0)
1346 {
1347 close (evpipe [0]);
1348 close (evpipe [1]);
1349 }
1350 }
1351
735#if EV_USE_WIN32 1352#if EV_USE_INOTIFY
736 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1353 if (fs_fd >= 0)
1354 close (fs_fd);
1355#endif
1356
1357 if (backend_fd >= 0)
1358 close (backend_fd);
1359
1360#if EV_USE_PORT
1361 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
737#endif 1362#endif
738#if EV_USE_KQUEUE 1363#if EV_USE_KQUEUE
739 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1364 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
740#endif 1365#endif
741#if EV_USE_EPOLL 1366#if EV_USE_EPOLL
742 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1367 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
743#endif 1368#endif
744#if EV_USE_POLL 1369#if EV_USE_POLL
745 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1370 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
746#endif 1371#endif
747#if EV_USE_SELECT 1372#if EV_USE_SELECT
748 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1373 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
749#endif 1374#endif
750 1375
751 for (i = NUMPRI; i--; ) 1376 for (i = NUMPRI; i--; )
1377 {
752 array_free (pending, [i]); 1378 array_free (pending, [i]);
1379#if EV_IDLE_ENABLE
1380 array_free (idle, [i]);
1381#endif
1382 }
1383
1384 ev_free (anfds); anfdmax = 0;
753 1385
754 /* have to use the microsoft-never-gets-it-right macro */ 1386 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange); 1387 array_free (fdchange, EMPTY);
756 array_free_microshit (timer); 1388 array_free (timer, EMPTY);
757 array_free_microshit (periodic); 1389#if EV_PERIODIC_ENABLE
758 array_free_microshit (idle); 1390 array_free (periodic, EMPTY);
759 array_free_microshit (prepare); 1391#endif
760 array_free_microshit (check); 1392#if EV_FORK_ENABLE
1393 array_free (fork, EMPTY);
1394#endif
1395 array_free (prepare, EMPTY);
1396 array_free (check, EMPTY);
1397#if EV_ASYNC_ENABLE
1398 array_free (async, EMPTY);
1399#endif
761 1400
762 method = 0; 1401 backend = 0;
763} 1402}
764 1403
765static void 1404#if EV_USE_INOTIFY
1405void inline_size infy_fork (EV_P);
1406#endif
1407
1408void inline_size
766loop_fork (EV_P) 1409loop_fork (EV_P)
767{ 1410{
1411#if EV_USE_PORT
1412 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1413#endif
1414#if EV_USE_KQUEUE
1415 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1416#endif
768#if EV_USE_EPOLL 1417#if EV_USE_EPOLL
769 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1418 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
770#endif 1419#endif
771#if EV_USE_KQUEUE 1420#if EV_USE_INOTIFY
772 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1421 infy_fork (EV_A);
773#endif 1422#endif
774 1423
775 if (ev_is_active (&sigev)) 1424 if (ev_is_active (&pipeev))
776 { 1425 {
777 /* default loop */ 1426 /* this "locks" the handlers against writing to the pipe */
1427 /* while we modify the fd vars */
1428 gotsig = 1;
1429#if EV_ASYNC_ENABLE
1430 gotasync = 1;
1431#endif
778 1432
779 ev_ref (EV_A); 1433 ev_ref (EV_A);
780 ev_io_stop (EV_A_ &sigev); 1434 ev_io_stop (EV_A_ &pipeev);
1435
1436#if EV_USE_EVENTFD
1437 if (evfd >= 0)
1438 close (evfd);
1439#endif
1440
1441 if (evpipe [0] >= 0)
1442 {
781 close (sigpipe [0]); 1443 close (evpipe [0]);
782 close (sigpipe [1]); 1444 close (evpipe [1]);
1445 }
783 1446
784 while (pipe (sigpipe))
785 syserr ("(libev) error creating pipe");
786
787 siginit (EV_A); 1447 evpipe_init (EV_A);
1448 /* now iterate over everything, in case we missed something */
1449 pipecb (EV_A_ &pipeev, EV_READ);
788 } 1450 }
789 1451
790 postfork = 0; 1452 postfork = 0;
791} 1453}
792 1454
793#if EV_MULTIPLICITY 1455#if EV_MULTIPLICITY
794struct ev_loop * 1456struct ev_loop *
795ev_loop_new (int methods) 1457ev_loop_new (unsigned int flags)
796{ 1458{
797 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1459 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
798 1460
799 memset (loop, 0, sizeof (struct ev_loop)); 1461 memset (loop, 0, sizeof (struct ev_loop));
800 1462
801 loop_init (EV_A_ methods); 1463 loop_init (EV_A_ flags);
802 1464
803 if (ev_method (EV_A)) 1465 if (ev_backend (EV_A))
804 return loop; 1466 return loop;
805 1467
806 return 0; 1468 return 0;
807} 1469}
808 1470
814} 1476}
815 1477
816void 1478void
817ev_loop_fork (EV_P) 1479ev_loop_fork (EV_P)
818{ 1480{
819 postfork = 1; 1481 postfork = 1; /* must be in line with ev_default_fork */
820} 1482}
821
822#endif 1483#endif
823 1484
824#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop * 1486struct ev_loop *
1487ev_default_loop_init (unsigned int flags)
829#else 1488#else
830static int default_loop;
831
832int 1489int
1490ev_default_loop (unsigned int flags)
833#endif 1491#endif
834ev_default_loop (int methods)
835{ 1492{
836 if (sigpipe [0] == sigpipe [1])
837 if (pipe (sigpipe))
838 return 0;
839
840 if (!default_loop) 1493 if (!ev_default_loop_ptr)
841 { 1494 {
842#if EV_MULTIPLICITY 1495#if EV_MULTIPLICITY
843 struct ev_loop *loop = default_loop = &default_loop_struct; 1496 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
844#else 1497#else
845 default_loop = 1; 1498 ev_default_loop_ptr = 1;
846#endif 1499#endif
847 1500
848 loop_init (EV_A_ methods); 1501 loop_init (EV_A_ flags);
849 1502
850 if (ev_method (EV_A)) 1503 if (ev_backend (EV_A))
851 { 1504 {
852 siginit (EV_A);
853
854#ifndef WIN32 1505#ifndef _WIN32
855 ev_signal_init (&childev, childcb, SIGCHLD); 1506 ev_signal_init (&childev, childcb, SIGCHLD);
856 ev_set_priority (&childev, EV_MAXPRI); 1507 ev_set_priority (&childev, EV_MAXPRI);
857 ev_signal_start (EV_A_ &childev); 1508 ev_signal_start (EV_A_ &childev);
858 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1509 ev_unref (EV_A); /* child watcher should not keep loop alive */
859#endif 1510#endif
860 } 1511 }
861 else 1512 else
862 default_loop = 0; 1513 ev_default_loop_ptr = 0;
863 } 1514 }
864 1515
865 return default_loop; 1516 return ev_default_loop_ptr;
866} 1517}
867 1518
868void 1519void
869ev_default_destroy (void) 1520ev_default_destroy (void)
870{ 1521{
871#if EV_MULTIPLICITY 1522#if EV_MULTIPLICITY
872 struct ev_loop *loop = default_loop; 1523 struct ev_loop *loop = ev_default_loop_ptr;
873#endif 1524#endif
874 1525
875#ifndef WIN32 1526#ifndef _WIN32
876 ev_ref (EV_A); /* child watcher */ 1527 ev_ref (EV_A); /* child watcher */
877 ev_signal_stop (EV_A_ &childev); 1528 ev_signal_stop (EV_A_ &childev);
878#endif 1529#endif
879 1530
880 ev_ref (EV_A); /* signal watcher */
881 ev_io_stop (EV_A_ &sigev);
882
883 close (sigpipe [0]); sigpipe [0] = 0;
884 close (sigpipe [1]); sigpipe [1] = 0;
885
886 loop_destroy (EV_A); 1531 loop_destroy (EV_A);
887} 1532}
888 1533
889void 1534void
890ev_default_fork (void) 1535ev_default_fork (void)
891{ 1536{
892#if EV_MULTIPLICITY 1537#if EV_MULTIPLICITY
893 struct ev_loop *loop = default_loop; 1538 struct ev_loop *loop = ev_default_loop_ptr;
894#endif 1539#endif
895 1540
896 if (method) 1541 if (backend)
897 postfork = 1; 1542 postfork = 1; /* must be in line with ev_loop_fork */
898} 1543}
899 1544
900/*****************************************************************************/ 1545/*****************************************************************************/
901 1546
902static int 1547void
903any_pending (EV_P) 1548ev_invoke (EV_P_ void *w, int revents)
904{ 1549{
905 int pri; 1550 EV_CB_INVOKE ((W)w, revents);
906
907 for (pri = NUMPRI; pri--; )
908 if (pendingcnt [pri])
909 return 1;
910
911 return 0;
912} 1551}
913 1552
914static void 1553void inline_speed
915call_pending (EV_P) 1554call_pending (EV_P)
916{ 1555{
917 int pri; 1556 int pri;
918 1557
919 for (pri = NUMPRI; pri--; ) 1558 for (pri = NUMPRI; pri--; )
920 while (pendingcnt [pri]) 1559 while (pendingcnt [pri])
921 { 1560 {
922 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1561 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
923 1562
924 if (p->w) 1563 if (expect_true (p->w))
925 { 1564 {
1565 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1566
926 p->w->pending = 0; 1567 p->w->pending = 0;
927 p->w->cb (EV_A_ p->w, p->events); 1568 EV_CB_INVOKE (p->w, p->events);
928 } 1569 }
929 } 1570 }
930} 1571}
931 1572
932static void 1573#if EV_IDLE_ENABLE
1574void inline_size
1575idle_reify (EV_P)
1576{
1577 if (expect_false (idleall))
1578 {
1579 int pri;
1580
1581 for (pri = NUMPRI; pri--; )
1582 {
1583 if (pendingcnt [pri])
1584 break;
1585
1586 if (idlecnt [pri])
1587 {
1588 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1589 break;
1590 }
1591 }
1592 }
1593}
1594#endif
1595
1596void inline_size
933timers_reify (EV_P) 1597timers_reify (EV_P)
934{ 1598{
935 while (timercnt && ((WT)timers [0])->at <= mn_now) 1599 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
936 { 1600 {
937 struct ev_timer *w = timers [0]; 1601 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
938 1602
939 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1603 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
940 1604
941 /* first reschedule or stop timer */ 1605 /* first reschedule or stop timer */
942 if (w->repeat) 1606 if (w->repeat)
943 { 1607 {
944 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1608 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
945 ((WT)w)->at = mn_now + w->repeat; 1609
1610 ev_at (w) += w->repeat;
1611 if (ev_at (w) < mn_now)
1612 ev_at (w) = mn_now;
1613
946 downheap ((WT *)timers, timercnt, 0); 1614 downheap (timers, timercnt, HEAP0);
947 } 1615 }
948 else 1616 else
949 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1617 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
950 1618
951 event (EV_A_ (W)w, EV_TIMEOUT); 1619 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
952 } 1620 }
953} 1621}
954 1622
955static void 1623#if EV_PERIODIC_ENABLE
1624void inline_size
956periodics_reify (EV_P) 1625periodics_reify (EV_P)
957{ 1626{
958 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1627 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
959 { 1628 {
960 struct ev_periodic *w = periodics [0]; 1629 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
961 1630
962 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1631 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
963 1632
964 /* first reschedule or stop timer */ 1633 /* first reschedule or stop timer */
965 if (w->reschedule_cb) 1634 if (w->reschedule_cb)
966 { 1635 {
967 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 1636 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
968
969 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now)); 1637 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
970 downheap ((WT *)periodics, periodiccnt, 0); 1638 downheap (periodics, periodiccnt, 1);
971 } 1639 }
972 else if (w->interval) 1640 else if (w->interval)
973 { 1641 {
974 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1643 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
975 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1644 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
976 downheap ((WT *)periodics, periodiccnt, 0); 1645 downheap (periodics, periodiccnt, HEAP0);
977 } 1646 }
978 else 1647 else
979 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1648 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
980 1649
981 event (EV_A_ (W)w, EV_PERIODIC); 1650 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
982 } 1651 }
983} 1652}
984 1653
985static void 1654static void noinline
986periodics_reschedule (EV_P) 1655periodics_reschedule (EV_P)
987{ 1656{
988 int i; 1657 int i;
989 1658
990 /* adjust periodics after time jump */ 1659 /* adjust periodics after time jump */
991 for (i = 0; i < periodiccnt; ++i) 1660 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
992 { 1661 {
993 struct ev_periodic *w = periodics [i]; 1662 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
994 1663
995 if (w->reschedule_cb) 1664 if (w->reschedule_cb)
996 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1665 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
997 else if (w->interval) 1666 else if (w->interval)
998 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1667 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
999 } 1668 }
1000 1669
1001 /* now rebuild the heap */ 1670 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1002 for (i = periodiccnt >> 1; i--; ) 1671 for (i = periodiccnt >> 1; --i; )
1003 downheap ((WT *)periodics, periodiccnt, i); 1672 downheap (periodics, periodiccnt, i + HEAP0);
1004} 1673}
1674#endif
1005 1675
1006inline int 1676void inline_speed
1007time_update_monotonic (EV_P) 1677time_update (EV_P_ ev_tstamp max_block)
1008{
1009 mn_now = get_clock ();
1010
1011 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1012 {
1013 rt_now = rtmn_diff + mn_now;
1014 return 0;
1015 }
1016 else
1017 {
1018 now_floor = mn_now;
1019 rt_now = ev_time ();
1020 return 1;
1021 }
1022}
1023
1024static void
1025time_update (EV_P)
1026{ 1678{
1027 int i; 1679 int i;
1028 1680
1029#if EV_USE_MONOTONIC 1681#if EV_USE_MONOTONIC
1030 if (expect_true (have_monotonic)) 1682 if (expect_true (have_monotonic))
1031 { 1683 {
1032 if (time_update_monotonic (EV_A)) 1684 ev_tstamp odiff = rtmn_diff;
1685
1686 mn_now = get_clock ();
1687
1688 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1689 /* interpolate in the meantime */
1690 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1033 { 1691 {
1034 ev_tstamp odiff = rtmn_diff; 1692 ev_rt_now = rtmn_diff + mn_now;
1693 return;
1694 }
1035 1695
1696 now_floor = mn_now;
1697 ev_rt_now = ev_time ();
1698
1036 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1699 /* loop a few times, before making important decisions.
1700 * on the choice of "4": one iteration isn't enough,
1701 * in case we get preempted during the calls to
1702 * ev_time and get_clock. a second call is almost guaranteed
1703 * to succeed in that case, though. and looping a few more times
1704 * doesn't hurt either as we only do this on time-jumps or
1705 * in the unlikely event of having been preempted here.
1706 */
1707 for (i = 4; --i; )
1708 {
1709 rtmn_diff = ev_rt_now - mn_now;
1710
1711 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1712 return; /* all is well */
1713
1714 ev_rt_now = ev_time ();
1715 mn_now = get_clock ();
1716 now_floor = mn_now;
1717 }
1718
1719# if EV_PERIODIC_ENABLE
1720 periodics_reschedule (EV_A);
1721# endif
1722 /* no timer adjustment, as the monotonic clock doesn't jump */
1723 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1724 }
1725 else
1726#endif
1727 {
1728 ev_rt_now = ev_time ();
1729
1730 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1731 {
1732#if EV_PERIODIC_ENABLE
1733 periodics_reschedule (EV_A);
1734#endif
1735 /* adjust timers. this is easy, as the offset is the same for all of them */
1736 for (i = 0; i < timercnt; ++i)
1037 { 1737 {
1038 rtmn_diff = rt_now - mn_now; 1738 ANHE *he = timers + i + HEAP0;
1039 1739 ANHE_w (*he)->at += ev_rt_now - mn_now;
1040 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1740 ANHE_at_set (*he);
1041 return; /* all is well */
1042
1043 rt_now = ev_time ();
1044 mn_now = get_clock ();
1045 now_floor = mn_now;
1046 } 1741 }
1047
1048 periodics_reschedule (EV_A);
1049 /* no timer adjustment, as the monotonic clock doesn't jump */
1050 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1051 } 1742 }
1052 }
1053 else
1054#endif
1055 {
1056 rt_now = ev_time ();
1057 1743
1058 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1059 {
1060 periodics_reschedule (EV_A);
1061
1062 /* adjust timers. this is easy, as the offset is the same for all */
1063 for (i = 0; i < timercnt; ++i)
1064 ((WT)timers [i])->at += rt_now - mn_now;
1065 }
1066
1067 mn_now = rt_now; 1744 mn_now = ev_rt_now;
1068 } 1745 }
1069} 1746}
1070 1747
1071void 1748void
1072ev_ref (EV_P) 1749ev_ref (EV_P)
1083static int loop_done; 1760static int loop_done;
1084 1761
1085void 1762void
1086ev_loop (EV_P_ int flags) 1763ev_loop (EV_P_ int flags)
1087{ 1764{
1088 double block; 1765 loop_done = EVUNLOOP_CANCEL;
1089 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1766
1767 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1090 1768
1091 do 1769 do
1092 { 1770 {
1771#ifndef _WIN32
1772 if (expect_false (curpid)) /* penalise the forking check even more */
1773 if (expect_false (getpid () != curpid))
1774 {
1775 curpid = getpid ();
1776 postfork = 1;
1777 }
1778#endif
1779
1780#if EV_FORK_ENABLE
1781 /* we might have forked, so queue fork handlers */
1782 if (expect_false (postfork))
1783 if (forkcnt)
1784 {
1785 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1786 call_pending (EV_A);
1787 }
1788#endif
1789
1093 /* queue check watchers (and execute them) */ 1790 /* queue prepare watchers (and execute them) */
1094 if (expect_false (preparecnt)) 1791 if (expect_false (preparecnt))
1095 { 1792 {
1096 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1793 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1097 call_pending (EV_A); 1794 call_pending (EV_A);
1098 } 1795 }
1099 1796
1797 if (expect_false (!activecnt))
1798 break;
1799
1100 /* we might have forked, so reify kernel state if necessary */ 1800 /* we might have forked, so reify kernel state if necessary */
1101 if (expect_false (postfork)) 1801 if (expect_false (postfork))
1102 loop_fork (EV_A); 1802 loop_fork (EV_A);
1103 1803
1104 /* update fd-related kernel structures */ 1804 /* update fd-related kernel structures */
1105 fd_reify (EV_A); 1805 fd_reify (EV_A);
1106 1806
1107 /* calculate blocking time */ 1807 /* calculate blocking time */
1808 {
1809 ev_tstamp waittime = 0.;
1810 ev_tstamp sleeptime = 0.;
1108 1811
1109 /* we only need this for !monotonic clock or timers, but as we basically 1812 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1110 always have timers, we just calculate it always */
1111#if EV_USE_MONOTONIC
1112 if (expect_true (have_monotonic))
1113 time_update_monotonic (EV_A);
1114 else
1115#endif
1116 { 1813 {
1117 rt_now = ev_time (); 1814 /* update time to cancel out callback processing overhead */
1118 mn_now = rt_now; 1815 time_update (EV_A_ 1e100);
1119 }
1120 1816
1121 if (flags & EVLOOP_NONBLOCK || idlecnt)
1122 block = 0.;
1123 else
1124 {
1125 block = MAX_BLOCKTIME; 1817 waittime = MAX_BLOCKTIME;
1126 1818
1127 if (timercnt) 1819 if (timercnt)
1128 { 1820 {
1129 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1821 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1130 if (block > to) block = to; 1822 if (waittime > to) waittime = to;
1131 } 1823 }
1132 1824
1825#if EV_PERIODIC_ENABLE
1133 if (periodiccnt) 1826 if (periodiccnt)
1134 { 1827 {
1135 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1828 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1136 if (block > to) block = to; 1829 if (waittime > to) waittime = to;
1137 } 1830 }
1831#endif
1138 1832
1139 if (block < 0.) block = 0.; 1833 if (expect_false (waittime < timeout_blocktime))
1834 waittime = timeout_blocktime;
1835
1836 sleeptime = waittime - backend_fudge;
1837
1838 if (expect_true (sleeptime > io_blocktime))
1839 sleeptime = io_blocktime;
1840
1841 if (sleeptime)
1842 {
1843 ev_sleep (sleeptime);
1844 waittime -= sleeptime;
1845 }
1140 } 1846 }
1141 1847
1142 method_poll (EV_A_ block); 1848 ++loop_count;
1849 backend_poll (EV_A_ waittime);
1143 1850
1144 /* update rt_now, do magic */ 1851 /* update ev_rt_now, do magic */
1145 time_update (EV_A); 1852 time_update (EV_A_ waittime + sleeptime);
1853 }
1146 1854
1147 /* queue pending timers and reschedule them */ 1855 /* queue pending timers and reschedule them */
1148 timers_reify (EV_A); /* relative timers called last */ 1856 timers_reify (EV_A); /* relative timers called last */
1857#if EV_PERIODIC_ENABLE
1149 periodics_reify (EV_A); /* absolute timers called first */ 1858 periodics_reify (EV_A); /* absolute timers called first */
1859#endif
1150 1860
1861#if EV_IDLE_ENABLE
1151 /* queue idle watchers unless io or timers are pending */ 1862 /* queue idle watchers unless other events are pending */
1152 if (idlecnt && !any_pending (EV_A)) 1863 idle_reify (EV_A);
1153 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1864#endif
1154 1865
1155 /* queue check watchers, to be executed first */ 1866 /* queue check watchers, to be executed first */
1156 if (checkcnt) 1867 if (expect_false (checkcnt))
1157 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1868 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1158 1869
1159 call_pending (EV_A); 1870 call_pending (EV_A);
1160 } 1871 }
1161 while (activecnt && !loop_done); 1872 while (expect_true (
1873 activecnt
1874 && !loop_done
1875 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1876 ));
1162 1877
1163 if (loop_done != 2) 1878 if (loop_done == EVUNLOOP_ONE)
1164 loop_done = 0; 1879 loop_done = EVUNLOOP_CANCEL;
1165} 1880}
1166 1881
1167void 1882void
1168ev_unloop (EV_P_ int how) 1883ev_unloop (EV_P_ int how)
1169{ 1884{
1170 loop_done = how; 1885 loop_done = how;
1171} 1886}
1172 1887
1173/*****************************************************************************/ 1888/*****************************************************************************/
1174 1889
1175inline void 1890void inline_size
1176wlist_add (WL *head, WL elem) 1891wlist_add (WL *head, WL elem)
1177{ 1892{
1178 elem->next = *head; 1893 elem->next = *head;
1179 *head = elem; 1894 *head = elem;
1180} 1895}
1181 1896
1182inline void 1897void inline_size
1183wlist_del (WL *head, WL elem) 1898wlist_del (WL *head, WL elem)
1184{ 1899{
1185 while (*head) 1900 while (*head)
1186 { 1901 {
1187 if (*head == elem) 1902 if (*head == elem)
1192 1907
1193 head = &(*head)->next; 1908 head = &(*head)->next;
1194 } 1909 }
1195} 1910}
1196 1911
1197inline void 1912void inline_speed
1198ev_clear_pending (EV_P_ W w) 1913clear_pending (EV_P_ W w)
1199{ 1914{
1200 if (w->pending) 1915 if (w->pending)
1201 { 1916 {
1202 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1917 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1203 w->pending = 0; 1918 w->pending = 0;
1204 } 1919 }
1205} 1920}
1206 1921
1207inline void 1922int
1923ev_clear_pending (EV_P_ void *w)
1924{
1925 W w_ = (W)w;
1926 int pending = w_->pending;
1927
1928 if (expect_true (pending))
1929 {
1930 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1931 w_->pending = 0;
1932 p->w = 0;
1933 return p->events;
1934 }
1935 else
1936 return 0;
1937}
1938
1939void inline_size
1940pri_adjust (EV_P_ W w)
1941{
1942 int pri = w->priority;
1943 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1944 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1945 w->priority = pri;
1946}
1947
1948void inline_speed
1208ev_start (EV_P_ W w, int active) 1949ev_start (EV_P_ W w, int active)
1209{ 1950{
1210 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1951 pri_adjust (EV_A_ w);
1211 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1212
1213 w->active = active; 1952 w->active = active;
1214 ev_ref (EV_A); 1953 ev_ref (EV_A);
1215} 1954}
1216 1955
1217inline void 1956void inline_size
1218ev_stop (EV_P_ W w) 1957ev_stop (EV_P_ W w)
1219{ 1958{
1220 ev_unref (EV_A); 1959 ev_unref (EV_A);
1221 w->active = 0; 1960 w->active = 0;
1222} 1961}
1223 1962
1224/*****************************************************************************/ 1963/*****************************************************************************/
1225 1964
1226void 1965void noinline
1227ev_io_start (EV_P_ struct ev_io *w) 1966ev_io_start (EV_P_ ev_io *w)
1228{ 1967{
1229 int fd = w->fd; 1968 int fd = w->fd;
1230 1969
1231 if (ev_is_active (w)) 1970 if (expect_false (ev_is_active (w)))
1232 return; 1971 return;
1233 1972
1234 assert (("ev_io_start called with negative fd", fd >= 0)); 1973 assert (("ev_io_start called with negative fd", fd >= 0));
1235 1974
1236 ev_start (EV_A_ (W)w, 1); 1975 ev_start (EV_A_ (W)w, 1);
1237 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1976 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1238 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1977 wlist_add (&anfds[fd].head, (WL)w);
1239 1978
1240 fd_change (EV_A_ fd); 1979 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1980 w->events &= ~EV_IOFDSET;
1241} 1981}
1242 1982
1243void 1983void noinline
1244ev_io_stop (EV_P_ struct ev_io *w) 1984ev_io_stop (EV_P_ ev_io *w)
1245{ 1985{
1246 ev_clear_pending (EV_A_ (W)w); 1986 clear_pending (EV_A_ (W)w);
1247 if (!ev_is_active (w)) 1987 if (expect_false (!ev_is_active (w)))
1248 return; 1988 return;
1249 1989
1990 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1991
1250 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1992 wlist_del (&anfds[w->fd].head, (WL)w);
1251 ev_stop (EV_A_ (W)w); 1993 ev_stop (EV_A_ (W)w);
1252 1994
1253 fd_change (EV_A_ w->fd); 1995 fd_change (EV_A_ w->fd, 1);
1254} 1996}
1255 1997
1256void 1998void noinline
1257ev_timer_start (EV_P_ struct ev_timer *w) 1999ev_timer_start (EV_P_ ev_timer *w)
1258{ 2000{
1259 if (ev_is_active (w)) 2001 if (expect_false (ev_is_active (w)))
1260 return; 2002 return;
1261 2003
1262 ((WT)w)->at += mn_now; 2004 ev_at (w) += mn_now;
1263 2005
1264 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2006 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1265 2007
1266 ev_start (EV_A_ (W)w, ++timercnt); 2008 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1267 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2009 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1268 timers [timercnt - 1] = w; 2010 ANHE_w (timers [ev_active (w)]) = (WT)w;
1269 upheap ((WT *)timers, timercnt - 1); 2011 ANHE_at_set (timers [ev_active (w)]);
2012 upheap (timers, ev_active (w));
1270 2013
1271 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2014 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1272} 2015}
1273 2016
1274void 2017void noinline
1275ev_timer_stop (EV_P_ struct ev_timer *w) 2018ev_timer_stop (EV_P_ ev_timer *w)
1276{ 2019{
1277 ev_clear_pending (EV_A_ (W)w); 2020 clear_pending (EV_A_ (W)w);
1278 if (!ev_is_active (w)) 2021 if (expect_false (!ev_is_active (w)))
1279 return; 2022 return;
1280 2023
2024 {
2025 int active = ev_active (w);
2026
1281 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2027 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1282 2028
1283 if (((W)w)->active < timercnt--) 2029 if (expect_true (active < timercnt + HEAP0 - 1))
1284 { 2030 {
1285 timers [((W)w)->active - 1] = timers [timercnt]; 2031 timers [active] = timers [timercnt + HEAP0 - 1];
1286 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2032 adjustheap (timers, timercnt, active);
1287 } 2033 }
1288 2034
1289 ((WT)w)->at = w->repeat; 2035 --timercnt;
2036 }
2037
2038 ev_at (w) -= mn_now;
1290 2039
1291 ev_stop (EV_A_ (W)w); 2040 ev_stop (EV_A_ (W)w);
1292} 2041}
1293 2042
1294void 2043void noinline
1295ev_timer_again (EV_P_ struct ev_timer *w) 2044ev_timer_again (EV_P_ ev_timer *w)
1296{ 2045{
1297 if (ev_is_active (w)) 2046 if (ev_is_active (w))
1298 { 2047 {
1299 if (w->repeat) 2048 if (w->repeat)
1300 { 2049 {
1301 ((WT)w)->at = mn_now + w->repeat; 2050 ev_at (w) = mn_now + w->repeat;
1302 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2051 ANHE_at_set (timers [ev_active (w)]);
2052 adjustheap (timers, timercnt, ev_active (w));
1303 } 2053 }
1304 else 2054 else
1305 ev_timer_stop (EV_A_ w); 2055 ev_timer_stop (EV_A_ w);
1306 } 2056 }
1307 else if (w->repeat) 2057 else if (w->repeat)
2058 {
2059 ev_at (w) = w->repeat;
1308 ev_timer_start (EV_A_ w); 2060 ev_timer_start (EV_A_ w);
2061 }
1309} 2062}
1310 2063
1311void 2064#if EV_PERIODIC_ENABLE
2065void noinline
1312ev_periodic_start (EV_P_ struct ev_periodic *w) 2066ev_periodic_start (EV_P_ ev_periodic *w)
1313{ 2067{
1314 if (ev_is_active (w)) 2068 if (expect_false (ev_is_active (w)))
1315 return; 2069 return;
1316 2070
1317 if (w->reschedule_cb) 2071 if (w->reschedule_cb)
1318 ((WT)w)->at = w->reschedule_cb (w, rt_now); 2072 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1319 else if (w->interval) 2073 else if (w->interval)
1320 { 2074 {
1321 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2075 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1322 /* this formula differs from the one in periodic_reify because we do not always round up */ 2076 /* this formula differs from the one in periodic_reify because we do not always round up */
1323 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2077 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1324 } 2078 }
2079 else
2080 ev_at (w) = w->offset;
1325 2081
1326 ev_start (EV_A_ (W)w, ++periodiccnt); 2082 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1327 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2083 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1328 periodics [periodiccnt - 1] = w; 2084 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1329 upheap ((WT *)periodics, periodiccnt - 1); 2085 upheap (periodics, ev_active (w));
1330 2086
1331 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2087 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1332} 2088}
1333 2089
1334void 2090void noinline
1335ev_periodic_stop (EV_P_ struct ev_periodic *w) 2091ev_periodic_stop (EV_P_ ev_periodic *w)
1336{ 2092{
1337 ev_clear_pending (EV_A_ (W)w); 2093 clear_pending (EV_A_ (W)w);
1338 if (!ev_is_active (w)) 2094 if (expect_false (!ev_is_active (w)))
1339 return; 2095 return;
1340 2096
2097 {
2098 int active = ev_active (w);
2099
1341 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2100 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1342 2101
1343 if (((W)w)->active < periodiccnt--) 2102 if (expect_true (active < periodiccnt + HEAP0 - 1))
1344 { 2103 {
1345 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2104 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1346 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2105 adjustheap (periodics, periodiccnt, active);
1347 } 2106 }
2107
2108 --periodiccnt;
2109 }
1348 2110
1349 ev_stop (EV_A_ (W)w); 2111 ev_stop (EV_A_ (W)w);
1350} 2112}
1351 2113
1352void 2114void noinline
1353ev_periodic_again (EV_P_ struct ev_periodic *w) 2115ev_periodic_again (EV_P_ ev_periodic *w)
1354{ 2116{
2117 /* TODO: use adjustheap and recalculation */
1355 ev_periodic_stop (EV_A_ w); 2118 ev_periodic_stop (EV_A_ w);
1356 ev_periodic_start (EV_A_ w); 2119 ev_periodic_start (EV_A_ w);
1357} 2120}
1358 2121#endif
1359void
1360ev_idle_start (EV_P_ struct ev_idle *w)
1361{
1362 if (ev_is_active (w))
1363 return;
1364
1365 ev_start (EV_A_ (W)w, ++idlecnt);
1366 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1367 idles [idlecnt - 1] = w;
1368}
1369
1370void
1371ev_idle_stop (EV_P_ struct ev_idle *w)
1372{
1373 ev_clear_pending (EV_A_ (W)w);
1374 if (ev_is_active (w))
1375 return;
1376
1377 idles [((W)w)->active - 1] = idles [--idlecnt];
1378 ev_stop (EV_A_ (W)w);
1379}
1380
1381void
1382ev_prepare_start (EV_P_ struct ev_prepare *w)
1383{
1384 if (ev_is_active (w))
1385 return;
1386
1387 ev_start (EV_A_ (W)w, ++preparecnt);
1388 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1389 prepares [preparecnt - 1] = w;
1390}
1391
1392void
1393ev_prepare_stop (EV_P_ struct ev_prepare *w)
1394{
1395 ev_clear_pending (EV_A_ (W)w);
1396 if (ev_is_active (w))
1397 return;
1398
1399 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1400 ev_stop (EV_A_ (W)w);
1401}
1402
1403void
1404ev_check_start (EV_P_ struct ev_check *w)
1405{
1406 if (ev_is_active (w))
1407 return;
1408
1409 ev_start (EV_A_ (W)w, ++checkcnt);
1410 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1411 checks [checkcnt - 1] = w;
1412}
1413
1414void
1415ev_check_stop (EV_P_ struct ev_check *w)
1416{
1417 ev_clear_pending (EV_A_ (W)w);
1418 if (ev_is_active (w))
1419 return;
1420
1421 checks [((W)w)->active - 1] = checks [--checkcnt];
1422 ev_stop (EV_A_ (W)w);
1423}
1424 2122
1425#ifndef SA_RESTART 2123#ifndef SA_RESTART
1426# define SA_RESTART 0 2124# define SA_RESTART 0
1427#endif 2125#endif
1428 2126
1429void 2127void noinline
1430ev_signal_start (EV_P_ struct ev_signal *w) 2128ev_signal_start (EV_P_ ev_signal *w)
1431{ 2129{
1432#if EV_MULTIPLICITY 2130#if EV_MULTIPLICITY
1433 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2131 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1434#endif 2132#endif
1435 if (ev_is_active (w)) 2133 if (expect_false (ev_is_active (w)))
1436 return; 2134 return;
1437 2135
1438 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2136 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1439 2137
2138 evpipe_init (EV_A);
2139
2140 {
2141#ifndef _WIN32
2142 sigset_t full, prev;
2143 sigfillset (&full);
2144 sigprocmask (SIG_SETMASK, &full, &prev);
2145#endif
2146
2147 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2148
2149#ifndef _WIN32
2150 sigprocmask (SIG_SETMASK, &prev, 0);
2151#endif
2152 }
2153
1440 ev_start (EV_A_ (W)w, 1); 2154 ev_start (EV_A_ (W)w, 1);
1441 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1442 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2155 wlist_add (&signals [w->signum - 1].head, (WL)w);
1443 2156
1444 if (!((WL)w)->next) 2157 if (!((WL)w)->next)
1445 { 2158 {
1446#if WIN32 2159#if _WIN32
1447 signal (w->signum, sighandler); 2160 signal (w->signum, ev_sighandler);
1448#else 2161#else
1449 struct sigaction sa; 2162 struct sigaction sa;
1450 sa.sa_handler = sighandler; 2163 sa.sa_handler = ev_sighandler;
1451 sigfillset (&sa.sa_mask); 2164 sigfillset (&sa.sa_mask);
1452 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2165 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1453 sigaction (w->signum, &sa, 0); 2166 sigaction (w->signum, &sa, 0);
1454#endif 2167#endif
1455 } 2168 }
1456} 2169}
1457 2170
1458void 2171void noinline
1459ev_signal_stop (EV_P_ struct ev_signal *w) 2172ev_signal_stop (EV_P_ ev_signal *w)
1460{ 2173{
1461 ev_clear_pending (EV_A_ (W)w); 2174 clear_pending (EV_A_ (W)w);
1462 if (!ev_is_active (w)) 2175 if (expect_false (!ev_is_active (w)))
1463 return; 2176 return;
1464 2177
1465 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2178 wlist_del (&signals [w->signum - 1].head, (WL)w);
1466 ev_stop (EV_A_ (W)w); 2179 ev_stop (EV_A_ (W)w);
1467 2180
1468 if (!signals [w->signum - 1].head) 2181 if (!signals [w->signum - 1].head)
1469 signal (w->signum, SIG_DFL); 2182 signal (w->signum, SIG_DFL);
1470} 2183}
1471 2184
1472void 2185void
1473ev_child_start (EV_P_ struct ev_child *w) 2186ev_child_start (EV_P_ ev_child *w)
1474{ 2187{
1475#if EV_MULTIPLICITY 2188#if EV_MULTIPLICITY
1476 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2189 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1477#endif 2190#endif
1478 if (ev_is_active (w)) 2191 if (expect_false (ev_is_active (w)))
1479 return; 2192 return;
1480 2193
1481 ev_start (EV_A_ (W)w, 1); 2194 ev_start (EV_A_ (W)w, 1);
1482 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2195 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1483} 2196}
1484 2197
1485void 2198void
1486ev_child_stop (EV_P_ struct ev_child *w) 2199ev_child_stop (EV_P_ ev_child *w)
1487{ 2200{
1488 ev_clear_pending (EV_A_ (W)w); 2201 clear_pending (EV_A_ (W)w);
1489 if (ev_is_active (w)) 2202 if (expect_false (!ev_is_active (w)))
1490 return; 2203 return;
1491 2204
1492 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2205 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1493 ev_stop (EV_A_ (W)w); 2206 ev_stop (EV_A_ (W)w);
1494} 2207}
1495 2208
2209#if EV_STAT_ENABLE
2210
2211# ifdef _WIN32
2212# undef lstat
2213# define lstat(a,b) _stati64 (a,b)
2214# endif
2215
2216#define DEF_STAT_INTERVAL 5.0074891
2217#define MIN_STAT_INTERVAL 0.1074891
2218
2219static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2220
2221#if EV_USE_INOTIFY
2222# define EV_INOTIFY_BUFSIZE 8192
2223
2224static void noinline
2225infy_add (EV_P_ ev_stat *w)
2226{
2227 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2228
2229 if (w->wd < 0)
2230 {
2231 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2232
2233 /* monitor some parent directory for speedup hints */
2234 /* note that exceeding the hardcoded limit is not a correctness issue, */
2235 /* but an efficiency issue only */
2236 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2237 {
2238 char path [4096];
2239 strcpy (path, w->path);
2240
2241 do
2242 {
2243 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2244 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2245
2246 char *pend = strrchr (path, '/');
2247
2248 if (!pend)
2249 break; /* whoops, no '/', complain to your admin */
2250
2251 *pend = 0;
2252 w->wd = inotify_add_watch (fs_fd, path, mask);
2253 }
2254 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2255 }
2256 }
2257 else
2258 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2259
2260 if (w->wd >= 0)
2261 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2262}
2263
2264static void noinline
2265infy_del (EV_P_ ev_stat *w)
2266{
2267 int slot;
2268 int wd = w->wd;
2269
2270 if (wd < 0)
2271 return;
2272
2273 w->wd = -2;
2274 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2275 wlist_del (&fs_hash [slot].head, (WL)w);
2276
2277 /* remove this watcher, if others are watching it, they will rearm */
2278 inotify_rm_watch (fs_fd, wd);
2279}
2280
2281static void noinline
2282infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2283{
2284 if (slot < 0)
2285 /* overflow, need to check for all hahs slots */
2286 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2287 infy_wd (EV_A_ slot, wd, ev);
2288 else
2289 {
2290 WL w_;
2291
2292 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2293 {
2294 ev_stat *w = (ev_stat *)w_;
2295 w_ = w_->next; /* lets us remove this watcher and all before it */
2296
2297 if (w->wd == wd || wd == -1)
2298 {
2299 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2300 {
2301 w->wd = -1;
2302 infy_add (EV_A_ w); /* re-add, no matter what */
2303 }
2304
2305 stat_timer_cb (EV_A_ &w->timer, 0);
2306 }
2307 }
2308 }
2309}
2310
2311static void
2312infy_cb (EV_P_ ev_io *w, int revents)
2313{
2314 char buf [EV_INOTIFY_BUFSIZE];
2315 struct inotify_event *ev = (struct inotify_event *)buf;
2316 int ofs;
2317 int len = read (fs_fd, buf, sizeof (buf));
2318
2319 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2320 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2321}
2322
2323void inline_size
2324infy_init (EV_P)
2325{
2326 if (fs_fd != -2)
2327 return;
2328
2329 fs_fd = inotify_init ();
2330
2331 if (fs_fd >= 0)
2332 {
2333 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2334 ev_set_priority (&fs_w, EV_MAXPRI);
2335 ev_io_start (EV_A_ &fs_w);
2336 }
2337}
2338
2339void inline_size
2340infy_fork (EV_P)
2341{
2342 int slot;
2343
2344 if (fs_fd < 0)
2345 return;
2346
2347 close (fs_fd);
2348 fs_fd = inotify_init ();
2349
2350 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2351 {
2352 WL w_ = fs_hash [slot].head;
2353 fs_hash [slot].head = 0;
2354
2355 while (w_)
2356 {
2357 ev_stat *w = (ev_stat *)w_;
2358 w_ = w_->next; /* lets us add this watcher */
2359
2360 w->wd = -1;
2361
2362 if (fs_fd >= 0)
2363 infy_add (EV_A_ w); /* re-add, no matter what */
2364 else
2365 ev_timer_start (EV_A_ &w->timer);
2366 }
2367
2368 }
2369}
2370
2371#endif
2372
2373void
2374ev_stat_stat (EV_P_ ev_stat *w)
2375{
2376 if (lstat (w->path, &w->attr) < 0)
2377 w->attr.st_nlink = 0;
2378 else if (!w->attr.st_nlink)
2379 w->attr.st_nlink = 1;
2380}
2381
2382static void noinline
2383stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2384{
2385 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2386
2387 /* we copy this here each the time so that */
2388 /* prev has the old value when the callback gets invoked */
2389 w->prev = w->attr;
2390 ev_stat_stat (EV_A_ w);
2391
2392 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2393 if (
2394 w->prev.st_dev != w->attr.st_dev
2395 || w->prev.st_ino != w->attr.st_ino
2396 || w->prev.st_mode != w->attr.st_mode
2397 || w->prev.st_nlink != w->attr.st_nlink
2398 || w->prev.st_uid != w->attr.st_uid
2399 || w->prev.st_gid != w->attr.st_gid
2400 || w->prev.st_rdev != w->attr.st_rdev
2401 || w->prev.st_size != w->attr.st_size
2402 || w->prev.st_atime != w->attr.st_atime
2403 || w->prev.st_mtime != w->attr.st_mtime
2404 || w->prev.st_ctime != w->attr.st_ctime
2405 ) {
2406 #if EV_USE_INOTIFY
2407 infy_del (EV_A_ w);
2408 infy_add (EV_A_ w);
2409 ev_stat_stat (EV_A_ w); /* avoid race... */
2410 #endif
2411
2412 ev_feed_event (EV_A_ w, EV_STAT);
2413 }
2414}
2415
2416void
2417ev_stat_start (EV_P_ ev_stat *w)
2418{
2419 if (expect_false (ev_is_active (w)))
2420 return;
2421
2422 /* since we use memcmp, we need to clear any padding data etc. */
2423 memset (&w->prev, 0, sizeof (ev_statdata));
2424 memset (&w->attr, 0, sizeof (ev_statdata));
2425
2426 ev_stat_stat (EV_A_ w);
2427
2428 if (w->interval < MIN_STAT_INTERVAL)
2429 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2430
2431 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2432 ev_set_priority (&w->timer, ev_priority (w));
2433
2434#if EV_USE_INOTIFY
2435 infy_init (EV_A);
2436
2437 if (fs_fd >= 0)
2438 infy_add (EV_A_ w);
2439 else
2440#endif
2441 ev_timer_start (EV_A_ &w->timer);
2442
2443 ev_start (EV_A_ (W)w, 1);
2444}
2445
2446void
2447ev_stat_stop (EV_P_ ev_stat *w)
2448{
2449 clear_pending (EV_A_ (W)w);
2450 if (expect_false (!ev_is_active (w)))
2451 return;
2452
2453#if EV_USE_INOTIFY
2454 infy_del (EV_A_ w);
2455#endif
2456 ev_timer_stop (EV_A_ &w->timer);
2457
2458 ev_stop (EV_A_ (W)w);
2459}
2460#endif
2461
2462#if EV_IDLE_ENABLE
2463void
2464ev_idle_start (EV_P_ ev_idle *w)
2465{
2466 if (expect_false (ev_is_active (w)))
2467 return;
2468
2469 pri_adjust (EV_A_ (W)w);
2470
2471 {
2472 int active = ++idlecnt [ABSPRI (w)];
2473
2474 ++idleall;
2475 ev_start (EV_A_ (W)w, active);
2476
2477 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2478 idles [ABSPRI (w)][active - 1] = w;
2479 }
2480}
2481
2482void
2483ev_idle_stop (EV_P_ ev_idle *w)
2484{
2485 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w)))
2487 return;
2488
2489 {
2490 int active = ev_active (w);
2491
2492 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2493 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2494
2495 ev_stop (EV_A_ (W)w);
2496 --idleall;
2497 }
2498}
2499#endif
2500
2501void
2502ev_prepare_start (EV_P_ ev_prepare *w)
2503{
2504 if (expect_false (ev_is_active (w)))
2505 return;
2506
2507 ev_start (EV_A_ (W)w, ++preparecnt);
2508 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2509 prepares [preparecnt - 1] = w;
2510}
2511
2512void
2513ev_prepare_stop (EV_P_ ev_prepare *w)
2514{
2515 clear_pending (EV_A_ (W)w);
2516 if (expect_false (!ev_is_active (w)))
2517 return;
2518
2519 {
2520 int active = ev_active (w);
2521
2522 prepares [active - 1] = prepares [--preparecnt];
2523 ev_active (prepares [active - 1]) = active;
2524 }
2525
2526 ev_stop (EV_A_ (W)w);
2527}
2528
2529void
2530ev_check_start (EV_P_ ev_check *w)
2531{
2532 if (expect_false (ev_is_active (w)))
2533 return;
2534
2535 ev_start (EV_A_ (W)w, ++checkcnt);
2536 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2537 checks [checkcnt - 1] = w;
2538}
2539
2540void
2541ev_check_stop (EV_P_ ev_check *w)
2542{
2543 clear_pending (EV_A_ (W)w);
2544 if (expect_false (!ev_is_active (w)))
2545 return;
2546
2547 {
2548 int active = ev_active (w);
2549
2550 checks [active - 1] = checks [--checkcnt];
2551 ev_active (checks [active - 1]) = active;
2552 }
2553
2554 ev_stop (EV_A_ (W)w);
2555}
2556
2557#if EV_EMBED_ENABLE
2558void noinline
2559ev_embed_sweep (EV_P_ ev_embed *w)
2560{
2561 ev_loop (w->other, EVLOOP_NONBLOCK);
2562}
2563
2564static void
2565embed_io_cb (EV_P_ ev_io *io, int revents)
2566{
2567 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2568
2569 if (ev_cb (w))
2570 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2571 else
2572 ev_loop (w->other, EVLOOP_NONBLOCK);
2573}
2574
2575static void
2576embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2577{
2578 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2579
2580 {
2581 struct ev_loop *loop = w->other;
2582
2583 while (fdchangecnt)
2584 {
2585 fd_reify (EV_A);
2586 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2587 }
2588 }
2589}
2590
2591#if 0
2592static void
2593embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2594{
2595 ev_idle_stop (EV_A_ idle);
2596}
2597#endif
2598
2599void
2600ev_embed_start (EV_P_ ev_embed *w)
2601{
2602 if (expect_false (ev_is_active (w)))
2603 return;
2604
2605 {
2606 struct ev_loop *loop = w->other;
2607 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2608 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2609 }
2610
2611 ev_set_priority (&w->io, ev_priority (w));
2612 ev_io_start (EV_A_ &w->io);
2613
2614 ev_prepare_init (&w->prepare, embed_prepare_cb);
2615 ev_set_priority (&w->prepare, EV_MINPRI);
2616 ev_prepare_start (EV_A_ &w->prepare);
2617
2618 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2619
2620 ev_start (EV_A_ (W)w, 1);
2621}
2622
2623void
2624ev_embed_stop (EV_P_ ev_embed *w)
2625{
2626 clear_pending (EV_A_ (W)w);
2627 if (expect_false (!ev_is_active (w)))
2628 return;
2629
2630 ev_io_stop (EV_A_ &w->io);
2631 ev_prepare_stop (EV_A_ &w->prepare);
2632
2633 ev_stop (EV_A_ (W)w);
2634}
2635#endif
2636
2637#if EV_FORK_ENABLE
2638void
2639ev_fork_start (EV_P_ ev_fork *w)
2640{
2641 if (expect_false (ev_is_active (w)))
2642 return;
2643
2644 ev_start (EV_A_ (W)w, ++forkcnt);
2645 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2646 forks [forkcnt - 1] = w;
2647}
2648
2649void
2650ev_fork_stop (EV_P_ ev_fork *w)
2651{
2652 clear_pending (EV_A_ (W)w);
2653 if (expect_false (!ev_is_active (w)))
2654 return;
2655
2656 {
2657 int active = ev_active (w);
2658
2659 forks [active - 1] = forks [--forkcnt];
2660 ev_active (forks [active - 1]) = active;
2661 }
2662
2663 ev_stop (EV_A_ (W)w);
2664}
2665#endif
2666
2667#if EV_ASYNC_ENABLE
2668void
2669ev_async_start (EV_P_ ev_async *w)
2670{
2671 if (expect_false (ev_is_active (w)))
2672 return;
2673
2674 evpipe_init (EV_A);
2675
2676 ev_start (EV_A_ (W)w, ++asynccnt);
2677 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2678 asyncs [asynccnt - 1] = w;
2679}
2680
2681void
2682ev_async_stop (EV_P_ ev_async *w)
2683{
2684 clear_pending (EV_A_ (W)w);
2685 if (expect_false (!ev_is_active (w)))
2686 return;
2687
2688 {
2689 int active = ev_active (w);
2690
2691 asyncs [active - 1] = asyncs [--asynccnt];
2692 ev_active (asyncs [active - 1]) = active;
2693 }
2694
2695 ev_stop (EV_A_ (W)w);
2696}
2697
2698void
2699ev_async_send (EV_P_ ev_async *w)
2700{
2701 w->sent = 1;
2702 evpipe_write (EV_A_ &gotasync);
2703}
2704#endif
2705
1496/*****************************************************************************/ 2706/*****************************************************************************/
1497 2707
1498struct ev_once 2708struct ev_once
1499{ 2709{
1500 struct ev_io io; 2710 ev_io io;
1501 struct ev_timer to; 2711 ev_timer to;
1502 void (*cb)(int revents, void *arg); 2712 void (*cb)(int revents, void *arg);
1503 void *arg; 2713 void *arg;
1504}; 2714};
1505 2715
1506static void 2716static void
1515 2725
1516 cb (revents, arg); 2726 cb (revents, arg);
1517} 2727}
1518 2728
1519static void 2729static void
1520once_cb_io (EV_P_ struct ev_io *w, int revents) 2730once_cb_io (EV_P_ ev_io *w, int revents)
1521{ 2731{
1522 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2732 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1523} 2733}
1524 2734
1525static void 2735static void
1526once_cb_to (EV_P_ struct ev_timer *w, int revents) 2736once_cb_to (EV_P_ ev_timer *w, int revents)
1527{ 2737{
1528 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1529} 2739}
1530 2740
1531void 2741void
1532ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2742ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1533{ 2743{
1534 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2744 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1535 2745
1536 if (!once) 2746 if (expect_false (!once))
2747 {
1537 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2748 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1538 else 2749 return;
1539 { 2750 }
2751
1540 once->cb = cb; 2752 once->cb = cb;
1541 once->arg = arg; 2753 once->arg = arg;
1542 2754
1543 ev_watcher_init (&once->io, once_cb_io); 2755 ev_init (&once->io, once_cb_io);
1544 if (fd >= 0) 2756 if (fd >= 0)
1545 { 2757 {
1546 ev_io_set (&once->io, fd, events); 2758 ev_io_set (&once->io, fd, events);
1547 ev_io_start (EV_A_ &once->io); 2759 ev_io_start (EV_A_ &once->io);
1548 } 2760 }
1549 2761
1550 ev_watcher_init (&once->to, once_cb_to); 2762 ev_init (&once->to, once_cb_to);
1551 if (timeout >= 0.) 2763 if (timeout >= 0.)
1552 { 2764 {
1553 ev_timer_set (&once->to, timeout, 0.); 2765 ev_timer_set (&once->to, timeout, 0.);
1554 ev_timer_start (EV_A_ &once->to); 2766 ev_timer_start (EV_A_ &once->to);
1555 }
1556 } 2767 }
1557} 2768}
1558 2769
2770#if EV_MULTIPLICITY
2771 #include "ev_wrap.h"
2772#endif
2773
2774#ifdef __cplusplus
2775}
2776#endif
2777

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines