ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.80 by root, Fri Nov 9 15:30:59 2007 UTC vs.
Revision 1.361 by root, Sun Oct 24 19:01:01 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
33 61
34# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
63# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
65# endif
66# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
68# endif
69# else
70# ifndef EV_USE_MONOTONIC
71# define EV_USE_MONOTONIC 0
72# endif
73# ifndef EV_USE_REALTIME
74# define EV_USE_REALTIME 0
75# endif
37# endif 76# endif
38 77
78# if HAVE_NANOSLEEP
79# ifndef EV_USE_NANOSLEEP
80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
85# endif
86
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
90# endif
91# else
92# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 93# define EV_USE_SELECT 0
41# endif 94# endif
42 95
43# if HAVE_POLL && HAVE_POLL_H 96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
44# define EV_USE_POLL 1 102# define EV_USE_POLL 0
45# endif 103# endif
46 104
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# ifndef EV_USE_EPOLL
107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# endif
109# else
110# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 111# define EV_USE_EPOLL 0
49# endif 112# endif
50 113
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
115# ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117# endif
118# else
119# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 120# define EV_USE_KQUEUE 0
53# endif 121# endif
122
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# ifndef EV_USE_PORT
125# define EV_USE_PORT EV_FEATURE_BACKENDS
126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
130# endif
54 131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
55#endif 159#endif
56 160
57#include <math.h> 161#include <math.h>
58#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
59#include <fcntl.h> 164#include <fcntl.h>
60#include <stddef.h> 165#include <stddef.h>
61 166
62#include <stdio.h> 167#include <stdio.h>
63 168
64#include <assert.h> 169#include <assert.h>
65#include <errno.h> 170#include <errno.h>
66#include <sys/types.h> 171#include <sys/types.h>
67#include <time.h> 172#include <time.h>
173#include <limits.h>
68 174
69#include <signal.h> 175#include <signal.h>
70 176
177#ifdef EV_H
178# include EV_H
179#else
180# include "ev.h"
181#endif
182
183EV_CPP(extern "C" {)
184
71#ifndef WIN32 185#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 186# include <sys/time.h>
74# include <sys/wait.h> 187# include <sys/wait.h>
188# include <unistd.h>
189#else
190# include <io.h>
191# define WIN32_LEAN_AND_MEAN
192# include <windows.h>
193# ifndef EV_SELECT_IS_WINSOCKET
194# define EV_SELECT_IS_WINSOCKET 1
75#endif 195# endif
76/**/ 196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
77 244
78#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
79# define EV_USE_MONOTONIC 1 249# define EV_USE_MONOTONIC 0
250# endif
251#endif
252
253#ifndef EV_USE_REALTIME
254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
80#endif 263#endif
81 264
82#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
84#endif 267#endif
85 268
86#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 270# ifdef _WIN32
271# define EV_USE_POLL 0
272# else
273# define EV_USE_POLL EV_FEATURE_BACKENDS
274# endif
88#endif 275#endif
89 276
90#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
91# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
92#endif 283#endif
93 284
94#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
96#endif 287#endif
97 288
289#ifndef EV_USE_PORT
290# define EV_USE_PORT 0
291#endif
292
98#ifndef EV_USE_WIN32 293#ifndef EV_USE_INOTIFY
99# ifdef WIN32 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */ 295# define EV_USE_INOTIFY EV_FEATURE_OS
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else 296# else
104# define EV_USE_WIN32 0 297# define EV_USE_INOTIFY 0
105# endif 298# endif
106#endif 299#endif
107 300
301#ifndef EV_PID_HASHSIZE
302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
108#ifndef EV_USE_REALTIME 309#ifndef EV_USE_EVENTFD
109# define EV_USE_REALTIME 1 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
110#endif 314# endif
315#endif
111 316
112/**/ 317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
113 364
114#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
117#endif 368#endif
119#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
122#endif 373#endif
123 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
396#if EV_SELECT_IS_WINSOCKET
397# include <winsock.h>
398#endif
399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
124/**/ 438/**/
125 439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
455
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 458
131#include "ev.h" 459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
132 461
133#if __GNUC__ >= 3 462#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 464# define noinline __attribute__ ((noinline))
136#else 465#else
137# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
138# define inline static 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
139#endif 471#endif
140 472
141#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
143 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
146 490
491#define EMPTY /* required for microsofts broken pseudo-c compiler */
492#define EMPTY2(a,b) /* used to suppress some warnings */
493
147typedef struct ev_watcher *W; 494typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
150 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
152 510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
520
521#ifdef _WIN32
153#include "ev_win32.c" 522# include "ev_win32.c"
523#endif
154 524
155/*****************************************************************************/ 525/*****************************************************************************/
156 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
157static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
158 578
579void
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
160{ 581{
161 syserr_cb = cb; 582 syserr_cb = cb;
162} 583}
163 584
164static void 585static void noinline
165syserr (const char *msg) 586ev_syserr (const char *msg)
166{ 587{
167 if (!msg) 588 if (!msg)
168 msg = "(libev) system error"; 589 msg = "(libev) system error";
169 590
170 if (syserr_cb) 591 if (syserr_cb)
171 syserr_cb (msg); 592 syserr_cb (msg);
172 else 593 else
173 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
174 perror (msg); 603 perror (msg);
604#endif
175 abort (); 605 abort ();
176 } 606 }
177} 607}
178 608
609static void *
610ev_realloc_emul (void *ptr, long size)
611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625#endif
626}
627
179static void *(*alloc)(void *ptr, long size); 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
180 629
630void
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 631ev_set_allocator (void *(*cb)(void *ptr, long size))
182{ 632{
183 alloc = cb; 633 alloc = cb;
184} 634}
185 635
186static void * 636inline_speed void *
187ev_realloc (void *ptr, long size) 637ev_realloc (void *ptr, long size)
188{ 638{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 639 ptr = alloc (ptr, size);
190 640
191 if (!ptr && size) 641 if (!ptr && size)
192 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
194 abort (); 648 abort ();
195 } 649 }
196 650
197 return ptr; 651 return ptr;
198} 652}
200#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
202 656
203/*****************************************************************************/ 657/*****************************************************************************/
204 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
205typedef struct 663typedef struct
206{ 664{
207 WL head; 665 WL head;
208 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
209 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
674 SOCKET handle;
675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
210} ANFD; 679} ANFD;
211 680
681/* stores the pending event set for a given watcher */
212typedef struct 682typedef struct
213{ 683{
214 W w; 684 W w;
215 int events; 685 int events; /* the pending event set for the given watcher */
216} ANPENDING; 686} ANPENDING;
687
688#if EV_USE_INOTIFY
689/* hash table entry per inotify-id */
690typedef struct
691{
692 WL head;
693} ANFS;
694#endif
695
696/* Heap Entry */
697#if EV_HEAP_CACHE_AT
698 /* a heap element */
699 typedef struct {
700 ev_tstamp at;
701 WT w;
702 } ANHE;
703
704 #define ANHE_w(he) (he).w /* access watcher, read-write */
705 #define ANHE_at(he) (he).at /* access cached at, read-only */
706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
707#else
708 /* a heap element */
709 typedef WT ANHE;
710
711 #define ANHE_w(he) (he)
712 #define ANHE_at(he) (he)->at
713 #define ANHE_at_cache(he)
714#endif
217 715
218#if EV_MULTIPLICITY 716#if EV_MULTIPLICITY
219 717
220 struct ev_loop 718 struct ev_loop
221 { 719 {
720 ev_tstamp ev_rt_now;
721 #define ev_rt_now ((loop)->ev_rt_now)
222 #define VAR(name,decl) decl; 722 #define VAR(name,decl) decl;
223 #include "ev_vars.h" 723 #include "ev_vars.h"
224 #undef VAR 724 #undef VAR
225 }; 725 };
226 #include "ev_wrap.h" 726 #include "ev_wrap.h"
227 727
228 struct ev_loop default_loop_struct; 728 static struct ev_loop default_loop_struct;
229 static struct ev_loop *default_loop; 729 struct ev_loop *ev_default_loop_ptr;
230 730
231#else 731#else
232 732
733 ev_tstamp ev_rt_now;
233 #define VAR(name,decl) static decl; 734 #define VAR(name,decl) static decl;
234 #include "ev_vars.h" 735 #include "ev_vars.h"
235 #undef VAR 736 #undef VAR
236 737
237 static int default_loop; 738 static int ev_default_loop_ptr;
238 739
239#endif 740#endif
741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
240 753
241/*****************************************************************************/ 754/*****************************************************************************/
242 755
243inline ev_tstamp 756#ifndef EV_HAVE_EV_TIME
757ev_tstamp
244ev_time (void) 758ev_time (void)
245{ 759{
246#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
247 struct timespec ts; 763 struct timespec ts;
248 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
249 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
250#else 766 }
767#endif
768
251 struct timeval tv; 769 struct timeval tv;
252 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
253 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
254#endif
255} 772}
773#endif
256 774
257inline ev_tstamp 775inline_size ev_tstamp
258get_clock (void) 776get_clock (void)
259{ 777{
260#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
261 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
262 { 780 {
267#endif 785#endif
268 786
269 return ev_time (); 787 return ev_time ();
270} 788}
271 789
790#if EV_MULTIPLICITY
272ev_tstamp 791ev_tstamp
273ev_now (EV_P) 792ev_now (EV_P)
274{ 793{
275 return rt_now; 794 return ev_rt_now;
276} 795}
796#endif
277 797
278#define array_roundsize(type,n) ((n) | 4 & ~3) 798void
799ev_sleep (ev_tstamp delay)
800{
801 if (delay > 0.)
802 {
803#if EV_USE_NANOSLEEP
804 struct timespec ts;
805
806 EV_TS_SET (ts, delay);
807 nanosleep (&ts, 0);
808#elif defined(_WIN32)
809 Sleep ((unsigned long)(delay * 1e3));
810#else
811 struct timeval tv;
812
813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
814 /* something not guaranteed by newer posix versions, but guaranteed */
815 /* by older ones */
816 EV_TV_SET (tv, delay);
817 select (0, 0, 0, 0, &tv);
818#endif
819 }
820}
821
822/*****************************************************************************/
823
824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
825
826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
829array_nextsize (int elem, int cur, int cnt)
830{
831 int ncur = cur + 1;
832
833 do
834 ncur <<= 1;
835 while (cnt > ncur);
836
837 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
838 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
839 {
840 ncur *= elem;
841 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
842 ncur = ncur - sizeof (void *) * 4;
843 ncur /= elem;
844 }
845
846 return ncur;
847}
848
849static noinline void *
850array_realloc (int elem, void *base, int *cur, int cnt)
851{
852 *cur = array_nextsize (elem, *cur, cnt);
853 return ev_realloc (base, elem * *cur);
854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
279 858
280#define array_needsize(type,base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
281 if (expect_false ((cnt) > cur)) \ 860 if (expect_false ((cnt) > (cur))) \
282 { \ 861 { \
283 int newcnt = cur; \ 862 int ocur_ = (cur); \
284 do \ 863 (base) = (type *)array_realloc \
285 { \ 864 (sizeof (type), (base), &(cur), (cnt)); \
286 newcnt = array_roundsize (type, newcnt << 1); \ 865 init ((base) + (ocur_), (cur) - ocur_); \
287 } \
288 while ((cnt) > newcnt); \
289 \
290 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
291 init (base + cur, newcnt - cur); \
292 cur = newcnt; \
293 } 866 }
294 867
868#if 0
295#define array_slim(type,stem) \ 869#define array_slim(type,stem) \
296 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 870 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
297 { \ 871 { \
298 stem ## max = array_roundsize (stem ## cnt >> 1); \ 872 stem ## max = array_roundsize (stem ## cnt >> 1); \
299 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 873 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
300 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
301 } 875 }
302 876#endif
303/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
304/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
305#define array_free_microshit(stem) \
306 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
307 877
308#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
309 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
310 880
311/*****************************************************************************/ 881/*****************************************************************************/
312 882
313static void 883/* dummy callback for pending events */
314anfds_init (ANFD *base, int count) 884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
315{ 886{
316 while (count--)
317 {
318 base->head = 0;
319 base->events = EV_NONE;
320 base->reify = 0;
321
322 ++base;
323 }
324} 887}
325 888
326void 889void noinline
327ev_feed_event (EV_P_ void *w, int revents) 890ev_feed_event (EV_P_ void *w, int revents)
328{ 891{
329 W w_ = (W)w; 892 W w_ = (W)w;
893 int pri = ABSPRI (w_);
330 894
331 if (w_->pending) 895 if (expect_false (w_->pending))
896 pendings [pri][w_->pending - 1].events |= revents;
897 else
332 { 898 {
899 w_->pending = ++pendingcnt [pri];
900 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
901 pendings [pri][w_->pending - 1].w = w_;
333 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 902 pendings [pri][w_->pending - 1].events = revents;
334 return;
335 } 903 }
336
337 w_->pending = ++pendingcnt [ABSPRI (w_)];
338 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
339 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
340 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
341} 904}
342 905
343static void 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
344queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
345{ 923{
346 int i; 924 int i;
347 925
348 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
349 ev_feed_event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
350} 928}
351 929
930/*****************************************************************************/
931
352inline void 932inline_speed void
353fd_event (EV_P_ int fd, int revents) 933fd_event_nocheck (EV_P_ int fd, int revents)
354{ 934{
355 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
356 struct ev_io *w; 936 ev_io *w;
357 937
358 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
359 { 939 {
360 int ev = w->events & revents; 940 int ev = w->events & revents;
361 941
362 if (ev) 942 if (ev)
363 ev_feed_event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
364 } 944 }
365} 945}
366 946
947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
953
954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
367void 958void
368ev_feed_fd_event (EV_P_ int fd, int revents) 959ev_feed_fd_event (EV_P_ int fd, int revents)
369{ 960{
961 if (fd >= 0 && fd < anfdmax)
370 fd_event (EV_A_ fd, revents); 962 fd_event_nocheck (EV_A_ fd, revents);
371} 963}
372 964
373/*****************************************************************************/ 965/* make sure the external fd watch events are in-sync */
374 966/* with the kernel/libev internal state */
375static void 967inline_size void
376fd_reify (EV_P) 968fd_reify (EV_P)
377{ 969{
378 int i; 970 int i;
379 971
380 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
381 { 973 {
382 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
383 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
384 struct ev_io *w; 976 ev_io *w;
385 977
386 int events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
387 980
388 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
389 events |= w->events;
390
391 anfd->reify = 0; 981 anfd->reify = 0;
392 982
393 method_modify (EV_A_ fd, anfd->events, events); 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
984 if (o_reify & EV__IOFDSET)
985 {
986 unsigned long arg;
987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
990 }
991#endif
992
993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
994 {
394 anfd->events = events; 995 anfd->events = 0;
996
997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
1005 backend_modify (EV_A_ fd, o_events, anfd->events);
395 } 1006 }
396 1007
397 fdchangecnt = 0; 1008 fdchangecnt = 0;
398} 1009}
399 1010
400static void 1011/* something about the given fd changed */
1012inline_size void
401fd_change (EV_P_ int fd) 1013fd_change (EV_P_ int fd, int flags)
402{ 1014{
403 if (anfds [fd].reify) 1015 unsigned char reify = anfds [fd].reify;
404 return;
405
406 anfds [fd].reify = 1; 1016 anfds [fd].reify |= flags;
407 1017
1018 if (expect_true (!reify))
1019 {
408 ++fdchangecnt; 1020 ++fdchangecnt;
409 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
410 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
1023 }
411} 1024}
412 1025
413static void 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
414fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
415{ 1029{
416 struct ev_io *w; 1030 ev_io *w;
417 1031
418 while ((w = (struct ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
419 { 1033 {
420 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
421 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
422 } 1036 }
423} 1037}
424 1038
425static int 1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
426fd_valid (int fd) 1041fd_valid (int fd)
427{ 1042{
428#ifdef WIN32 1043#ifdef _WIN32
429 return !!win32_get_osfhandle (fd); 1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
430#else 1045#else
431 return fcntl (fd, F_GETFD) != -1; 1046 return fcntl (fd, F_GETFD) != -1;
432#endif 1047#endif
433} 1048}
434 1049
435/* called on EBADF to verify fds */ 1050/* called on EBADF to verify fds */
436static void 1051static void noinline
437fd_ebadf (EV_P) 1052fd_ebadf (EV_P)
438{ 1053{
439 int fd; 1054 int fd;
440 1055
441 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
442 if (anfds [fd].events) 1057 if (anfds [fd].events)
443 if (!fd_valid (fd) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
444 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
445} 1060}
446 1061
447/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
448static void 1063static void noinline
449fd_enomem (EV_P) 1064fd_enomem (EV_P)
450{ 1065{
451 int fd; 1066 int fd;
452 1067
453 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
454 if (anfds [fd].events) 1069 if (anfds [fd].events)
455 { 1070 {
456 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
457 return; 1072 break;
458 } 1073 }
459} 1074}
460 1075
461/* usually called after fork if method needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
462static void 1077static void noinline
463fd_rearm_all (EV_P) 1078fd_rearm_all (EV_P)
464{ 1079{
465 int fd; 1080 int fd;
466 1081
467 /* this should be highly optimised to not do anything but set a flag */
468 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
469 if (anfds [fd].events) 1083 if (anfds [fd].events)
470 { 1084 {
471 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
472 fd_change (EV_A_ fd); 1086 anfds [fd].emask = 0;
1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
473 } 1088 }
474} 1089}
475 1090
1091/* used to prepare libev internal fd's */
1092/* this is not fork-safe */
1093inline_speed void
1094fd_intern (int fd)
1095{
1096#ifdef _WIN32
1097 unsigned long arg = 1;
1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1099#else
1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
1101 fcntl (fd, F_SETFL, O_NONBLOCK);
1102#endif
1103}
1104
476/*****************************************************************************/ 1105/*****************************************************************************/
477 1106
1107/*
1108 * the heap functions want a real array index. array index 0 is guaranteed to not
1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1110 * the branching factor of the d-tree.
1111 */
1112
1113/*
1114 * at the moment we allow libev the luxury of two heaps,
1115 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1116 * which is more cache-efficient.
1117 * the difference is about 5% with 50000+ watchers.
1118 */
1119#if EV_USE_4HEAP
1120
1121#define DHEAP 4
1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1124#define UPHEAP_DONE(p,k) ((p) == (k))
1125
1126/* away from the root */
1127inline_speed void
1128downheap (ANHE *heap, int N, int k)
1129{
1130 ANHE he = heap [k];
1131 ANHE *E = heap + N + HEAP0;
1132
1133 for (;;)
1134 {
1135 ev_tstamp minat;
1136 ANHE *minpos;
1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1138
1139 /* find minimum child */
1140 if (expect_true (pos + DHEAP - 1 < E))
1141 {
1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else if (pos < E)
1148 {
1149 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else
1155 break;
1156
1157 if (ANHE_at (he) <= minat)
1158 break;
1159
1160 heap [k] = *minpos;
1161 ev_active (ANHE_w (*minpos)) = k;
1162
1163 k = minpos - heap;
1164 }
1165
1166 heap [k] = he;
1167 ev_active (ANHE_w (he)) = k;
1168}
1169
1170#else /* 4HEAP */
1171
1172#define HEAP0 1
1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
1175
1176/* away from the root */
1177inline_speed void
1178downheap (ANHE *heap, int N, int k)
1179{
1180 ANHE he = heap [k];
1181
1182 for (;;)
1183 {
1184 int c = k << 1;
1185
1186 if (c >= N + HEAP0)
1187 break;
1188
1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1190 ? 1 : 0;
1191
1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
1193 break;
1194
1195 heap [k] = heap [c];
1196 ev_active (ANHE_w (heap [k])) = k;
1197
1198 k = c;
1199 }
1200
1201 heap [k] = he;
1202 ev_active (ANHE_w (he)) = k;
1203}
1204#endif
1205
1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
1230adjustheap (ANHE *heap, int N, int k)
1231{
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1233 upheap (heap, k);
1234 else
1235 downheap (heap, N, k);
1236}
1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
1248}
1249
1250/*****************************************************************************/
1251
1252/* associate signal watchers to a signal signal */
1253typedef struct
1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
1259 WL head;
1260} ANSIG;
1261
1262static ANSIG signals [EV_NSIG - 1];
1263
1264/*****************************************************************************/
1265
1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1267
1268static void noinline
1269evpipe_init (EV_P)
1270{
1271 if (!ev_is_active (&pipe_w))
1272 {
1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
1279 {
1280 evpipe [0] = -1;
1281 fd_intern (evfd); /* doing it twice doesn't hurt */
1282 ev_io_set (&pipe_w, evfd, EV_READ);
1283 }
1284 else
1285# endif
1286 {
1287 while (pipe (evpipe))
1288 ev_syserr ("(libev) error creating signal/async pipe");
1289
1290 fd_intern (evpipe [0]);
1291 fd_intern (evpipe [1]);
1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1293 }
1294
1295 ev_io_start (EV_A_ &pipe_w);
1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1297 }
1298}
1299
1300inline_size void
1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1302{
1303 if (!*flag)
1304 {
1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1307
1308 *flag = 1;
1309
1310#if EV_USE_EVENTFD
1311 if (evfd >= 0)
1312 {
1313 uint64_t counter = 1;
1314 write (evfd, &counter, sizeof (uint64_t));
1315 }
1316 else
1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1323 write (evpipe [1], &dummy, 1);
1324
1325 errno = old_errno;
1326 }
1327}
1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
478static void 1331static void
479upheap (WT *heap, int k) 1332pipecb (EV_P_ ev_io *iow, int revents)
480{ 1333{
481 WT w = heap [k]; 1334 int i;
482 1335
483 while (k && heap [k >> 1]->at > w->at) 1336#if EV_USE_EVENTFD
484 { 1337 if (evfd >= 0)
485 heap [k] = heap [k >> 1];
486 ((W)heap [k])->active = k + 1;
487 k >>= 1;
488 } 1338 {
1339 uint64_t counter;
1340 read (evfd, &counter, sizeof (uint64_t));
1341 }
1342 else
1343#endif
1344 {
1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1347 read (evpipe [0], &dummy, 1);
1348 }
489 1349
490 heap [k] = w; 1350 if (sig_pending)
491 ((W)heap [k])->active = k + 1; 1351 {
1352 sig_pending = 0;
492 1353
1354 for (i = EV_NSIG - 1; i--; )
1355 if (expect_false (signals [i].pending))
1356 ev_feed_signal_event (EV_A_ i + 1);
1357 }
1358
1359#if EV_ASYNC_ENABLE
1360 if (async_pending)
1361 {
1362 async_pending = 0;
1363
1364 for (i = asynccnt; i--; )
1365 if (asyncs [i]->sent)
1366 {
1367 asyncs [i]->sent = 0;
1368 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1369 }
1370 }
1371#endif
493} 1372}
1373
1374/*****************************************************************************/
494 1375
495static void 1376static void
496downheap (WT *heap, int N, int k)
497{
498 WT w = heap [k];
499
500 while (k < (N >> 1))
501 {
502 int j = k << 1;
503
504 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
505 ++j;
506
507 if (w->at <= heap [j]->at)
508 break;
509
510 heap [k] = heap [j];
511 ((W)heap [k])->active = k + 1;
512 k = j;
513 }
514
515 heap [k] = w;
516 ((W)heap [k])->active = k + 1;
517}
518
519/*****************************************************************************/
520
521typedef struct
522{
523 WL head;
524 sig_atomic_t volatile gotsig;
525} ANSIG;
526
527static ANSIG *signals;
528static int signalmax;
529
530static int sigpipe [2];
531static sig_atomic_t volatile gotsig;
532static struct ev_io sigev;
533
534static void
535signals_init (ANSIG *base, int count)
536{
537 while (count--)
538 {
539 base->head = 0;
540 base->gotsig = 0;
541
542 ++base;
543 }
544}
545
546static void
547sighandler (int signum) 1377ev_sighandler (int signum)
548{ 1378{
549#if WIN32 1379#if EV_MULTIPLICITY
550 signal (signum, sighandler); 1380 EV_P = signals [signum - 1].loop;
551#endif 1381#endif
552 1382
553 signals [signum - 1].gotsig = 1;
554
555 if (!gotsig)
556 {
557 int old_errno = errno;
558 gotsig = 1;
559#ifdef WIN32 1383#ifdef _WIN32
560 send (sigpipe [1], &signum, 1, MSG_DONTWAIT); 1384 signal (signum, ev_sighandler);
561#else
562 write (sigpipe [1], &signum, 1);
563#endif 1385#endif
564 errno = old_errno;
565 }
566}
567 1386
568void 1387 signals [signum - 1].pending = 1;
1388 evpipe_write (EV_A_ &sig_pending);
1389}
1390
1391void noinline
569ev_feed_signal_event (EV_P_ int signum) 1392ev_feed_signal_event (EV_P_ int signum)
570{ 1393{
571 WL w; 1394 WL w;
572 1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
573#if EV_MULTIPLICITY 1401#if EV_MULTIPLICITY
574 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1402 /* it is permissible to try to feed a signal to the wrong loop */
575#endif 1403 /* or, likely more useful, feeding a signal nobody is waiting for */
576 1404
577 --signum; 1405 if (expect_false (signals [signum].loop != EV_A))
578
579 if (signum < 0 || signum >= signalmax)
580 return; 1406 return;
1407#endif
581 1408
582 signals [signum].gotsig = 0; 1409 signals [signum].pending = 0;
583 1410
584 for (w = signals [signum].head; w; w = w->next) 1411 for (w = signals [signum].head; w; w = w->next)
585 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
586} 1413}
587 1414
1415#if EV_USE_SIGNALFD
588static void 1416static void
589sigcb (EV_P_ struct ev_io *iow, int revents) 1417sigfdcb (EV_P_ ev_io *iow, int revents)
590{ 1418{
591 int signum; 1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
592 1420
593#ifdef WIN32 1421 for (;;)
594 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1422 {
595#else 1423 ssize_t res = read (sigfd, si, sizeof (si));
596 read (sigpipe [0], &revents, 1);
597#endif
598 gotsig = 0;
599 1424
600 for (signum = signalmax; signum--; ) 1425 /* not ISO-C, as res might be -1, but works with SuS */
601 if (signals [signum].gotsig) 1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
602 ev_feed_signal_event (EV_A_ signum + 1); 1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
603}
604 1428
605static void 1429 if (res < (ssize_t)sizeof (si))
606siginit (EV_P) 1430 break;
607{ 1431 }
608#ifndef WIN32
609 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
610 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
611
612 /* rather than sort out wether we really need nb, set it */
613 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
614 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
615#endif
616
617 ev_io_set (&sigev, sigpipe [0], EV_READ);
618 ev_io_start (EV_A_ &sigev);
619 ev_unref (EV_A); /* child watcher should not keep loop alive */
620} 1432}
1433#endif
1434
1435#endif
621 1436
622/*****************************************************************************/ 1437/*****************************************************************************/
623 1438
624static struct ev_child *childs [PID_HASHSIZE]; 1439#if EV_CHILD_ENABLE
1440static WL childs [EV_PID_HASHSIZE];
625 1441
626#ifndef WIN32
627
628static struct ev_signal childev; 1442static ev_signal childev;
1443
1444#ifndef WIFCONTINUED
1445# define WIFCONTINUED(status) 0
1446#endif
1447
1448/* handle a single child status event */
1449inline_speed void
1450child_reap (EV_P_ int chain, int pid, int status)
1451{
1452 ev_child *w;
1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1454
1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1456 {
1457 if ((w->pid == pid || !w->pid)
1458 && (!traced || (w->flags & 1)))
1459 {
1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1461 w->rpid = pid;
1462 w->rstatus = status;
1463 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1464 }
1465 }
1466}
629 1467
630#ifndef WCONTINUED 1468#ifndef WCONTINUED
631# define WCONTINUED 0 1469# define WCONTINUED 0
632#endif 1470#endif
633 1471
1472/* called on sigchld etc., calls waitpid */
634static void 1473static void
635child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
636{
637 struct ev_child *w;
638
639 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
640 if (w->pid == pid || !w->pid)
641 {
642 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
643 w->rpid = pid;
644 w->rstatus = status;
645 ev_feed_event (EV_A_ (W)w, EV_CHILD);
646 }
647}
648
649static void
650childcb (EV_P_ struct ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
651{ 1475{
652 int pid, status; 1476 int pid, status;
653 1477
1478 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
654 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1479 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
655 { 1480 if (!WCONTINUED
1481 || errno != EINVAL
1482 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1483 return;
1484
656 /* make sure we are called again until all childs have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
1486 /* we need to do it this way so that the callback gets called before we continue */
657 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
658 1488
659 child_reap (EV_A_ sw, pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
1490 if ((EV_PID_HASHSIZE) > 1)
660 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
661 }
662} 1492}
663 1493
664#endif 1494#endif
665 1495
666/*****************************************************************************/ 1496/*****************************************************************************/
667 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
1501#if EV_USE_PORT
1502# include "ev_port.c"
1503#endif
668#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
669# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
670#endif 1506#endif
671#if EV_USE_EPOLL 1507#if EV_USE_EPOLL
672# include "ev_epoll.c" 1508# include "ev_epoll.c"
689{ 1525{
690 return EV_VERSION_MINOR; 1526 return EV_VERSION_MINOR;
691} 1527}
692 1528
693/* return true if we are running with elevated privileges and should ignore env variables */ 1529/* return true if we are running with elevated privileges and should ignore env variables */
694static int 1530int inline_size
695enable_secure (void) 1531enable_secure (void)
696{ 1532{
697#ifdef WIN32 1533#ifdef _WIN32
698 return 0; 1534 return 0;
699#else 1535#else
700 return getuid () != geteuid () 1536 return getuid () != geteuid ()
701 || getgid () != getegid (); 1537 || getgid () != getegid ();
702#endif 1538#endif
703} 1539}
704 1540
705int 1541unsigned int
1542ev_supported_backends (void)
1543{
1544 unsigned int flags = 0;
1545
1546 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1547 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1548 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1549 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1550 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1551
1552 return flags;
1553}
1554
1555unsigned int
1556ev_recommended_backends (void)
1557{
1558 unsigned int flags = ev_supported_backends ();
1559
1560#ifndef __NetBSD__
1561 /* kqueue is borked on everything but netbsd apparently */
1562 /* it usually doesn't work correctly on anything but sockets and pipes */
1563 flags &= ~EVBACKEND_KQUEUE;
1564#endif
1565#ifdef __APPLE__
1566 /* only select works correctly on that "unix-certified" platform */
1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1572#endif
1573
1574 return flags;
1575}
1576
1577unsigned int
1578ev_embeddable_backends (void)
1579{
1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1581
1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1584 flags &= ~EVBACKEND_EPOLL;
1585
1586 return flags;
1587}
1588
1589unsigned int
1590ev_backend (EV_P)
1591{
1592 return backend;
1593}
1594
1595#if EV_FEATURE_API
1596unsigned int
1597ev_iteration (EV_P)
1598{
1599 return loop_count;
1600}
1601
1602unsigned int
706ev_method (EV_P) 1603ev_depth (EV_P)
707{ 1604{
708 return method; 1605 return loop_depth;
709} 1606}
710 1607
711static void 1608void
712loop_init (EV_P_ int methods) 1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
713{ 1610{
714 if (!method) 1611 io_blocktime = interval;
1612}
1613
1614void
1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1616{
1617 timeout_blocktime = interval;
1618}
1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
1645static void noinline
1646loop_init (EV_P_ unsigned int flags)
1647{
1648 if (!backend)
715 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
716#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
1662 {
1663 struct timespec ts;
1664
1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1666 have_monotonic = 1;
1667 }
1668#endif
1669
1670 /* pid check not overridable via env */
1671#ifndef _WIN32
1672 if (flags & EVFLAG_FORKCHECK)
1673 curpid = getpid ();
1674#endif
1675
1676 if (!(flags & EVFLAG_NOENV)
1677 && !enable_secure ()
1678 && getenv ("LIBEV_FLAGS"))
1679 flags = atoi (getenv ("LIBEV_FLAGS"));
1680
1681 ev_rt_now = ev_time ();
1682 mn_now = get_clock ();
1683 now_floor = mn_now;
1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1688
1689 io_blocktime = 0.;
1690 timeout_blocktime = 0.;
1691 backend = 0;
1692 backend_fd = -1;
1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1697#if EV_USE_INOTIFY
1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1699#endif
1700#if EV_USE_SIGNALFD
1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1702#endif
1703
1704 if (!(flags & 0x0000ffffU))
1705 flags |= ev_recommended_backends ();
1706
1707#if EV_USE_IOCP
1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709#endif
1710#if EV_USE_PORT
1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1712#endif
1713#if EV_USE_KQUEUE
1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1715#endif
1716#if EV_USE_EPOLL
1717 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1718#endif
1719#if EV_USE_POLL
1720 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1721#endif
1722#if EV_USE_SELECT
1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1724#endif
1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1729 ev_init (&pipe_w, pipecb);
1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
1732 }
1733}
1734
1735/* free up a loop structure */
1736void
1737ev_loop_destroy (EV_P)
1738{
1739 int i;
1740
1741#if EV_CLEANUP_ENABLE
1742 /* queue cleanup watchers (and execute them) */
1743 if (expect_false (cleanupcnt))
1744 {
1745 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1746 EV_INVOKE_PENDING;
1747 }
1748#endif
1749
1750#if EV_CHILD_ENABLE
1751 if (ev_is_active (&childev))
1752 {
1753 ev_ref (EV_A); /* child watcher */
1754 ev_signal_stop (EV_A_ &childev);
1755 }
1756#endif
1757
1758 if (ev_is_active (&pipe_w))
1759 {
1760 /*ev_ref (EV_A);*/
1761 /*ev_io_stop (EV_A_ &pipe_w);*/
1762
1763#if EV_USE_EVENTFD
1764 if (evfd >= 0)
1765 close (evfd);
1766#endif
1767
1768 if (evpipe [0] >= 0)
1769 {
1770 EV_WIN32_CLOSE_FD (evpipe [0]);
1771 EV_WIN32_CLOSE_FD (evpipe [1]);
1772 }
1773 }
1774
1775#if EV_USE_SIGNALFD
1776 if (ev_is_active (&sigfd_w))
1777 close (sigfd);
1778#endif
1779
1780#if EV_USE_INOTIFY
1781 if (fs_fd >= 0)
1782 close (fs_fd);
1783#endif
1784
1785 if (backend_fd >= 0)
1786 close (backend_fd);
1787
1788#if EV_USE_IOCP
1789 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1790#endif
1791#if EV_USE_PORT
1792 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1793#endif
1794#if EV_USE_KQUEUE
1795 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1796#endif
1797#if EV_USE_EPOLL
1798 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1799#endif
1800#if EV_USE_POLL
1801 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1802#endif
1803#if EV_USE_SELECT
1804 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1805#endif
1806
1807 for (i = NUMPRI; i--; )
1808 {
1809 array_free (pending, [i]);
1810#if EV_IDLE_ENABLE
1811 array_free (idle, [i]);
1812#endif
1813 }
1814
1815 ev_free (anfds); anfds = 0; anfdmax = 0;
1816
1817 /* have to use the microsoft-never-gets-it-right macro */
1818 array_free (rfeed, EMPTY);
1819 array_free (fdchange, EMPTY);
1820 array_free (timer, EMPTY);
1821#if EV_PERIODIC_ENABLE
1822 array_free (periodic, EMPTY);
1823#endif
1824#if EV_FORK_ENABLE
1825 array_free (fork, EMPTY);
1826#endif
1827#if EV_CLEANUP_ENABLE
1828 array_free (cleanup, EMPTY);
1829#endif
1830 array_free (prepare, EMPTY);
1831 array_free (check, EMPTY);
1832#if EV_ASYNC_ENABLE
1833 array_free (async, EMPTY);
1834#endif
1835
1836 backend = 0;
1837
1838#if EV_MULTIPLICITY
1839 if (ev_is_default_loop (EV_A))
1840#endif
1841 ev_default_loop_ptr = 0;
1842#if EV_MULTIPLICITY
1843 else
1844 ev_free (EV_A);
1845#endif
1846}
1847
1848#if EV_USE_INOTIFY
1849inline_size void infy_fork (EV_P);
1850#endif
1851
1852inline_size void
1853loop_fork (EV_P)
1854{
1855#if EV_USE_PORT
1856 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1857#endif
1858#if EV_USE_KQUEUE
1859 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1860#endif
1861#if EV_USE_EPOLL
1862 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1863#endif
1864#if EV_USE_INOTIFY
1865 infy_fork (EV_A);
1866#endif
1867
1868 if (ev_is_active (&pipe_w))
1869 {
1870 /* this "locks" the handlers against writing to the pipe */
1871 /* while we modify the fd vars */
1872 sig_pending = 1;
1873#if EV_ASYNC_ENABLE
1874 async_pending = 1;
1875#endif
1876
1877 ev_ref (EV_A);
1878 ev_io_stop (EV_A_ &pipe_w);
1879
1880#if EV_USE_EVENTFD
1881 if (evfd >= 0)
1882 close (evfd);
1883#endif
1884
1885 if (evpipe [0] >= 0)
1886 {
1887 EV_WIN32_CLOSE_FD (evpipe [0]);
1888 EV_WIN32_CLOSE_FD (evpipe [1]);
1889 }
1890
1891#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1892 evpipe_init (EV_A);
1893 /* now iterate over everything, in case we missed something */
1894 pipecb (EV_A_ &pipe_w, EV_READ);
1895#endif
1896 }
1897
1898 postfork = 0;
1899}
1900
1901#if EV_MULTIPLICITY
1902
1903struct ev_loop *
1904ev_loop_new (unsigned int flags)
1905{
1906 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1907
1908 memset (EV_A, 0, sizeof (struct ev_loop));
1909 loop_init (EV_A_ flags);
1910
1911 if (ev_backend (EV_A))
1912 return EV_A;
1913
1914 ev_free (EV_A);
1915 return 0;
1916}
1917
1918#endif /* multiplicity */
1919
1920#if EV_VERIFY
1921static void noinline
1922verify_watcher (EV_P_ W w)
1923{
1924 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1925
1926 if (w->pending)
1927 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1928}
1929
1930static void noinline
1931verify_heap (EV_P_ ANHE *heap, int N)
1932{
1933 int i;
1934
1935 for (i = HEAP0; i < N + HEAP0; ++i)
1936 {
1937 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1938 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1939 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1940
1941 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1942 }
1943}
1944
1945static void noinline
1946array_verify (EV_P_ W *ws, int cnt)
1947{
1948 while (cnt--)
1949 {
1950 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1951 verify_watcher (EV_A_ ws [cnt]);
1952 }
1953}
1954#endif
1955
1956#if EV_FEATURE_API
1957void
1958ev_verify (EV_P)
1959{
1960#if EV_VERIFY
1961 int i;
1962 WL w;
1963
1964 assert (activecnt >= -1);
1965
1966 assert (fdchangemax >= fdchangecnt);
1967 for (i = 0; i < fdchangecnt; ++i)
1968 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1969
1970 assert (anfdmax >= 0);
1971 for (i = 0; i < anfdmax; ++i)
1972 for (w = anfds [i].head; w; w = w->next)
717 { 1973 {
718 struct timespec ts; 1974 verify_watcher (EV_A_ (W)w);
719 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1975 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
720 have_monotonic = 1; 1976 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
721 } 1977 }
722#endif
723 1978
724 rt_now = ev_time (); 1979 assert (timermax >= timercnt);
725 mn_now = get_clock (); 1980 verify_heap (EV_A_ timers, timercnt);
726 now_floor = mn_now;
727 rtmn_diff = rt_now - mn_now;
728 1981
729 if (methods == EVMETHOD_AUTO) 1982#if EV_PERIODIC_ENABLE
730 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1983 assert (periodicmax >= periodiccnt);
731 methods = atoi (getenv ("LIBEV_METHODS")); 1984 verify_heap (EV_A_ periodics, periodiccnt);
732 else
733 methods = EVMETHOD_ANY;
734
735 method = 0;
736#if EV_USE_WIN32
737 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
738#endif
739#if EV_USE_KQUEUE
740 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
741#endif
742#if EV_USE_EPOLL
743 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
744#endif
745#if EV_USE_POLL
746 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
747#endif
748#if EV_USE_SELECT
749 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
750#endif
751
752 ev_watcher_init (&sigev, sigcb);
753 ev_set_priority (&sigev, EV_MAXPRI);
754 }
755}
756
757void
758loop_destroy (EV_P)
759{
760 int i;
761
762#if EV_USE_WIN32
763 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
764#endif
765#if EV_USE_KQUEUE
766 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
767#endif
768#if EV_USE_EPOLL
769 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
770#endif
771#if EV_USE_POLL
772 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
773#endif
774#if EV_USE_SELECT
775 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
776#endif 1985#endif
777 1986
778 for (i = NUMPRI; i--; ) 1987 for (i = NUMPRI; i--; )
779 array_free (pending, [i]); 1988 {
1989 assert (pendingmax [i] >= pendingcnt [i]);
1990#if EV_IDLE_ENABLE
1991 assert (idleall >= 0);
1992 assert (idlemax [i] >= idlecnt [i]);
1993 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1994#endif
1995 }
780 1996
781 /* have to use the microsoft-never-gets-it-right macro */ 1997#if EV_FORK_ENABLE
782 array_free_microshit (fdchange); 1998 assert (forkmax >= forkcnt);
783 array_free_microshit (timer); 1999 array_verify (EV_A_ (W *)forks, forkcnt);
784 array_free_microshit (periodic); 2000#endif
785 array_free_microshit (idle);
786 array_free_microshit (prepare);
787 array_free_microshit (check);
788 2001
789 method = 0; 2002#if EV_CLEANUP_ENABLE
790} 2003 assert (cleanupmax >= cleanupcnt);
2004 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2005#endif
791 2006
792static void 2007#if EV_ASYNC_ENABLE
793loop_fork (EV_P) 2008 assert (asyncmax >= asynccnt);
794{ 2009 array_verify (EV_A_ (W *)asyncs, asynccnt);
795#if EV_USE_EPOLL 2010#endif
796 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 2011
2012#if EV_PREPARE_ENABLE
2013 assert (preparemax >= preparecnt);
2014 array_verify (EV_A_ (W *)prepares, preparecnt);
2015#endif
2016
2017#if EV_CHECK_ENABLE
2018 assert (checkmax >= checkcnt);
2019 array_verify (EV_A_ (W *)checks, checkcnt);
2020#endif
2021
2022# if 0
2023#if EV_CHILD_ENABLE
2024 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2025 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2026#endif
797#endif 2027# endif
798#if EV_USE_KQUEUE
799 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
800#endif 2028#endif
801
802 if (ev_is_active (&sigev))
803 {
804 /* default loop */
805
806 ev_ref (EV_A);
807 ev_io_stop (EV_A_ &sigev);
808 close (sigpipe [0]);
809 close (sigpipe [1]);
810
811 while (pipe (sigpipe))
812 syserr ("(libev) error creating pipe");
813
814 siginit (EV_A);
815 }
816
817 postfork = 0;
818} 2029}
819
820#if EV_MULTIPLICITY
821struct ev_loop *
822ev_loop_new (int methods)
823{
824 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
825
826 memset (loop, 0, sizeof (struct ev_loop));
827
828 loop_init (EV_A_ methods);
829
830 if (ev_method (EV_A))
831 return loop;
832
833 return 0;
834}
835
836void
837ev_loop_destroy (EV_P)
838{
839 loop_destroy (EV_A);
840 ev_free (loop);
841}
842
843void
844ev_loop_fork (EV_P)
845{
846 postfork = 1;
847}
848
849#endif 2030#endif
850 2031
851#if EV_MULTIPLICITY 2032#if EV_MULTIPLICITY
852struct ev_loop * 2033struct ev_loop *
853#else 2034#else
854int 2035int
855#endif 2036#endif
856ev_default_loop (int methods) 2037ev_default_loop (unsigned int flags)
857{ 2038{
858 if (sigpipe [0] == sigpipe [1])
859 if (pipe (sigpipe))
860 return 0;
861
862 if (!default_loop) 2039 if (!ev_default_loop_ptr)
863 { 2040 {
864#if EV_MULTIPLICITY 2041#if EV_MULTIPLICITY
865 struct ev_loop *loop = default_loop = &default_loop_struct; 2042 EV_P = ev_default_loop_ptr = &default_loop_struct;
866#else 2043#else
867 default_loop = 1; 2044 ev_default_loop_ptr = 1;
868#endif 2045#endif
869 2046
870 loop_init (EV_A_ methods); 2047 loop_init (EV_A_ flags);
871 2048
872 if (ev_method (EV_A)) 2049 if (ev_backend (EV_A))
873 { 2050 {
874 siginit (EV_A); 2051#if EV_CHILD_ENABLE
875
876#ifndef WIN32
877 ev_signal_init (&childev, childcb, SIGCHLD); 2052 ev_signal_init (&childev, childcb, SIGCHLD);
878 ev_set_priority (&childev, EV_MAXPRI); 2053 ev_set_priority (&childev, EV_MAXPRI);
879 ev_signal_start (EV_A_ &childev); 2054 ev_signal_start (EV_A_ &childev);
880 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2055 ev_unref (EV_A); /* child watcher should not keep loop alive */
881#endif 2056#endif
882 } 2057 }
883 else 2058 else
884 default_loop = 0; 2059 ev_default_loop_ptr = 0;
885 } 2060 }
886 2061
887 return default_loop; 2062 return ev_default_loop_ptr;
888} 2063}
889 2064
890void 2065void
891ev_default_destroy (void) 2066ev_loop_fork (EV_P)
892{ 2067{
893#if EV_MULTIPLICITY 2068 postfork = 1; /* must be in line with ev_default_fork */
894 struct ev_loop *loop = default_loop;
895#endif
896
897#ifndef WIN32
898 ev_ref (EV_A); /* child watcher */
899 ev_signal_stop (EV_A_ &childev);
900#endif
901
902 ev_ref (EV_A); /* signal watcher */
903 ev_io_stop (EV_A_ &sigev);
904
905 close (sigpipe [0]); sigpipe [0] = 0;
906 close (sigpipe [1]); sigpipe [1] = 0;
907
908 loop_destroy (EV_A);
909}
910
911void
912ev_default_fork (void)
913{
914#if EV_MULTIPLICITY
915 struct ev_loop *loop = default_loop;
916#endif
917
918 if (method)
919 postfork = 1;
920} 2069}
921 2070
922/*****************************************************************************/ 2071/*****************************************************************************/
923 2072
924static int 2073void
925any_pending (EV_P) 2074ev_invoke (EV_P_ void *w, int revents)
2075{
2076 EV_CB_INVOKE ((W)w, revents);
2077}
2078
2079unsigned int
2080ev_pending_count (EV_P)
926{ 2081{
927 int pri; 2082 int pri;
2083 unsigned int count = 0;
928 2084
929 for (pri = NUMPRI; pri--; ) 2085 for (pri = NUMPRI; pri--; )
930 if (pendingcnt [pri]) 2086 count += pendingcnt [pri];
931 return 1;
932 2087
933 return 0; 2088 return count;
934} 2089}
935 2090
936static void 2091void noinline
937call_pending (EV_P) 2092ev_invoke_pending (EV_P)
938{ 2093{
939 int pri; 2094 int pri;
940 2095
941 for (pri = NUMPRI; pri--; ) 2096 for (pri = NUMPRI; pri--; )
942 while (pendingcnt [pri]) 2097 while (pendingcnt [pri])
943 { 2098 {
944 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2099 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
945 2100
946 if (p->w) 2101 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
947 { 2102 /* ^ this is no longer true, as pending_w could be here */
2103
948 p->w->pending = 0; 2104 p->w->pending = 0;
949 p->w->cb (EV_A_ p->w, p->events); 2105 EV_CB_INVOKE (p->w, p->events);
950 } 2106 EV_FREQUENT_CHECK;
951 } 2107 }
952} 2108}
953 2109
954static void 2110#if EV_IDLE_ENABLE
2111/* make idle watchers pending. this handles the "call-idle */
2112/* only when higher priorities are idle" logic */
2113inline_size void
2114idle_reify (EV_P)
2115{
2116 if (expect_false (idleall))
2117 {
2118 int pri;
2119
2120 for (pri = NUMPRI; pri--; )
2121 {
2122 if (pendingcnt [pri])
2123 break;
2124
2125 if (idlecnt [pri])
2126 {
2127 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2128 break;
2129 }
2130 }
2131 }
2132}
2133#endif
2134
2135/* make timers pending */
2136inline_size void
955timers_reify (EV_P) 2137timers_reify (EV_P)
956{ 2138{
2139 EV_FREQUENT_CHECK;
2140
957 while (timercnt && ((WT)timers [0])->at <= mn_now) 2141 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
958 { 2142 {
959 struct ev_timer *w = timers [0]; 2143 do
960
961 assert (("inactive timer on timer heap detected", ev_is_active (w)));
962
963 /* first reschedule or stop timer */
964 if (w->repeat)
965 { 2144 {
2145 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2146
2147 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2148
2149 /* first reschedule or stop timer */
2150 if (w->repeat)
2151 {
2152 ev_at (w) += w->repeat;
2153 if (ev_at (w) < mn_now)
2154 ev_at (w) = mn_now;
2155
966 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2156 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
967 ((WT)w)->at = mn_now + w->repeat; 2157
2158 ANHE_at_cache (timers [HEAP0]);
968 downheap ((WT *)timers, timercnt, 0); 2159 downheap (timers, timercnt, HEAP0);
2160 }
2161 else
2162 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2163
2164 EV_FREQUENT_CHECK;
2165 feed_reverse (EV_A_ (W)w);
969 } 2166 }
970 else 2167 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
971 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
972 2168
973 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2169 feed_reverse_done (EV_A_ EV_TIMER);
974 } 2170 }
975} 2171}
976 2172
977static void 2173#if EV_PERIODIC_ENABLE
2174/* make periodics pending */
2175inline_size void
978periodics_reify (EV_P) 2176periodics_reify (EV_P)
979{ 2177{
2178 EV_FREQUENT_CHECK;
2179
980 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 2180 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
981 { 2181 {
982 struct ev_periodic *w = periodics [0]; 2182 int feed_count = 0;
983 2183
2184 do
2185 {
2186 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2187
984 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2188 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
985 2189
986 /* first reschedule or stop timer */ 2190 /* first reschedule or stop timer */
2191 if (w->reschedule_cb)
2192 {
2193 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2194
2195 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2196
2197 ANHE_at_cache (periodics [HEAP0]);
2198 downheap (periodics, periodiccnt, HEAP0);
2199 }
2200 else if (w->interval)
2201 {
2202 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2203 /* if next trigger time is not sufficiently in the future, put it there */
2204 /* this might happen because of floating point inexactness */
2205 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2206 {
2207 ev_at (w) += w->interval;
2208
2209 /* if interval is unreasonably low we might still have a time in the past */
2210 /* so correct this. this will make the periodic very inexact, but the user */
2211 /* has effectively asked to get triggered more often than possible */
2212 if (ev_at (w) < ev_rt_now)
2213 ev_at (w) = ev_rt_now;
2214 }
2215
2216 ANHE_at_cache (periodics [HEAP0]);
2217 downheap (periodics, periodiccnt, HEAP0);
2218 }
2219 else
2220 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2221
2222 EV_FREQUENT_CHECK;
2223 feed_reverse (EV_A_ (W)w);
2224 }
2225 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2226
2227 feed_reverse_done (EV_A_ EV_PERIODIC);
2228 }
2229}
2230
2231/* simply recalculate all periodics */
2232/* TODO: maybe ensure that at least one event happens when jumping forward? */
2233static void noinline
2234periodics_reschedule (EV_P)
2235{
2236 int i;
2237
2238 /* adjust periodics after time jump */
2239 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2240 {
2241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2242
987 if (w->reschedule_cb) 2243 if (w->reschedule_cb)
988 {
989 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 2244 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
990
991 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
992 downheap ((WT *)periodics, periodiccnt, 0);
993 }
994 else if (w->interval) 2245 else if (w->interval)
995 { 2246 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
996 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
997 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
998 downheap ((WT *)periodics, periodiccnt, 0);
999 }
1000 else
1001 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1002 2247
1003 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2248 ANHE_at_cache (periodics [i]);
1004 } 2249 }
1005}
1006 2250
1007static void 2251 reheap (periodics, periodiccnt);
1008periodics_reschedule (EV_P) 2252}
2253#endif
2254
2255/* adjust all timers by a given offset */
2256static void noinline
2257timers_reschedule (EV_P_ ev_tstamp adjust)
1009{ 2258{
1010 int i; 2259 int i;
1011 2260
1012 /* adjust periodics after time jump */
1013 for (i = 0; i < periodiccnt; ++i) 2261 for (i = 0; i < timercnt; ++i)
1014 {
1015 struct ev_periodic *w = periodics [i];
1016
1017 if (w->reschedule_cb)
1018 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1019 else if (w->interval)
1020 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1021 } 2262 {
1022 2263 ANHE *he = timers + i + HEAP0;
1023 /* now rebuild the heap */ 2264 ANHE_w (*he)->at += adjust;
1024 for (i = periodiccnt >> 1; i--; ) 2265 ANHE_at_cache (*he);
1025 downheap ((WT *)periodics, periodiccnt, i);
1026}
1027
1028inline int
1029time_update_monotonic (EV_P)
1030{
1031 mn_now = get_clock ();
1032
1033 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1034 { 2266 }
1035 rt_now = rtmn_diff + mn_now;
1036 return 0;
1037 }
1038 else
1039 {
1040 now_floor = mn_now;
1041 rt_now = ev_time ();
1042 return 1;
1043 }
1044} 2267}
1045 2268
1046static void 2269/* fetch new monotonic and realtime times from the kernel */
1047time_update (EV_P) 2270/* also detect if there was a timejump, and act accordingly */
2271inline_speed void
2272time_update (EV_P_ ev_tstamp max_block)
1048{ 2273{
1049 int i;
1050
1051#if EV_USE_MONOTONIC 2274#if EV_USE_MONOTONIC
1052 if (expect_true (have_monotonic)) 2275 if (expect_true (have_monotonic))
1053 { 2276 {
1054 if (time_update_monotonic (EV_A)) 2277 int i;
2278 ev_tstamp odiff = rtmn_diff;
2279
2280 mn_now = get_clock ();
2281
2282 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2283 /* interpolate in the meantime */
2284 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1055 { 2285 {
1056 ev_tstamp odiff = rtmn_diff; 2286 ev_rt_now = rtmn_diff + mn_now;
2287 return;
2288 }
1057 2289
2290 now_floor = mn_now;
2291 ev_rt_now = ev_time ();
2292
1058 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2293 /* loop a few times, before making important decisions.
2294 * on the choice of "4": one iteration isn't enough,
2295 * in case we get preempted during the calls to
2296 * ev_time and get_clock. a second call is almost guaranteed
2297 * to succeed in that case, though. and looping a few more times
2298 * doesn't hurt either as we only do this on time-jumps or
2299 * in the unlikely event of having been preempted here.
2300 */
2301 for (i = 4; --i; )
1059 { 2302 {
1060 rtmn_diff = rt_now - mn_now; 2303 rtmn_diff = ev_rt_now - mn_now;
1061 2304
1062 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2305 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1063 return; /* all is well */ 2306 return; /* all is well */
1064 2307
1065 rt_now = ev_time (); 2308 ev_rt_now = ev_time ();
1066 mn_now = get_clock (); 2309 mn_now = get_clock ();
1067 now_floor = mn_now; 2310 now_floor = mn_now;
1068 } 2311 }
1069 2312
2313 /* no timer adjustment, as the monotonic clock doesn't jump */
2314 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2315# if EV_PERIODIC_ENABLE
2316 periodics_reschedule (EV_A);
2317# endif
2318 }
2319 else
2320#endif
2321 {
2322 ev_rt_now = ev_time ();
2323
2324 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2325 {
2326 /* adjust timers. this is easy, as the offset is the same for all of them */
2327 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2328#if EV_PERIODIC_ENABLE
1070 periodics_reschedule (EV_A); 2329 periodics_reschedule (EV_A);
1071 /* no timer adjustment, as the monotonic clock doesn't jump */ 2330#endif
1072 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1073 } 2331 }
1074 }
1075 else
1076#endif
1077 {
1078 rt_now = ev_time ();
1079 2332
1080 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1081 {
1082 periodics_reschedule (EV_A);
1083
1084 /* adjust timers. this is easy, as the offset is the same for all */
1085 for (i = 0; i < timercnt; ++i)
1086 ((WT)timers [i])->at += rt_now - mn_now;
1087 }
1088
1089 mn_now = rt_now; 2333 mn_now = ev_rt_now;
1090 } 2334 }
1091} 2335}
1092 2336
1093void 2337void
1094ev_ref (EV_P)
1095{
1096 ++activecnt;
1097}
1098
1099void
1100ev_unref (EV_P)
1101{
1102 --activecnt;
1103}
1104
1105static int loop_done;
1106
1107void
1108ev_loop (EV_P_ int flags) 2338ev_run (EV_P_ int flags)
1109{ 2339{
1110 double block; 2340#if EV_FEATURE_API
1111 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2341 ++loop_depth;
2342#endif
2343
2344 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2345
2346 loop_done = EVBREAK_CANCEL;
2347
2348 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1112 2349
1113 do 2350 do
1114 { 2351 {
2352#if EV_VERIFY >= 2
2353 ev_verify (EV_A);
2354#endif
2355
2356#ifndef _WIN32
2357 if (expect_false (curpid)) /* penalise the forking check even more */
2358 if (expect_false (getpid () != curpid))
2359 {
2360 curpid = getpid ();
2361 postfork = 1;
2362 }
2363#endif
2364
2365#if EV_FORK_ENABLE
2366 /* we might have forked, so queue fork handlers */
2367 if (expect_false (postfork))
2368 if (forkcnt)
2369 {
2370 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2371 EV_INVOKE_PENDING;
2372 }
2373#endif
2374
2375#if EV_PREPARE_ENABLE
1115 /* queue check watchers (and execute them) */ 2376 /* queue prepare watchers (and execute them) */
1116 if (expect_false (preparecnt)) 2377 if (expect_false (preparecnt))
1117 { 2378 {
1118 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2379 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1119 call_pending (EV_A); 2380 EV_INVOKE_PENDING;
1120 } 2381 }
2382#endif
2383
2384 if (expect_false (loop_done))
2385 break;
1121 2386
1122 /* we might have forked, so reify kernel state if necessary */ 2387 /* we might have forked, so reify kernel state if necessary */
1123 if (expect_false (postfork)) 2388 if (expect_false (postfork))
1124 loop_fork (EV_A); 2389 loop_fork (EV_A);
1125 2390
1126 /* update fd-related kernel structures */ 2391 /* update fd-related kernel structures */
1127 fd_reify (EV_A); 2392 fd_reify (EV_A);
1128 2393
1129 /* calculate blocking time */ 2394 /* calculate blocking time */
2395 {
2396 ev_tstamp waittime = 0.;
2397 ev_tstamp sleeptime = 0.;
1130 2398
1131 /* we only need this for !monotonic clock or timers, but as we basically 2399 /* remember old timestamp for io_blocktime calculation */
1132 always have timers, we just calculate it always */ 2400 ev_tstamp prev_mn_now = mn_now;
1133#if EV_USE_MONOTONIC 2401
1134 if (expect_true (have_monotonic)) 2402 /* update time to cancel out callback processing overhead */
1135 time_update_monotonic (EV_A); 2403 time_update (EV_A_ 1e100);
1136 else 2404
1137#endif 2405 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1138 { 2406 {
1139 rt_now = ev_time ();
1140 mn_now = rt_now;
1141 }
1142
1143 if (flags & EVLOOP_NONBLOCK || idlecnt)
1144 block = 0.;
1145 else
1146 {
1147 block = MAX_BLOCKTIME; 2407 waittime = MAX_BLOCKTIME;
1148 2408
1149 if (timercnt) 2409 if (timercnt)
1150 { 2410 {
1151 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2411 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1152 if (block > to) block = to; 2412 if (waittime > to) waittime = to;
1153 } 2413 }
1154 2414
2415#if EV_PERIODIC_ENABLE
1155 if (periodiccnt) 2416 if (periodiccnt)
1156 { 2417 {
1157 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2418 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1158 if (block > to) block = to; 2419 if (waittime > to) waittime = to;
1159 } 2420 }
2421#endif
1160 2422
1161 if (block < 0.) block = 0.; 2423 /* don't let timeouts decrease the waittime below timeout_blocktime */
2424 if (expect_false (waittime < timeout_blocktime))
2425 waittime = timeout_blocktime;
2426
2427 /* extra check because io_blocktime is commonly 0 */
2428 if (expect_false (io_blocktime))
2429 {
2430 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2431
2432 if (sleeptime > waittime - backend_fudge)
2433 sleeptime = waittime - backend_fudge;
2434
2435 if (expect_true (sleeptime > 0.))
2436 {
2437 ev_sleep (sleeptime);
2438 waittime -= sleeptime;
2439 }
2440 }
1162 } 2441 }
1163 2442
1164 method_poll (EV_A_ block); 2443#if EV_FEATURE_API
2444 ++loop_count;
2445#endif
2446 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2447 backend_poll (EV_A_ waittime);
2448 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1165 2449
1166 /* update rt_now, do magic */ 2450 /* update ev_rt_now, do magic */
1167 time_update (EV_A); 2451 time_update (EV_A_ waittime + sleeptime);
2452 }
1168 2453
1169 /* queue pending timers and reschedule them */ 2454 /* queue pending timers and reschedule them */
1170 timers_reify (EV_A); /* relative timers called last */ 2455 timers_reify (EV_A); /* relative timers called last */
2456#if EV_PERIODIC_ENABLE
1171 periodics_reify (EV_A); /* absolute timers called first */ 2457 periodics_reify (EV_A); /* absolute timers called first */
2458#endif
1172 2459
2460#if EV_IDLE_ENABLE
1173 /* queue idle watchers unless io or timers are pending */ 2461 /* queue idle watchers unless other events are pending */
1174 if (idlecnt && !any_pending (EV_A)) 2462 idle_reify (EV_A);
1175 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2463#endif
1176 2464
2465#if EV_CHECK_ENABLE
1177 /* queue check watchers, to be executed first */ 2466 /* queue check watchers, to be executed first */
1178 if (checkcnt) 2467 if (expect_false (checkcnt))
1179 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2468 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2469#endif
1180 2470
1181 call_pending (EV_A); 2471 EV_INVOKE_PENDING;
1182 } 2472 }
1183 while (activecnt && !loop_done); 2473 while (expect_true (
2474 activecnt
2475 && !loop_done
2476 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2477 ));
1184 2478
1185 if (loop_done != 2) 2479 if (loop_done == EVBREAK_ONE)
1186 loop_done = 0; 2480 loop_done = EVBREAK_CANCEL;
1187}
1188 2481
2482#if EV_FEATURE_API
2483 --loop_depth;
2484#endif
2485}
2486
1189void 2487void
1190ev_unloop (EV_P_ int how) 2488ev_break (EV_P_ int how)
1191{ 2489{
1192 loop_done = how; 2490 loop_done = how;
1193} 2491}
1194 2492
2493void
2494ev_ref (EV_P)
2495{
2496 ++activecnt;
2497}
2498
2499void
2500ev_unref (EV_P)
2501{
2502 --activecnt;
2503}
2504
2505void
2506ev_now_update (EV_P)
2507{
2508 time_update (EV_A_ 1e100);
2509}
2510
2511void
2512ev_suspend (EV_P)
2513{
2514 ev_now_update (EV_A);
2515}
2516
2517void
2518ev_resume (EV_P)
2519{
2520 ev_tstamp mn_prev = mn_now;
2521
2522 ev_now_update (EV_A);
2523 timers_reschedule (EV_A_ mn_now - mn_prev);
2524#if EV_PERIODIC_ENABLE
2525 /* TODO: really do this? */
2526 periodics_reschedule (EV_A);
2527#endif
2528}
2529
1195/*****************************************************************************/ 2530/*****************************************************************************/
2531/* singly-linked list management, used when the expected list length is short */
1196 2532
1197inline void 2533inline_size void
1198wlist_add (WL *head, WL elem) 2534wlist_add (WL *head, WL elem)
1199{ 2535{
1200 elem->next = *head; 2536 elem->next = *head;
1201 *head = elem; 2537 *head = elem;
1202} 2538}
1203 2539
1204inline void 2540inline_size void
1205wlist_del (WL *head, WL elem) 2541wlist_del (WL *head, WL elem)
1206{ 2542{
1207 while (*head) 2543 while (*head)
1208 { 2544 {
1209 if (*head == elem) 2545 if (expect_true (*head == elem))
1210 { 2546 {
1211 *head = elem->next; 2547 *head = elem->next;
1212 return; 2548 break;
1213 } 2549 }
1214 2550
1215 head = &(*head)->next; 2551 head = &(*head)->next;
1216 } 2552 }
1217} 2553}
1218 2554
2555/* internal, faster, version of ev_clear_pending */
1219inline void 2556inline_speed void
1220ev_clear_pending (EV_P_ W w) 2557clear_pending (EV_P_ W w)
1221{ 2558{
1222 if (w->pending) 2559 if (w->pending)
1223 { 2560 {
1224 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2561 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1225 w->pending = 0; 2562 w->pending = 0;
1226 } 2563 }
1227} 2564}
1228 2565
2566int
2567ev_clear_pending (EV_P_ void *w)
2568{
2569 W w_ = (W)w;
2570 int pending = w_->pending;
2571
2572 if (expect_true (pending))
2573 {
2574 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2575 p->w = (W)&pending_w;
2576 w_->pending = 0;
2577 return p->events;
2578 }
2579 else
2580 return 0;
2581}
2582
1229inline void 2583inline_size void
2584pri_adjust (EV_P_ W w)
2585{
2586 int pri = ev_priority (w);
2587 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2588 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2589 ev_set_priority (w, pri);
2590}
2591
2592inline_speed void
1230ev_start (EV_P_ W w, int active) 2593ev_start (EV_P_ W w, int active)
1231{ 2594{
1232 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2595 pri_adjust (EV_A_ w);
1233 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1234
1235 w->active = active; 2596 w->active = active;
1236 ev_ref (EV_A); 2597 ev_ref (EV_A);
1237} 2598}
1238 2599
1239inline void 2600inline_size void
1240ev_stop (EV_P_ W w) 2601ev_stop (EV_P_ W w)
1241{ 2602{
1242 ev_unref (EV_A); 2603 ev_unref (EV_A);
1243 w->active = 0; 2604 w->active = 0;
1244} 2605}
1245 2606
1246/*****************************************************************************/ 2607/*****************************************************************************/
1247 2608
1248void 2609void noinline
1249ev_io_start (EV_P_ struct ev_io *w) 2610ev_io_start (EV_P_ ev_io *w)
1250{ 2611{
1251 int fd = w->fd; 2612 int fd = w->fd;
1252 2613
1253 if (ev_is_active (w)) 2614 if (expect_false (ev_is_active (w)))
1254 return; 2615 return;
1255 2616
1256 assert (("ev_io_start called with negative fd", fd >= 0)); 2617 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2618 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2619
2620 EV_FREQUENT_CHECK;
1257 2621
1258 ev_start (EV_A_ (W)w, 1); 2622 ev_start (EV_A_ (W)w, 1);
1259 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2623 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1260 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2624 wlist_add (&anfds[fd].head, (WL)w);
1261 2625
1262 fd_change (EV_A_ fd); 2626 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1263} 2627 w->events &= ~EV__IOFDSET;
1264 2628
1265void 2629 EV_FREQUENT_CHECK;
2630}
2631
2632void noinline
1266ev_io_stop (EV_P_ struct ev_io *w) 2633ev_io_stop (EV_P_ ev_io *w)
1267{ 2634{
1268 ev_clear_pending (EV_A_ (W)w); 2635 clear_pending (EV_A_ (W)w);
1269 if (!ev_is_active (w)) 2636 if (expect_false (!ev_is_active (w)))
1270 return; 2637 return;
1271 2638
2639 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2640
2641 EV_FREQUENT_CHECK;
2642
1272 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2643 wlist_del (&anfds[w->fd].head, (WL)w);
1273 ev_stop (EV_A_ (W)w); 2644 ev_stop (EV_A_ (W)w);
1274 2645
1275 fd_change (EV_A_ w->fd); 2646 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1276}
1277 2647
1278void 2648 EV_FREQUENT_CHECK;
2649}
2650
2651void noinline
1279ev_timer_start (EV_P_ struct ev_timer *w) 2652ev_timer_start (EV_P_ ev_timer *w)
1280{ 2653{
1281 if (ev_is_active (w)) 2654 if (expect_false (ev_is_active (w)))
1282 return; 2655 return;
1283 2656
1284 ((WT)w)->at += mn_now; 2657 ev_at (w) += mn_now;
1285 2658
1286 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2659 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1287 2660
2661 EV_FREQUENT_CHECK;
2662
2663 ++timercnt;
1288 ev_start (EV_A_ (W)w, ++timercnt); 2664 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1289 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2665 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1290 timers [timercnt - 1] = w; 2666 ANHE_w (timers [ev_active (w)]) = (WT)w;
1291 upheap ((WT *)timers, timercnt - 1); 2667 ANHE_at_cache (timers [ev_active (w)]);
2668 upheap (timers, ev_active (w));
1292 2669
2670 EV_FREQUENT_CHECK;
2671
1293 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2672 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1294} 2673}
1295 2674
1296void 2675void noinline
1297ev_timer_stop (EV_P_ struct ev_timer *w) 2676ev_timer_stop (EV_P_ ev_timer *w)
1298{ 2677{
1299 ev_clear_pending (EV_A_ (W)w); 2678 clear_pending (EV_A_ (W)w);
1300 if (!ev_is_active (w)) 2679 if (expect_false (!ev_is_active (w)))
1301 return; 2680 return;
1302 2681
2682 EV_FREQUENT_CHECK;
2683
2684 {
2685 int active = ev_active (w);
2686
1303 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2687 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1304 2688
1305 if (((W)w)->active < timercnt--) 2689 --timercnt;
2690
2691 if (expect_true (active < timercnt + HEAP0))
1306 { 2692 {
1307 timers [((W)w)->active - 1] = timers [timercnt]; 2693 timers [active] = timers [timercnt + HEAP0];
1308 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2694 adjustheap (timers, timercnt, active);
1309 } 2695 }
2696 }
1310 2697
1311 ((WT)w)->at = w->repeat; 2698 ev_at (w) -= mn_now;
1312 2699
1313 ev_stop (EV_A_ (W)w); 2700 ev_stop (EV_A_ (W)w);
1314}
1315 2701
1316void 2702 EV_FREQUENT_CHECK;
2703}
2704
2705void noinline
1317ev_timer_again (EV_P_ struct ev_timer *w) 2706ev_timer_again (EV_P_ ev_timer *w)
1318{ 2707{
2708 EV_FREQUENT_CHECK;
2709
1319 if (ev_is_active (w)) 2710 if (ev_is_active (w))
1320 { 2711 {
1321 if (w->repeat) 2712 if (w->repeat)
1322 { 2713 {
1323 ((WT)w)->at = mn_now + w->repeat; 2714 ev_at (w) = mn_now + w->repeat;
1324 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2715 ANHE_at_cache (timers [ev_active (w)]);
2716 adjustheap (timers, timercnt, ev_active (w));
1325 } 2717 }
1326 else 2718 else
1327 ev_timer_stop (EV_A_ w); 2719 ev_timer_stop (EV_A_ w);
1328 } 2720 }
1329 else if (w->repeat) 2721 else if (w->repeat)
2722 {
2723 ev_at (w) = w->repeat;
1330 ev_timer_start (EV_A_ w); 2724 ev_timer_start (EV_A_ w);
1331} 2725 }
1332 2726
1333void 2727 EV_FREQUENT_CHECK;
2728}
2729
2730ev_tstamp
2731ev_timer_remaining (EV_P_ ev_timer *w)
2732{
2733 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2734}
2735
2736#if EV_PERIODIC_ENABLE
2737void noinline
1334ev_periodic_start (EV_P_ struct ev_periodic *w) 2738ev_periodic_start (EV_P_ ev_periodic *w)
1335{ 2739{
1336 if (ev_is_active (w)) 2740 if (expect_false (ev_is_active (w)))
1337 return; 2741 return;
1338 2742
1339 if (w->reschedule_cb) 2743 if (w->reschedule_cb)
1340 ((WT)w)->at = w->reschedule_cb (w, rt_now); 2744 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1341 else if (w->interval) 2745 else if (w->interval)
1342 { 2746 {
1343 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2747 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1344 /* this formula differs from the one in periodic_reify because we do not always round up */ 2748 /* this formula differs from the one in periodic_reify because we do not always round up */
1345 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2749 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1346 } 2750 }
2751 else
2752 ev_at (w) = w->offset;
1347 2753
2754 EV_FREQUENT_CHECK;
2755
2756 ++periodiccnt;
1348 ev_start (EV_A_ (W)w, ++periodiccnt); 2757 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1349 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2758 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1350 periodics [periodiccnt - 1] = w; 2759 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1351 upheap ((WT *)periodics, periodiccnt - 1); 2760 ANHE_at_cache (periodics [ev_active (w)]);
2761 upheap (periodics, ev_active (w));
1352 2762
2763 EV_FREQUENT_CHECK;
2764
1353 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2765 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1354} 2766}
1355 2767
1356void 2768void noinline
1357ev_periodic_stop (EV_P_ struct ev_periodic *w) 2769ev_periodic_stop (EV_P_ ev_periodic *w)
1358{ 2770{
1359 ev_clear_pending (EV_A_ (W)w); 2771 clear_pending (EV_A_ (W)w);
1360 if (!ev_is_active (w)) 2772 if (expect_false (!ev_is_active (w)))
1361 return; 2773 return;
1362 2774
2775 EV_FREQUENT_CHECK;
2776
2777 {
2778 int active = ev_active (w);
2779
1363 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2780 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1364 2781
1365 if (((W)w)->active < periodiccnt--) 2782 --periodiccnt;
2783
2784 if (expect_true (active < periodiccnt + HEAP0))
1366 { 2785 {
1367 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2786 periodics [active] = periodics [periodiccnt + HEAP0];
1368 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2787 adjustheap (periodics, periodiccnt, active);
1369 } 2788 }
2789 }
1370 2790
1371 ev_stop (EV_A_ (W)w); 2791 ev_stop (EV_A_ (W)w);
1372}
1373 2792
1374void 2793 EV_FREQUENT_CHECK;
2794}
2795
2796void noinline
1375ev_periodic_again (EV_P_ struct ev_periodic *w) 2797ev_periodic_again (EV_P_ ev_periodic *w)
1376{ 2798{
2799 /* TODO: use adjustheap and recalculation */
1377 ev_periodic_stop (EV_A_ w); 2800 ev_periodic_stop (EV_A_ w);
1378 ev_periodic_start (EV_A_ w); 2801 ev_periodic_start (EV_A_ w);
1379} 2802}
1380 2803#endif
1381void
1382ev_idle_start (EV_P_ struct ev_idle *w)
1383{
1384 if (ev_is_active (w))
1385 return;
1386
1387 ev_start (EV_A_ (W)w, ++idlecnt);
1388 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1389 idles [idlecnt - 1] = w;
1390}
1391
1392void
1393ev_idle_stop (EV_P_ struct ev_idle *w)
1394{
1395 ev_clear_pending (EV_A_ (W)w);
1396 if (ev_is_active (w))
1397 return;
1398
1399 idles [((W)w)->active - 1] = idles [--idlecnt];
1400 ev_stop (EV_A_ (W)w);
1401}
1402
1403void
1404ev_prepare_start (EV_P_ struct ev_prepare *w)
1405{
1406 if (ev_is_active (w))
1407 return;
1408
1409 ev_start (EV_A_ (W)w, ++preparecnt);
1410 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1411 prepares [preparecnt - 1] = w;
1412}
1413
1414void
1415ev_prepare_stop (EV_P_ struct ev_prepare *w)
1416{
1417 ev_clear_pending (EV_A_ (W)w);
1418 if (ev_is_active (w))
1419 return;
1420
1421 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1422 ev_stop (EV_A_ (W)w);
1423}
1424
1425void
1426ev_check_start (EV_P_ struct ev_check *w)
1427{
1428 if (ev_is_active (w))
1429 return;
1430
1431 ev_start (EV_A_ (W)w, ++checkcnt);
1432 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1433 checks [checkcnt - 1] = w;
1434}
1435
1436void
1437ev_check_stop (EV_P_ struct ev_check *w)
1438{
1439 ev_clear_pending (EV_A_ (W)w);
1440 if (ev_is_active (w))
1441 return;
1442
1443 checks [((W)w)->active - 1] = checks [--checkcnt];
1444 ev_stop (EV_A_ (W)w);
1445}
1446 2804
1447#ifndef SA_RESTART 2805#ifndef SA_RESTART
1448# define SA_RESTART 0 2806# define SA_RESTART 0
1449#endif 2807#endif
1450 2808
1451void 2809#if EV_SIGNAL_ENABLE
2810
2811void noinline
1452ev_signal_start (EV_P_ struct ev_signal *w) 2812ev_signal_start (EV_P_ ev_signal *w)
1453{ 2813{
2814 if (expect_false (ev_is_active (w)))
2815 return;
2816
2817 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2818
1454#if EV_MULTIPLICITY 2819#if EV_MULTIPLICITY
1455 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2820 assert (("libev: a signal must not be attached to two different loops",
2821 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2822
2823 signals [w->signum - 1].loop = EV_A;
2824#endif
2825
2826 EV_FREQUENT_CHECK;
2827
2828#if EV_USE_SIGNALFD
2829 if (sigfd == -2)
2830 {
2831 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2832 if (sigfd < 0 && errno == EINVAL)
2833 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2834
2835 if (sigfd >= 0)
2836 {
2837 fd_intern (sigfd); /* doing it twice will not hurt */
2838
2839 sigemptyset (&sigfd_set);
2840
2841 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2842 ev_set_priority (&sigfd_w, EV_MAXPRI);
2843 ev_io_start (EV_A_ &sigfd_w);
2844 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2845 }
2846 }
2847
2848 if (sigfd >= 0)
2849 {
2850 /* TODO: check .head */
2851 sigaddset (&sigfd_set, w->signum);
2852 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2853
2854 signalfd (sigfd, &sigfd_set, 0);
2855 }
2856#endif
2857
2858 ev_start (EV_A_ (W)w, 1);
2859 wlist_add (&signals [w->signum - 1].head, (WL)w);
2860
2861 if (!((WL)w)->next)
2862# if EV_USE_SIGNALFD
2863 if (sigfd < 0) /*TODO*/
1456#endif 2864# endif
1457 if (ev_is_active (w)) 2865 {
2866# ifdef _WIN32
2867 evpipe_init (EV_A);
2868
2869 signal (w->signum, ev_sighandler);
2870# else
2871 struct sigaction sa;
2872
2873 evpipe_init (EV_A);
2874
2875 sa.sa_handler = ev_sighandler;
2876 sigfillset (&sa.sa_mask);
2877 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2878 sigaction (w->signum, &sa, 0);
2879
2880 sigemptyset (&sa.sa_mask);
2881 sigaddset (&sa.sa_mask, w->signum);
2882 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2883#endif
2884 }
2885
2886 EV_FREQUENT_CHECK;
2887}
2888
2889void noinline
2890ev_signal_stop (EV_P_ ev_signal *w)
2891{
2892 clear_pending (EV_A_ (W)w);
2893 if (expect_false (!ev_is_active (w)))
1458 return; 2894 return;
1459 2895
1460 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2896 EV_FREQUENT_CHECK;
2897
2898 wlist_del (&signals [w->signum - 1].head, (WL)w);
2899 ev_stop (EV_A_ (W)w);
2900
2901 if (!signals [w->signum - 1].head)
2902 {
2903#if EV_MULTIPLICITY
2904 signals [w->signum - 1].loop = 0; /* unattach from signal */
2905#endif
2906#if EV_USE_SIGNALFD
2907 if (sigfd >= 0)
2908 {
2909 sigset_t ss;
2910
2911 sigemptyset (&ss);
2912 sigaddset (&ss, w->signum);
2913 sigdelset (&sigfd_set, w->signum);
2914
2915 signalfd (sigfd, &sigfd_set, 0);
2916 sigprocmask (SIG_UNBLOCK, &ss, 0);
2917 }
2918 else
2919#endif
2920 signal (w->signum, SIG_DFL);
2921 }
2922
2923 EV_FREQUENT_CHECK;
2924}
2925
2926#endif
2927
2928#if EV_CHILD_ENABLE
2929
2930void
2931ev_child_start (EV_P_ ev_child *w)
2932{
2933#if EV_MULTIPLICITY
2934 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2935#endif
2936 if (expect_false (ev_is_active (w)))
2937 return;
2938
2939 EV_FREQUENT_CHECK;
1461 2940
1462 ev_start (EV_A_ (W)w, 1); 2941 ev_start (EV_A_ (W)w, 1);
1463 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2942 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1464 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1465 2943
1466 if (!((WL)w)->next) 2944 EV_FREQUENT_CHECK;
2945}
2946
2947void
2948ev_child_stop (EV_P_ ev_child *w)
2949{
2950 clear_pending (EV_A_ (W)w);
2951 if (expect_false (!ev_is_active (w)))
2952 return;
2953
2954 EV_FREQUENT_CHECK;
2955
2956 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2957 ev_stop (EV_A_ (W)w);
2958
2959 EV_FREQUENT_CHECK;
2960}
2961
2962#endif
2963
2964#if EV_STAT_ENABLE
2965
2966# ifdef _WIN32
2967# undef lstat
2968# define lstat(a,b) _stati64 (a,b)
2969# endif
2970
2971#define DEF_STAT_INTERVAL 5.0074891
2972#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2973#define MIN_STAT_INTERVAL 0.1074891
2974
2975static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2976
2977#if EV_USE_INOTIFY
2978
2979/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2980# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2981
2982static void noinline
2983infy_add (EV_P_ ev_stat *w)
2984{
2985 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2986
2987 if (w->wd >= 0)
2988 {
2989 struct statfs sfs;
2990
2991 /* now local changes will be tracked by inotify, but remote changes won't */
2992 /* unless the filesystem is known to be local, we therefore still poll */
2993 /* also do poll on <2.6.25, but with normal frequency */
2994
2995 if (!fs_2625)
2996 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2997 else if (!statfs (w->path, &sfs)
2998 && (sfs.f_type == 0x1373 /* devfs */
2999 || sfs.f_type == 0xEF53 /* ext2/3 */
3000 || sfs.f_type == 0x3153464a /* jfs */
3001 || sfs.f_type == 0x52654973 /* reiser3 */
3002 || sfs.f_type == 0x01021994 /* tempfs */
3003 || sfs.f_type == 0x58465342 /* xfs */))
3004 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3005 else
3006 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1467 { 3007 }
1468#if WIN32 3008 else
1469 signal (w->signum, sighandler); 3009 {
3010 /* can't use inotify, continue to stat */
3011 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3012
3013 /* if path is not there, monitor some parent directory for speedup hints */
3014 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3015 /* but an efficiency issue only */
3016 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3017 {
3018 char path [4096];
3019 strcpy (path, w->path);
3020
3021 do
3022 {
3023 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3024 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3025
3026 char *pend = strrchr (path, '/');
3027
3028 if (!pend || pend == path)
3029 break;
3030
3031 *pend = 0;
3032 w->wd = inotify_add_watch (fs_fd, path, mask);
3033 }
3034 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3035 }
3036 }
3037
3038 if (w->wd >= 0)
3039 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3040
3041 /* now re-arm timer, if required */
3042 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3043 ev_timer_again (EV_A_ &w->timer);
3044 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3045}
3046
3047static void noinline
3048infy_del (EV_P_ ev_stat *w)
3049{
3050 int slot;
3051 int wd = w->wd;
3052
3053 if (wd < 0)
3054 return;
3055
3056 w->wd = -2;
3057 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3058 wlist_del (&fs_hash [slot].head, (WL)w);
3059
3060 /* remove this watcher, if others are watching it, they will rearm */
3061 inotify_rm_watch (fs_fd, wd);
3062}
3063
3064static void noinline
3065infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3066{
3067 if (slot < 0)
3068 /* overflow, need to check for all hash slots */
3069 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3070 infy_wd (EV_A_ slot, wd, ev);
3071 else
3072 {
3073 WL w_;
3074
3075 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3076 {
3077 ev_stat *w = (ev_stat *)w_;
3078 w_ = w_->next; /* lets us remove this watcher and all before it */
3079
3080 if (w->wd == wd || wd == -1)
3081 {
3082 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3083 {
3084 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3085 w->wd = -1;
3086 infy_add (EV_A_ w); /* re-add, no matter what */
3087 }
3088
3089 stat_timer_cb (EV_A_ &w->timer, 0);
3090 }
3091 }
3092 }
3093}
3094
3095static void
3096infy_cb (EV_P_ ev_io *w, int revents)
3097{
3098 char buf [EV_INOTIFY_BUFSIZE];
3099 int ofs;
3100 int len = read (fs_fd, buf, sizeof (buf));
3101
3102 for (ofs = 0; ofs < len; )
3103 {
3104 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3105 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3106 ofs += sizeof (struct inotify_event) + ev->len;
3107 }
3108}
3109
3110inline_size void
3111ev_check_2625 (EV_P)
3112{
3113 /* kernels < 2.6.25 are borked
3114 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3115 */
3116 if (ev_linux_version () < 0x020619)
3117 return;
3118
3119 fs_2625 = 1;
3120}
3121
3122inline_size int
3123infy_newfd (void)
3124{
3125#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3126 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3127 if (fd >= 0)
3128 return fd;
3129#endif
3130 return inotify_init ();
3131}
3132
3133inline_size void
3134infy_init (EV_P)
3135{
3136 if (fs_fd != -2)
3137 return;
3138
3139 fs_fd = -1;
3140
3141 ev_check_2625 (EV_A);
3142
3143 fs_fd = infy_newfd ();
3144
3145 if (fs_fd >= 0)
3146 {
3147 fd_intern (fs_fd);
3148 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3149 ev_set_priority (&fs_w, EV_MAXPRI);
3150 ev_io_start (EV_A_ &fs_w);
3151 ev_unref (EV_A);
3152 }
3153}
3154
3155inline_size void
3156infy_fork (EV_P)
3157{
3158 int slot;
3159
3160 if (fs_fd < 0)
3161 return;
3162
3163 ev_ref (EV_A);
3164 ev_io_stop (EV_A_ &fs_w);
3165 close (fs_fd);
3166 fs_fd = infy_newfd ();
3167
3168 if (fs_fd >= 0)
3169 {
3170 fd_intern (fs_fd);
3171 ev_io_set (&fs_w, fs_fd, EV_READ);
3172 ev_io_start (EV_A_ &fs_w);
3173 ev_unref (EV_A);
3174 }
3175
3176 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3177 {
3178 WL w_ = fs_hash [slot].head;
3179 fs_hash [slot].head = 0;
3180
3181 while (w_)
3182 {
3183 ev_stat *w = (ev_stat *)w_;
3184 w_ = w_->next; /* lets us add this watcher */
3185
3186 w->wd = -1;
3187
3188 if (fs_fd >= 0)
3189 infy_add (EV_A_ w); /* re-add, no matter what */
3190 else
3191 {
3192 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3193 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3194 ev_timer_again (EV_A_ &w->timer);
3195 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3196 }
3197 }
3198 }
3199}
3200
3201#endif
3202
3203#ifdef _WIN32
3204# define EV_LSTAT(p,b) _stati64 (p, b)
1470#else 3205#else
1471 struct sigaction sa; 3206# define EV_LSTAT(p,b) lstat (p, b)
1472 sa.sa_handler = sighandler;
1473 sigfillset (&sa.sa_mask);
1474 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1475 sigaction (w->signum, &sa, 0);
1476#endif 3207#endif
1477 }
1478}
1479 3208
1480void 3209void
1481ev_signal_stop (EV_P_ struct ev_signal *w) 3210ev_stat_stat (EV_P_ ev_stat *w)
1482{ 3211{
1483 ev_clear_pending (EV_A_ (W)w); 3212 if (lstat (w->path, &w->attr) < 0)
1484 if (!ev_is_active (w)) 3213 w->attr.st_nlink = 0;
3214 else if (!w->attr.st_nlink)
3215 w->attr.st_nlink = 1;
3216}
3217
3218static void noinline
3219stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3220{
3221 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3222
3223 ev_statdata prev = w->attr;
3224 ev_stat_stat (EV_A_ w);
3225
3226 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3227 if (
3228 prev.st_dev != w->attr.st_dev
3229 || prev.st_ino != w->attr.st_ino
3230 || prev.st_mode != w->attr.st_mode
3231 || prev.st_nlink != w->attr.st_nlink
3232 || prev.st_uid != w->attr.st_uid
3233 || prev.st_gid != w->attr.st_gid
3234 || prev.st_rdev != w->attr.st_rdev
3235 || prev.st_size != w->attr.st_size
3236 || prev.st_atime != w->attr.st_atime
3237 || prev.st_mtime != w->attr.st_mtime
3238 || prev.st_ctime != w->attr.st_ctime
3239 ) {
3240 /* we only update w->prev on actual differences */
3241 /* in case we test more often than invoke the callback, */
3242 /* to ensure that prev is always different to attr */
3243 w->prev = prev;
3244
3245 #if EV_USE_INOTIFY
3246 if (fs_fd >= 0)
3247 {
3248 infy_del (EV_A_ w);
3249 infy_add (EV_A_ w);
3250 ev_stat_stat (EV_A_ w); /* avoid race... */
3251 }
3252 #endif
3253
3254 ev_feed_event (EV_A_ w, EV_STAT);
3255 }
3256}
3257
3258void
3259ev_stat_start (EV_P_ ev_stat *w)
3260{
3261 if (expect_false (ev_is_active (w)))
1485 return; 3262 return;
1486 3263
1487 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3264 ev_stat_stat (EV_A_ w);
3265
3266 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3267 w->interval = MIN_STAT_INTERVAL;
3268
3269 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3270 ev_set_priority (&w->timer, ev_priority (w));
3271
3272#if EV_USE_INOTIFY
3273 infy_init (EV_A);
3274
3275 if (fs_fd >= 0)
3276 infy_add (EV_A_ w);
3277 else
3278#endif
3279 {
3280 ev_timer_again (EV_A_ &w->timer);
3281 ev_unref (EV_A);
3282 }
3283
3284 ev_start (EV_A_ (W)w, 1);
3285
3286 EV_FREQUENT_CHECK;
3287}
3288
3289void
3290ev_stat_stop (EV_P_ ev_stat *w)
3291{
3292 clear_pending (EV_A_ (W)w);
3293 if (expect_false (!ev_is_active (w)))
3294 return;
3295
3296 EV_FREQUENT_CHECK;
3297
3298#if EV_USE_INOTIFY
3299 infy_del (EV_A_ w);
3300#endif
3301
3302 if (ev_is_active (&w->timer))
3303 {
3304 ev_ref (EV_A);
3305 ev_timer_stop (EV_A_ &w->timer);
3306 }
3307
1488 ev_stop (EV_A_ (W)w); 3308 ev_stop (EV_A_ (W)w);
1489 3309
1490 if (!signals [w->signum - 1].head) 3310 EV_FREQUENT_CHECK;
1491 signal (w->signum, SIG_DFL);
1492} 3311}
3312#endif
1493 3313
3314#if EV_IDLE_ENABLE
1494void 3315void
1495ev_child_start (EV_P_ struct ev_child *w) 3316ev_idle_start (EV_P_ ev_idle *w)
1496{ 3317{
1497#if EV_MULTIPLICITY
1498 assert (("child watchers are only supported in the default loop", loop == default_loop));
1499#endif
1500 if (ev_is_active (w)) 3318 if (expect_false (ev_is_active (w)))
1501 return; 3319 return;
1502 3320
3321 pri_adjust (EV_A_ (W)w);
3322
3323 EV_FREQUENT_CHECK;
3324
3325 {
3326 int active = ++idlecnt [ABSPRI (w)];
3327
3328 ++idleall;
3329 ev_start (EV_A_ (W)w, active);
3330
3331 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3332 idles [ABSPRI (w)][active - 1] = w;
3333 }
3334
3335 EV_FREQUENT_CHECK;
3336}
3337
3338void
3339ev_idle_stop (EV_P_ ev_idle *w)
3340{
3341 clear_pending (EV_A_ (W)w);
3342 if (expect_false (!ev_is_active (w)))
3343 return;
3344
3345 EV_FREQUENT_CHECK;
3346
3347 {
3348 int active = ev_active (w);
3349
3350 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3351 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3352
3353 ev_stop (EV_A_ (W)w);
3354 --idleall;
3355 }
3356
3357 EV_FREQUENT_CHECK;
3358}
3359#endif
3360
3361#if EV_PREPARE_ENABLE
3362void
3363ev_prepare_start (EV_P_ ev_prepare *w)
3364{
3365 if (expect_false (ev_is_active (w)))
3366 return;
3367
3368 EV_FREQUENT_CHECK;
3369
3370 ev_start (EV_A_ (W)w, ++preparecnt);
3371 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3372 prepares [preparecnt - 1] = w;
3373
3374 EV_FREQUENT_CHECK;
3375}
3376
3377void
3378ev_prepare_stop (EV_P_ ev_prepare *w)
3379{
3380 clear_pending (EV_A_ (W)w);
3381 if (expect_false (!ev_is_active (w)))
3382 return;
3383
3384 EV_FREQUENT_CHECK;
3385
3386 {
3387 int active = ev_active (w);
3388
3389 prepares [active - 1] = prepares [--preparecnt];
3390 ev_active (prepares [active - 1]) = active;
3391 }
3392
3393 ev_stop (EV_A_ (W)w);
3394
3395 EV_FREQUENT_CHECK;
3396}
3397#endif
3398
3399#if EV_CHECK_ENABLE
3400void
3401ev_check_start (EV_P_ ev_check *w)
3402{
3403 if (expect_false (ev_is_active (w)))
3404 return;
3405
3406 EV_FREQUENT_CHECK;
3407
3408 ev_start (EV_A_ (W)w, ++checkcnt);
3409 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3410 checks [checkcnt - 1] = w;
3411
3412 EV_FREQUENT_CHECK;
3413}
3414
3415void
3416ev_check_stop (EV_P_ ev_check *w)
3417{
3418 clear_pending (EV_A_ (W)w);
3419 if (expect_false (!ev_is_active (w)))
3420 return;
3421
3422 EV_FREQUENT_CHECK;
3423
3424 {
3425 int active = ev_active (w);
3426
3427 checks [active - 1] = checks [--checkcnt];
3428 ev_active (checks [active - 1]) = active;
3429 }
3430
3431 ev_stop (EV_A_ (W)w);
3432
3433 EV_FREQUENT_CHECK;
3434}
3435#endif
3436
3437#if EV_EMBED_ENABLE
3438void noinline
3439ev_embed_sweep (EV_P_ ev_embed *w)
3440{
3441 ev_run (w->other, EVRUN_NOWAIT);
3442}
3443
3444static void
3445embed_io_cb (EV_P_ ev_io *io, int revents)
3446{
3447 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3448
3449 if (ev_cb (w))
3450 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3451 else
3452 ev_run (w->other, EVRUN_NOWAIT);
3453}
3454
3455static void
3456embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3457{
3458 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3459
3460 {
3461 EV_P = w->other;
3462
3463 while (fdchangecnt)
3464 {
3465 fd_reify (EV_A);
3466 ev_run (EV_A_ EVRUN_NOWAIT);
3467 }
3468 }
3469}
3470
3471static void
3472embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3473{
3474 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3475
3476 ev_embed_stop (EV_A_ w);
3477
3478 {
3479 EV_P = w->other;
3480
3481 ev_loop_fork (EV_A);
3482 ev_run (EV_A_ EVRUN_NOWAIT);
3483 }
3484
3485 ev_embed_start (EV_A_ w);
3486}
3487
3488#if 0
3489static void
3490embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3491{
3492 ev_idle_stop (EV_A_ idle);
3493}
3494#endif
3495
3496void
3497ev_embed_start (EV_P_ ev_embed *w)
3498{
3499 if (expect_false (ev_is_active (w)))
3500 return;
3501
3502 {
3503 EV_P = w->other;
3504 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3505 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3506 }
3507
3508 EV_FREQUENT_CHECK;
3509
3510 ev_set_priority (&w->io, ev_priority (w));
3511 ev_io_start (EV_A_ &w->io);
3512
3513 ev_prepare_init (&w->prepare, embed_prepare_cb);
3514 ev_set_priority (&w->prepare, EV_MINPRI);
3515 ev_prepare_start (EV_A_ &w->prepare);
3516
3517 ev_fork_init (&w->fork, embed_fork_cb);
3518 ev_fork_start (EV_A_ &w->fork);
3519
3520 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3521
1503 ev_start (EV_A_ (W)w, 1); 3522 ev_start (EV_A_ (W)w, 1);
1504 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1505}
1506 3523
3524 EV_FREQUENT_CHECK;
3525}
3526
1507void 3527void
1508ev_child_stop (EV_P_ struct ev_child *w) 3528ev_embed_stop (EV_P_ ev_embed *w)
1509{ 3529{
1510 ev_clear_pending (EV_A_ (W)w); 3530 clear_pending (EV_A_ (W)w);
1511 if (ev_is_active (w)) 3531 if (expect_false (!ev_is_active (w)))
1512 return; 3532 return;
1513 3533
1514 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3534 EV_FREQUENT_CHECK;
3535
3536 ev_io_stop (EV_A_ &w->io);
3537 ev_prepare_stop (EV_A_ &w->prepare);
3538 ev_fork_stop (EV_A_ &w->fork);
3539
1515 ev_stop (EV_A_ (W)w); 3540 ev_stop (EV_A_ (W)w);
3541
3542 EV_FREQUENT_CHECK;
1516} 3543}
3544#endif
3545
3546#if EV_FORK_ENABLE
3547void
3548ev_fork_start (EV_P_ ev_fork *w)
3549{
3550 if (expect_false (ev_is_active (w)))
3551 return;
3552
3553 EV_FREQUENT_CHECK;
3554
3555 ev_start (EV_A_ (W)w, ++forkcnt);
3556 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3557 forks [forkcnt - 1] = w;
3558
3559 EV_FREQUENT_CHECK;
3560}
3561
3562void
3563ev_fork_stop (EV_P_ ev_fork *w)
3564{
3565 clear_pending (EV_A_ (W)w);
3566 if (expect_false (!ev_is_active (w)))
3567 return;
3568
3569 EV_FREQUENT_CHECK;
3570
3571 {
3572 int active = ev_active (w);
3573
3574 forks [active - 1] = forks [--forkcnt];
3575 ev_active (forks [active - 1]) = active;
3576 }
3577
3578 ev_stop (EV_A_ (W)w);
3579
3580 EV_FREQUENT_CHECK;
3581}
3582#endif
3583
3584#if EV_CLEANUP_ENABLE
3585void
3586ev_cleanup_start (EV_P_ ev_cleanup *w)
3587{
3588 if (expect_false (ev_is_active (w)))
3589 return;
3590
3591 EV_FREQUENT_CHECK;
3592
3593 ev_start (EV_A_ (W)w, ++cleanupcnt);
3594 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3595 cleanups [cleanupcnt - 1] = w;
3596
3597 EV_FREQUENT_CHECK;
3598}
3599
3600void
3601ev_cleanup_stop (EV_P_ ev_cleanup *w)
3602{
3603 clear_pending (EV_A_ (W)w);
3604 if (expect_false (!ev_is_active (w)))
3605 return;
3606
3607 EV_FREQUENT_CHECK;
3608
3609 {
3610 int active = ev_active (w);
3611
3612 cleanups [active - 1] = cleanups [--cleanupcnt];
3613 ev_active (cleanups [active - 1]) = active;
3614 }
3615
3616 ev_stop (EV_A_ (W)w);
3617
3618 EV_FREQUENT_CHECK;
3619}
3620#endif
3621
3622#if EV_ASYNC_ENABLE
3623void
3624ev_async_start (EV_P_ ev_async *w)
3625{
3626 if (expect_false (ev_is_active (w)))
3627 return;
3628
3629 w->sent = 0;
3630
3631 evpipe_init (EV_A);
3632
3633 EV_FREQUENT_CHECK;
3634
3635 ev_start (EV_A_ (W)w, ++asynccnt);
3636 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3637 asyncs [asynccnt - 1] = w;
3638
3639 EV_FREQUENT_CHECK;
3640}
3641
3642void
3643ev_async_stop (EV_P_ ev_async *w)
3644{
3645 clear_pending (EV_A_ (W)w);
3646 if (expect_false (!ev_is_active (w)))
3647 return;
3648
3649 EV_FREQUENT_CHECK;
3650
3651 {
3652 int active = ev_active (w);
3653
3654 asyncs [active - 1] = asyncs [--asynccnt];
3655 ev_active (asyncs [active - 1]) = active;
3656 }
3657
3658 ev_stop (EV_A_ (W)w);
3659
3660 EV_FREQUENT_CHECK;
3661}
3662
3663void
3664ev_async_send (EV_P_ ev_async *w)
3665{
3666 w->sent = 1;
3667 evpipe_write (EV_A_ &async_pending);
3668}
3669#endif
1517 3670
1518/*****************************************************************************/ 3671/*****************************************************************************/
1519 3672
1520struct ev_once 3673struct ev_once
1521{ 3674{
1522 struct ev_io io; 3675 ev_io io;
1523 struct ev_timer to; 3676 ev_timer to;
1524 void (*cb)(int revents, void *arg); 3677 void (*cb)(int revents, void *arg);
1525 void *arg; 3678 void *arg;
1526}; 3679};
1527 3680
1528static void 3681static void
1529once_cb (EV_P_ struct ev_once *once, int revents) 3682once_cb (EV_P_ struct ev_once *once, int revents)
1530{ 3683{
1531 void (*cb)(int revents, void *arg) = once->cb; 3684 void (*cb)(int revents, void *arg) = once->cb;
1532 void *arg = once->arg; 3685 void *arg = once->arg;
1533 3686
1534 ev_io_stop (EV_A_ &once->io); 3687 ev_io_stop (EV_A_ &once->io);
1535 ev_timer_stop (EV_A_ &once->to); 3688 ev_timer_stop (EV_A_ &once->to);
1536 ev_free (once); 3689 ev_free (once);
1537 3690
1538 cb (revents, arg); 3691 cb (revents, arg);
1539} 3692}
1540 3693
1541static void 3694static void
1542once_cb_io (EV_P_ struct ev_io *w, int revents) 3695once_cb_io (EV_P_ ev_io *w, int revents)
1543{ 3696{
1544 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3697 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3698
3699 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1545} 3700}
1546 3701
1547static void 3702static void
1548once_cb_to (EV_P_ struct ev_timer *w, int revents) 3703once_cb_to (EV_P_ ev_timer *w, int revents)
1549{ 3704{
1550 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3705 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3706
3707 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1551} 3708}
1552 3709
1553void 3710void
1554ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3711ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1555{ 3712{
1556 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3713 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1557 3714
1558 if (!once) 3715 if (expect_false (!once))
3716 {
1559 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3717 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1560 else 3718 return;
1561 { 3719 }
3720
1562 once->cb = cb; 3721 once->cb = cb;
1563 once->arg = arg; 3722 once->arg = arg;
1564 3723
1565 ev_watcher_init (&once->io, once_cb_io); 3724 ev_init (&once->io, once_cb_io);
1566 if (fd >= 0) 3725 if (fd >= 0)
3726 {
3727 ev_io_set (&once->io, fd, events);
3728 ev_io_start (EV_A_ &once->io);
3729 }
3730
3731 ev_init (&once->to, once_cb_to);
3732 if (timeout >= 0.)
3733 {
3734 ev_timer_set (&once->to, timeout, 0.);
3735 ev_timer_start (EV_A_ &once->to);
3736 }
3737}
3738
3739/*****************************************************************************/
3740
3741#if EV_WALK_ENABLE
3742void
3743ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3744{
3745 int i, j;
3746 ev_watcher_list *wl, *wn;
3747
3748 if (types & (EV_IO | EV_EMBED))
3749 for (i = 0; i < anfdmax; ++i)
3750 for (wl = anfds [i].head; wl; )
1567 { 3751 {
1568 ev_io_set (&once->io, fd, events); 3752 wn = wl->next;
1569 ev_io_start (EV_A_ &once->io); 3753
3754#if EV_EMBED_ENABLE
3755 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3756 {
3757 if (types & EV_EMBED)
3758 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3759 }
3760 else
3761#endif
3762#if EV_USE_INOTIFY
3763 if (ev_cb ((ev_io *)wl) == infy_cb)
3764 ;
3765 else
3766#endif
3767 if ((ev_io *)wl != &pipe_w)
3768 if (types & EV_IO)
3769 cb (EV_A_ EV_IO, wl);
3770
3771 wl = wn;
1570 } 3772 }
1571 3773
1572 ev_watcher_init (&once->to, once_cb_to); 3774 if (types & (EV_TIMER | EV_STAT))
1573 if (timeout >= 0.) 3775 for (i = timercnt + HEAP0; i-- > HEAP0; )
3776#if EV_STAT_ENABLE
3777 /*TODO: timer is not always active*/
3778 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1574 { 3779 {
1575 ev_timer_set (&once->to, timeout, 0.); 3780 if (types & EV_STAT)
1576 ev_timer_start (EV_A_ &once->to); 3781 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1577 } 3782 }
1578 } 3783 else
1579} 3784#endif
3785 if (types & EV_TIMER)
3786 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1580 3787
3788#if EV_PERIODIC_ENABLE
3789 if (types & EV_PERIODIC)
3790 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3791 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3792#endif
3793
3794#if EV_IDLE_ENABLE
3795 if (types & EV_IDLE)
3796 for (j = NUMPRI; i--; )
3797 for (i = idlecnt [j]; i--; )
3798 cb (EV_A_ EV_IDLE, idles [j][i]);
3799#endif
3800
3801#if EV_FORK_ENABLE
3802 if (types & EV_FORK)
3803 for (i = forkcnt; i--; )
3804 if (ev_cb (forks [i]) != embed_fork_cb)
3805 cb (EV_A_ EV_FORK, forks [i]);
3806#endif
3807
3808#if EV_ASYNC_ENABLE
3809 if (types & EV_ASYNC)
3810 for (i = asynccnt; i--; )
3811 cb (EV_A_ EV_ASYNC, asyncs [i]);
3812#endif
3813
3814#if EV_PREPARE_ENABLE
3815 if (types & EV_PREPARE)
3816 for (i = preparecnt; i--; )
3817# if EV_EMBED_ENABLE
3818 if (ev_cb (prepares [i]) != embed_prepare_cb)
3819# endif
3820 cb (EV_A_ EV_PREPARE, prepares [i]);
3821#endif
3822
3823#if EV_CHECK_ENABLE
3824 if (types & EV_CHECK)
3825 for (i = checkcnt; i--; )
3826 cb (EV_A_ EV_CHECK, checks [i]);
3827#endif
3828
3829#if EV_SIGNAL_ENABLE
3830 if (types & EV_SIGNAL)
3831 for (i = 0; i < EV_NSIG - 1; ++i)
3832 for (wl = signals [i].head; wl; )
3833 {
3834 wn = wl->next;
3835 cb (EV_A_ EV_SIGNAL, wl);
3836 wl = wn;
3837 }
3838#endif
3839
3840#if EV_CHILD_ENABLE
3841 if (types & EV_CHILD)
3842 for (i = (EV_PID_HASHSIZE); i--; )
3843 for (wl = childs [i]; wl; )
3844 {
3845 wn = wl->next;
3846 cb (EV_A_ EV_CHILD, wl);
3847 wl = wn;
3848 }
3849#endif
3850/* EV_STAT 0x00001000 /* stat data changed */
3851/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3852}
3853#endif
3854
3855#if EV_MULTIPLICITY
3856 #include "ev_wrap.h"
3857#endif
3858
3859EV_CPP(})
3860

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines