ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.77 by root, Thu Nov 8 00:44:17 2007 UTC vs.
Revision 1.265 by root, Thu Oct 23 04:56:49 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <fcntl.h> 136#include <fcntl.h>
66#include <sys/types.h> 143#include <sys/types.h>
67#include <time.h> 144#include <time.h>
68 145
69#include <signal.h> 146#include <signal.h>
70 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
71#ifndef WIN32 154#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 155# include <sys/time.h>
74# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# include <io.h>
160# define WIN32_LEAN_AND_MEAN
161# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1
75#endif 164# endif
76/**/ 165#endif
166
167/* this block tries to deduce configuration from header-defined symbols and defaults */
77 168
78#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
79# define EV_USE_MONOTONIC 1 171# define EV_USE_MONOTONIC 1
172# else
173# define EV_USE_MONOTONIC 0
174# endif
175#endif
176
177#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
80#endif 187#endif
81 188
82#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
84#endif 191#endif
85 192
86#ifndef EV_USE_POLL 193#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 194# ifdef _WIN32
195# define EV_USE_POLL 0
196# else
197# define EV_USE_POLL 1
198# endif
88#endif 199#endif
89 200
90#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
91# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
92#endif 207#endif
93 208
94#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
96#endif 211#endif
97 212
213#ifndef EV_USE_PORT
214# define EV_USE_PORT 0
215#endif
216
98#ifndef EV_USE_WIN32 217#ifndef EV_USE_INOTIFY
99# ifdef WIN32 218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1 219# define EV_USE_INOTIFY 1
103# else 220# else
104# define EV_USE_WIN32 0 221# define EV_USE_INOTIFY 0
105# endif 222# endif
106#endif 223#endif
107 224
108#ifndef EV_USE_REALTIME 225#ifndef EV_PID_HASHSIZE
109# define EV_USE_REALTIME 1 226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
110#endif 230# endif
231#endif
111 232
112/**/ 233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
113 268
114#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
117#endif 272#endif
119#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
122#endif 277#endif
123 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
298#endif
299
300#if EV_SELECT_IS_WINSOCKET
301# include <winsock.h>
302#endif
303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
124/**/ 316/**/
125 317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
323
324/*
325 * This is used to avoid floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
333
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
130 337
131#include "ev.h"
132
133#if __GNUC__ >= 3 338#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 340# define noinline __attribute__ ((noinline))
136#else 341#else
137# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
138# define inline static 343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif
139#endif 347#endif
140 348
141#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 350#define expect_true(expr) expect ((expr) != 0, 1)
351#define inline_size static inline
352
353#if EV_MINIMAL
354# define inline_speed static noinline
355#else
356# define inline_speed static inline
357#endif
143 358
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
146 361
362#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */
364
147typedef struct ev_watcher *W; 365typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
150 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
152 377
378#ifdef _WIN32
153#include "ev_win32.c" 379# include "ev_win32.c"
380#endif
154 381
155/*****************************************************************************/ 382/*****************************************************************************/
156 383
157static void (*syserr_cb)(const char *msg); 384static void (*syserr_cb)(const char *msg);
158 385
386void
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 387ev_set_syserr_cb (void (*cb)(const char *msg))
160{ 388{
161 syserr_cb = cb; 389 syserr_cb = cb;
162} 390}
163 391
164static void 392static void noinline
165syserr (const char *msg) 393syserr (const char *msg)
166{ 394{
167 if (!msg) 395 if (!msg)
168 msg = "(libev) system error"; 396 msg = "(libev) system error";
169 397
174 perror (msg); 402 perror (msg);
175 abort (); 403 abort ();
176 } 404 }
177} 405}
178 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
179static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
180 423
424void
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
182{ 426{
183 alloc = cb; 427 alloc = cb;
184} 428}
185 429
186static void * 430inline_speed void *
187ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
188{ 432{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
190 434
191 if (!ptr && size) 435 if (!ptr && size)
192 { 436 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort (); 438 abort ();
205typedef struct 449typedef struct
206{ 450{
207 WL head; 451 WL head;
208 unsigned char events; 452 unsigned char events;
209 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char unused; /* currently unused padding */
456#if EV_SELECT_IS_WINSOCKET
457 SOCKET handle;
458#endif
210} ANFD; 459} ANFD;
211 460
212typedef struct 461typedef struct
213{ 462{
214 W w; 463 W w;
215 int events; 464 int events;
216} ANPENDING; 465} ANPENDING;
217 466
467#if EV_USE_INOTIFY
468/* hash table entry per inotify-id */
469typedef struct
470{
471 WL head;
472} ANFS;
473#endif
474
475/* Heap Entry */
476#if EV_HEAP_CACHE_AT
477 typedef struct {
478 ev_tstamp at;
479 WT w;
480 } ANHE;
481
482 #define ANHE_w(he) (he).w /* access watcher, read-write */
483 #define ANHE_at(he) (he).at /* access cached at, read-only */
484 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
485#else
486 typedef WT ANHE;
487
488 #define ANHE_w(he) (he)
489 #define ANHE_at(he) (he)->at
490 #define ANHE_at_cache(he)
491#endif
492
218#if EV_MULTIPLICITY 493#if EV_MULTIPLICITY
219 494
220struct ev_loop 495 struct ev_loop
221{ 496 {
497 ev_tstamp ev_rt_now;
498 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 499 #define VAR(name,decl) decl;
223# include "ev_vars.h" 500 #include "ev_vars.h"
224};
225# undef VAR 501 #undef VAR
502 };
226# include "ev_wrap.h" 503 #include "ev_wrap.h"
504
505 static struct ev_loop default_loop_struct;
506 struct ev_loop *ev_default_loop_ptr;
227 507
228#else 508#else
229 509
510 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 511 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 512 #include "ev_vars.h"
232# undef VAR 513 #undef VAR
514
515 static int ev_default_loop_ptr;
233 516
234#endif 517#endif
235 518
236/*****************************************************************************/ 519/*****************************************************************************/
237 520
238inline ev_tstamp 521ev_tstamp
239ev_time (void) 522ev_time (void)
240{ 523{
241#if EV_USE_REALTIME 524#if EV_USE_REALTIME
242 struct timespec ts; 525 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 526 clock_gettime (CLOCK_REALTIME, &ts);
247 gettimeofday (&tv, 0); 530 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 531 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif 532#endif
250} 533}
251 534
252inline ev_tstamp 535ev_tstamp inline_size
253get_clock (void) 536get_clock (void)
254{ 537{
255#if EV_USE_MONOTONIC 538#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 539 if (expect_true (have_monotonic))
257 { 540 {
262#endif 545#endif
263 546
264 return ev_time (); 547 return ev_time ();
265} 548}
266 549
550#if EV_MULTIPLICITY
267ev_tstamp 551ev_tstamp
268ev_now (EV_P) 552ev_now (EV_P)
269{ 553{
270 return rt_now; 554 return ev_rt_now;
271} 555}
556#endif
272 557
273#define array_roundsize(type,n) ((n) | 4 & ~3) 558void
559ev_sleep (ev_tstamp delay)
560{
561 if (delay > 0.)
562 {
563#if EV_USE_NANOSLEEP
564 struct timespec ts;
565
566 ts.tv_sec = (time_t)delay;
567 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
568
569 nanosleep (&ts, 0);
570#elif defined(_WIN32)
571 Sleep ((unsigned long)(delay * 1e3));
572#else
573 struct timeval tv;
574
575 tv.tv_sec = (time_t)delay;
576 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
577
578 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
579 /* somehting nto guaranteed by newer posix versions, but guaranteed */
580 /* by older ones */
581 select (0, 0, 0, 0, &tv);
582#endif
583 }
584}
585
586/*****************************************************************************/
587
588#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
589
590int inline_size
591array_nextsize (int elem, int cur, int cnt)
592{
593 int ncur = cur + 1;
594
595 do
596 ncur <<= 1;
597 while (cnt > ncur);
598
599 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
600 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
601 {
602 ncur *= elem;
603 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
604 ncur = ncur - sizeof (void *) * 4;
605 ncur /= elem;
606 }
607
608 return ncur;
609}
610
611static noinline void *
612array_realloc (int elem, void *base, int *cur, int cnt)
613{
614 *cur = array_nextsize (elem, *cur, cnt);
615 return ev_realloc (base, elem * *cur);
616}
617
618#define array_init_zero(base,count) \
619 memset ((void *)(base), 0, sizeof (*(base)) * (count))
274 620
275#define array_needsize(type,base,cur,cnt,init) \ 621#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 622 if (expect_false ((cnt) > (cur))) \
277 { \ 623 { \
278 int newcnt = cur; \ 624 int ocur_ = (cur); \
279 do \ 625 (base) = (type *)array_realloc \
280 { \ 626 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 627 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 628 }
289 629
630#if 0
290#define array_slim(type,stem) \ 631#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 632 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 633 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 634 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 635 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 636 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 637 }
297 638#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 639
303#define array_free(stem, idx) \ 640#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 641 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
305 642
306/*****************************************************************************/ 643/*****************************************************************************/
307 644
308static void 645void noinline
309anfds_init (ANFD *base, int count) 646ev_feed_event (EV_P_ void *w, int revents)
310{ 647{
311 while (count--) 648 W w_ = (W)w;
312 { 649 int pri = ABSPRI (w_);
313 base->head = 0;
314 base->events = EV_NONE;
315 base->reify = 0;
316 650
317 ++base; 651 if (expect_false (w_->pending))
652 pendings [pri][w_->pending - 1].events |= revents;
653 else
318 } 654 {
319} 655 w_->pending = ++pendingcnt [pri];
320 656 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
321static void 657 pendings [pri][w_->pending - 1].w = w_;
322event (EV_P_ W w, int events)
323{
324 if (w->pending)
325 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 658 pendings [pri][w_->pending - 1].events = revents;
327 return;
328 } 659 }
329
330 w->pending = ++pendingcnt [ABSPRI (w)];
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w;
333 pendings [ABSPRI (w)][w->pending - 1].events = events;
334} 660}
335 661
336static void 662void inline_speed
337queue_events (EV_P_ W *events, int eventcnt, int type) 663queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 664{
339 int i; 665 int i;
340 666
341 for (i = 0; i < eventcnt; ++i) 667 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 668 ev_feed_event (EV_A_ events [i], type);
343} 669}
344 670
345static void 671/*****************************************************************************/
672
673void inline_speed
346fd_event (EV_P_ int fd, int events) 674fd_event (EV_P_ int fd, int revents)
347{ 675{
348 ANFD *anfd = anfds + fd; 676 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 677 ev_io *w;
350 678
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 679 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
352 { 680 {
353 int ev = w->events & events; 681 int ev = w->events & revents;
354 682
355 if (ev) 683 if (ev)
356 event (EV_A_ (W)w, ev); 684 ev_feed_event (EV_A_ (W)w, ev);
357 } 685 }
358} 686}
359 687
360/*****************************************************************************/ 688void
689ev_feed_fd_event (EV_P_ int fd, int revents)
690{
691 if (fd >= 0 && fd < anfdmax)
692 fd_event (EV_A_ fd, revents);
693}
361 694
362static void 695void inline_size
363fd_reify (EV_P) 696fd_reify (EV_P)
364{ 697{
365 int i; 698 int i;
366 699
367 for (i = 0; i < fdchangecnt; ++i) 700 for (i = 0; i < fdchangecnt; ++i)
368 { 701 {
369 int fd = fdchanges [i]; 702 int fd = fdchanges [i];
370 ANFD *anfd = anfds + fd; 703 ANFD *anfd = anfds + fd;
371 struct ev_io *w; 704 ev_io *w;
372 705
373 int events = 0; 706 unsigned char events = 0;
374 707
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 708 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
376 events |= w->events; 709 events |= (unsigned char)w->events;
377 710
711#if EV_SELECT_IS_WINSOCKET
712 if (events)
713 {
714 unsigned long arg;
715 #ifdef EV_FD_TO_WIN32_HANDLE
716 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
717 #else
718 anfd->handle = _get_osfhandle (fd);
719 #endif
720 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
721 }
722#endif
723
724 {
725 unsigned char o_events = anfd->events;
726 unsigned char o_reify = anfd->reify;
727
378 anfd->reify = 0; 728 anfd->reify = 0;
379
380 method_modify (EV_A_ fd, anfd->events, events);
381 anfd->events = events; 729 anfd->events = events;
730
731 if (o_events != events || o_reify & EV_IOFDSET)
732 backend_modify (EV_A_ fd, o_events, events);
733 }
382 } 734 }
383 735
384 fdchangecnt = 0; 736 fdchangecnt = 0;
385} 737}
386 738
387static void 739void inline_size
388fd_change (EV_P_ int fd) 740fd_change (EV_P_ int fd, int flags)
389{ 741{
390 if (anfds [fd].reify) 742 unsigned char reify = anfds [fd].reify;
391 return;
392
393 anfds [fd].reify = 1; 743 anfds [fd].reify |= flags;
394 744
745 if (expect_true (!reify))
746 {
395 ++fdchangecnt; 747 ++fdchangecnt;
396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 748 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
397 fdchanges [fdchangecnt - 1] = fd; 749 fdchanges [fdchangecnt - 1] = fd;
750 }
398} 751}
399 752
400static void 753void inline_speed
401fd_kill (EV_P_ int fd) 754fd_kill (EV_P_ int fd)
402{ 755{
403 struct ev_io *w; 756 ev_io *w;
404 757
405 while ((w = (struct ev_io *)anfds [fd].head)) 758 while ((w = (ev_io *)anfds [fd].head))
406 { 759 {
407 ev_io_stop (EV_A_ w); 760 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 761 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 762 }
410} 763}
411 764
412static int 765int inline_size
413fd_valid (int fd) 766fd_valid (int fd)
414{ 767{
415#ifdef WIN32 768#ifdef _WIN32
416 return !!win32_get_osfhandle (fd); 769 return _get_osfhandle (fd) != -1;
417#else 770#else
418 return fcntl (fd, F_GETFD) != -1; 771 return fcntl (fd, F_GETFD) != -1;
419#endif 772#endif
420} 773}
421 774
422/* called on EBADF to verify fds */ 775/* called on EBADF to verify fds */
423static void 776static void noinline
424fd_ebadf (EV_P) 777fd_ebadf (EV_P)
425{ 778{
426 int fd; 779 int fd;
427 780
428 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
429 if (anfds [fd].events) 782 if (anfds [fd].events)
430 if (!fd_valid (fd) == -1 && errno == EBADF) 783 if (!fd_valid (fd) && errno == EBADF)
431 fd_kill (EV_A_ fd); 784 fd_kill (EV_A_ fd);
432} 785}
433 786
434/* called on ENOMEM in select/poll to kill some fds and retry */ 787/* called on ENOMEM in select/poll to kill some fds and retry */
435static void 788static void noinline
436fd_enomem (EV_P) 789fd_enomem (EV_P)
437{ 790{
438 int fd; 791 int fd;
439 792
440 for (fd = anfdmax; fd--; ) 793 for (fd = anfdmax; fd--; )
443 fd_kill (EV_A_ fd); 796 fd_kill (EV_A_ fd);
444 return; 797 return;
445 } 798 }
446} 799}
447 800
448/* usually called after fork if method needs to re-arm all fds from scratch */ 801/* usually called after fork if backend needs to re-arm all fds from scratch */
449static void 802static void noinline
450fd_rearm_all (EV_P) 803fd_rearm_all (EV_P)
451{ 804{
452 int fd; 805 int fd;
453 806
454 /* this should be highly optimised to not do anything but set a flag */
455 for (fd = 0; fd < anfdmax; ++fd) 807 for (fd = 0; fd < anfdmax; ++fd)
456 if (anfds [fd].events) 808 if (anfds [fd].events)
457 { 809 {
458 anfds [fd].events = 0; 810 anfds [fd].events = 0;
459 fd_change (EV_A_ fd); 811 fd_change (EV_A_ fd, EV_IOFDSET | 1);
460 } 812 }
461} 813}
462 814
463/*****************************************************************************/ 815/*****************************************************************************/
464 816
465static void 817/*
466upheap (WT *heap, int k) 818 * the heap functions want a real array index. array index 0 uis guaranteed to not
467{ 819 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
468 WT w = heap [k]; 820 * the branching factor of the d-tree.
821 */
469 822
470 while (k && heap [k >> 1]->at > w->at) 823/*
471 { 824 * at the moment we allow libev the luxury of two heaps,
472 heap [k] = heap [k >> 1]; 825 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
473 ((W)heap [k])->active = k + 1; 826 * which is more cache-efficient.
474 k >>= 1; 827 * the difference is about 5% with 50000+ watchers.
475 } 828 */
829#if EV_USE_4HEAP
476 830
477 heap [k] = w; 831#define DHEAP 4
478 ((W)heap [k])->active = k + 1; 832#define HEAP0 (DHEAP - 1) /* index of first element in heap */
833#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
834#define UPHEAP_DONE(p,k) ((p) == (k))
479 835
480} 836/* away from the root */
481 837void inline_speed
482static void
483downheap (WT *heap, int N, int k) 838downheap (ANHE *heap, int N, int k)
484{ 839{
485 WT w = heap [k]; 840 ANHE he = heap [k];
841 ANHE *E = heap + N + HEAP0;
486 842
487 while (k < (N >> 1)) 843 for (;;)
488 { 844 {
489 int j = k << 1; 845 ev_tstamp minat;
846 ANHE *minpos;
847 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
490 848
491 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 849 /* find minimum child */
850 if (expect_true (pos + DHEAP - 1 < E))
492 ++j; 851 {
493 852 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
494 if (w->at <= heap [j]->at) 853 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
854 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
856 }
857 else if (pos < E)
858 {
859 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
860 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
861 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
862 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
863 }
864 else
495 break; 865 break;
496 866
867 if (ANHE_at (he) <= minat)
868 break;
869
870 heap [k] = *minpos;
871 ev_active (ANHE_w (*minpos)) = k;
872
873 k = minpos - heap;
874 }
875
876 heap [k] = he;
877 ev_active (ANHE_w (he)) = k;
878}
879
880#else /* 4HEAP */
881
882#define HEAP0 1
883#define HPARENT(k) ((k) >> 1)
884#define UPHEAP_DONE(p,k) (!(p))
885
886/* away from the root */
887void inline_speed
888downheap (ANHE *heap, int N, int k)
889{
890 ANHE he = heap [k];
891
892 for (;;)
893 {
894 int c = k << 1;
895
896 if (c > N + HEAP0 - 1)
897 break;
898
899 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
900 ? 1 : 0;
901
902 if (ANHE_at (he) <= ANHE_at (heap [c]))
903 break;
904
497 heap [k] = heap [j]; 905 heap [k] = heap [c];
498 ((W)heap [k])->active = k + 1; 906 ev_active (ANHE_w (heap [k])) = k;
907
499 k = j; 908 k = c;
500 } 909 }
501 910
502 heap [k] = w; 911 heap [k] = he;
503 ((W)heap [k])->active = k + 1; 912 ev_active (ANHE_w (he)) = k;
913}
914#endif
915
916/* towards the root */
917void inline_speed
918upheap (ANHE *heap, int k)
919{
920 ANHE he = heap [k];
921
922 for (;;)
923 {
924 int p = HPARENT (k);
925
926 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
927 break;
928
929 heap [k] = heap [p];
930 ev_active (ANHE_w (heap [k])) = k;
931 k = p;
932 }
933
934 heap [k] = he;
935 ev_active (ANHE_w (he)) = k;
936}
937
938void inline_size
939adjustheap (ANHE *heap, int N, int k)
940{
941 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
942 upheap (heap, k);
943 else
944 downheap (heap, N, k);
945}
946
947/* rebuild the heap: this function is used only once and executed rarely */
948void inline_size
949reheap (ANHE *heap, int N)
950{
951 int i;
952
953 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
954 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
955 for (i = 0; i < N; ++i)
956 upheap (heap, i + HEAP0);
504} 957}
505 958
506/*****************************************************************************/ 959/*****************************************************************************/
507 960
508typedef struct 961typedef struct
509{ 962{
510 WL head; 963 WL head;
511 sig_atomic_t volatile gotsig; 964 EV_ATOMIC_T gotsig;
512} ANSIG; 965} ANSIG;
513 966
514static ANSIG *signals; 967static ANSIG *signals;
515static int signalmax; 968static int signalmax;
516 969
517static int sigpipe [2]; 970static EV_ATOMIC_T gotsig;
518static sig_atomic_t volatile gotsig; 971
519static struct ev_io sigev; 972/*****************************************************************************/
973
974void inline_speed
975fd_intern (int fd)
976{
977#ifdef _WIN32
978 unsigned long arg = 1;
979 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
980#else
981 fcntl (fd, F_SETFD, FD_CLOEXEC);
982 fcntl (fd, F_SETFL, O_NONBLOCK);
983#endif
984}
985
986static void noinline
987evpipe_init (EV_P)
988{
989 if (!ev_is_active (&pipeev))
990 {
991#if EV_USE_EVENTFD
992 if ((evfd = eventfd (0, 0)) >= 0)
993 {
994 evpipe [0] = -1;
995 fd_intern (evfd);
996 ev_io_set (&pipeev, evfd, EV_READ);
997 }
998 else
999#endif
1000 {
1001 while (pipe (evpipe))
1002 syserr ("(libev) error creating signal/async pipe");
1003
1004 fd_intern (evpipe [0]);
1005 fd_intern (evpipe [1]);
1006 ev_io_set (&pipeev, evpipe [0], EV_READ);
1007 }
1008
1009 ev_io_start (EV_A_ &pipeev);
1010 ev_unref (EV_A); /* watcher should not keep loop alive */
1011 }
1012}
1013
1014void inline_size
1015evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1016{
1017 if (!*flag)
1018 {
1019 int old_errno = errno; /* save errno because write might clobber it */
1020
1021 *flag = 1;
1022
1023#if EV_USE_EVENTFD
1024 if (evfd >= 0)
1025 {
1026 uint64_t counter = 1;
1027 write (evfd, &counter, sizeof (uint64_t));
1028 }
1029 else
1030#endif
1031 write (evpipe [1], &old_errno, 1);
1032
1033 errno = old_errno;
1034 }
1035}
520 1036
521static void 1037static void
522signals_init (ANSIG *base, int count) 1038pipecb (EV_P_ ev_io *iow, int revents)
523{ 1039{
524 while (count--) 1040#if EV_USE_EVENTFD
1041 if (evfd >= 0)
1042 {
1043 uint64_t counter;
1044 read (evfd, &counter, sizeof (uint64_t));
525 { 1045 }
526 base->head = 0; 1046 else
1047#endif
1048 {
1049 char dummy;
1050 read (evpipe [0], &dummy, 1);
1051 }
1052
1053 if (gotsig && ev_is_default_loop (EV_A))
1054 {
1055 int signum;
527 base->gotsig = 0; 1056 gotsig = 0;
528 1057
529 ++base; 1058 for (signum = signalmax; signum--; )
1059 if (signals [signum].gotsig)
1060 ev_feed_signal_event (EV_A_ signum + 1);
1061 }
1062
1063#if EV_ASYNC_ENABLE
1064 if (gotasync)
530 } 1065 {
1066 int i;
1067 gotasync = 0;
1068
1069 for (i = asynccnt; i--; )
1070 if (asyncs [i]->sent)
1071 {
1072 asyncs [i]->sent = 0;
1073 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1074 }
1075 }
1076#endif
531} 1077}
1078
1079/*****************************************************************************/
532 1080
533static void 1081static void
534sighandler (int signum) 1082ev_sighandler (int signum)
535{ 1083{
1084#if EV_MULTIPLICITY
1085 struct ev_loop *loop = &default_loop_struct;
1086#endif
1087
536#if WIN32 1088#if _WIN32
537 signal (signum, sighandler); 1089 signal (signum, ev_sighandler);
538#endif 1090#endif
539 1091
540 signals [signum - 1].gotsig = 1; 1092 signals [signum - 1].gotsig = 1;
541 1093 evpipe_write (EV_A_ &gotsig);
542 if (!gotsig)
543 {
544 int old_errno = errno;
545 gotsig = 1;
546#ifdef WIN32
547 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
548#else
549 write (sigpipe [1], &signum, 1);
550#endif
551 errno = old_errno;
552 }
553} 1094}
554 1095
555static void 1096void noinline
556sigcb (EV_P_ struct ev_io *iow, int revents) 1097ev_feed_signal_event (EV_P_ int signum)
557{ 1098{
558 WL w; 1099 WL w;
1100
1101#if EV_MULTIPLICITY
1102 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1103#endif
1104
559 int signum; 1105 --signum;
560 1106
561#ifdef WIN32 1107 if (signum < 0 || signum >= signalmax)
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1108 return;
563#else
564 read (sigpipe [0], &revents, 1);
565#endif
566 gotsig = 0;
567 1109
568 for (signum = signalmax; signum--; )
569 if (signals [signum].gotsig)
570 {
571 signals [signum].gotsig = 0; 1110 signals [signum].gotsig = 0;
572 1111
573 for (w = signals [signum].head; w; w = w->next) 1112 for (w = signals [signum].head; w; w = w->next)
574 event (EV_A_ (W)w, EV_SIGNAL); 1113 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
575 }
576}
577
578static void
579siginit (EV_P)
580{
581#ifndef WIN32
582 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
583 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
584
585 /* rather than sort out wether we really need nb, set it */
586 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
587 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
588#endif
589
590 ev_io_set (&sigev, sigpipe [0], EV_READ);
591 ev_io_start (EV_A_ &sigev);
592 ev_unref (EV_A); /* child watcher should not keep loop alive */
593} 1114}
594 1115
595/*****************************************************************************/ 1116/*****************************************************************************/
596 1117
597static struct ev_child *childs [PID_HASHSIZE]; 1118static WL childs [EV_PID_HASHSIZE];
598 1119
599#ifndef WIN32 1120#ifndef _WIN32
600 1121
601static struct ev_signal childev; 1122static ev_signal childev;
1123
1124#ifndef WIFCONTINUED
1125# define WIFCONTINUED(status) 0
1126#endif
1127
1128void inline_speed
1129child_reap (EV_P_ int chain, int pid, int status)
1130{
1131 ev_child *w;
1132 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1133
1134 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1135 {
1136 if ((w->pid == pid || !w->pid)
1137 && (!traced || (w->flags & 1)))
1138 {
1139 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1140 w->rpid = pid;
1141 w->rstatus = status;
1142 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1143 }
1144 }
1145}
602 1146
603#ifndef WCONTINUED 1147#ifndef WCONTINUED
604# define WCONTINUED 0 1148# define WCONTINUED 0
605#endif 1149#endif
606 1150
607static void 1151static void
608child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
609{
610 struct ev_child *w;
611
612 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
613 if (w->pid == pid || !w->pid)
614 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid;
617 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD);
619 }
620}
621
622static void
623childcb (EV_P_ struct ev_signal *sw, int revents) 1152childcb (EV_P_ ev_signal *sw, int revents)
624{ 1153{
625 int pid, status; 1154 int pid, status;
626 1155
1156 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1157 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
628 { 1158 if (!WCONTINUED
1159 || errno != EINVAL
1160 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1161 return;
1162
629 /* make sure we are called again until all childs have been reaped */ 1163 /* make sure we are called again until all children have been reaped */
1164 /* we need to do it this way so that the callback gets called before we continue */
630 event (EV_A_ (W)sw, EV_SIGNAL); 1165 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
631 1166
632 child_reap (EV_A_ sw, pid, pid, status); 1167 child_reap (EV_A_ pid, pid, status);
1168 if (EV_PID_HASHSIZE > 1)
633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1169 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
634 }
635} 1170}
636 1171
637#endif 1172#endif
638 1173
639/*****************************************************************************/ 1174/*****************************************************************************/
640 1175
1176#if EV_USE_PORT
1177# include "ev_port.c"
1178#endif
641#if EV_USE_KQUEUE 1179#if EV_USE_KQUEUE
642# include "ev_kqueue.c" 1180# include "ev_kqueue.c"
643#endif 1181#endif
644#if EV_USE_EPOLL 1182#if EV_USE_EPOLL
645# include "ev_epoll.c" 1183# include "ev_epoll.c"
662{ 1200{
663 return EV_VERSION_MINOR; 1201 return EV_VERSION_MINOR;
664} 1202}
665 1203
666/* return true if we are running with elevated privileges and should ignore env variables */ 1204/* return true if we are running with elevated privileges and should ignore env variables */
667static int 1205int inline_size
668enable_secure (void) 1206enable_secure (void)
669{ 1207{
670#ifdef WIN32 1208#ifdef _WIN32
671 return 0; 1209 return 0;
672#else 1210#else
673 return getuid () != geteuid () 1211 return getuid () != geteuid ()
674 || getgid () != getegid (); 1212 || getgid () != getegid ();
675#endif 1213#endif
676} 1214}
677 1215
678int 1216unsigned int
679ev_method (EV_P) 1217ev_supported_backends (void)
680{ 1218{
681 return method; 1219 unsigned int flags = 0;
682}
683 1220
684static void 1221 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
685loop_init (EV_P_ int methods) 1222 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1223 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1224 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1225 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1226
1227 return flags;
1228}
1229
1230unsigned int
1231ev_recommended_backends (void)
686{ 1232{
687 if (!method) 1233 unsigned int flags = ev_supported_backends ();
1234
1235#ifndef __NetBSD__
1236 /* kqueue is borked on everything but netbsd apparently */
1237 /* it usually doesn't work correctly on anything but sockets and pipes */
1238 flags &= ~EVBACKEND_KQUEUE;
1239#endif
1240#ifdef __APPLE__
1241 // flags &= ~EVBACKEND_KQUEUE; for documentation
1242 flags &= ~EVBACKEND_POLL;
1243#endif
1244
1245 return flags;
1246}
1247
1248unsigned int
1249ev_embeddable_backends (void)
1250{
1251 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1252
1253 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1254 /* please fix it and tell me how to detect the fix */
1255 flags &= ~EVBACKEND_EPOLL;
1256
1257 return flags;
1258}
1259
1260unsigned int
1261ev_backend (EV_P)
1262{
1263 return backend;
1264}
1265
1266unsigned int
1267ev_loop_count (EV_P)
1268{
1269 return loop_count;
1270}
1271
1272void
1273ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1274{
1275 io_blocktime = interval;
1276}
1277
1278void
1279ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1280{
1281 timeout_blocktime = interval;
1282}
1283
1284static void noinline
1285loop_init (EV_P_ unsigned int flags)
1286{
1287 if (!backend)
688 { 1288 {
689#if EV_USE_MONOTONIC 1289#if EV_USE_MONOTONIC
690 { 1290 {
691 struct timespec ts; 1291 struct timespec ts;
692 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1292 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
693 have_monotonic = 1; 1293 have_monotonic = 1;
694 } 1294 }
695#endif 1295#endif
696 1296
697 rt_now = ev_time (); 1297 ev_rt_now = ev_time ();
698 mn_now = get_clock (); 1298 mn_now = get_clock ();
699 now_floor = mn_now; 1299 now_floor = mn_now;
700 rtmn_diff = rt_now - mn_now; 1300 rtmn_diff = ev_rt_now - mn_now;
701 1301
702 if (methods == EVMETHOD_AUTO) 1302 io_blocktime = 0.;
703 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1303 timeout_blocktime = 0.;
1304 backend = 0;
1305 backend_fd = -1;
1306 gotasync = 0;
1307#if EV_USE_INOTIFY
1308 fs_fd = -2;
1309#endif
1310
1311 /* pid check not overridable via env */
1312#ifndef _WIN32
1313 if (flags & EVFLAG_FORKCHECK)
1314 curpid = getpid ();
1315#endif
1316
1317 if (!(flags & EVFLAG_NOENV)
1318 && !enable_secure ()
1319 && getenv ("LIBEV_FLAGS"))
704 methods = atoi (getenv ("LIBEV_METHODS")); 1320 flags = atoi (getenv ("LIBEV_FLAGS"));
705 else
706 methods = EVMETHOD_ANY;
707 1321
708 method = 0; 1322 if (!(flags & 0x0000ffffU))
709#if EV_USE_WIN32 1323 flags |= ev_recommended_backends ();
710 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1324
1325#if EV_USE_PORT
1326 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
711#endif 1327#endif
712#if EV_USE_KQUEUE 1328#if EV_USE_KQUEUE
713 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1329 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
714#endif 1330#endif
715#if EV_USE_EPOLL 1331#if EV_USE_EPOLL
716 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1332 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
717#endif 1333#endif
718#if EV_USE_POLL 1334#if EV_USE_POLL
719 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1335 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
720#endif 1336#endif
721#if EV_USE_SELECT 1337#if EV_USE_SELECT
722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1338 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
723#endif 1339#endif
724 1340
725 ev_watcher_init (&sigev, sigcb); 1341 ev_init (&pipeev, pipecb);
726 ev_set_priority (&sigev, EV_MAXPRI); 1342 ev_set_priority (&pipeev, EV_MAXPRI);
727 } 1343 }
728} 1344}
729 1345
730void 1346static void noinline
731loop_destroy (EV_P) 1347loop_destroy (EV_P)
732{ 1348{
733 int i; 1349 int i;
734 1350
1351 if (ev_is_active (&pipeev))
1352 {
1353 ev_ref (EV_A); /* signal watcher */
1354 ev_io_stop (EV_A_ &pipeev);
1355
1356#if EV_USE_EVENTFD
1357 if (evfd >= 0)
1358 close (evfd);
1359#endif
1360
1361 if (evpipe [0] >= 0)
1362 {
1363 close (evpipe [0]);
1364 close (evpipe [1]);
1365 }
1366 }
1367
735#if EV_USE_WIN32 1368#if EV_USE_INOTIFY
736 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1369 if (fs_fd >= 0)
1370 close (fs_fd);
1371#endif
1372
1373 if (backend_fd >= 0)
1374 close (backend_fd);
1375
1376#if EV_USE_PORT
1377 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
737#endif 1378#endif
738#if EV_USE_KQUEUE 1379#if EV_USE_KQUEUE
739 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1380 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
740#endif 1381#endif
741#if EV_USE_EPOLL 1382#if EV_USE_EPOLL
742 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1383 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
743#endif 1384#endif
744#if EV_USE_POLL 1385#if EV_USE_POLL
745 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1386 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
746#endif 1387#endif
747#if EV_USE_SELECT 1388#if EV_USE_SELECT
748 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1389 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
749#endif 1390#endif
750 1391
751 for (i = NUMPRI; i--; ) 1392 for (i = NUMPRI; i--; )
1393 {
752 array_free (pending, [i]); 1394 array_free (pending, [i]);
1395#if EV_IDLE_ENABLE
1396 array_free (idle, [i]);
1397#endif
1398 }
1399
1400 ev_free (anfds); anfdmax = 0;
753 1401
754 /* have to use the microsoft-never-gets-it-right macro */ 1402 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange); 1403 array_free (fdchange, EMPTY);
756 array_free_microshit (timer); 1404 array_free (timer, EMPTY);
757 array_free_microshit (periodic); 1405#if EV_PERIODIC_ENABLE
758 array_free_microshit (idle); 1406 array_free (periodic, EMPTY);
759 array_free_microshit (prepare); 1407#endif
760 array_free_microshit (check); 1408#if EV_FORK_ENABLE
1409 array_free (fork, EMPTY);
1410#endif
1411 array_free (prepare, EMPTY);
1412 array_free (check, EMPTY);
1413#if EV_ASYNC_ENABLE
1414 array_free (async, EMPTY);
1415#endif
761 1416
762 method = 0; 1417 backend = 0;
763} 1418}
764 1419
765static void 1420#if EV_USE_INOTIFY
1421void inline_size infy_fork (EV_P);
1422#endif
1423
1424void inline_size
766loop_fork (EV_P) 1425loop_fork (EV_P)
767{ 1426{
1427#if EV_USE_PORT
1428 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1429#endif
1430#if EV_USE_KQUEUE
1431 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1432#endif
768#if EV_USE_EPOLL 1433#if EV_USE_EPOLL
769 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1434 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
770#endif 1435#endif
771#if EV_USE_KQUEUE 1436#if EV_USE_INOTIFY
772 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1437 infy_fork (EV_A);
773#endif 1438#endif
774 1439
775 if (ev_is_active (&sigev)) 1440 if (ev_is_active (&pipeev))
776 { 1441 {
777 /* default loop */ 1442 /* this "locks" the handlers against writing to the pipe */
1443 /* while we modify the fd vars */
1444 gotsig = 1;
1445#if EV_ASYNC_ENABLE
1446 gotasync = 1;
1447#endif
778 1448
779 ev_ref (EV_A); 1449 ev_ref (EV_A);
780 ev_io_stop (EV_A_ &sigev); 1450 ev_io_stop (EV_A_ &pipeev);
1451
1452#if EV_USE_EVENTFD
1453 if (evfd >= 0)
1454 close (evfd);
1455#endif
1456
1457 if (evpipe [0] >= 0)
1458 {
781 close (sigpipe [0]); 1459 close (evpipe [0]);
782 close (sigpipe [1]); 1460 close (evpipe [1]);
1461 }
783 1462
784 while (pipe (sigpipe))
785 syserr ("(libev) error creating pipe");
786
787 siginit (EV_A); 1463 evpipe_init (EV_A);
1464 /* now iterate over everything, in case we missed something */
1465 pipecb (EV_A_ &pipeev, EV_READ);
788 } 1466 }
789 1467
790 postfork = 0; 1468 postfork = 0;
791} 1469}
1470
1471#if EV_MULTIPLICITY
1472
1473struct ev_loop *
1474ev_loop_new (unsigned int flags)
1475{
1476 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1477
1478 memset (loop, 0, sizeof (struct ev_loop));
1479
1480 loop_init (EV_A_ flags);
1481
1482 if (ev_backend (EV_A))
1483 return loop;
1484
1485 return 0;
1486}
1487
1488void
1489ev_loop_destroy (EV_P)
1490{
1491 loop_destroy (EV_A);
1492 ev_free (loop);
1493}
1494
1495void
1496ev_loop_fork (EV_P)
1497{
1498 postfork = 1; /* must be in line with ev_default_fork */
1499}
1500
1501#if EV_VERIFY
1502static void noinline
1503verify_watcher (EV_P_ W w)
1504{
1505 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1506
1507 if (w->pending)
1508 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1509}
1510
1511static void noinline
1512verify_heap (EV_P_ ANHE *heap, int N)
1513{
1514 int i;
1515
1516 for (i = HEAP0; i < N + HEAP0; ++i)
1517 {
1518 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1519 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1520 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1521
1522 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1523 }
1524}
1525
1526static void noinline
1527array_verify (EV_P_ W *ws, int cnt)
1528{
1529 while (cnt--)
1530 {
1531 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1532 verify_watcher (EV_A_ ws [cnt]);
1533 }
1534}
1535#endif
1536
1537void
1538ev_loop_verify (EV_P)
1539{
1540#if EV_VERIFY
1541 int i;
1542 WL w;
1543
1544 assert (activecnt >= -1);
1545
1546 assert (fdchangemax >= fdchangecnt);
1547 for (i = 0; i < fdchangecnt; ++i)
1548 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1549
1550 assert (anfdmax >= 0);
1551 for (i = 0; i < anfdmax; ++i)
1552 for (w = anfds [i].head; w; w = w->next)
1553 {
1554 verify_watcher (EV_A_ (W)w);
1555 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1556 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1557 }
1558
1559 assert (timermax >= timercnt);
1560 verify_heap (EV_A_ timers, timercnt);
1561
1562#if EV_PERIODIC_ENABLE
1563 assert (periodicmax >= periodiccnt);
1564 verify_heap (EV_A_ periodics, periodiccnt);
1565#endif
1566
1567 for (i = NUMPRI; i--; )
1568 {
1569 assert (pendingmax [i] >= pendingcnt [i]);
1570#if EV_IDLE_ENABLE
1571 assert (idleall >= 0);
1572 assert (idlemax [i] >= idlecnt [i]);
1573 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1574#endif
1575 }
1576
1577#if EV_FORK_ENABLE
1578 assert (forkmax >= forkcnt);
1579 array_verify (EV_A_ (W *)forks, forkcnt);
1580#endif
1581
1582#if EV_ASYNC_ENABLE
1583 assert (asyncmax >= asynccnt);
1584 array_verify (EV_A_ (W *)asyncs, asynccnt);
1585#endif
1586
1587 assert (preparemax >= preparecnt);
1588 array_verify (EV_A_ (W *)prepares, preparecnt);
1589
1590 assert (checkmax >= checkcnt);
1591 array_verify (EV_A_ (W *)checks, checkcnt);
1592
1593# if 0
1594 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1595 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1596# endif
1597#endif
1598}
1599
1600#endif /* multiplicity */
792 1601
793#if EV_MULTIPLICITY 1602#if EV_MULTIPLICITY
794struct ev_loop * 1603struct ev_loop *
795ev_loop_new (int methods) 1604ev_default_loop_init (unsigned int flags)
796{ 1605#else
797 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1606int
798 1607ev_default_loop (unsigned int flags)
799 memset (loop, 0, sizeof (struct ev_loop));
800
801 loop_init (EV_A_ methods);
802
803 if (ev_method (EV_A))
804 return loop;
805
806 return 0;
807}
808
809void
810ev_loop_destroy (EV_P)
811{
812 loop_destroy (EV_A);
813 ev_free (loop);
814}
815
816void
817ev_loop_fork (EV_P)
818{
819 postfork = 1;
820}
821
822#endif 1608#endif
823 1609{
1610 if (!ev_default_loop_ptr)
1611 {
824#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct; 1613 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop *
829#else 1614#else
830static int default_loop;
831
832int
833#endif
834ev_default_loop (int methods)
835{
836 if (sigpipe [0] == sigpipe [1])
837 if (pipe (sigpipe))
838 return 0;
839
840 if (!default_loop)
841 {
842#if EV_MULTIPLICITY
843 struct ev_loop *loop = default_loop = &default_loop_struct;
844#else
845 default_loop = 1; 1615 ev_default_loop_ptr = 1;
846#endif 1616#endif
847 1617
848 loop_init (EV_A_ methods); 1618 loop_init (EV_A_ flags);
849 1619
850 if (ev_method (EV_A)) 1620 if (ev_backend (EV_A))
851 { 1621 {
852 siginit (EV_A);
853
854#ifndef WIN32 1622#ifndef _WIN32
855 ev_signal_init (&childev, childcb, SIGCHLD); 1623 ev_signal_init (&childev, childcb, SIGCHLD);
856 ev_set_priority (&childev, EV_MAXPRI); 1624 ev_set_priority (&childev, EV_MAXPRI);
857 ev_signal_start (EV_A_ &childev); 1625 ev_signal_start (EV_A_ &childev);
858 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1626 ev_unref (EV_A); /* child watcher should not keep loop alive */
859#endif 1627#endif
860 } 1628 }
861 else 1629 else
862 default_loop = 0; 1630 ev_default_loop_ptr = 0;
863 } 1631 }
864 1632
865 return default_loop; 1633 return ev_default_loop_ptr;
866} 1634}
867 1635
868void 1636void
869ev_default_destroy (void) 1637ev_default_destroy (void)
870{ 1638{
871#if EV_MULTIPLICITY 1639#if EV_MULTIPLICITY
872 struct ev_loop *loop = default_loop; 1640 struct ev_loop *loop = ev_default_loop_ptr;
873#endif 1641#endif
874 1642
875#ifndef WIN32 1643#ifndef _WIN32
876 ev_ref (EV_A); /* child watcher */ 1644 ev_ref (EV_A); /* child watcher */
877 ev_signal_stop (EV_A_ &childev); 1645 ev_signal_stop (EV_A_ &childev);
878#endif 1646#endif
879 1647
880 ev_ref (EV_A); /* signal watcher */
881 ev_io_stop (EV_A_ &sigev);
882
883 close (sigpipe [0]); sigpipe [0] = 0;
884 close (sigpipe [1]); sigpipe [1] = 0;
885
886 loop_destroy (EV_A); 1648 loop_destroy (EV_A);
887} 1649}
888 1650
889void 1651void
890ev_default_fork (void) 1652ev_default_fork (void)
891{ 1653{
892#if EV_MULTIPLICITY 1654#if EV_MULTIPLICITY
893 struct ev_loop *loop = default_loop; 1655 struct ev_loop *loop = ev_default_loop_ptr;
894#endif 1656#endif
895 1657
896 if (method) 1658 if (backend)
897 postfork = 1; 1659 postfork = 1; /* must be in line with ev_loop_fork */
898} 1660}
899 1661
900/*****************************************************************************/ 1662/*****************************************************************************/
901 1663
902static int 1664void
903any_pending (EV_P) 1665ev_invoke (EV_P_ void *w, int revents)
904{ 1666{
905 int pri; 1667 EV_CB_INVOKE ((W)w, revents);
906
907 for (pri = NUMPRI; pri--; )
908 if (pendingcnt [pri])
909 return 1;
910
911 return 0;
912} 1668}
913 1669
914static void 1670void inline_speed
915call_pending (EV_P) 1671call_pending (EV_P)
916{ 1672{
917 int pri; 1673 int pri;
918 1674
919 for (pri = NUMPRI; pri--; ) 1675 for (pri = NUMPRI; pri--; )
920 while (pendingcnt [pri]) 1676 while (pendingcnt [pri])
921 { 1677 {
922 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1678 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
923 1679
924 if (p->w) 1680 if (expect_true (p->w))
925 { 1681 {
1682 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1683
926 p->w->pending = 0; 1684 p->w->pending = 0;
927 p->w->cb (EV_A_ p->w, p->events); 1685 EV_CB_INVOKE (p->w, p->events);
1686 EV_FREQUENT_CHECK;
928 } 1687 }
929 } 1688 }
930} 1689}
931 1690
932static void 1691#if EV_IDLE_ENABLE
1692void inline_size
1693idle_reify (EV_P)
1694{
1695 if (expect_false (idleall))
1696 {
1697 int pri;
1698
1699 for (pri = NUMPRI; pri--; )
1700 {
1701 if (pendingcnt [pri])
1702 break;
1703
1704 if (idlecnt [pri])
1705 {
1706 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1707 break;
1708 }
1709 }
1710 }
1711}
1712#endif
1713
1714void inline_size
933timers_reify (EV_P) 1715timers_reify (EV_P)
934{ 1716{
1717 EV_FREQUENT_CHECK;
1718
935 while (timercnt && ((WT)timers [0])->at <= mn_now) 1719 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
936 { 1720 {
937 struct ev_timer *w = timers [0]; 1721 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
938 1722
939 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1723 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
940 1724
941 /* first reschedule or stop timer */ 1725 /* first reschedule or stop timer */
942 if (w->repeat) 1726 if (w->repeat)
943 { 1727 {
1728 ev_at (w) += w->repeat;
1729 if (ev_at (w) < mn_now)
1730 ev_at (w) = mn_now;
1731
944 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1732 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
945 ((WT)w)->at = mn_now + w->repeat; 1733
1734 ANHE_at_cache (timers [HEAP0]);
946 downheap ((WT *)timers, timercnt, 0); 1735 downheap (timers, timercnt, HEAP0);
947 } 1736 }
948 else 1737 else
949 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1738 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
950 1739
1740 EV_FREQUENT_CHECK;
951 event (EV_A_ (W)w, EV_TIMEOUT); 1741 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
952 } 1742 }
953} 1743}
954 1744
955static void 1745#if EV_PERIODIC_ENABLE
1746void inline_size
956periodics_reify (EV_P) 1747periodics_reify (EV_P)
957{ 1748{
1749 EV_FREQUENT_CHECK;
1750
958 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1751 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
959 { 1752 {
960 struct ev_periodic *w = periodics [0]; 1753 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
961 1754
962 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1755 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
963 1756
964 /* first reschedule or stop timer */ 1757 /* first reschedule or stop timer */
965 if (w->reschedule_cb) 1758 if (w->reschedule_cb)
966 { 1759 {
967 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 1760 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
968 1761
969 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now)); 1762 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1763
1764 ANHE_at_cache (periodics [HEAP0]);
970 downheap ((WT *)periodics, periodiccnt, 0); 1765 downheap (periodics, periodiccnt, HEAP0);
971 } 1766 }
972 else if (w->interval) 1767 else if (w->interval)
973 { 1768 {
974 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1769 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
975 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1770 /* if next trigger time is not sufficiently in the future, put it there */
1771 /* this might happen because of floating point inexactness */
1772 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1773 {
1774 ev_at (w) += w->interval;
1775
1776 /* if interval is unreasonably low we might still have a time in the past */
1777 /* so correct this. this will make the periodic very inexact, but the user */
1778 /* has effectively asked to get triggered more often than possible */
1779 if (ev_at (w) < ev_rt_now)
1780 ev_at (w) = ev_rt_now;
1781 }
1782
1783 ANHE_at_cache (periodics [HEAP0]);
976 downheap ((WT *)periodics, periodiccnt, 0); 1784 downheap (periodics, periodiccnt, HEAP0);
977 } 1785 }
978 else 1786 else
979 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1787 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
980 1788
1789 EV_FREQUENT_CHECK;
981 event (EV_A_ (W)w, EV_PERIODIC); 1790 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
982 } 1791 }
983} 1792}
984 1793
985static void 1794static void noinline
986periodics_reschedule (EV_P) 1795periodics_reschedule (EV_P)
987{ 1796{
988 int i; 1797 int i;
989 1798
990 /* adjust periodics after time jump */ 1799 /* adjust periodics after time jump */
991 for (i = 0; i < periodiccnt; ++i) 1800 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
992 { 1801 {
993 struct ev_periodic *w = periodics [i]; 1802 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
994 1803
995 if (w->reschedule_cb) 1804 if (w->reschedule_cb)
996 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1805 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
997 else if (w->interval) 1806 else if (w->interval)
998 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1807 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
999 }
1000 1808
1001 /* now rebuild the heap */ 1809 ANHE_at_cache (periodics [i]);
1002 for (i = periodiccnt >> 1; i--; )
1003 downheap ((WT *)periodics, periodiccnt, i);
1004}
1005
1006inline int
1007time_update_monotonic (EV_P)
1008{
1009 mn_now = get_clock ();
1010
1011 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1012 { 1810 }
1013 rt_now = rtmn_diff + mn_now;
1014 return 0;
1015 }
1016 else
1017 {
1018 now_floor = mn_now;
1019 rt_now = ev_time ();
1020 return 1;
1021 }
1022}
1023 1811
1024static void 1812 reheap (periodics, periodiccnt);
1025time_update (EV_P) 1813}
1814#endif
1815
1816void inline_speed
1817time_update (EV_P_ ev_tstamp max_block)
1026{ 1818{
1027 int i; 1819 int i;
1028 1820
1029#if EV_USE_MONOTONIC 1821#if EV_USE_MONOTONIC
1030 if (expect_true (have_monotonic)) 1822 if (expect_true (have_monotonic))
1031 { 1823 {
1032 if (time_update_monotonic (EV_A)) 1824 ev_tstamp odiff = rtmn_diff;
1825
1826 mn_now = get_clock ();
1827
1828 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1829 /* interpolate in the meantime */
1830 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1033 { 1831 {
1034 ev_tstamp odiff = rtmn_diff; 1832 ev_rt_now = rtmn_diff + mn_now;
1833 return;
1834 }
1035 1835
1836 now_floor = mn_now;
1837 ev_rt_now = ev_time ();
1838
1036 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1839 /* loop a few times, before making important decisions.
1840 * on the choice of "4": one iteration isn't enough,
1841 * in case we get preempted during the calls to
1842 * ev_time and get_clock. a second call is almost guaranteed
1843 * to succeed in that case, though. and looping a few more times
1844 * doesn't hurt either as we only do this on time-jumps or
1845 * in the unlikely event of having been preempted here.
1846 */
1847 for (i = 4; --i; )
1848 {
1849 rtmn_diff = ev_rt_now - mn_now;
1850
1851 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1852 return; /* all is well */
1853
1854 ev_rt_now = ev_time ();
1855 mn_now = get_clock ();
1856 now_floor = mn_now;
1857 }
1858
1859# if EV_PERIODIC_ENABLE
1860 periodics_reschedule (EV_A);
1861# endif
1862 /* no timer adjustment, as the monotonic clock doesn't jump */
1863 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1864 }
1865 else
1866#endif
1867 {
1868 ev_rt_now = ev_time ();
1869
1870 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1871 {
1872#if EV_PERIODIC_ENABLE
1873 periodics_reschedule (EV_A);
1874#endif
1875 /* adjust timers. this is easy, as the offset is the same for all of them */
1876 for (i = 0; i < timercnt; ++i)
1037 { 1877 {
1038 rtmn_diff = rt_now - mn_now; 1878 ANHE *he = timers + i + HEAP0;
1039 1879 ANHE_w (*he)->at += ev_rt_now - mn_now;
1040 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1880 ANHE_at_cache (*he);
1041 return; /* all is well */
1042
1043 rt_now = ev_time ();
1044 mn_now = get_clock ();
1045 now_floor = mn_now;
1046 } 1881 }
1047
1048 periodics_reschedule (EV_A);
1049 /* no timer adjustment, as the monotonic clock doesn't jump */
1050 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1051 } 1882 }
1052 }
1053 else
1054#endif
1055 {
1056 rt_now = ev_time ();
1057 1883
1058 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1059 {
1060 periodics_reschedule (EV_A);
1061
1062 /* adjust timers. this is easy, as the offset is the same for all */
1063 for (i = 0; i < timercnt; ++i)
1064 ((WT)timers [i])->at += rt_now - mn_now;
1065 }
1066
1067 mn_now = rt_now; 1884 mn_now = ev_rt_now;
1068 } 1885 }
1069} 1886}
1070 1887
1071void 1888void
1072ev_ref (EV_P) 1889ev_ref (EV_P)
1078ev_unref (EV_P) 1895ev_unref (EV_P)
1079{ 1896{
1080 --activecnt; 1897 --activecnt;
1081} 1898}
1082 1899
1900void
1901ev_now_update (EV_P)
1902{
1903 time_update (EV_A_ 1e100);
1904}
1905
1083static int loop_done; 1906static int loop_done;
1084 1907
1085void 1908void
1086ev_loop (EV_P_ int flags) 1909ev_loop (EV_P_ int flags)
1087{ 1910{
1088 double block; 1911 loop_done = EVUNLOOP_CANCEL;
1089 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1912
1913 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1090 1914
1091 do 1915 do
1092 { 1916 {
1917#if EV_VERIFY >= 2
1918 ev_loop_verify (EV_A);
1919#endif
1920
1921#ifndef _WIN32
1922 if (expect_false (curpid)) /* penalise the forking check even more */
1923 if (expect_false (getpid () != curpid))
1924 {
1925 curpid = getpid ();
1926 postfork = 1;
1927 }
1928#endif
1929
1930#if EV_FORK_ENABLE
1931 /* we might have forked, so queue fork handlers */
1932 if (expect_false (postfork))
1933 if (forkcnt)
1934 {
1935 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1936 call_pending (EV_A);
1937 }
1938#endif
1939
1093 /* queue check watchers (and execute them) */ 1940 /* queue prepare watchers (and execute them) */
1094 if (expect_false (preparecnt)) 1941 if (expect_false (preparecnt))
1095 { 1942 {
1096 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1943 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1097 call_pending (EV_A); 1944 call_pending (EV_A);
1098 } 1945 }
1099 1946
1947 if (expect_false (!activecnt))
1948 break;
1949
1100 /* we might have forked, so reify kernel state if necessary */ 1950 /* we might have forked, so reify kernel state if necessary */
1101 if (expect_false (postfork)) 1951 if (expect_false (postfork))
1102 loop_fork (EV_A); 1952 loop_fork (EV_A);
1103 1953
1104 /* update fd-related kernel structures */ 1954 /* update fd-related kernel structures */
1105 fd_reify (EV_A); 1955 fd_reify (EV_A);
1106 1956
1107 /* calculate blocking time */ 1957 /* calculate blocking time */
1958 {
1959 ev_tstamp waittime = 0.;
1960 ev_tstamp sleeptime = 0.;
1108 1961
1109 /* we only need this for !monotonic clock or timers, but as we basically 1962 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1110 always have timers, we just calculate it always */
1111#if EV_USE_MONOTONIC
1112 if (expect_true (have_monotonic))
1113 time_update_monotonic (EV_A);
1114 else
1115#endif
1116 { 1963 {
1117 rt_now = ev_time (); 1964 /* update time to cancel out callback processing overhead */
1118 mn_now = rt_now; 1965 time_update (EV_A_ 1e100);
1119 }
1120 1966
1121 if (flags & EVLOOP_NONBLOCK || idlecnt)
1122 block = 0.;
1123 else
1124 {
1125 block = MAX_BLOCKTIME; 1967 waittime = MAX_BLOCKTIME;
1126 1968
1127 if (timercnt) 1969 if (timercnt)
1128 { 1970 {
1129 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1971 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1130 if (block > to) block = to; 1972 if (waittime > to) waittime = to;
1131 } 1973 }
1132 1974
1975#if EV_PERIODIC_ENABLE
1133 if (periodiccnt) 1976 if (periodiccnt)
1134 { 1977 {
1135 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1978 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1136 if (block > to) block = to; 1979 if (waittime > to) waittime = to;
1137 } 1980 }
1981#endif
1138 1982
1139 if (block < 0.) block = 0.; 1983 if (expect_false (waittime < timeout_blocktime))
1984 waittime = timeout_blocktime;
1985
1986 sleeptime = waittime - backend_fudge;
1987
1988 if (expect_true (sleeptime > io_blocktime))
1989 sleeptime = io_blocktime;
1990
1991 if (sleeptime)
1992 {
1993 ev_sleep (sleeptime);
1994 waittime -= sleeptime;
1995 }
1140 } 1996 }
1141 1997
1142 method_poll (EV_A_ block); 1998 ++loop_count;
1999 backend_poll (EV_A_ waittime);
1143 2000
1144 /* update rt_now, do magic */ 2001 /* update ev_rt_now, do magic */
1145 time_update (EV_A); 2002 time_update (EV_A_ waittime + sleeptime);
2003 }
1146 2004
1147 /* queue pending timers and reschedule them */ 2005 /* queue pending timers and reschedule them */
1148 timers_reify (EV_A); /* relative timers called last */ 2006 timers_reify (EV_A); /* relative timers called last */
2007#if EV_PERIODIC_ENABLE
1149 periodics_reify (EV_A); /* absolute timers called first */ 2008 periodics_reify (EV_A); /* absolute timers called first */
2009#endif
1150 2010
2011#if EV_IDLE_ENABLE
1151 /* queue idle watchers unless io or timers are pending */ 2012 /* queue idle watchers unless other events are pending */
1152 if (idlecnt && !any_pending (EV_A)) 2013 idle_reify (EV_A);
1153 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2014#endif
1154 2015
1155 /* queue check watchers, to be executed first */ 2016 /* queue check watchers, to be executed first */
1156 if (checkcnt) 2017 if (expect_false (checkcnt))
1157 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2018 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1158 2019
1159 call_pending (EV_A); 2020 call_pending (EV_A);
1160 } 2021 }
1161 while (activecnt && !loop_done); 2022 while (expect_true (
2023 activecnt
2024 && !loop_done
2025 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2026 ));
1162 2027
1163 if (loop_done != 2) 2028 if (loop_done == EVUNLOOP_ONE)
1164 loop_done = 0; 2029 loop_done = EVUNLOOP_CANCEL;
1165} 2030}
1166 2031
1167void 2032void
1168ev_unloop (EV_P_ int how) 2033ev_unloop (EV_P_ int how)
1169{ 2034{
1170 loop_done = how; 2035 loop_done = how;
1171} 2036}
1172 2037
1173/*****************************************************************************/ 2038/*****************************************************************************/
1174 2039
1175inline void 2040void inline_size
1176wlist_add (WL *head, WL elem) 2041wlist_add (WL *head, WL elem)
1177{ 2042{
1178 elem->next = *head; 2043 elem->next = *head;
1179 *head = elem; 2044 *head = elem;
1180} 2045}
1181 2046
1182inline void 2047void inline_size
1183wlist_del (WL *head, WL elem) 2048wlist_del (WL *head, WL elem)
1184{ 2049{
1185 while (*head) 2050 while (*head)
1186 { 2051 {
1187 if (*head == elem) 2052 if (*head == elem)
1192 2057
1193 head = &(*head)->next; 2058 head = &(*head)->next;
1194 } 2059 }
1195} 2060}
1196 2061
1197inline void 2062void inline_speed
1198ev_clear_pending (EV_P_ W w) 2063clear_pending (EV_P_ W w)
1199{ 2064{
1200 if (w->pending) 2065 if (w->pending)
1201 { 2066 {
1202 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2067 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1203 w->pending = 0; 2068 w->pending = 0;
1204 } 2069 }
1205} 2070}
1206 2071
1207inline void 2072int
2073ev_clear_pending (EV_P_ void *w)
2074{
2075 W w_ = (W)w;
2076 int pending = w_->pending;
2077
2078 if (expect_true (pending))
2079 {
2080 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2081 w_->pending = 0;
2082 p->w = 0;
2083 return p->events;
2084 }
2085 else
2086 return 0;
2087}
2088
2089void inline_size
2090pri_adjust (EV_P_ W w)
2091{
2092 int pri = w->priority;
2093 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2094 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2095 w->priority = pri;
2096}
2097
2098void inline_speed
1208ev_start (EV_P_ W w, int active) 2099ev_start (EV_P_ W w, int active)
1209{ 2100{
1210 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2101 pri_adjust (EV_A_ w);
1211 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1212
1213 w->active = active; 2102 w->active = active;
1214 ev_ref (EV_A); 2103 ev_ref (EV_A);
1215} 2104}
1216 2105
1217inline void 2106void inline_size
1218ev_stop (EV_P_ W w) 2107ev_stop (EV_P_ W w)
1219{ 2108{
1220 ev_unref (EV_A); 2109 ev_unref (EV_A);
1221 w->active = 0; 2110 w->active = 0;
1222} 2111}
1223 2112
1224/*****************************************************************************/ 2113/*****************************************************************************/
1225 2114
1226void 2115void noinline
1227ev_io_start (EV_P_ struct ev_io *w) 2116ev_io_start (EV_P_ ev_io *w)
1228{ 2117{
1229 int fd = w->fd; 2118 int fd = w->fd;
1230 2119
1231 if (ev_is_active (w)) 2120 if (expect_false (ev_is_active (w)))
1232 return; 2121 return;
1233 2122
1234 assert (("ev_io_start called with negative fd", fd >= 0)); 2123 assert (("ev_io_start called with negative fd", fd >= 0));
2124 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2125
2126 EV_FREQUENT_CHECK;
1235 2127
1236 ev_start (EV_A_ (W)w, 1); 2128 ev_start (EV_A_ (W)w, 1);
1237 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2129 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1238 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2130 wlist_add (&anfds[fd].head, (WL)w);
1239 2131
1240 fd_change (EV_A_ fd); 2132 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1241} 2133 w->events &= ~EV_IOFDSET;
1242 2134
1243void 2135 EV_FREQUENT_CHECK;
2136}
2137
2138void noinline
1244ev_io_stop (EV_P_ struct ev_io *w) 2139ev_io_stop (EV_P_ ev_io *w)
1245{ 2140{
1246 ev_clear_pending (EV_A_ (W)w); 2141 clear_pending (EV_A_ (W)w);
1247 if (!ev_is_active (w)) 2142 if (expect_false (!ev_is_active (w)))
1248 return; 2143 return;
1249 2144
2145 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2146
2147 EV_FREQUENT_CHECK;
2148
1250 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2149 wlist_del (&anfds[w->fd].head, (WL)w);
1251 ev_stop (EV_A_ (W)w); 2150 ev_stop (EV_A_ (W)w);
1252 2151
1253 fd_change (EV_A_ w->fd); 2152 fd_change (EV_A_ w->fd, 1);
1254}
1255 2153
1256void 2154 EV_FREQUENT_CHECK;
2155}
2156
2157void noinline
1257ev_timer_start (EV_P_ struct ev_timer *w) 2158ev_timer_start (EV_P_ ev_timer *w)
1258{ 2159{
1259 if (ev_is_active (w)) 2160 if (expect_false (ev_is_active (w)))
1260 return; 2161 return;
1261 2162
1262 ((WT)w)->at += mn_now; 2163 ev_at (w) += mn_now;
1263 2164
1264 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2165 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1265 2166
2167 EV_FREQUENT_CHECK;
2168
2169 ++timercnt;
1266 ev_start (EV_A_ (W)w, ++timercnt); 2170 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1267 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2171 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1268 timers [timercnt - 1] = w; 2172 ANHE_w (timers [ev_active (w)]) = (WT)w;
1269 upheap ((WT *)timers, timercnt - 1); 2173 ANHE_at_cache (timers [ev_active (w)]);
2174 upheap (timers, ev_active (w));
1270 2175
2176 EV_FREQUENT_CHECK;
2177
1271 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2178 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1272} 2179}
1273 2180
1274void 2181void noinline
1275ev_timer_stop (EV_P_ struct ev_timer *w) 2182ev_timer_stop (EV_P_ ev_timer *w)
1276{ 2183{
1277 ev_clear_pending (EV_A_ (W)w); 2184 clear_pending (EV_A_ (W)w);
1278 if (!ev_is_active (w)) 2185 if (expect_false (!ev_is_active (w)))
1279 return; 2186 return;
1280 2187
2188 EV_FREQUENT_CHECK;
2189
2190 {
2191 int active = ev_active (w);
2192
1281 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2193 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1282 2194
1283 if (((W)w)->active < timercnt--) 2195 --timercnt;
2196
2197 if (expect_true (active < timercnt + HEAP0))
1284 { 2198 {
1285 timers [((W)w)->active - 1] = timers [timercnt]; 2199 timers [active] = timers [timercnt + HEAP0];
1286 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2200 adjustheap (timers, timercnt, active);
1287 } 2201 }
2202 }
1288 2203
1289 ((WT)w)->at = w->repeat; 2204 EV_FREQUENT_CHECK;
2205
2206 ev_at (w) -= mn_now;
1290 2207
1291 ev_stop (EV_A_ (W)w); 2208 ev_stop (EV_A_ (W)w);
1292} 2209}
1293 2210
1294void 2211void noinline
1295ev_timer_again (EV_P_ struct ev_timer *w) 2212ev_timer_again (EV_P_ ev_timer *w)
1296{ 2213{
2214 EV_FREQUENT_CHECK;
2215
1297 if (ev_is_active (w)) 2216 if (ev_is_active (w))
1298 { 2217 {
1299 if (w->repeat) 2218 if (w->repeat)
1300 { 2219 {
1301 ((WT)w)->at = mn_now + w->repeat; 2220 ev_at (w) = mn_now + w->repeat;
1302 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2221 ANHE_at_cache (timers [ev_active (w)]);
2222 adjustheap (timers, timercnt, ev_active (w));
1303 } 2223 }
1304 else 2224 else
1305 ev_timer_stop (EV_A_ w); 2225 ev_timer_stop (EV_A_ w);
1306 } 2226 }
1307 else if (w->repeat) 2227 else if (w->repeat)
2228 {
2229 ev_at (w) = w->repeat;
1308 ev_timer_start (EV_A_ w); 2230 ev_timer_start (EV_A_ w);
1309} 2231 }
1310 2232
1311void 2233 EV_FREQUENT_CHECK;
2234}
2235
2236#if EV_PERIODIC_ENABLE
2237void noinline
1312ev_periodic_start (EV_P_ struct ev_periodic *w) 2238ev_periodic_start (EV_P_ ev_periodic *w)
1313{ 2239{
1314 if (ev_is_active (w)) 2240 if (expect_false (ev_is_active (w)))
1315 return; 2241 return;
1316 2242
1317 if (w->reschedule_cb) 2243 if (w->reschedule_cb)
1318 ((WT)w)->at = w->reschedule_cb (w, rt_now); 2244 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1319 else if (w->interval) 2245 else if (w->interval)
1320 { 2246 {
1321 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2247 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1322 /* this formula differs from the one in periodic_reify because we do not always round up */ 2248 /* this formula differs from the one in periodic_reify because we do not always round up */
1323 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2249 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1324 } 2250 }
2251 else
2252 ev_at (w) = w->offset;
1325 2253
2254 EV_FREQUENT_CHECK;
2255
2256 ++periodiccnt;
1326 ev_start (EV_A_ (W)w, ++periodiccnt); 2257 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1327 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2258 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1328 periodics [periodiccnt - 1] = w; 2259 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1329 upheap ((WT *)periodics, periodiccnt - 1); 2260 ANHE_at_cache (periodics [ev_active (w)]);
2261 upheap (periodics, ev_active (w));
1330 2262
2263 EV_FREQUENT_CHECK;
2264
1331 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2265 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1332} 2266}
1333 2267
1334void 2268void noinline
1335ev_periodic_stop (EV_P_ struct ev_periodic *w) 2269ev_periodic_stop (EV_P_ ev_periodic *w)
1336{ 2270{
1337 ev_clear_pending (EV_A_ (W)w); 2271 clear_pending (EV_A_ (W)w);
1338 if (!ev_is_active (w)) 2272 if (expect_false (!ev_is_active (w)))
1339 return; 2273 return;
1340 2274
2275 EV_FREQUENT_CHECK;
2276
2277 {
2278 int active = ev_active (w);
2279
1341 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2280 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1342 2281
1343 if (((W)w)->active < periodiccnt--) 2282 --periodiccnt;
2283
2284 if (expect_true (active < periodiccnt + HEAP0))
1344 { 2285 {
1345 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2286 periodics [active] = periodics [periodiccnt + HEAP0];
1346 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2287 adjustheap (periodics, periodiccnt, active);
1347 } 2288 }
2289 }
2290
2291 EV_FREQUENT_CHECK;
1348 2292
1349 ev_stop (EV_A_ (W)w); 2293 ev_stop (EV_A_ (W)w);
1350} 2294}
1351 2295
1352void 2296void noinline
1353ev_periodic_again (EV_P_ struct ev_periodic *w) 2297ev_periodic_again (EV_P_ ev_periodic *w)
1354{ 2298{
2299 /* TODO: use adjustheap and recalculation */
1355 ev_periodic_stop (EV_A_ w); 2300 ev_periodic_stop (EV_A_ w);
1356 ev_periodic_start (EV_A_ w); 2301 ev_periodic_start (EV_A_ w);
1357} 2302}
1358 2303#endif
1359void
1360ev_idle_start (EV_P_ struct ev_idle *w)
1361{
1362 if (ev_is_active (w))
1363 return;
1364
1365 ev_start (EV_A_ (W)w, ++idlecnt);
1366 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1367 idles [idlecnt - 1] = w;
1368}
1369
1370void
1371ev_idle_stop (EV_P_ struct ev_idle *w)
1372{
1373 ev_clear_pending (EV_A_ (W)w);
1374 if (ev_is_active (w))
1375 return;
1376
1377 idles [((W)w)->active - 1] = idles [--idlecnt];
1378 ev_stop (EV_A_ (W)w);
1379}
1380
1381void
1382ev_prepare_start (EV_P_ struct ev_prepare *w)
1383{
1384 if (ev_is_active (w))
1385 return;
1386
1387 ev_start (EV_A_ (W)w, ++preparecnt);
1388 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1389 prepares [preparecnt - 1] = w;
1390}
1391
1392void
1393ev_prepare_stop (EV_P_ struct ev_prepare *w)
1394{
1395 ev_clear_pending (EV_A_ (W)w);
1396 if (ev_is_active (w))
1397 return;
1398
1399 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1400 ev_stop (EV_A_ (W)w);
1401}
1402
1403void
1404ev_check_start (EV_P_ struct ev_check *w)
1405{
1406 if (ev_is_active (w))
1407 return;
1408
1409 ev_start (EV_A_ (W)w, ++checkcnt);
1410 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1411 checks [checkcnt - 1] = w;
1412}
1413
1414void
1415ev_check_stop (EV_P_ struct ev_check *w)
1416{
1417 ev_clear_pending (EV_A_ (W)w);
1418 if (ev_is_active (w))
1419 return;
1420
1421 checks [((W)w)->active - 1] = checks [--checkcnt];
1422 ev_stop (EV_A_ (W)w);
1423}
1424 2304
1425#ifndef SA_RESTART 2305#ifndef SA_RESTART
1426# define SA_RESTART 0 2306# define SA_RESTART 0
1427#endif 2307#endif
1428 2308
1429void 2309void noinline
1430ev_signal_start (EV_P_ struct ev_signal *w) 2310ev_signal_start (EV_P_ ev_signal *w)
1431{ 2311{
1432#if EV_MULTIPLICITY 2312#if EV_MULTIPLICITY
1433 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2313 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1434#endif 2314#endif
1435 if (ev_is_active (w)) 2315 if (expect_false (ev_is_active (w)))
1436 return; 2316 return;
1437 2317
1438 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2318 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1439 2319
2320 evpipe_init (EV_A);
2321
2322 EV_FREQUENT_CHECK;
2323
2324 {
2325#ifndef _WIN32
2326 sigset_t full, prev;
2327 sigfillset (&full);
2328 sigprocmask (SIG_SETMASK, &full, &prev);
2329#endif
2330
2331 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2332
2333#ifndef _WIN32
2334 sigprocmask (SIG_SETMASK, &prev, 0);
2335#endif
2336 }
2337
1440 ev_start (EV_A_ (W)w, 1); 2338 ev_start (EV_A_ (W)w, 1);
1441 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1442 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2339 wlist_add (&signals [w->signum - 1].head, (WL)w);
1443 2340
1444 if (!((WL)w)->next) 2341 if (!((WL)w)->next)
1445 { 2342 {
1446#if WIN32 2343#if _WIN32
1447 signal (w->signum, sighandler); 2344 signal (w->signum, ev_sighandler);
1448#else 2345#else
1449 struct sigaction sa; 2346 struct sigaction sa;
1450 sa.sa_handler = sighandler; 2347 sa.sa_handler = ev_sighandler;
1451 sigfillset (&sa.sa_mask); 2348 sigfillset (&sa.sa_mask);
1452 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2349 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1453 sigaction (w->signum, &sa, 0); 2350 sigaction (w->signum, &sa, 0);
1454#endif 2351#endif
1455 } 2352 }
1456}
1457 2353
1458void 2354 EV_FREQUENT_CHECK;
2355}
2356
2357void noinline
1459ev_signal_stop (EV_P_ struct ev_signal *w) 2358ev_signal_stop (EV_P_ ev_signal *w)
1460{ 2359{
1461 ev_clear_pending (EV_A_ (W)w); 2360 clear_pending (EV_A_ (W)w);
1462 if (!ev_is_active (w)) 2361 if (expect_false (!ev_is_active (w)))
1463 return; 2362 return;
1464 2363
2364 EV_FREQUENT_CHECK;
2365
1465 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2366 wlist_del (&signals [w->signum - 1].head, (WL)w);
1466 ev_stop (EV_A_ (W)w); 2367 ev_stop (EV_A_ (W)w);
1467 2368
1468 if (!signals [w->signum - 1].head) 2369 if (!signals [w->signum - 1].head)
1469 signal (w->signum, SIG_DFL); 2370 signal (w->signum, SIG_DFL);
1470}
1471 2371
2372 EV_FREQUENT_CHECK;
2373}
2374
1472void 2375void
1473ev_child_start (EV_P_ struct ev_child *w) 2376ev_child_start (EV_P_ ev_child *w)
1474{ 2377{
1475#if EV_MULTIPLICITY 2378#if EV_MULTIPLICITY
1476 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2379 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1477#endif 2380#endif
1478 if (ev_is_active (w)) 2381 if (expect_false (ev_is_active (w)))
1479 return; 2382 return;
1480 2383
2384 EV_FREQUENT_CHECK;
2385
1481 ev_start (EV_A_ (W)w, 1); 2386 ev_start (EV_A_ (W)w, 1);
1482 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2387 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1483}
1484 2388
2389 EV_FREQUENT_CHECK;
2390}
2391
1485void 2392void
1486ev_child_stop (EV_P_ struct ev_child *w) 2393ev_child_stop (EV_P_ ev_child *w)
1487{ 2394{
1488 ev_clear_pending (EV_A_ (W)w); 2395 clear_pending (EV_A_ (W)w);
1489 if (ev_is_active (w)) 2396 if (expect_false (!ev_is_active (w)))
1490 return; 2397 return;
1491 2398
2399 EV_FREQUENT_CHECK;
2400
1492 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2401 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1493 ev_stop (EV_A_ (W)w); 2402 ev_stop (EV_A_ (W)w);
2403
2404 EV_FREQUENT_CHECK;
1494} 2405}
2406
2407#if EV_STAT_ENABLE
2408
2409# ifdef _WIN32
2410# undef lstat
2411# define lstat(a,b) _stati64 (a,b)
2412# endif
2413
2414#define DEF_STAT_INTERVAL 5.0074891
2415#define MIN_STAT_INTERVAL 0.1074891
2416
2417static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2418
2419#if EV_USE_INOTIFY
2420# define EV_INOTIFY_BUFSIZE 8192
2421
2422static void noinline
2423infy_add (EV_P_ ev_stat *w)
2424{
2425 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2426
2427 if (w->wd < 0)
2428 {
2429 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2430
2431 /* monitor some parent directory for speedup hints */
2432 /* note that exceeding the hardcoded limit is not a correctness issue, */
2433 /* but an efficiency issue only */
2434 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2435 {
2436 char path [4096];
2437 strcpy (path, w->path);
2438
2439 do
2440 {
2441 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2442 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2443
2444 char *pend = strrchr (path, '/');
2445
2446 if (!pend)
2447 break; /* whoops, no '/', complain to your admin */
2448
2449 *pend = 0;
2450 w->wd = inotify_add_watch (fs_fd, path, mask);
2451 }
2452 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2453 }
2454 }
2455 else
2456 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2457
2458 if (w->wd >= 0)
2459 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2460}
2461
2462static void noinline
2463infy_del (EV_P_ ev_stat *w)
2464{
2465 int slot;
2466 int wd = w->wd;
2467
2468 if (wd < 0)
2469 return;
2470
2471 w->wd = -2;
2472 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2473 wlist_del (&fs_hash [slot].head, (WL)w);
2474
2475 /* remove this watcher, if others are watching it, they will rearm */
2476 inotify_rm_watch (fs_fd, wd);
2477}
2478
2479static void noinline
2480infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2481{
2482 if (slot < 0)
2483 /* overflow, need to check for all hash slots */
2484 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2485 infy_wd (EV_A_ slot, wd, ev);
2486 else
2487 {
2488 WL w_;
2489
2490 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2491 {
2492 ev_stat *w = (ev_stat *)w_;
2493 w_ = w_->next; /* lets us remove this watcher and all before it */
2494
2495 if (w->wd == wd || wd == -1)
2496 {
2497 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2498 {
2499 w->wd = -1;
2500 infy_add (EV_A_ w); /* re-add, no matter what */
2501 }
2502
2503 stat_timer_cb (EV_A_ &w->timer, 0);
2504 }
2505 }
2506 }
2507}
2508
2509static void
2510infy_cb (EV_P_ ev_io *w, int revents)
2511{
2512 char buf [EV_INOTIFY_BUFSIZE];
2513 struct inotify_event *ev = (struct inotify_event *)buf;
2514 int ofs;
2515 int len = read (fs_fd, buf, sizeof (buf));
2516
2517 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2518 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2519}
2520
2521void inline_size
2522infy_init (EV_P)
2523{
2524 if (fs_fd != -2)
2525 return;
2526
2527 /* kernels < 2.6.25 are borked
2528 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2529 */
2530 {
2531 struct utsname buf;
2532 int major, minor, micro;
2533
2534 fs_fd = -1;
2535
2536 if (uname (&buf))
2537 return;
2538
2539 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2540 return;
2541
2542 if (major < 2
2543 || (major == 2 && minor < 6)
2544 || (major == 2 && minor == 6 && micro < 25))
2545 return;
2546 }
2547
2548 fs_fd = inotify_init ();
2549
2550 if (fs_fd >= 0)
2551 {
2552 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2553 ev_set_priority (&fs_w, EV_MAXPRI);
2554 ev_io_start (EV_A_ &fs_w);
2555 }
2556}
2557
2558void inline_size
2559infy_fork (EV_P)
2560{
2561 int slot;
2562
2563 if (fs_fd < 0)
2564 return;
2565
2566 close (fs_fd);
2567 fs_fd = inotify_init ();
2568
2569 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2570 {
2571 WL w_ = fs_hash [slot].head;
2572 fs_hash [slot].head = 0;
2573
2574 while (w_)
2575 {
2576 ev_stat *w = (ev_stat *)w_;
2577 w_ = w_->next; /* lets us add this watcher */
2578
2579 w->wd = -1;
2580
2581 if (fs_fd >= 0)
2582 infy_add (EV_A_ w); /* re-add, no matter what */
2583 else
2584 ev_timer_start (EV_A_ &w->timer);
2585 }
2586 }
2587}
2588
2589#endif
2590
2591#ifdef _WIN32
2592# define EV_LSTAT(p,b) _stati64 (p, b)
2593#else
2594# define EV_LSTAT(p,b) lstat (p, b)
2595#endif
2596
2597void
2598ev_stat_stat (EV_P_ ev_stat *w)
2599{
2600 if (lstat (w->path, &w->attr) < 0)
2601 w->attr.st_nlink = 0;
2602 else if (!w->attr.st_nlink)
2603 w->attr.st_nlink = 1;
2604}
2605
2606static void noinline
2607stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2608{
2609 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2610
2611 /* we copy this here each the time so that */
2612 /* prev has the old value when the callback gets invoked */
2613 w->prev = w->attr;
2614 ev_stat_stat (EV_A_ w);
2615
2616 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2617 if (
2618 w->prev.st_dev != w->attr.st_dev
2619 || w->prev.st_ino != w->attr.st_ino
2620 || w->prev.st_mode != w->attr.st_mode
2621 || w->prev.st_nlink != w->attr.st_nlink
2622 || w->prev.st_uid != w->attr.st_uid
2623 || w->prev.st_gid != w->attr.st_gid
2624 || w->prev.st_rdev != w->attr.st_rdev
2625 || w->prev.st_size != w->attr.st_size
2626 || w->prev.st_atime != w->attr.st_atime
2627 || w->prev.st_mtime != w->attr.st_mtime
2628 || w->prev.st_ctime != w->attr.st_ctime
2629 ) {
2630 #if EV_USE_INOTIFY
2631 if (fs_fd >= 0)
2632 {
2633 infy_del (EV_A_ w);
2634 infy_add (EV_A_ w);
2635 ev_stat_stat (EV_A_ w); /* avoid race... */
2636 }
2637 #endif
2638
2639 ev_feed_event (EV_A_ w, EV_STAT);
2640 }
2641}
2642
2643void
2644ev_stat_start (EV_P_ ev_stat *w)
2645{
2646 if (expect_false (ev_is_active (w)))
2647 return;
2648
2649 /* since we use memcmp, we need to clear any padding data etc. */
2650 memset (&w->prev, 0, sizeof (ev_statdata));
2651 memset (&w->attr, 0, sizeof (ev_statdata));
2652
2653 ev_stat_stat (EV_A_ w);
2654
2655 if (w->interval < MIN_STAT_INTERVAL)
2656 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2657
2658 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2659 ev_set_priority (&w->timer, ev_priority (w));
2660
2661#if EV_USE_INOTIFY
2662 infy_init (EV_A);
2663
2664 if (fs_fd >= 0)
2665 infy_add (EV_A_ w);
2666 else
2667#endif
2668 ev_timer_start (EV_A_ &w->timer);
2669
2670 ev_start (EV_A_ (W)w, 1);
2671
2672 EV_FREQUENT_CHECK;
2673}
2674
2675void
2676ev_stat_stop (EV_P_ ev_stat *w)
2677{
2678 clear_pending (EV_A_ (W)w);
2679 if (expect_false (!ev_is_active (w)))
2680 return;
2681
2682 EV_FREQUENT_CHECK;
2683
2684#if EV_USE_INOTIFY
2685 infy_del (EV_A_ w);
2686#endif
2687 ev_timer_stop (EV_A_ &w->timer);
2688
2689 ev_stop (EV_A_ (W)w);
2690
2691 EV_FREQUENT_CHECK;
2692}
2693#endif
2694
2695#if EV_IDLE_ENABLE
2696void
2697ev_idle_start (EV_P_ ev_idle *w)
2698{
2699 if (expect_false (ev_is_active (w)))
2700 return;
2701
2702 pri_adjust (EV_A_ (W)w);
2703
2704 EV_FREQUENT_CHECK;
2705
2706 {
2707 int active = ++idlecnt [ABSPRI (w)];
2708
2709 ++idleall;
2710 ev_start (EV_A_ (W)w, active);
2711
2712 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2713 idles [ABSPRI (w)][active - 1] = w;
2714 }
2715
2716 EV_FREQUENT_CHECK;
2717}
2718
2719void
2720ev_idle_stop (EV_P_ ev_idle *w)
2721{
2722 clear_pending (EV_A_ (W)w);
2723 if (expect_false (!ev_is_active (w)))
2724 return;
2725
2726 EV_FREQUENT_CHECK;
2727
2728 {
2729 int active = ev_active (w);
2730
2731 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2732 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2733
2734 ev_stop (EV_A_ (W)w);
2735 --idleall;
2736 }
2737
2738 EV_FREQUENT_CHECK;
2739}
2740#endif
2741
2742void
2743ev_prepare_start (EV_P_ ev_prepare *w)
2744{
2745 if (expect_false (ev_is_active (w)))
2746 return;
2747
2748 EV_FREQUENT_CHECK;
2749
2750 ev_start (EV_A_ (W)w, ++preparecnt);
2751 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2752 prepares [preparecnt - 1] = w;
2753
2754 EV_FREQUENT_CHECK;
2755}
2756
2757void
2758ev_prepare_stop (EV_P_ ev_prepare *w)
2759{
2760 clear_pending (EV_A_ (W)w);
2761 if (expect_false (!ev_is_active (w)))
2762 return;
2763
2764 EV_FREQUENT_CHECK;
2765
2766 {
2767 int active = ev_active (w);
2768
2769 prepares [active - 1] = prepares [--preparecnt];
2770 ev_active (prepares [active - 1]) = active;
2771 }
2772
2773 ev_stop (EV_A_ (W)w);
2774
2775 EV_FREQUENT_CHECK;
2776}
2777
2778void
2779ev_check_start (EV_P_ ev_check *w)
2780{
2781 if (expect_false (ev_is_active (w)))
2782 return;
2783
2784 EV_FREQUENT_CHECK;
2785
2786 ev_start (EV_A_ (W)w, ++checkcnt);
2787 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2788 checks [checkcnt - 1] = w;
2789
2790 EV_FREQUENT_CHECK;
2791}
2792
2793void
2794ev_check_stop (EV_P_ ev_check *w)
2795{
2796 clear_pending (EV_A_ (W)w);
2797 if (expect_false (!ev_is_active (w)))
2798 return;
2799
2800 EV_FREQUENT_CHECK;
2801
2802 {
2803 int active = ev_active (w);
2804
2805 checks [active - 1] = checks [--checkcnt];
2806 ev_active (checks [active - 1]) = active;
2807 }
2808
2809 ev_stop (EV_A_ (W)w);
2810
2811 EV_FREQUENT_CHECK;
2812}
2813
2814#if EV_EMBED_ENABLE
2815void noinline
2816ev_embed_sweep (EV_P_ ev_embed *w)
2817{
2818 ev_loop (w->other, EVLOOP_NONBLOCK);
2819}
2820
2821static void
2822embed_io_cb (EV_P_ ev_io *io, int revents)
2823{
2824 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2825
2826 if (ev_cb (w))
2827 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2828 else
2829 ev_loop (w->other, EVLOOP_NONBLOCK);
2830}
2831
2832static void
2833embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2834{
2835 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2836
2837 {
2838 struct ev_loop *loop = w->other;
2839
2840 while (fdchangecnt)
2841 {
2842 fd_reify (EV_A);
2843 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2844 }
2845 }
2846}
2847
2848static void
2849embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2850{
2851 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2852
2853 {
2854 struct ev_loop *loop = w->other;
2855
2856 ev_loop_fork (EV_A);
2857 }
2858}
2859
2860#if 0
2861static void
2862embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2863{
2864 ev_idle_stop (EV_A_ idle);
2865}
2866#endif
2867
2868void
2869ev_embed_start (EV_P_ ev_embed *w)
2870{
2871 if (expect_false (ev_is_active (w)))
2872 return;
2873
2874 {
2875 struct ev_loop *loop = w->other;
2876 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2877 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2878 }
2879
2880 EV_FREQUENT_CHECK;
2881
2882 ev_set_priority (&w->io, ev_priority (w));
2883 ev_io_start (EV_A_ &w->io);
2884
2885 ev_prepare_init (&w->prepare, embed_prepare_cb);
2886 ev_set_priority (&w->prepare, EV_MINPRI);
2887 ev_prepare_start (EV_A_ &w->prepare);
2888
2889 ev_fork_init (&w->fork, embed_fork_cb);
2890 ev_fork_start (EV_A_ &w->fork);
2891
2892 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2893
2894 ev_start (EV_A_ (W)w, 1);
2895
2896 EV_FREQUENT_CHECK;
2897}
2898
2899void
2900ev_embed_stop (EV_P_ ev_embed *w)
2901{
2902 clear_pending (EV_A_ (W)w);
2903 if (expect_false (!ev_is_active (w)))
2904 return;
2905
2906 EV_FREQUENT_CHECK;
2907
2908 ev_io_stop (EV_A_ &w->io);
2909 ev_prepare_stop (EV_A_ &w->prepare);
2910 ev_fork_stop (EV_A_ &w->fork);
2911
2912 EV_FREQUENT_CHECK;
2913}
2914#endif
2915
2916#if EV_FORK_ENABLE
2917void
2918ev_fork_start (EV_P_ ev_fork *w)
2919{
2920 if (expect_false (ev_is_active (w)))
2921 return;
2922
2923 EV_FREQUENT_CHECK;
2924
2925 ev_start (EV_A_ (W)w, ++forkcnt);
2926 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2927 forks [forkcnt - 1] = w;
2928
2929 EV_FREQUENT_CHECK;
2930}
2931
2932void
2933ev_fork_stop (EV_P_ ev_fork *w)
2934{
2935 clear_pending (EV_A_ (W)w);
2936 if (expect_false (!ev_is_active (w)))
2937 return;
2938
2939 EV_FREQUENT_CHECK;
2940
2941 {
2942 int active = ev_active (w);
2943
2944 forks [active - 1] = forks [--forkcnt];
2945 ev_active (forks [active - 1]) = active;
2946 }
2947
2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2951}
2952#endif
2953
2954#if EV_ASYNC_ENABLE
2955void
2956ev_async_start (EV_P_ ev_async *w)
2957{
2958 if (expect_false (ev_is_active (w)))
2959 return;
2960
2961 evpipe_init (EV_A);
2962
2963 EV_FREQUENT_CHECK;
2964
2965 ev_start (EV_A_ (W)w, ++asynccnt);
2966 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2967 asyncs [asynccnt - 1] = w;
2968
2969 EV_FREQUENT_CHECK;
2970}
2971
2972void
2973ev_async_stop (EV_P_ ev_async *w)
2974{
2975 clear_pending (EV_A_ (W)w);
2976 if (expect_false (!ev_is_active (w)))
2977 return;
2978
2979 EV_FREQUENT_CHECK;
2980
2981 {
2982 int active = ev_active (w);
2983
2984 asyncs [active - 1] = asyncs [--asynccnt];
2985 ev_active (asyncs [active - 1]) = active;
2986 }
2987
2988 ev_stop (EV_A_ (W)w);
2989
2990 EV_FREQUENT_CHECK;
2991}
2992
2993void
2994ev_async_send (EV_P_ ev_async *w)
2995{
2996 w->sent = 1;
2997 evpipe_write (EV_A_ &gotasync);
2998}
2999#endif
1495 3000
1496/*****************************************************************************/ 3001/*****************************************************************************/
1497 3002
1498struct ev_once 3003struct ev_once
1499{ 3004{
1500 struct ev_io io; 3005 ev_io io;
1501 struct ev_timer to; 3006 ev_timer to;
1502 void (*cb)(int revents, void *arg); 3007 void (*cb)(int revents, void *arg);
1503 void *arg; 3008 void *arg;
1504}; 3009};
1505 3010
1506static void 3011static void
1507once_cb (EV_P_ struct ev_once *once, int revents) 3012once_cb (EV_P_ struct ev_once *once, int revents)
1508{ 3013{
1509 void (*cb)(int revents, void *arg) = once->cb; 3014 void (*cb)(int revents, void *arg) = once->cb;
1510 void *arg = once->arg; 3015 void *arg = once->arg;
1511 3016
1512 ev_io_stop (EV_A_ &once->io); 3017 ev_io_stop (EV_A_ &once->io);
1513 ev_timer_stop (EV_A_ &once->to); 3018 ev_timer_stop (EV_A_ &once->to);
1514 ev_free (once); 3019 ev_free (once);
1515 3020
1516 cb (revents, arg); 3021 cb (revents, arg);
1517} 3022}
1518 3023
1519static void 3024static void
1520once_cb_io (EV_P_ struct ev_io *w, int revents) 3025once_cb_io (EV_P_ ev_io *w, int revents)
1521{ 3026{
1522 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3027 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3028
3029 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1523} 3030}
1524 3031
1525static void 3032static void
1526once_cb_to (EV_P_ struct ev_timer *w, int revents) 3033once_cb_to (EV_P_ ev_timer *w, int revents)
1527{ 3034{
1528 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3035 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3036
3037 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1529} 3038}
1530 3039
1531void 3040void
1532ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3041ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1533{ 3042{
1534 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3043 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1535 3044
1536 if (!once) 3045 if (expect_false (!once))
3046 {
1537 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3047 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1538 else 3048 return;
1539 { 3049 }
3050
1540 once->cb = cb; 3051 once->cb = cb;
1541 once->arg = arg; 3052 once->arg = arg;
1542 3053
1543 ev_watcher_init (&once->io, once_cb_io); 3054 ev_init (&once->io, once_cb_io);
1544 if (fd >= 0) 3055 if (fd >= 0)
1545 { 3056 {
1546 ev_io_set (&once->io, fd, events); 3057 ev_io_set (&once->io, fd, events);
1547 ev_io_start (EV_A_ &once->io); 3058 ev_io_start (EV_A_ &once->io);
1548 } 3059 }
1549 3060
1550 ev_watcher_init (&once->to, once_cb_to); 3061 ev_init (&once->to, once_cb_to);
1551 if (timeout >= 0.) 3062 if (timeout >= 0.)
1552 { 3063 {
1553 ev_timer_set (&once->to, timeout, 0.); 3064 ev_timer_set (&once->to, timeout, 0.);
1554 ev_timer_start (EV_A_ &once->to); 3065 ev_timer_start (EV_A_ &once->to);
1555 }
1556 } 3066 }
1557} 3067}
1558 3068
3069#if EV_MULTIPLICITY
3070 #include "ev_wrap.h"
3071#endif
3072
3073#ifdef __cplusplus
3074}
3075#endif
3076

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines