ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.60 by root, Sun Nov 4 18:29:44 2007 UTC vs.
Revision 1.80 by root, Fri Nov 9 15:30:59 2007 UTC

54 54
55#endif 55#endif
56 56
57#include <math.h> 57#include <math.h>
58#include <stdlib.h> 58#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 59#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 60#include <stddef.h>
63 61
64#include <stdio.h> 62#include <stdio.h>
65 63
66#include <assert.h> 64#include <assert.h>
67#include <errno.h> 65#include <errno.h>
68#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
69#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
70# include <sys/wait.h> 74# include <sys/wait.h>
71#endif 75#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 76/**/
76 77
77#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
79#endif 80#endif
90# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
91#endif 92#endif
92 93
93#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
95#endif 106#endif
96 107
97#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
98# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
99#endif 110#endif
137typedef struct ev_watcher_list *WL; 148typedef struct ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT; 149typedef struct ev_watcher_time *WT;
139 150
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141 152
153#include "ev_win32.c"
154
142/*****************************************************************************/ 155/*****************************************************************************/
143 156
157static void (*syserr_cb)(const char *msg);
158
159void ev_set_syserr_cb (void (*cb)(const char *msg))
160{
161 syserr_cb = cb;
162}
163
164static void
165syserr (const char *msg)
166{
167 if (!msg)
168 msg = "(libev) system error";
169
170 if (syserr_cb)
171 syserr_cb (msg);
172 else
173 {
174 perror (msg);
175 abort ();
176 }
177}
178
179static void *(*alloc)(void *ptr, long size);
180
181void ev_set_allocator (void *(*cb)(void *ptr, long size))
182{
183 alloc = cb;
184}
185
186static void *
187ev_realloc (void *ptr, long size)
188{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190
191 if (!ptr && size)
192 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort ();
195 }
196
197 return ptr;
198}
199
200#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0)
202
203/*****************************************************************************/
204
144typedef struct 205typedef struct
145{ 206{
146 struct ev_watcher_list *head; 207 WL head;
147 unsigned char events; 208 unsigned char events;
148 unsigned char reify; 209 unsigned char reify;
149} ANFD; 210} ANFD;
150 211
151typedef struct 212typedef struct
154 int events; 215 int events;
155} ANPENDING; 216} ANPENDING;
156 217
157#if EV_MULTIPLICITY 218#if EV_MULTIPLICITY
158 219
159struct ev_loop 220 struct ev_loop
160{ 221 {
161# define VAR(name,decl) decl; 222 #define VAR(name,decl) decl;
162# include "ev_vars.h" 223 #include "ev_vars.h"
163};
164# undef VAR 224 #undef VAR
225 };
165# include "ev_wrap.h" 226 #include "ev_wrap.h"
227
228 struct ev_loop default_loop_struct;
229 static struct ev_loop *default_loop;
166 230
167#else 231#else
168 232
169# define VAR(name,decl) static decl; 233 #define VAR(name,decl) static decl;
170# include "ev_vars.h" 234 #include "ev_vars.h"
171# undef VAR 235 #undef VAR
236
237 static int default_loop;
172 238
173#endif 239#endif
174 240
175/*****************************************************************************/ 241/*****************************************************************************/
176 242
207ev_now (EV_P) 273ev_now (EV_P)
208{ 274{
209 return rt_now; 275 return rt_now;
210} 276}
211 277
212#define array_roundsize(base,n) ((n) | 4 & ~3) 278#define array_roundsize(type,n) ((n) | 4 & ~3)
213 279
214#define array_needsize(base,cur,cnt,init) \ 280#define array_needsize(type,base,cur,cnt,init) \
215 if (expect_false ((cnt) > cur)) \ 281 if (expect_false ((cnt) > cur)) \
216 { \ 282 { \
217 int newcnt = cur; \ 283 int newcnt = cur; \
218 do \ 284 do \
219 { \ 285 { \
220 newcnt = array_roundsize (base, newcnt << 1); \ 286 newcnt = array_roundsize (type, newcnt << 1); \
221 } \ 287 } \
222 while ((cnt) > newcnt); \ 288 while ((cnt) > newcnt); \
223 \ 289 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \ 290 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
225 init (base + cur, newcnt - cur); \ 291 init (base + cur, newcnt - cur); \
226 cur = newcnt; \ 292 cur = newcnt; \
227 } 293 }
294
295#define array_slim(type,stem) \
296 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
297 { \
298 stem ## max = array_roundsize (stem ## cnt >> 1); \
299 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
300 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
301 }
302
303/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
304/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
305#define array_free_microshit(stem) \
306 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
307
308#define array_free(stem, idx) \
309 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
228 310
229/*****************************************************************************/ 311/*****************************************************************************/
230 312
231static void 313static void
232anfds_init (ANFD *base, int count) 314anfds_init (ANFD *base, int count)
239 321
240 ++base; 322 ++base;
241 } 323 }
242} 324}
243 325
244static void 326void
245event (EV_P_ W w, int events) 327ev_feed_event (EV_P_ void *w, int revents)
246{ 328{
329 W w_ = (W)w;
330
247 if (w->pending) 331 if (w_->pending)
248 { 332 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events; 333 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
250 return; 334 return;
251 } 335 }
252 336
253 w->pending = ++pendingcnt [ABSPRI (w)]; 337 w_->pending = ++pendingcnt [ABSPRI (w_)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 338 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
255 pendings [ABSPRI (w)][w->pending - 1].w = w; 339 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
256 pendings [ABSPRI (w)][w->pending - 1].events = events; 340 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
257} 341}
258 342
259static void 343static void
260queue_events (EV_P_ W *events, int eventcnt, int type) 344queue_events (EV_P_ W *events, int eventcnt, int type)
261{ 345{
262 int i; 346 int i;
263 347
264 for (i = 0; i < eventcnt; ++i) 348 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type); 349 ev_feed_event (EV_A_ events [i], type);
266} 350}
267 351
268static void 352inline void
269fd_event (EV_P_ int fd, int events) 353fd_event (EV_P_ int fd, int revents)
270{ 354{
271 ANFD *anfd = anfds + fd; 355 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 356 struct ev_io *w;
273 357
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 358 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
275 { 359 {
276 int ev = w->events & events; 360 int ev = w->events & revents;
277 361
278 if (ev) 362 if (ev)
279 event (EV_A_ (W)w, ev); 363 ev_feed_event (EV_A_ (W)w, ev);
280 } 364 }
365}
366
367void
368ev_feed_fd_event (EV_P_ int fd, int revents)
369{
370 fd_event (EV_A_ fd, revents);
281} 371}
282 372
283/*****************************************************************************/ 373/*****************************************************************************/
284 374
285static void 375static void
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 388 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events; 389 events |= w->events;
300 390
301 anfd->reify = 0; 391 anfd->reify = 0;
302 392
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events); 393 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events; 394 anfd->events = events;
307 }
308 } 395 }
309 396
310 fdchangecnt = 0; 397 fdchangecnt = 0;
311} 398}
312 399
313static void 400static void
314fd_change (EV_P_ int fd) 401fd_change (EV_P_ int fd)
315{ 402{
316 if (anfds [fd].reify || fdchangecnt < 0) 403 if (anfds [fd].reify)
317 return; 404 return;
318 405
319 anfds [fd].reify = 1; 406 anfds [fd].reify = 1;
320 407
321 ++fdchangecnt; 408 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 409 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
323 fdchanges [fdchangecnt - 1] = fd; 410 fdchanges [fdchangecnt - 1] = fd;
324} 411}
325 412
326static void 413static void
327fd_kill (EV_P_ int fd) 414fd_kill (EV_P_ int fd)
329 struct ev_io *w; 416 struct ev_io *w;
330 417
331 while ((w = (struct ev_io *)anfds [fd].head)) 418 while ((w = (struct ev_io *)anfds [fd].head))
332 { 419 {
333 ev_io_stop (EV_A_ w); 420 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 421 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 422 }
423}
424
425static int
426fd_valid (int fd)
427{
428#ifdef WIN32
429 return !!win32_get_osfhandle (fd);
430#else
431 return fcntl (fd, F_GETFD) != -1;
432#endif
336} 433}
337 434
338/* called on EBADF to verify fds */ 435/* called on EBADF to verify fds */
339static void 436static void
340fd_ebadf (EV_P) 437fd_ebadf (EV_P)
341{ 438{
342 int fd; 439 int fd;
343 440
344 for (fd = 0; fd < anfdmax; ++fd) 441 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 442 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 443 if (!fd_valid (fd) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd); 444 fd_kill (EV_A_ fd);
348} 445}
349 446
350/* called on ENOMEM in select/poll to kill some fds and retry */ 447/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 448static void
352fd_enomem (EV_P) 449fd_enomem (EV_P)
353{ 450{
354 int fd = anfdmax; 451 int fd;
355 452
356 while (fd--) 453 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 454 if (anfds [fd].events)
358 { 455 {
359 close (fd);
360 fd_kill (EV_A_ fd); 456 fd_kill (EV_A_ fd);
361 return; 457 return;
362 } 458 }
363} 459}
364 460
365/* susually called after fork if method needs to re-arm all fds from scratch */ 461/* usually called after fork if method needs to re-arm all fds from scratch */
366static void 462static void
367fd_rearm_all (EV_P) 463fd_rearm_all (EV_P)
368{ 464{
369 int fd; 465 int fd;
370 466
385 WT w = heap [k]; 481 WT w = heap [k];
386 482
387 while (k && heap [k >> 1]->at > w->at) 483 while (k && heap [k >> 1]->at > w->at)
388 { 484 {
389 heap [k] = heap [k >> 1]; 485 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1; 486 ((W)heap [k])->active = k + 1;
391 k >>= 1; 487 k >>= 1;
392 } 488 }
393 489
394 heap [k] = w; 490 heap [k] = w;
395 heap [k]->active = k + 1; 491 ((W)heap [k])->active = k + 1;
396 492
397} 493}
398 494
399static void 495static void
400downheap (WT *heap, int N, int k) 496downheap (WT *heap, int N, int k)
410 506
411 if (w->at <= heap [j]->at) 507 if (w->at <= heap [j]->at)
412 break; 508 break;
413 509
414 heap [k] = heap [j]; 510 heap [k] = heap [j];
415 heap [k]->active = k + 1; 511 ((W)heap [k])->active = k + 1;
416 k = j; 512 k = j;
417 } 513 }
418 514
419 heap [k] = w; 515 heap [k] = w;
420 heap [k]->active = k + 1; 516 ((W)heap [k])->active = k + 1;
421} 517}
422 518
423/*****************************************************************************/ 519/*****************************************************************************/
424 520
425typedef struct 521typedef struct
426{ 522{
427 struct ev_watcher_list *head; 523 WL head;
428 sig_atomic_t volatile gotsig; 524 sig_atomic_t volatile gotsig;
429} ANSIG; 525} ANSIG;
430 526
431static ANSIG *signals; 527static ANSIG *signals;
432static int signalmax; 528static int signalmax;
448} 544}
449 545
450static void 546static void
451sighandler (int signum) 547sighandler (int signum)
452{ 548{
549#if WIN32
550 signal (signum, sighandler);
551#endif
552
453 signals [signum - 1].gotsig = 1; 553 signals [signum - 1].gotsig = 1;
454 554
455 if (!gotsig) 555 if (!gotsig)
456 { 556 {
457 int old_errno = errno; 557 int old_errno = errno;
458 gotsig = 1; 558 gotsig = 1;
559#ifdef WIN32
560 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
561#else
459 write (sigpipe [1], &signum, 1); 562 write (sigpipe [1], &signum, 1);
563#endif
460 errno = old_errno; 564 errno = old_errno;
461 } 565 }
462} 566}
463 567
568void
569ev_feed_signal_event (EV_P_ int signum)
570{
571 WL w;
572
573#if EV_MULTIPLICITY
574 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
575#endif
576
577 --signum;
578
579 if (signum < 0 || signum >= signalmax)
580 return;
581
582 signals [signum].gotsig = 0;
583
584 for (w = signals [signum].head; w; w = w->next)
585 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
586}
587
464static void 588static void
465sigcb (EV_P_ struct ev_io *iow, int revents) 589sigcb (EV_P_ struct ev_io *iow, int revents)
466{ 590{
467 struct ev_watcher_list *w;
468 int signum; 591 int signum;
469 592
593#ifdef WIN32
594 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
595#else
470 read (sigpipe [0], &revents, 1); 596 read (sigpipe [0], &revents, 1);
597#endif
471 gotsig = 0; 598 gotsig = 0;
472 599
473 for (signum = signalmax; signum--; ) 600 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig) 601 if (signals [signum].gotsig)
475 { 602 ev_feed_signal_event (EV_A_ signum + 1);
476 signals [signum].gotsig = 0;
477
478 for (w = signals [signum].head; w; w = w->next)
479 event (EV_A_ (W)w, EV_SIGNAL);
480 }
481} 603}
482 604
483static void 605static void
484siginit (EV_P) 606siginit (EV_P)
485{ 607{
497 ev_unref (EV_A); /* child watcher should not keep loop alive */ 619 ev_unref (EV_A); /* child watcher should not keep loop alive */
498} 620}
499 621
500/*****************************************************************************/ 622/*****************************************************************************/
501 623
624static struct ev_child *childs [PID_HASHSIZE];
625
502#ifndef WIN32 626#ifndef WIN32
503 627
504static struct ev_child *childs [PID_HASHSIZE];
505static struct ev_signal childev; 628static struct ev_signal childev;
506 629
507#ifndef WCONTINUED 630#ifndef WCONTINUED
508# define WCONTINUED 0 631# define WCONTINUED 0
509#endif 632#endif
514 struct ev_child *w; 637 struct ev_child *w;
515 638
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 639 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid) 640 if (w->pid == pid || !w->pid)
518 { 641 {
519 w->priority = sw->priority; /* need to do it *now* */ 642 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
520 w->rpid = pid; 643 w->rpid = pid;
521 w->rstatus = status; 644 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD); 645 ev_feed_event (EV_A_ (W)w, EV_CHILD);
523 } 646 }
524} 647}
525 648
526static void 649static void
527childcb (EV_P_ struct ev_signal *sw, int revents) 650childcb (EV_P_ struct ev_signal *sw, int revents)
529 int pid, status; 652 int pid, status;
530 653
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 654 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 { 655 {
533 /* make sure we are called again until all childs have been reaped */ 656 /* make sure we are called again until all childs have been reaped */
534 event (EV_A_ (W)sw, EV_SIGNAL); 657 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
535 658
536 child_reap (EV_A_ sw, pid, pid, status); 659 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 660 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 } 661 }
539} 662}
608 methods = atoi (getenv ("LIBEV_METHODS")); 731 methods = atoi (getenv ("LIBEV_METHODS"));
609 else 732 else
610 methods = EVMETHOD_ANY; 733 methods = EVMETHOD_ANY;
611 734
612 method = 0; 735 method = 0;
736#if EV_USE_WIN32
737 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
738#endif
613#if EV_USE_KQUEUE 739#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 740 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615#endif 741#endif
616#if EV_USE_EPOLL 742#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 743 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 746 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621#endif 747#endif
622#if EV_USE_SELECT 748#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 749 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624#endif 750#endif
751
752 ev_watcher_init (&sigev, sigcb);
753 ev_set_priority (&sigev, EV_MAXPRI);
625 } 754 }
626} 755}
627 756
628void 757void
629loop_destroy (EV_P) 758loop_destroy (EV_P)
630{ 759{
760 int i;
761
762#if EV_USE_WIN32
763 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
764#endif
631#if EV_USE_KQUEUE 765#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 766 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif 767#endif
634#if EV_USE_EPOLL 768#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 769 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
639#endif 773#endif
640#if EV_USE_SELECT 774#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 775 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif 776#endif
643 777
778 for (i = NUMPRI; i--; )
779 array_free (pending, [i]);
780
781 /* have to use the microsoft-never-gets-it-right macro */
782 array_free_microshit (fdchange);
783 array_free_microshit (timer);
784 array_free_microshit (periodic);
785 array_free_microshit (idle);
786 array_free_microshit (prepare);
787 array_free_microshit (check);
788
644 method = 0; 789 method = 0;
645 /*TODO*/
646} 790}
647 791
648void 792static void
649loop_fork (EV_P) 793loop_fork (EV_P)
650{ 794{
651 /*TODO*/
652#if EV_USE_EPOLL 795#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 796 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif 797#endif
655#if EV_USE_KQUEUE 798#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 799 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif 800#endif
801
802 if (ev_is_active (&sigev))
803 {
804 /* default loop */
805
806 ev_ref (EV_A);
807 ev_io_stop (EV_A_ &sigev);
808 close (sigpipe [0]);
809 close (sigpipe [1]);
810
811 while (pipe (sigpipe))
812 syserr ("(libev) error creating pipe");
813
814 siginit (EV_A);
815 }
816
817 postfork = 0;
658} 818}
659 819
660#if EV_MULTIPLICITY 820#if EV_MULTIPLICITY
661struct ev_loop * 821struct ev_loop *
662ev_loop_new (int methods) 822ev_loop_new (int methods)
663{ 823{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 824 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
825
826 memset (loop, 0, sizeof (struct ev_loop));
665 827
666 loop_init (EV_A_ methods); 828 loop_init (EV_A_ methods);
667 829
668 if (ev_method (EV_A)) 830 if (ev_method (EV_A))
669 return loop; 831 return loop;
673 835
674void 836void
675ev_loop_destroy (EV_P) 837ev_loop_destroy (EV_P)
676{ 838{
677 loop_destroy (EV_A); 839 loop_destroy (EV_A);
678 free (loop); 840 ev_free (loop);
679} 841}
680 842
681void 843void
682ev_loop_fork (EV_P) 844ev_loop_fork (EV_P)
683{ 845{
684 loop_fork (EV_A); 846 postfork = 1;
685} 847}
686 848
687#endif 849#endif
688 850
689#if EV_MULTIPLICITY 851#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop * 852struct ev_loop *
694#else 853#else
695static int default_loop;
696
697int 854int
698#endif 855#endif
699ev_default_loop (int methods) 856ev_default_loop (int methods)
700{ 857{
701 if (sigpipe [0] == sigpipe [1]) 858 if (sigpipe [0] == sigpipe [1])
712 869
713 loop_init (EV_A_ methods); 870 loop_init (EV_A_ methods);
714 871
715 if (ev_method (EV_A)) 872 if (ev_method (EV_A))
716 { 873 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A); 874 siginit (EV_A);
720 875
721#ifndef WIN32 876#ifndef WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 877 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 878 ev_set_priority (&childev, EV_MAXPRI);
737{ 892{
738#if EV_MULTIPLICITY 893#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop; 894 struct ev_loop *loop = default_loop;
740#endif 895#endif
741 896
897#ifndef WIN32
742 ev_ref (EV_A); /* child watcher */ 898 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev); 899 ev_signal_stop (EV_A_ &childev);
900#endif
744 901
745 ev_ref (EV_A); /* signal watcher */ 902 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev); 903 ev_io_stop (EV_A_ &sigev);
747 904
748 close (sigpipe [0]); sigpipe [0] = 0; 905 close (sigpipe [0]); sigpipe [0] = 0;
756{ 913{
757#if EV_MULTIPLICITY 914#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop; 915 struct ev_loop *loop = default_loop;
759#endif 916#endif
760 917
761 loop_fork (EV_A); 918 if (method)
762 919 postfork = 1;
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 920}
771 921
772/*****************************************************************************/ 922/*****************************************************************************/
923
924static int
925any_pending (EV_P)
926{
927 int pri;
928
929 for (pri = NUMPRI; pri--; )
930 if (pendingcnt [pri])
931 return 1;
932
933 return 0;
934}
773 935
774static void 936static void
775call_pending (EV_P) 937call_pending (EV_P)
776{ 938{
777 int pri; 939 int pri;
790} 952}
791 953
792static void 954static void
793timers_reify (EV_P) 955timers_reify (EV_P)
794{ 956{
795 while (timercnt && timers [0]->at <= mn_now) 957 while (timercnt && ((WT)timers [0])->at <= mn_now)
796 { 958 {
797 struct ev_timer *w = timers [0]; 959 struct ev_timer *w = timers [0];
960
961 assert (("inactive timer on timer heap detected", ev_is_active (w)));
798 962
799 /* first reschedule or stop timer */ 963 /* first reschedule or stop timer */
800 if (w->repeat) 964 if (w->repeat)
801 { 965 {
802 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 966 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
803 w->at = mn_now + w->repeat; 967 ((WT)w)->at = mn_now + w->repeat;
804 downheap ((WT *)timers, timercnt, 0); 968 downheap ((WT *)timers, timercnt, 0);
805 } 969 }
806 else 970 else
807 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 971 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
808 972
809 event (EV_A_ (W)w, EV_TIMEOUT); 973 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
810 } 974 }
811} 975}
812 976
813static void 977static void
814periodics_reify (EV_P) 978periodics_reify (EV_P)
815{ 979{
816 while (periodiccnt && periodics [0]->at <= rt_now) 980 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
817 { 981 {
818 struct ev_periodic *w = periodics [0]; 982 struct ev_periodic *w = periodics [0];
819 983
984 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
985
820 /* first reschedule or stop timer */ 986 /* first reschedule or stop timer */
821 if (w->interval) 987 if (w->reschedule_cb)
822 { 988 {
989 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
990
991 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
992 downheap ((WT *)periodics, periodiccnt, 0);
993 }
994 else if (w->interval)
995 {
823 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 996 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
824 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 997 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
825 downheap ((WT *)periodics, periodiccnt, 0); 998 downheap ((WT *)periodics, periodiccnt, 0);
826 } 999 }
827 else 1000 else
828 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1001 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
829 1002
830 event (EV_A_ (W)w, EV_PERIODIC); 1003 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
831 } 1004 }
832} 1005}
833 1006
834static void 1007static void
835periodics_reschedule (EV_P) 1008periodics_reschedule (EV_P)
839 /* adjust periodics after time jump */ 1012 /* adjust periodics after time jump */
840 for (i = 0; i < periodiccnt; ++i) 1013 for (i = 0; i < periodiccnt; ++i)
841 { 1014 {
842 struct ev_periodic *w = periodics [i]; 1015 struct ev_periodic *w = periodics [i];
843 1016
1017 if (w->reschedule_cb)
1018 ((WT)w)->at = w->reschedule_cb (w, rt_now);
844 if (w->interval) 1019 else if (w->interval)
845 {
846 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1020 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
847
848 if (fabs (diff) >= 1e-4)
849 {
850 ev_periodic_stop (EV_A_ w);
851 ev_periodic_start (EV_A_ w);
852
853 i = 0; /* restart loop, inefficient, but time jumps should be rare */
854 }
855 }
856 } 1021 }
1022
1023 /* now rebuild the heap */
1024 for (i = periodiccnt >> 1; i--; )
1025 downheap ((WT *)periodics, periodiccnt, i);
857} 1026}
858 1027
859inline int 1028inline int
860time_update_monotonic (EV_P) 1029time_update_monotonic (EV_P)
861{ 1030{
912 { 1081 {
913 periodics_reschedule (EV_A); 1082 periodics_reschedule (EV_A);
914 1083
915 /* adjust timers. this is easy, as the offset is the same for all */ 1084 /* adjust timers. this is easy, as the offset is the same for all */
916 for (i = 0; i < timercnt; ++i) 1085 for (i = 0; i < timercnt; ++i)
917 timers [i]->at += rt_now - mn_now; 1086 ((WT)timers [i])->at += rt_now - mn_now;
918 } 1087 }
919 1088
920 mn_now = rt_now; 1089 mn_now = rt_now;
921 } 1090 }
922} 1091}
948 { 1117 {
949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1118 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
950 call_pending (EV_A); 1119 call_pending (EV_A);
951 } 1120 }
952 1121
1122 /* we might have forked, so reify kernel state if necessary */
1123 if (expect_false (postfork))
1124 loop_fork (EV_A);
1125
953 /* update fd-related kernel structures */ 1126 /* update fd-related kernel structures */
954 fd_reify (EV_A); 1127 fd_reify (EV_A);
955 1128
956 /* calculate blocking time */ 1129 /* calculate blocking time */
957 1130
958 /* we only need this for !monotonic clockor timers, but as we basically 1131 /* we only need this for !monotonic clock or timers, but as we basically
959 always have timers, we just calculate it always */ 1132 always have timers, we just calculate it always */
960#if EV_USE_MONOTONIC 1133#if EV_USE_MONOTONIC
961 if (expect_true (have_monotonic)) 1134 if (expect_true (have_monotonic))
962 time_update_monotonic (EV_A); 1135 time_update_monotonic (EV_A);
963 else 1136 else
973 { 1146 {
974 block = MAX_BLOCKTIME; 1147 block = MAX_BLOCKTIME;
975 1148
976 if (timercnt) 1149 if (timercnt)
977 { 1150 {
978 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1151 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
979 if (block > to) block = to; 1152 if (block > to) block = to;
980 } 1153 }
981 1154
982 if (periodiccnt) 1155 if (periodiccnt)
983 { 1156 {
984 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1157 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
985 if (block > to) block = to; 1158 if (block > to) block = to;
986 } 1159 }
987 1160
988 if (block < 0.) block = 0.; 1161 if (block < 0.) block = 0.;
989 } 1162 }
996 /* queue pending timers and reschedule them */ 1169 /* queue pending timers and reschedule them */
997 timers_reify (EV_A); /* relative timers called last */ 1170 timers_reify (EV_A); /* relative timers called last */
998 periodics_reify (EV_A); /* absolute timers called first */ 1171 periodics_reify (EV_A); /* absolute timers called first */
999 1172
1000 /* queue idle watchers unless io or timers are pending */ 1173 /* queue idle watchers unless io or timers are pending */
1001 if (!pendingcnt) 1174 if (idlecnt && !any_pending (EV_A))
1002 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1175 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1003 1176
1004 /* queue check watchers, to be executed first */ 1177 /* queue check watchers, to be executed first */
1005 if (checkcnt) 1178 if (checkcnt)
1006 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1179 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1081 return; 1254 return;
1082 1255
1083 assert (("ev_io_start called with negative fd", fd >= 0)); 1256 assert (("ev_io_start called with negative fd", fd >= 0));
1084 1257
1085 ev_start (EV_A_ (W)w, 1); 1258 ev_start (EV_A_ (W)w, 1);
1086 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1259 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1087 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1260 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1088 1261
1089 fd_change (EV_A_ fd); 1262 fd_change (EV_A_ fd);
1090} 1263}
1091 1264
1106ev_timer_start (EV_P_ struct ev_timer *w) 1279ev_timer_start (EV_P_ struct ev_timer *w)
1107{ 1280{
1108 if (ev_is_active (w)) 1281 if (ev_is_active (w))
1109 return; 1282 return;
1110 1283
1111 w->at += mn_now; 1284 ((WT)w)->at += mn_now;
1112 1285
1113 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1286 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1114 1287
1115 ev_start (EV_A_ (W)w, ++timercnt); 1288 ev_start (EV_A_ (W)w, ++timercnt);
1116 array_needsize (timers, timermax, timercnt, ); 1289 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1117 timers [timercnt - 1] = w; 1290 timers [timercnt - 1] = w;
1118 upheap ((WT *)timers, timercnt - 1); 1291 upheap ((WT *)timers, timercnt - 1);
1292
1293 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1119} 1294}
1120 1295
1121void 1296void
1122ev_timer_stop (EV_P_ struct ev_timer *w) 1297ev_timer_stop (EV_P_ struct ev_timer *w)
1123{ 1298{
1124 ev_clear_pending (EV_A_ (W)w); 1299 ev_clear_pending (EV_A_ (W)w);
1125 if (!ev_is_active (w)) 1300 if (!ev_is_active (w))
1126 return; 1301 return;
1127 1302
1303 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1304
1128 if (w->active < timercnt--) 1305 if (((W)w)->active < timercnt--)
1129 { 1306 {
1130 timers [w->active - 1] = timers [timercnt]; 1307 timers [((W)w)->active - 1] = timers [timercnt];
1131 downheap ((WT *)timers, timercnt, w->active - 1); 1308 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1132 } 1309 }
1133 1310
1134 w->at = w->repeat; 1311 ((WT)w)->at = w->repeat;
1135 1312
1136 ev_stop (EV_A_ (W)w); 1313 ev_stop (EV_A_ (W)w);
1137} 1314}
1138 1315
1139void 1316void
1141{ 1318{
1142 if (ev_is_active (w)) 1319 if (ev_is_active (w))
1143 { 1320 {
1144 if (w->repeat) 1321 if (w->repeat)
1145 { 1322 {
1146 w->at = mn_now + w->repeat; 1323 ((WT)w)->at = mn_now + w->repeat;
1147 downheap ((WT *)timers, timercnt, w->active - 1); 1324 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1148 } 1325 }
1149 else 1326 else
1150 ev_timer_stop (EV_A_ w); 1327 ev_timer_stop (EV_A_ w);
1151 } 1328 }
1152 else if (w->repeat) 1329 else if (w->repeat)
1157ev_periodic_start (EV_P_ struct ev_periodic *w) 1334ev_periodic_start (EV_P_ struct ev_periodic *w)
1158{ 1335{
1159 if (ev_is_active (w)) 1336 if (ev_is_active (w))
1160 return; 1337 return;
1161 1338
1339 if (w->reschedule_cb)
1340 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1341 else if (w->interval)
1342 {
1162 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1343 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1163
1164 /* this formula differs from the one in periodic_reify because we do not always round up */ 1344 /* this formula differs from the one in periodic_reify because we do not always round up */
1165 if (w->interval)
1166 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1345 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1346 }
1167 1347
1168 ev_start (EV_A_ (W)w, ++periodiccnt); 1348 ev_start (EV_A_ (W)w, ++periodiccnt);
1169 array_needsize (periodics, periodicmax, periodiccnt, ); 1349 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1170 periodics [periodiccnt - 1] = w; 1350 periodics [periodiccnt - 1] = w;
1171 upheap ((WT *)periodics, periodiccnt - 1); 1351 upheap ((WT *)periodics, periodiccnt - 1);
1352
1353 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1172} 1354}
1173 1355
1174void 1356void
1175ev_periodic_stop (EV_P_ struct ev_periodic *w) 1357ev_periodic_stop (EV_P_ struct ev_periodic *w)
1176{ 1358{
1177 ev_clear_pending (EV_A_ (W)w); 1359 ev_clear_pending (EV_A_ (W)w);
1178 if (!ev_is_active (w)) 1360 if (!ev_is_active (w))
1179 return; 1361 return;
1180 1362
1363 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1364
1181 if (w->active < periodiccnt--) 1365 if (((W)w)->active < periodiccnt--)
1182 { 1366 {
1183 periodics [w->active - 1] = periodics [periodiccnt]; 1367 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1184 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1368 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1185 } 1369 }
1186 1370
1187 ev_stop (EV_A_ (W)w); 1371 ev_stop (EV_A_ (W)w);
1188} 1372}
1189 1373
1190void 1374void
1375ev_periodic_again (EV_P_ struct ev_periodic *w)
1376{
1377 ev_periodic_stop (EV_A_ w);
1378 ev_periodic_start (EV_A_ w);
1379}
1380
1381void
1191ev_idle_start (EV_P_ struct ev_idle *w) 1382ev_idle_start (EV_P_ struct ev_idle *w)
1192{ 1383{
1193 if (ev_is_active (w)) 1384 if (ev_is_active (w))
1194 return; 1385 return;
1195 1386
1196 ev_start (EV_A_ (W)w, ++idlecnt); 1387 ev_start (EV_A_ (W)w, ++idlecnt);
1197 array_needsize (idles, idlemax, idlecnt, ); 1388 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1198 idles [idlecnt - 1] = w; 1389 idles [idlecnt - 1] = w;
1199} 1390}
1200 1391
1201void 1392void
1202ev_idle_stop (EV_P_ struct ev_idle *w) 1393ev_idle_stop (EV_P_ struct ev_idle *w)
1203{ 1394{
1204 ev_clear_pending (EV_A_ (W)w); 1395 ev_clear_pending (EV_A_ (W)w);
1205 if (ev_is_active (w)) 1396 if (ev_is_active (w))
1206 return; 1397 return;
1207 1398
1208 idles [w->active - 1] = idles [--idlecnt]; 1399 idles [((W)w)->active - 1] = idles [--idlecnt];
1209 ev_stop (EV_A_ (W)w); 1400 ev_stop (EV_A_ (W)w);
1210} 1401}
1211 1402
1212void 1403void
1213ev_prepare_start (EV_P_ struct ev_prepare *w) 1404ev_prepare_start (EV_P_ struct ev_prepare *w)
1214{ 1405{
1215 if (ev_is_active (w)) 1406 if (ev_is_active (w))
1216 return; 1407 return;
1217 1408
1218 ev_start (EV_A_ (W)w, ++preparecnt); 1409 ev_start (EV_A_ (W)w, ++preparecnt);
1219 array_needsize (prepares, preparemax, preparecnt, ); 1410 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1220 prepares [preparecnt - 1] = w; 1411 prepares [preparecnt - 1] = w;
1221} 1412}
1222 1413
1223void 1414void
1224ev_prepare_stop (EV_P_ struct ev_prepare *w) 1415ev_prepare_stop (EV_P_ struct ev_prepare *w)
1225{ 1416{
1226 ev_clear_pending (EV_A_ (W)w); 1417 ev_clear_pending (EV_A_ (W)w);
1227 if (ev_is_active (w)) 1418 if (ev_is_active (w))
1228 return; 1419 return;
1229 1420
1230 prepares [w->active - 1] = prepares [--preparecnt]; 1421 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1231 ev_stop (EV_A_ (W)w); 1422 ev_stop (EV_A_ (W)w);
1232} 1423}
1233 1424
1234void 1425void
1235ev_check_start (EV_P_ struct ev_check *w) 1426ev_check_start (EV_P_ struct ev_check *w)
1236{ 1427{
1237 if (ev_is_active (w)) 1428 if (ev_is_active (w))
1238 return; 1429 return;
1239 1430
1240 ev_start (EV_A_ (W)w, ++checkcnt); 1431 ev_start (EV_A_ (W)w, ++checkcnt);
1241 array_needsize (checks, checkmax, checkcnt, ); 1432 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1242 checks [checkcnt - 1] = w; 1433 checks [checkcnt - 1] = w;
1243} 1434}
1244 1435
1245void 1436void
1246ev_check_stop (EV_P_ struct ev_check *w) 1437ev_check_stop (EV_P_ struct ev_check *w)
1247{ 1438{
1248 ev_clear_pending (EV_A_ (W)w); 1439 ev_clear_pending (EV_A_ (W)w);
1249 if (ev_is_active (w)) 1440 if (ev_is_active (w))
1250 return; 1441 return;
1251 1442
1252 checks [w->active - 1] = checks [--checkcnt]; 1443 checks [((W)w)->active - 1] = checks [--checkcnt];
1253 ev_stop (EV_A_ (W)w); 1444 ev_stop (EV_A_ (W)w);
1254} 1445}
1255 1446
1256#ifndef SA_RESTART 1447#ifndef SA_RESTART
1257# define SA_RESTART 0 1448# define SA_RESTART 0
1267 return; 1458 return;
1268 1459
1269 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1460 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1270 1461
1271 ev_start (EV_A_ (W)w, 1); 1462 ev_start (EV_A_ (W)w, 1);
1272 array_needsize (signals, signalmax, w->signum, signals_init); 1463 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1273 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1464 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1274 1465
1275 if (!w->next) 1466 if (!((WL)w)->next)
1276 { 1467 {
1468#if WIN32
1469 signal (w->signum, sighandler);
1470#else
1277 struct sigaction sa; 1471 struct sigaction sa;
1278 sa.sa_handler = sighandler; 1472 sa.sa_handler = sighandler;
1279 sigfillset (&sa.sa_mask); 1473 sigfillset (&sa.sa_mask);
1280 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1474 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1281 sigaction (w->signum, &sa, 0); 1475 sigaction (w->signum, &sa, 0);
1476#endif
1282 } 1477 }
1283} 1478}
1284 1479
1285void 1480void
1286ev_signal_stop (EV_P_ struct ev_signal *w) 1481ev_signal_stop (EV_P_ struct ev_signal *w)
1336 void (*cb)(int revents, void *arg) = once->cb; 1531 void (*cb)(int revents, void *arg) = once->cb;
1337 void *arg = once->arg; 1532 void *arg = once->arg;
1338 1533
1339 ev_io_stop (EV_A_ &once->io); 1534 ev_io_stop (EV_A_ &once->io);
1340 ev_timer_stop (EV_A_ &once->to); 1535 ev_timer_stop (EV_A_ &once->to);
1341 free (once); 1536 ev_free (once);
1342 1537
1343 cb (revents, arg); 1538 cb (revents, arg);
1344} 1539}
1345 1540
1346static void 1541static void
1356} 1551}
1357 1552
1358void 1553void
1359ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1554ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1360{ 1555{
1361 struct ev_once *once = malloc (sizeof (struct ev_once)); 1556 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1362 1557
1363 if (!once) 1558 if (!once)
1364 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1559 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1365 else 1560 else
1366 { 1561 {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines