ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.81 by root, Fri Nov 9 17:07:59 2007 UTC vs.
Revision 1.305 by root, Sun Jul 19 03:49:04 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
33 65
34# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
37# endif 80# endif
38 81
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
41# endif 88# endif
42 89
43# if HAVE_POLL && HAVE_POLL_H 90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
45# endif 96# endif
46 97
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
49# endif 104# endif
50 105
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
53# endif 112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
54 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
55#endif 154#endif
56 155
57#include <math.h> 156#include <math.h>
58#include <stdlib.h> 157#include <stdlib.h>
59#include <fcntl.h> 158#include <fcntl.h>
66#include <sys/types.h> 165#include <sys/types.h>
67#include <time.h> 166#include <time.h>
68 167
69#include <signal.h> 168#include <signal.h>
70 169
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
77
78#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1
80#endif
81
82#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1
84#endif
85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
90#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1
110#endif
111
112/**/
113
114#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0
122#endif
123
124/**/
125
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130
131#ifdef EV_H 170#ifdef EV_H
132# include EV_H 171# include EV_H
133#else 172#else
134# include "ev.h" 173# include "ev.h"
135#endif 174#endif
136 175
176#ifndef _WIN32
177# include <sys/time.h>
178# include <sys/wait.h>
179# include <unistd.h>
180#else
181# include <io.h>
182# define WIN32_LEAN_AND_MEAN
183# include <windows.h>
184# ifndef EV_SELECT_IS_WINSOCKET
185# define EV_SELECT_IS_WINSOCKET 1
186# endif
187#endif
188
189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 64
216#endif
217
218/* Default to some arbitrary number that's big enough to get most
219 of the common signals.
220*/
221#ifndef NSIG
222# define NSIG 50
223#endif
224/* <-- NSIG logic from Configure */
225#ifndef EV_USE_CLOCK_SYSCALL
226# if __linux && __GLIBC__ >= 2
227# define EV_USE_CLOCK_SYSCALL 1
228# else
229# define EV_USE_CLOCK_SYSCALL 0
230# endif
231#endif
232
233#ifndef EV_USE_MONOTONIC
234# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
235# define EV_USE_MONOTONIC 1
236# else
237# define EV_USE_MONOTONIC 0
238# endif
239#endif
240
241#ifndef EV_USE_REALTIME
242# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
243#endif
244
245#ifndef EV_USE_NANOSLEEP
246# if _POSIX_C_SOURCE >= 199309L
247# define EV_USE_NANOSLEEP 1
248# else
249# define EV_USE_NANOSLEEP 0
250# endif
251#endif
252
253#ifndef EV_USE_SELECT
254# define EV_USE_SELECT 1
255#endif
256
257#ifndef EV_USE_POLL
258# ifdef _WIN32
259# define EV_USE_POLL 0
260# else
261# define EV_USE_POLL 1
262# endif
263#endif
264
265#ifndef EV_USE_EPOLL
266# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
267# define EV_USE_EPOLL 1
268# else
269# define EV_USE_EPOLL 0
270# endif
271#endif
272
273#ifndef EV_USE_KQUEUE
274# define EV_USE_KQUEUE 0
275#endif
276
277#ifndef EV_USE_PORT
278# define EV_USE_PORT 0
279#endif
280
281#ifndef EV_USE_INOTIFY
282# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
283# define EV_USE_INOTIFY 1
284# else
285# define EV_USE_INOTIFY 0
286# endif
287#endif
288
289#ifndef EV_PID_HASHSIZE
290# if EV_MINIMAL
291# define EV_PID_HASHSIZE 1
292# else
293# define EV_PID_HASHSIZE 16
294# endif
295#endif
296
297#ifndef EV_INOTIFY_HASHSIZE
298# if EV_MINIMAL
299# define EV_INOTIFY_HASHSIZE 1
300# else
301# define EV_INOTIFY_HASHSIZE 16
302# endif
303#endif
304
305#ifndef EV_USE_EVENTFD
306# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
307# define EV_USE_EVENTFD 1
308# else
309# define EV_USE_EVENTFD 0
310# endif
311#endif
312
313#ifndef EV_USE_SIGNALFD
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
315# define EV_USE_SIGNALFD 1
316# else
317# define EV_USE_SIGNALFD 0
318# endif
319#endif
320
321#if 0 /* debugging */
322# define EV_VERIFY 3
323# define EV_USE_4HEAP 1
324# define EV_HEAP_CACHE_AT 1
325#endif
326
327#ifndef EV_VERIFY
328# define EV_VERIFY !EV_MINIMAL
329#endif
330
331#ifndef EV_USE_4HEAP
332# define EV_USE_4HEAP !EV_MINIMAL
333#endif
334
335#ifndef EV_HEAP_CACHE_AT
336# define EV_HEAP_CACHE_AT !EV_MINIMAL
337#endif
338
339/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
340/* which makes programs even slower. might work on other unices, too. */
341#if EV_USE_CLOCK_SYSCALL
342# include <syscall.h>
343# ifdef SYS_clock_gettime
344# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
345# undef EV_USE_MONOTONIC
346# define EV_USE_MONOTONIC 1
347# else
348# undef EV_USE_CLOCK_SYSCALL
349# define EV_USE_CLOCK_SYSCALL 0
350# endif
351#endif
352
353/* this block fixes any misconfiguration where we know we run into trouble otherwise */
354
355#ifndef CLOCK_MONOTONIC
356# undef EV_USE_MONOTONIC
357# define EV_USE_MONOTONIC 0
358#endif
359
360#ifndef CLOCK_REALTIME
361# undef EV_USE_REALTIME
362# define EV_USE_REALTIME 0
363#endif
364
365#if !EV_STAT_ENABLE
366# undef EV_USE_INOTIFY
367# define EV_USE_INOTIFY 0
368#endif
369
370#if !EV_USE_NANOSLEEP
371# ifndef _WIN32
372# include <sys/select.h>
373# endif
374#endif
375
376#if EV_USE_INOTIFY
377# include <sys/utsname.h>
378# include <sys/statfs.h>
379# include <sys/inotify.h>
380/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
381# ifndef IN_DONT_FOLLOW
382# undef EV_USE_INOTIFY
383# define EV_USE_INOTIFY 0
384# endif
385#endif
386
387#if EV_SELECT_IS_WINSOCKET
388# include <winsock.h>
389#endif
390
391#if EV_USE_EVENTFD
392/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
393# include <stdint.h>
394# ifndef EFD_NONBLOCK
395# define EFD_NONBLOCK O_NONBLOCK
396# endif
397# ifndef EFD_CLOEXEC
398# define EFD_CLOEXEC O_CLOEXEC
399# endif
400# ifdef __cplusplus
401extern "C" {
402# endif
403int eventfd (unsigned int initval, int flags);
404# ifdef __cplusplus
405}
406# endif
407#endif
408
409#if EV_USE_SIGNALFD
410# include <sys/signalfd.h>
411#endif
412
413/**/
414
415#if EV_VERIFY >= 3
416# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
417#else
418# define EV_FREQUENT_CHECK do { } while (0)
419#endif
420
421/*
422 * This is used to avoid floating point rounding problems.
423 * It is added to ev_rt_now when scheduling periodics
424 * to ensure progress, time-wise, even when rounding
425 * errors are against us.
426 * This value is good at least till the year 4000.
427 * Better solutions welcome.
428 */
429#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
430
431#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
432#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
433/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
434
137#if __GNUC__ >= 3 435#if __GNUC__ >= 4
138# define expect(expr,value) __builtin_expect ((expr),(value)) 436# define expect(expr,value) __builtin_expect ((expr),(value))
139# define inline inline 437# define noinline __attribute__ ((noinline))
140#else 438#else
141# define expect(expr,value) (expr) 439# define expect(expr,value) (expr)
142# define inline static 440# define noinline
441# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
442# define inline
443# endif
143#endif 444#endif
144 445
145#define expect_false(expr) expect ((expr) != 0, 0) 446#define expect_false(expr) expect ((expr) != 0, 0)
146#define expect_true(expr) expect ((expr) != 0, 1) 447#define expect_true(expr) expect ((expr) != 0, 1)
448#define inline_size static inline
147 449
450#if EV_MINIMAL
451# define inline_speed static noinline
452#else
453# define inline_speed static inline
454#endif
455
148#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 456#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
457
458#if EV_MINPRI == EV_MAXPRI
459# define ABSPRI(w) (((W)w), 0)
460#else
149#define ABSPRI(w) ((w)->priority - EV_MINPRI) 461# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
462#endif
150 463
464#define EMPTY /* required for microsofts broken pseudo-c compiler */
465#define EMPTY2(a,b) /* used to suppress some warnings */
466
151typedef struct ev_watcher *W; 467typedef ev_watcher *W;
152typedef struct ev_watcher_list *WL; 468typedef ev_watcher_list *WL;
153typedef struct ev_watcher_time *WT; 469typedef ev_watcher_time *WT;
154 470
471#define ev_active(w) ((W)(w))->active
472#define ev_at(w) ((WT)(w))->at
473
474#if EV_USE_REALTIME
475/* sig_atomic_t is used to avoid per-thread variables or locking but still */
476/* giving it a reasonably high chance of working on typical architetcures */
477static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
478#endif
479
480#if EV_USE_MONOTONIC
155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 481static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
482#endif
156 483
484#ifdef _WIN32
157#include "ev_win32.c" 485# include "ev_win32.c"
486#endif
158 487
159/*****************************************************************************/ 488/*****************************************************************************/
160 489
161static void (*syserr_cb)(const char *msg); 490static void (*syserr_cb)(const char *msg);
162 491
492void
163void ev_set_syserr_cb (void (*cb)(const char *msg)) 493ev_set_syserr_cb (void (*cb)(const char *msg))
164{ 494{
165 syserr_cb = cb; 495 syserr_cb = cb;
166} 496}
167 497
168static void 498static void noinline
169syserr (const char *msg) 499ev_syserr (const char *msg)
170{ 500{
171 if (!msg) 501 if (!msg)
172 msg = "(libev) system error"; 502 msg = "(libev) system error";
173 503
174 if (syserr_cb) 504 if (syserr_cb)
178 perror (msg); 508 perror (msg);
179 abort (); 509 abort ();
180 } 510 }
181} 511}
182 512
513static void *
514ev_realloc_emul (void *ptr, long size)
515{
516 /* some systems, notably openbsd and darwin, fail to properly
517 * implement realloc (x, 0) (as required by both ansi c-98 and
518 * the single unix specification, so work around them here.
519 */
520
521 if (size)
522 return realloc (ptr, size);
523
524 free (ptr);
525 return 0;
526}
527
183static void *(*alloc)(void *ptr, long size); 528static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
184 529
530void
185void ev_set_allocator (void *(*cb)(void *ptr, long size)) 531ev_set_allocator (void *(*cb)(void *ptr, long size))
186{ 532{
187 alloc = cb; 533 alloc = cb;
188} 534}
189 535
190static void * 536inline_speed void *
191ev_realloc (void *ptr, long size) 537ev_realloc (void *ptr, long size)
192{ 538{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 539 ptr = alloc (ptr, size);
194 540
195 if (!ptr && size) 541 if (!ptr && size)
196 { 542 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 543 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort (); 544 abort ();
204#define ev_malloc(size) ev_realloc (0, (size)) 550#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0) 551#define ev_free(ptr) ev_realloc ((ptr), 0)
206 552
207/*****************************************************************************/ 553/*****************************************************************************/
208 554
555/* set in reify when reification needed */
556#define EV_ANFD_REIFY 1
557
558/* file descriptor info structure */
209typedef struct 559typedef struct
210{ 560{
211 WL head; 561 WL head;
212 unsigned char events; 562 unsigned char events; /* the events watched for */
563 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
564 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
213 unsigned char reify; 565 unsigned char unused;
566#if EV_USE_EPOLL
567 unsigned int egen; /* generation counter to counter epoll bugs */
568#endif
569#if EV_SELECT_IS_WINSOCKET
570 SOCKET handle;
571#endif
214} ANFD; 572} ANFD;
215 573
574/* stores the pending event set for a given watcher */
216typedef struct 575typedef struct
217{ 576{
218 W w; 577 W w;
219 int events; 578 int events; /* the pending event set for the given watcher */
220} ANPENDING; 579} ANPENDING;
580
581#if EV_USE_INOTIFY
582/* hash table entry per inotify-id */
583typedef struct
584{
585 WL head;
586} ANFS;
587#endif
588
589/* Heap Entry */
590#if EV_HEAP_CACHE_AT
591 /* a heap element */
592 typedef struct {
593 ev_tstamp at;
594 WT w;
595 } ANHE;
596
597 #define ANHE_w(he) (he).w /* access watcher, read-write */
598 #define ANHE_at(he) (he).at /* access cached at, read-only */
599 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
600#else
601 /* a heap element */
602 typedef WT ANHE;
603
604 #define ANHE_w(he) (he)
605 #define ANHE_at(he) (he)->at
606 #define ANHE_at_cache(he)
607#endif
221 608
222#if EV_MULTIPLICITY 609#if EV_MULTIPLICITY
223 610
224 struct ev_loop 611 struct ev_loop
225 { 612 {
613 ev_tstamp ev_rt_now;
614 #define ev_rt_now ((loop)->ev_rt_now)
226 #define VAR(name,decl) decl; 615 #define VAR(name,decl) decl;
227 #include "ev_vars.h" 616 #include "ev_vars.h"
228 #undef VAR 617 #undef VAR
229 }; 618 };
230 #include "ev_wrap.h" 619 #include "ev_wrap.h"
231 620
232 struct ev_loop default_loop_struct; 621 static struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop; 622 struct ev_loop *ev_default_loop_ptr;
234 623
235#else 624#else
236 625
626 ev_tstamp ev_rt_now;
237 #define VAR(name,decl) static decl; 627 #define VAR(name,decl) static decl;
238 #include "ev_vars.h" 628 #include "ev_vars.h"
239 #undef VAR 629 #undef VAR
240 630
241 static int default_loop; 631 static int ev_default_loop_ptr;
242 632
243#endif 633#endif
634
635#if EV_MINIMAL < 2
636# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
637# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
638# define EV_INVOKE_PENDING invoke_cb (EV_A)
639#else
640# define EV_RELEASE_CB (void)0
641# define EV_ACQUIRE_CB (void)0
642# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
643#endif
644
645#define EVUNLOOP_RECURSE 0x80
244 646
245/*****************************************************************************/ 647/*****************************************************************************/
246 648
247inline ev_tstamp 649#ifndef EV_HAVE_EV_TIME
650ev_tstamp
248ev_time (void) 651ev_time (void)
249{ 652{
250#if EV_USE_REALTIME 653#if EV_USE_REALTIME
654 if (expect_true (have_realtime))
655 {
251 struct timespec ts; 656 struct timespec ts;
252 clock_gettime (CLOCK_REALTIME, &ts); 657 clock_gettime (CLOCK_REALTIME, &ts);
253 return ts.tv_sec + ts.tv_nsec * 1e-9; 658 return ts.tv_sec + ts.tv_nsec * 1e-9;
254#else 659 }
660#endif
661
255 struct timeval tv; 662 struct timeval tv;
256 gettimeofday (&tv, 0); 663 gettimeofday (&tv, 0);
257 return tv.tv_sec + tv.tv_usec * 1e-6; 664 return tv.tv_sec + tv.tv_usec * 1e-6;
258#endif
259} 665}
666#endif
260 667
261inline ev_tstamp 668inline_size ev_tstamp
262get_clock (void) 669get_clock (void)
263{ 670{
264#if EV_USE_MONOTONIC 671#if EV_USE_MONOTONIC
265 if (expect_true (have_monotonic)) 672 if (expect_true (have_monotonic))
266 { 673 {
271#endif 678#endif
272 679
273 return ev_time (); 680 return ev_time ();
274} 681}
275 682
683#if EV_MULTIPLICITY
276ev_tstamp 684ev_tstamp
277ev_now (EV_P) 685ev_now (EV_P)
278{ 686{
279 return rt_now; 687 return ev_rt_now;
280} 688}
689#endif
281 690
282#define array_roundsize(type,n) ((n) | 4 & ~3) 691void
692ev_sleep (ev_tstamp delay)
693{
694 if (delay > 0.)
695 {
696#if EV_USE_NANOSLEEP
697 struct timespec ts;
698
699 ts.tv_sec = (time_t)delay;
700 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
701
702 nanosleep (&ts, 0);
703#elif defined(_WIN32)
704 Sleep ((unsigned long)(delay * 1e3));
705#else
706 struct timeval tv;
707
708 tv.tv_sec = (time_t)delay;
709 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
710
711 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
712 /* something not guaranteed by newer posix versions, but guaranteed */
713 /* by older ones */
714 select (0, 0, 0, 0, &tv);
715#endif
716 }
717}
718
719/*****************************************************************************/
720
721#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
722
723/* find a suitable new size for the given array, */
724/* hopefully by rounding to a ncie-to-malloc size */
725inline_size int
726array_nextsize (int elem, int cur, int cnt)
727{
728 int ncur = cur + 1;
729
730 do
731 ncur <<= 1;
732 while (cnt > ncur);
733
734 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
735 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
736 {
737 ncur *= elem;
738 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
739 ncur = ncur - sizeof (void *) * 4;
740 ncur /= elem;
741 }
742
743 return ncur;
744}
745
746static noinline void *
747array_realloc (int elem, void *base, int *cur, int cnt)
748{
749 *cur = array_nextsize (elem, *cur, cnt);
750 return ev_realloc (base, elem * *cur);
751}
752
753#define array_init_zero(base,count) \
754 memset ((void *)(base), 0, sizeof (*(base)) * (count))
283 755
284#define array_needsize(type,base,cur,cnt,init) \ 756#define array_needsize(type,base,cur,cnt,init) \
285 if (expect_false ((cnt) > cur)) \ 757 if (expect_false ((cnt) > (cur))) \
286 { \ 758 { \
287 int newcnt = cur; \ 759 int ocur_ = (cur); \
288 do \ 760 (base) = (type *)array_realloc \
289 { \ 761 (sizeof (type), (base), &(cur), (cnt)); \
290 newcnt = array_roundsize (type, newcnt << 1); \ 762 init ((base) + (ocur_), (cur) - ocur_); \
291 } \
292 while ((cnt) > newcnt); \
293 \
294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
295 init (base + cur, newcnt - cur); \
296 cur = newcnt; \
297 } 763 }
298 764
765#if 0
299#define array_slim(type,stem) \ 766#define array_slim(type,stem) \
300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 767 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
301 { \ 768 { \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \ 769 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 770 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 771 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 } 772 }
306 773#endif
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311 774
312#define array_free(stem, idx) \ 775#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 776 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
314 777
315/*****************************************************************************/ 778/*****************************************************************************/
316 779
317static void 780/* dummy callback for pending events */
318anfds_init (ANFD *base, int count) 781static void noinline
782pendingcb (EV_P_ ev_prepare *w, int revents)
319{ 783{
320 while (count--)
321 {
322 base->head = 0;
323 base->events = EV_NONE;
324 base->reify = 0;
325
326 ++base;
327 }
328} 784}
329 785
330void 786void noinline
331ev_feed_event (EV_P_ void *w, int revents) 787ev_feed_event (EV_P_ void *w, int revents)
332{ 788{
333 W w_ = (W)w; 789 W w_ = (W)w;
790 int pri = ABSPRI (w_);
334 791
335 if (w_->pending) 792 if (expect_false (w_->pending))
793 pendings [pri][w_->pending - 1].events |= revents;
794 else
336 { 795 {
796 w_->pending = ++pendingcnt [pri];
797 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
798 pendings [pri][w_->pending - 1].w = w_;
337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 799 pendings [pri][w_->pending - 1].events = revents;
338 return;
339 } 800 }
340
341 w_->pending = ++pendingcnt [ABSPRI (w_)];
342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
345} 801}
346 802
347static void 803inline_speed void
804feed_reverse (EV_P_ W w)
805{
806 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
807 rfeeds [rfeedcnt++] = w;
808}
809
810inline_size void
811feed_reverse_done (EV_P_ int revents)
812{
813 do
814 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
815 while (rfeedcnt);
816}
817
818inline_speed void
348queue_events (EV_P_ W *events, int eventcnt, int type) 819queue_events (EV_P_ W *events, int eventcnt, int type)
349{ 820{
350 int i; 821 int i;
351 822
352 for (i = 0; i < eventcnt; ++i) 823 for (i = 0; i < eventcnt; ++i)
353 ev_feed_event (EV_A_ events [i], type); 824 ev_feed_event (EV_A_ events [i], type);
354} 825}
355 826
827/*****************************************************************************/
828
356inline void 829inline_speed void
357fd_event (EV_P_ int fd, int revents) 830fd_event_nc (EV_P_ int fd, int revents)
358{ 831{
359 ANFD *anfd = anfds + fd; 832 ANFD *anfd = anfds + fd;
360 struct ev_io *w; 833 ev_io *w;
361 834
362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 835 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
363 { 836 {
364 int ev = w->events & revents; 837 int ev = w->events & revents;
365 838
366 if (ev) 839 if (ev)
367 ev_feed_event (EV_A_ (W)w, ev); 840 ev_feed_event (EV_A_ (W)w, ev);
368 } 841 }
369} 842}
370 843
844/* do not submit kernel events for fds that have reify set */
845/* because that means they changed while we were polling for new events */
846inline_speed void
847fd_event (EV_P_ int fd, int revents)
848{
849 ANFD *anfd = anfds + fd;
850
851 if (expect_true (!anfd->reify))
852 fd_event_nc (EV_A_ fd, revents);
853}
854
371void 855void
372ev_feed_fd_event (EV_P_ int fd, int revents) 856ev_feed_fd_event (EV_P_ int fd, int revents)
373{ 857{
858 if (fd >= 0 && fd < anfdmax)
374 fd_event (EV_A_ fd, revents); 859 fd_event_nc (EV_A_ fd, revents);
375} 860}
376 861
377/*****************************************************************************/ 862/* make sure the external fd watch events are in-sync */
378 863/* with the kernel/libev internal state */
379static void 864inline_size void
380fd_reify (EV_P) 865fd_reify (EV_P)
381{ 866{
382 int i; 867 int i;
383 868
384 for (i = 0; i < fdchangecnt; ++i) 869 for (i = 0; i < fdchangecnt; ++i)
385 { 870 {
386 int fd = fdchanges [i]; 871 int fd = fdchanges [i];
387 ANFD *anfd = anfds + fd; 872 ANFD *anfd = anfds + fd;
388 struct ev_io *w; 873 ev_io *w;
389 874
390 int events = 0; 875 unsigned char events = 0;
391 876
392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 877 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
393 events |= w->events; 878 events |= (unsigned char)w->events;
394 879
880#if EV_SELECT_IS_WINSOCKET
881 if (events)
882 {
883 unsigned long arg;
884 #ifdef EV_FD_TO_WIN32_HANDLE
885 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
886 #else
887 anfd->handle = _get_osfhandle (fd);
888 #endif
889 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
890 }
891#endif
892
893 {
894 unsigned char o_events = anfd->events;
895 unsigned char o_reify = anfd->reify;
896
395 anfd->reify = 0; 897 anfd->reify = 0;
396
397 method_modify (EV_A_ fd, anfd->events, events);
398 anfd->events = events; 898 anfd->events = events;
899
900 if (o_events != events || o_reify & EV__IOFDSET)
901 backend_modify (EV_A_ fd, o_events, events);
902 }
399 } 903 }
400 904
401 fdchangecnt = 0; 905 fdchangecnt = 0;
402} 906}
403 907
404static void 908/* something about the given fd changed */
909inline_size void
405fd_change (EV_P_ int fd) 910fd_change (EV_P_ int fd, int flags)
406{ 911{
407 if (anfds [fd].reify) 912 unsigned char reify = anfds [fd].reify;
408 return;
409
410 anfds [fd].reify = 1; 913 anfds [fd].reify |= flags;
411 914
915 if (expect_true (!reify))
916 {
412 ++fdchangecnt; 917 ++fdchangecnt;
413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 918 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
414 fdchanges [fdchangecnt - 1] = fd; 919 fdchanges [fdchangecnt - 1] = fd;
920 }
415} 921}
416 922
417static void 923/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
924inline_speed void
418fd_kill (EV_P_ int fd) 925fd_kill (EV_P_ int fd)
419{ 926{
420 struct ev_io *w; 927 ev_io *w;
421 928
422 while ((w = (struct ev_io *)anfds [fd].head)) 929 while ((w = (ev_io *)anfds [fd].head))
423 { 930 {
424 ev_io_stop (EV_A_ w); 931 ev_io_stop (EV_A_ w);
425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 932 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
426 } 933 }
427} 934}
428 935
429static int 936/* check whether the given fd is atcually valid, for error recovery */
937inline_size int
430fd_valid (int fd) 938fd_valid (int fd)
431{ 939{
432#ifdef WIN32 940#ifdef _WIN32
433 return !!win32_get_osfhandle (fd); 941 return _get_osfhandle (fd) != -1;
434#else 942#else
435 return fcntl (fd, F_GETFD) != -1; 943 return fcntl (fd, F_GETFD) != -1;
436#endif 944#endif
437} 945}
438 946
439/* called on EBADF to verify fds */ 947/* called on EBADF to verify fds */
440static void 948static void noinline
441fd_ebadf (EV_P) 949fd_ebadf (EV_P)
442{ 950{
443 int fd; 951 int fd;
444 952
445 for (fd = 0; fd < anfdmax; ++fd) 953 for (fd = 0; fd < anfdmax; ++fd)
446 if (anfds [fd].events) 954 if (anfds [fd].events)
447 if (!fd_valid (fd) == -1 && errno == EBADF) 955 if (!fd_valid (fd) && errno == EBADF)
448 fd_kill (EV_A_ fd); 956 fd_kill (EV_A_ fd);
449} 957}
450 958
451/* called on ENOMEM in select/poll to kill some fds and retry */ 959/* called on ENOMEM in select/poll to kill some fds and retry */
452static void 960static void noinline
453fd_enomem (EV_P) 961fd_enomem (EV_P)
454{ 962{
455 int fd; 963 int fd;
456 964
457 for (fd = anfdmax; fd--; ) 965 for (fd = anfdmax; fd--; )
460 fd_kill (EV_A_ fd); 968 fd_kill (EV_A_ fd);
461 return; 969 return;
462 } 970 }
463} 971}
464 972
465/* usually called after fork if method needs to re-arm all fds from scratch */ 973/* usually called after fork if backend needs to re-arm all fds from scratch */
466static void 974static void noinline
467fd_rearm_all (EV_P) 975fd_rearm_all (EV_P)
468{ 976{
469 int fd; 977 int fd;
470 978
471 /* this should be highly optimised to not do anything but set a flag */
472 for (fd = 0; fd < anfdmax; ++fd) 979 for (fd = 0; fd < anfdmax; ++fd)
473 if (anfds [fd].events) 980 if (anfds [fd].events)
474 { 981 {
475 anfds [fd].events = 0; 982 anfds [fd].events = 0;
476 fd_change (EV_A_ fd); 983 anfds [fd].emask = 0;
984 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
477 } 985 }
478} 986}
479 987
480/*****************************************************************************/ 988/*****************************************************************************/
481 989
482static void 990/*
483upheap (WT *heap, int k) 991 * the heap functions want a real array index. array index 0 uis guaranteed to not
484{ 992 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
485 WT w = heap [k]; 993 * the branching factor of the d-tree.
994 */
486 995
487 while (k && heap [k >> 1]->at > w->at) 996/*
488 { 997 * at the moment we allow libev the luxury of two heaps,
489 heap [k] = heap [k >> 1]; 998 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
490 ((W)heap [k])->active = k + 1; 999 * which is more cache-efficient.
491 k >>= 1; 1000 * the difference is about 5% with 50000+ watchers.
492 } 1001 */
1002#if EV_USE_4HEAP
493 1003
494 heap [k] = w; 1004#define DHEAP 4
495 ((W)heap [k])->active = k + 1; 1005#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1006#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1007#define UPHEAP_DONE(p,k) ((p) == (k))
496 1008
497} 1009/* away from the root */
498 1010inline_speed void
499static void
500downheap (WT *heap, int N, int k) 1011downheap (ANHE *heap, int N, int k)
501{ 1012{
502 WT w = heap [k]; 1013 ANHE he = heap [k];
1014 ANHE *E = heap + N + HEAP0;
503 1015
504 while (k < (N >> 1)) 1016 for (;;)
505 { 1017 {
506 int j = k << 1; 1018 ev_tstamp minat;
1019 ANHE *minpos;
1020 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
507 1021
508 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1022 /* find minimum child */
1023 if (expect_true (pos + DHEAP - 1 < E))
509 ++j; 1024 {
510 1025 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
511 if (w->at <= heap [j]->at) 1026 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1027 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1028 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1029 }
1030 else if (pos < E)
1031 {
1032 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1033 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1034 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1035 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1036 }
1037 else
512 break; 1038 break;
513 1039
1040 if (ANHE_at (he) <= minat)
1041 break;
1042
1043 heap [k] = *minpos;
1044 ev_active (ANHE_w (*minpos)) = k;
1045
1046 k = minpos - heap;
1047 }
1048
1049 heap [k] = he;
1050 ev_active (ANHE_w (he)) = k;
1051}
1052
1053#else /* 4HEAP */
1054
1055#define HEAP0 1
1056#define HPARENT(k) ((k) >> 1)
1057#define UPHEAP_DONE(p,k) (!(p))
1058
1059/* away from the root */
1060inline_speed void
1061downheap (ANHE *heap, int N, int k)
1062{
1063 ANHE he = heap [k];
1064
1065 for (;;)
1066 {
1067 int c = k << 1;
1068
1069 if (c > N + HEAP0 - 1)
1070 break;
1071
1072 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1073 ? 1 : 0;
1074
1075 if (ANHE_at (he) <= ANHE_at (heap [c]))
1076 break;
1077
514 heap [k] = heap [j]; 1078 heap [k] = heap [c];
515 ((W)heap [k])->active = k + 1; 1079 ev_active (ANHE_w (heap [k])) = k;
1080
516 k = j; 1081 k = c;
517 } 1082 }
518 1083
519 heap [k] = w; 1084 heap [k] = he;
520 ((W)heap [k])->active = k + 1; 1085 ev_active (ANHE_w (he)) = k;
1086}
1087#endif
1088
1089/* towards the root */
1090inline_speed void
1091upheap (ANHE *heap, int k)
1092{
1093 ANHE he = heap [k];
1094
1095 for (;;)
1096 {
1097 int p = HPARENT (k);
1098
1099 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1100 break;
1101
1102 heap [k] = heap [p];
1103 ev_active (ANHE_w (heap [k])) = k;
1104 k = p;
1105 }
1106
1107 heap [k] = he;
1108 ev_active (ANHE_w (he)) = k;
1109}
1110
1111/* move an element suitably so it is in a correct place */
1112inline_size void
1113adjustheap (ANHE *heap, int N, int k)
1114{
1115 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1116 upheap (heap, k);
1117 else
1118 downheap (heap, N, k);
1119}
1120
1121/* rebuild the heap: this function is used only once and executed rarely */
1122inline_size void
1123reheap (ANHE *heap, int N)
1124{
1125 int i;
1126
1127 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1128 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1129 for (i = 0; i < N; ++i)
1130 upheap (heap, i + HEAP0);
521} 1131}
522 1132
523/*****************************************************************************/ 1133/*****************************************************************************/
524 1134
1135/* associate signal watchers to a signal signal */
525typedef struct 1136typedef struct
526{ 1137{
527 WL head; 1138 WL head;
528 sig_atomic_t volatile gotsig; 1139 EV_ATOMIC_T gotsig;
529} ANSIG; 1140} ANSIG;
530 1141
531static ANSIG *signals; 1142static ANSIG *signals;
532static int signalmax; 1143static int signalmax;
533 1144
534static int sigpipe [2]; 1145static EV_ATOMIC_T gotsig;
535static sig_atomic_t volatile gotsig;
536static struct ev_io sigev;
537 1146
1147/*****************************************************************************/
1148
1149/* used to prepare libev internal fd's */
1150/* this is not fork-safe */
1151inline_speed void
1152fd_intern (int fd)
1153{
1154#ifdef _WIN32
1155 unsigned long arg = 1;
1156 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1157#else
1158 fcntl (fd, F_SETFD, FD_CLOEXEC);
1159 fcntl (fd, F_SETFL, O_NONBLOCK);
1160#endif
1161}
1162
1163static void noinline
1164evpipe_init (EV_P)
1165{
1166 if (!ev_is_active (&pipe_w))
1167 {
1168#if EV_USE_EVENTFD
1169 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1170 if (evfd < 0 && errno == EINVAL)
1171 evfd = eventfd (0, 0);
1172
1173 if (evfd >= 0)
1174 {
1175 evpipe [0] = -1;
1176 fd_intern (evfd); /* doing it twice doesn't hurt */
1177 ev_io_set (&pipe_w, evfd, EV_READ);
1178 }
1179 else
1180#endif
1181 {
1182 while (pipe (evpipe))
1183 ev_syserr ("(libev) error creating signal/async pipe");
1184
1185 fd_intern (evpipe [0]);
1186 fd_intern (evpipe [1]);
1187 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1188 }
1189
1190 ev_io_start (EV_A_ &pipe_w);
1191 ev_unref (EV_A); /* watcher should not keep loop alive */
1192 }
1193}
1194
1195inline_size void
1196evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1197{
1198 if (!*flag)
1199 {
1200 int old_errno = errno; /* save errno because write might clobber it */
1201
1202 *flag = 1;
1203
1204#if EV_USE_EVENTFD
1205 if (evfd >= 0)
1206 {
1207 uint64_t counter = 1;
1208 write (evfd, &counter, sizeof (uint64_t));
1209 }
1210 else
1211#endif
1212 write (evpipe [1], &old_errno, 1);
1213
1214 errno = old_errno;
1215 }
1216}
1217
1218/* called whenever the libev signal pipe */
1219/* got some events (signal, async) */
538static void 1220static void
539signals_init (ANSIG *base, int count) 1221pipecb (EV_P_ ev_io *iow, int revents)
540{ 1222{
541 while (count--) 1223#if EV_USE_EVENTFD
1224 if (evfd >= 0)
1225 {
1226 uint64_t counter;
1227 read (evfd, &counter, sizeof (uint64_t));
542 { 1228 }
543 base->head = 0; 1229 else
1230#endif
1231 {
1232 char dummy;
1233 read (evpipe [0], &dummy, 1);
1234 }
1235
1236 if (gotsig && ev_is_default_loop (EV_A))
1237 {
1238 int signum;
544 base->gotsig = 0; 1239 gotsig = 0;
545 1240
546 ++base; 1241 for (signum = signalmax; signum--; )
1242 if (signals [signum].gotsig)
1243 ev_feed_signal_event (EV_A_ signum + 1);
1244 }
1245
1246#if EV_ASYNC_ENABLE
1247 if (gotasync)
547 } 1248 {
1249 int i;
1250 gotasync = 0;
1251
1252 for (i = asynccnt; i--; )
1253 if (asyncs [i]->sent)
1254 {
1255 asyncs [i]->sent = 0;
1256 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1257 }
1258 }
1259#endif
548} 1260}
1261
1262/*****************************************************************************/
549 1263
550static void 1264static void
551sighandler (int signum) 1265ev_sighandler (int signum)
552{ 1266{
1267#if EV_MULTIPLICITY
1268 struct ev_loop *loop = &default_loop_struct;
1269#endif
1270
553#if WIN32 1271#if _WIN32
554 signal (signum, sighandler); 1272 signal (signum, ev_sighandler);
555#endif 1273#endif
556 1274
557 signals [signum - 1].gotsig = 1; 1275 signals [signum - 1].gotsig = 1;
558 1276 evpipe_write (EV_A_ &gotsig);
559 if (!gotsig)
560 {
561 int old_errno = errno;
562 gotsig = 1;
563#ifdef WIN32
564 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
565#else
566 write (sigpipe [1], &signum, 1);
567#endif
568 errno = old_errno;
569 }
570} 1277}
571 1278
572void 1279void noinline
573ev_feed_signal_event (EV_P_ int signum) 1280ev_feed_signal_event (EV_P_ int signum)
574{ 1281{
575 WL w; 1282 WL w;
576 1283
577#if EV_MULTIPLICITY 1284#if EV_MULTIPLICITY
578 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1285 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
579#endif 1286#endif
580 1287
581 --signum; 1288 --signum;
582 1289
583 if (signum < 0 || signum >= signalmax) 1290 if (signum < 0 || signum >= signalmax)
587 1294
588 for (w = signals [signum].head; w; w = w->next) 1295 for (w = signals [signum].head; w; w = w->next)
589 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1296 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
590} 1297}
591 1298
1299#if EV_USE_SIGNALFD
592static void 1300static void
593sigcb (EV_P_ struct ev_io *iow, int revents) 1301sigfdcb (EV_P_ ev_io *iow, int revents)
594{ 1302{
595 int signum; 1303 struct signalfd_siginfo si[4], *sip;
596 1304
597#ifdef WIN32 1305 for (;;)
598 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1306 {
599#else 1307 ssize_t res = read (sigfd, si, sizeof (si));
600 read (sigpipe [0], &revents, 1);
601#endif
602 gotsig = 0;
603 1308
604 for (signum = signalmax; signum--; ) 1309 /* not ISO-C, as res might be -1, but works with SuS */
605 if (signals [signum].gotsig) 1310 for (sip = si; (char *)sip < (char *)si + res; ++sip)
606 ev_feed_signal_event (EV_A_ signum + 1); 1311 ev_feed_signal_event (EV_A_ sip->ssi_signo);
607}
608 1312
609static void 1313 if (res < (ssize_t)sizeof (si))
610siginit (EV_P) 1314 break;
611{ 1315 }
612#ifndef WIN32
613 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
614 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
615
616 /* rather than sort out wether we really need nb, set it */
617 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
618 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
619#endif
620
621 ev_io_set (&sigev, sigpipe [0], EV_READ);
622 ev_io_start (EV_A_ &sigev);
623 ev_unref (EV_A); /* child watcher should not keep loop alive */
624} 1316}
1317#endif
625 1318
626/*****************************************************************************/ 1319/*****************************************************************************/
627 1320
628static struct ev_child *childs [PID_HASHSIZE]; 1321static WL childs [EV_PID_HASHSIZE];
629 1322
630#ifndef WIN32 1323#ifndef _WIN32
631 1324
632static struct ev_signal childev; 1325static ev_signal childev;
1326
1327#ifndef WIFCONTINUED
1328# define WIFCONTINUED(status) 0
1329#endif
1330
1331/* handle a single child status event */
1332inline_speed void
1333child_reap (EV_P_ int chain, int pid, int status)
1334{
1335 ev_child *w;
1336 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1337
1338 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1339 {
1340 if ((w->pid == pid || !w->pid)
1341 && (!traced || (w->flags & 1)))
1342 {
1343 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1344 w->rpid = pid;
1345 w->rstatus = status;
1346 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1347 }
1348 }
1349}
633 1350
634#ifndef WCONTINUED 1351#ifndef WCONTINUED
635# define WCONTINUED 0 1352# define WCONTINUED 0
636#endif 1353#endif
637 1354
1355/* called on sigchld etc., calls waitpid */
638static void 1356static void
639child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
640{
641 struct ev_child *w;
642
643 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
644 if (w->pid == pid || !w->pid)
645 {
646 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
647 w->rpid = pid;
648 w->rstatus = status;
649 ev_feed_event (EV_A_ (W)w, EV_CHILD);
650 }
651}
652
653static void
654childcb (EV_P_ struct ev_signal *sw, int revents) 1357childcb (EV_P_ ev_signal *sw, int revents)
655{ 1358{
656 int pid, status; 1359 int pid, status;
657 1360
1361 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
658 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1362 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
659 { 1363 if (!WCONTINUED
1364 || errno != EINVAL
1365 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1366 return;
1367
660 /* make sure we are called again until all childs have been reaped */ 1368 /* make sure we are called again until all children have been reaped */
1369 /* we need to do it this way so that the callback gets called before we continue */
661 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1370 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
662 1371
663 child_reap (EV_A_ sw, pid, pid, status); 1372 child_reap (EV_A_ pid, pid, status);
1373 if (EV_PID_HASHSIZE > 1)
664 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1374 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
665 }
666} 1375}
667 1376
668#endif 1377#endif
669 1378
670/*****************************************************************************/ 1379/*****************************************************************************/
671 1380
1381#if EV_USE_PORT
1382# include "ev_port.c"
1383#endif
672#if EV_USE_KQUEUE 1384#if EV_USE_KQUEUE
673# include "ev_kqueue.c" 1385# include "ev_kqueue.c"
674#endif 1386#endif
675#if EV_USE_EPOLL 1387#if EV_USE_EPOLL
676# include "ev_epoll.c" 1388# include "ev_epoll.c"
693{ 1405{
694 return EV_VERSION_MINOR; 1406 return EV_VERSION_MINOR;
695} 1407}
696 1408
697/* return true if we are running with elevated privileges and should ignore env variables */ 1409/* return true if we are running with elevated privileges and should ignore env variables */
698static int 1410int inline_size
699enable_secure (void) 1411enable_secure (void)
700{ 1412{
701#ifdef WIN32 1413#ifdef _WIN32
702 return 0; 1414 return 0;
703#else 1415#else
704 return getuid () != geteuid () 1416 return getuid () != geteuid ()
705 || getgid () != getegid (); 1417 || getgid () != getegid ();
706#endif 1418#endif
707} 1419}
708 1420
709int 1421unsigned int
710ev_method (EV_P) 1422ev_supported_backends (void)
711{ 1423{
712 return method; 1424 unsigned int flags = 0;
713}
714 1425
715static void 1426 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
716loop_init (EV_P_ int methods) 1427 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1428 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1429 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1430 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1431
1432 return flags;
1433}
1434
1435unsigned int
1436ev_recommended_backends (void)
717{ 1437{
718 if (!method) 1438 unsigned int flags = ev_supported_backends ();
1439
1440#ifndef __NetBSD__
1441 /* kqueue is borked on everything but netbsd apparently */
1442 /* it usually doesn't work correctly on anything but sockets and pipes */
1443 flags &= ~EVBACKEND_KQUEUE;
1444#endif
1445#ifdef __APPLE__
1446 /* only select works correctly on that "unix-certified" platform */
1447 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1448 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1449#endif
1450
1451 return flags;
1452}
1453
1454unsigned int
1455ev_embeddable_backends (void)
1456{
1457 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1458
1459 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1460 /* please fix it and tell me how to detect the fix */
1461 flags &= ~EVBACKEND_EPOLL;
1462
1463 return flags;
1464}
1465
1466unsigned int
1467ev_backend (EV_P)
1468{
1469 return backend;
1470}
1471
1472#if EV_MINIMAL < 2
1473unsigned int
1474ev_loop_count (EV_P)
1475{
1476 return loop_count;
1477}
1478
1479unsigned int
1480ev_loop_depth (EV_P)
1481{
1482 return loop_depth;
1483}
1484
1485void
1486ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1487{
1488 io_blocktime = interval;
1489}
1490
1491void
1492ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1493{
1494 timeout_blocktime = interval;
1495}
1496
1497void
1498ev_set_userdata (EV_P_ void *data)
1499{
1500 userdata = data;
1501}
1502
1503void *
1504ev_userdata (EV_P)
1505{
1506 return userdata;
1507}
1508
1509void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1510{
1511 invoke_cb = invoke_pending_cb;
1512}
1513
1514void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1515{
1516 release_cb = release;
1517 acquire_cb = acquire;
1518}
1519#endif
1520
1521/* initialise a loop structure, must be zero-initialised */
1522static void noinline
1523loop_init (EV_P_ unsigned int flags)
1524{
1525 if (!backend)
719 { 1526 {
1527#if EV_USE_REALTIME
1528 if (!have_realtime)
1529 {
1530 struct timespec ts;
1531
1532 if (!clock_gettime (CLOCK_REALTIME, &ts))
1533 have_realtime = 1;
1534 }
1535#endif
1536
720#if EV_USE_MONOTONIC 1537#if EV_USE_MONOTONIC
1538 if (!have_monotonic)
1539 {
1540 struct timespec ts;
1541
1542 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1543 have_monotonic = 1;
1544 }
1545#endif
1546
1547 ev_rt_now = ev_time ();
1548 mn_now = get_clock ();
1549 now_floor = mn_now;
1550 rtmn_diff = ev_rt_now - mn_now;
1551#if EV_MINIMAL < 2
1552 invoke_cb = ev_invoke_pending;
1553#endif
1554
1555 io_blocktime = 0.;
1556 timeout_blocktime = 0.;
1557 backend = 0;
1558 backend_fd = -1;
1559 gotasync = 0;
1560#if EV_USE_INOTIFY
1561 fs_fd = -2;
1562#endif
1563#if EV_USE_SIGNALFD
1564 sigfd = -2;
1565#endif
1566
1567 /* pid check not overridable via env */
1568#ifndef _WIN32
1569 if (flags & EVFLAG_FORKCHECK)
1570 curpid = getpid ();
1571#endif
1572
1573 if (!(flags & EVFLAG_NOENV)
1574 && !enable_secure ()
1575 && getenv ("LIBEV_FLAGS"))
1576 flags = atoi (getenv ("LIBEV_FLAGS"));
1577
1578 if (!(flags & 0x0000ffffU))
1579 flags |= ev_recommended_backends ();
1580
1581#if EV_USE_PORT
1582 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1583#endif
1584#if EV_USE_KQUEUE
1585 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1586#endif
1587#if EV_USE_EPOLL
1588 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1589#endif
1590#if EV_USE_POLL
1591 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1592#endif
1593#if EV_USE_SELECT
1594 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1595#endif
1596
1597 ev_prepare_init (&pending_w, pendingcb);
1598
1599 ev_init (&pipe_w, pipecb);
1600 ev_set_priority (&pipe_w, EV_MAXPRI);
1601 }
1602}
1603
1604/* free up a loop structure */
1605static void noinline
1606loop_destroy (EV_P)
1607{
1608 int i;
1609
1610 if (ev_is_active (&pipe_w))
1611 {
1612 /*ev_ref (EV_A);*/
1613 /*ev_io_stop (EV_A_ &pipe_w);*/
1614
1615#if EV_USE_EVENTFD
1616 if (evfd >= 0)
1617 close (evfd);
1618#endif
1619
1620 if (evpipe [0] >= 0)
1621 {
1622 close (evpipe [0]);
1623 close (evpipe [1]);
1624 }
1625 }
1626
1627#if EV_USE_SIGNALFD
1628 if (ev_is_active (&sigfd_w))
1629 {
1630 /*ev_ref (EV_A);*/
1631 /*ev_io_stop (EV_A_ &sigfd_w);*/
1632
1633 close (sigfd);
1634 }
1635#endif
1636
1637#if EV_USE_INOTIFY
1638 if (fs_fd >= 0)
1639 close (fs_fd);
1640#endif
1641
1642 if (backend_fd >= 0)
1643 close (backend_fd);
1644
1645#if EV_USE_PORT
1646 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1647#endif
1648#if EV_USE_KQUEUE
1649 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1650#endif
1651#if EV_USE_EPOLL
1652 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1653#endif
1654#if EV_USE_POLL
1655 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1656#endif
1657#if EV_USE_SELECT
1658 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1659#endif
1660
1661 for (i = NUMPRI; i--; )
1662 {
1663 array_free (pending, [i]);
1664#if EV_IDLE_ENABLE
1665 array_free (idle, [i]);
1666#endif
1667 }
1668
1669 ev_free (anfds); anfds = 0; anfdmax = 0;
1670
1671 /* have to use the microsoft-never-gets-it-right macro */
1672 array_free (rfeed, EMPTY);
1673 array_free (fdchange, EMPTY);
1674 array_free (timer, EMPTY);
1675#if EV_PERIODIC_ENABLE
1676 array_free (periodic, EMPTY);
1677#endif
1678#if EV_FORK_ENABLE
1679 array_free (fork, EMPTY);
1680#endif
1681 array_free (prepare, EMPTY);
1682 array_free (check, EMPTY);
1683#if EV_ASYNC_ENABLE
1684 array_free (async, EMPTY);
1685#endif
1686
1687 backend = 0;
1688}
1689
1690#if EV_USE_INOTIFY
1691inline_size void infy_fork (EV_P);
1692#endif
1693
1694inline_size void
1695loop_fork (EV_P)
1696{
1697#if EV_USE_PORT
1698 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1699#endif
1700#if EV_USE_KQUEUE
1701 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1702#endif
1703#if EV_USE_EPOLL
1704 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1705#endif
1706#if EV_USE_INOTIFY
1707 infy_fork (EV_A);
1708#endif
1709
1710 if (ev_is_active (&pipe_w))
1711 {
1712 /* this "locks" the handlers against writing to the pipe */
1713 /* while we modify the fd vars */
1714 gotsig = 1;
1715#if EV_ASYNC_ENABLE
1716 gotasync = 1;
1717#endif
1718
1719 ev_ref (EV_A);
1720 ev_io_stop (EV_A_ &pipe_w);
1721
1722#if EV_USE_EVENTFD
1723 if (evfd >= 0)
1724 close (evfd);
1725#endif
1726
1727 if (evpipe [0] >= 0)
1728 {
1729 close (evpipe [0]);
1730 close (evpipe [1]);
1731 }
1732
1733 evpipe_init (EV_A);
1734 /* now iterate over everything, in case we missed something */
1735 pipecb (EV_A_ &pipe_w, EV_READ);
1736 }
1737
1738 postfork = 0;
1739}
1740
1741#if EV_MULTIPLICITY
1742
1743struct ev_loop *
1744ev_loop_new (unsigned int flags)
1745{
1746 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1747
1748 memset (loop, 0, sizeof (struct ev_loop));
1749 loop_init (EV_A_ flags);
1750
1751 if (ev_backend (EV_A))
1752 return loop;
1753
1754 return 0;
1755}
1756
1757void
1758ev_loop_destroy (EV_P)
1759{
1760 loop_destroy (EV_A);
1761 ev_free (loop);
1762}
1763
1764void
1765ev_loop_fork (EV_P)
1766{
1767 postfork = 1; /* must be in line with ev_default_fork */
1768}
1769#endif /* multiplicity */
1770
1771#if EV_VERIFY
1772static void noinline
1773verify_watcher (EV_P_ W w)
1774{
1775 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1776
1777 if (w->pending)
1778 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1779}
1780
1781static void noinline
1782verify_heap (EV_P_ ANHE *heap, int N)
1783{
1784 int i;
1785
1786 for (i = HEAP0; i < N + HEAP0; ++i)
1787 {
1788 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1789 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1790 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1791
1792 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1793 }
1794}
1795
1796static void noinline
1797array_verify (EV_P_ W *ws, int cnt)
1798{
1799 while (cnt--)
1800 {
1801 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1802 verify_watcher (EV_A_ ws [cnt]);
1803 }
1804}
1805#endif
1806
1807#if EV_MINIMAL < 2
1808void
1809ev_loop_verify (EV_P)
1810{
1811#if EV_VERIFY
1812 int i;
1813 WL w;
1814
1815 assert (activecnt >= -1);
1816
1817 assert (fdchangemax >= fdchangecnt);
1818 for (i = 0; i < fdchangecnt; ++i)
1819 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1820
1821 assert (anfdmax >= 0);
1822 for (i = 0; i < anfdmax; ++i)
1823 for (w = anfds [i].head; w; w = w->next)
721 { 1824 {
722 struct timespec ts; 1825 verify_watcher (EV_A_ (W)w);
723 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1826 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
724 have_monotonic = 1; 1827 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
725 } 1828 }
726#endif
727 1829
728 rt_now = ev_time (); 1830 assert (timermax >= timercnt);
729 mn_now = get_clock (); 1831 verify_heap (EV_A_ timers, timercnt);
730 now_floor = mn_now;
731 rtmn_diff = rt_now - mn_now;
732 1832
733 if (methods == EVMETHOD_AUTO) 1833#if EV_PERIODIC_ENABLE
734 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1834 assert (periodicmax >= periodiccnt);
735 methods = atoi (getenv ("LIBEV_METHODS")); 1835 verify_heap (EV_A_ periodics, periodiccnt);
736 else
737 methods = EVMETHOD_ANY;
738
739 method = 0;
740#if EV_USE_WIN32
741 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
742#endif
743#if EV_USE_KQUEUE
744 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
745#endif
746#if EV_USE_EPOLL
747 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
748#endif
749#if EV_USE_POLL
750 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
751#endif
752#if EV_USE_SELECT
753 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
754#endif
755
756 ev_watcher_init (&sigev, sigcb);
757 ev_set_priority (&sigev, EV_MAXPRI);
758 }
759}
760
761void
762loop_destroy (EV_P)
763{
764 int i;
765
766#if EV_USE_WIN32
767 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
768#endif
769#if EV_USE_KQUEUE
770 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
771#endif
772#if EV_USE_EPOLL
773 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
774#endif
775#if EV_USE_POLL
776 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
777#endif
778#if EV_USE_SELECT
779 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
780#endif 1836#endif
781 1837
782 for (i = NUMPRI; i--; ) 1838 for (i = NUMPRI; i--; )
783 array_free (pending, [i]); 1839 {
1840 assert (pendingmax [i] >= pendingcnt [i]);
1841#if EV_IDLE_ENABLE
1842 assert (idleall >= 0);
1843 assert (idlemax [i] >= idlecnt [i]);
1844 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1845#endif
1846 }
784 1847
785 /* have to use the microsoft-never-gets-it-right macro */ 1848#if EV_FORK_ENABLE
786 array_free_microshit (fdchange); 1849 assert (forkmax >= forkcnt);
787 array_free_microshit (timer); 1850 array_verify (EV_A_ (W *)forks, forkcnt);
788 array_free_microshit (periodic); 1851#endif
789 array_free_microshit (idle);
790 array_free_microshit (prepare);
791 array_free_microshit (check);
792 1852
793 method = 0; 1853#if EV_ASYNC_ENABLE
794} 1854 assert (asyncmax >= asynccnt);
1855 array_verify (EV_A_ (W *)asyncs, asynccnt);
1856#endif
795 1857
796static void 1858 assert (preparemax >= preparecnt);
797loop_fork (EV_P) 1859 array_verify (EV_A_ (W *)prepares, preparecnt);
798{ 1860
799#if EV_USE_EPOLL 1861 assert (checkmax >= checkcnt);
800 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1862 array_verify (EV_A_ (W *)checks, checkcnt);
1863
1864# if 0
1865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1866 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
801#endif 1867# endif
802#if EV_USE_KQUEUE
803 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
804#endif 1868#endif
805
806 if (ev_is_active (&sigev))
807 {
808 /* default loop */
809
810 ev_ref (EV_A);
811 ev_io_stop (EV_A_ &sigev);
812 close (sigpipe [0]);
813 close (sigpipe [1]);
814
815 while (pipe (sigpipe))
816 syserr ("(libev) error creating pipe");
817
818 siginit (EV_A);
819 }
820
821 postfork = 0;
822} 1869}
1870#endif
823 1871
824#if EV_MULTIPLICITY 1872#if EV_MULTIPLICITY
825struct ev_loop * 1873struct ev_loop *
826ev_loop_new (int methods) 1874ev_default_loop_init (unsigned int flags)
827{
828 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
829
830 memset (loop, 0, sizeof (struct ev_loop));
831
832 loop_init (EV_A_ methods);
833
834 if (ev_method (EV_A))
835 return loop;
836
837 return 0;
838}
839
840void
841ev_loop_destroy (EV_P)
842{
843 loop_destroy (EV_A);
844 ev_free (loop);
845}
846
847void
848ev_loop_fork (EV_P)
849{
850 postfork = 1;
851}
852
853#endif
854
855#if EV_MULTIPLICITY
856struct ev_loop *
857#else 1875#else
858int 1876int
1877ev_default_loop (unsigned int flags)
859#endif 1878#endif
860ev_default_loop (int methods)
861{ 1879{
862 if (sigpipe [0] == sigpipe [1])
863 if (pipe (sigpipe))
864 return 0;
865
866 if (!default_loop) 1880 if (!ev_default_loop_ptr)
867 { 1881 {
868#if EV_MULTIPLICITY 1882#if EV_MULTIPLICITY
869 struct ev_loop *loop = default_loop = &default_loop_struct; 1883 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
870#else 1884#else
871 default_loop = 1; 1885 ev_default_loop_ptr = 1;
872#endif 1886#endif
873 1887
874 loop_init (EV_A_ methods); 1888 loop_init (EV_A_ flags);
875 1889
876 if (ev_method (EV_A)) 1890 if (ev_backend (EV_A))
877 { 1891 {
878 siginit (EV_A);
879
880#ifndef WIN32 1892#ifndef _WIN32
881 ev_signal_init (&childev, childcb, SIGCHLD); 1893 ev_signal_init (&childev, childcb, SIGCHLD);
882 ev_set_priority (&childev, EV_MAXPRI); 1894 ev_set_priority (&childev, EV_MAXPRI);
883 ev_signal_start (EV_A_ &childev); 1895 ev_signal_start (EV_A_ &childev);
884 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1896 ev_unref (EV_A); /* child watcher should not keep loop alive */
885#endif 1897#endif
886 } 1898 }
887 else 1899 else
888 default_loop = 0; 1900 ev_default_loop_ptr = 0;
889 } 1901 }
890 1902
891 return default_loop; 1903 return ev_default_loop_ptr;
892} 1904}
893 1905
894void 1906void
895ev_default_destroy (void) 1907ev_default_destroy (void)
896{ 1908{
897#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
898 struct ev_loop *loop = default_loop; 1910 struct ev_loop *loop = ev_default_loop_ptr;
899#endif 1911#endif
900 1912
1913 ev_default_loop_ptr = 0;
1914
901#ifndef WIN32 1915#ifndef _WIN32
902 ev_ref (EV_A); /* child watcher */ 1916 ev_ref (EV_A); /* child watcher */
903 ev_signal_stop (EV_A_ &childev); 1917 ev_signal_stop (EV_A_ &childev);
904#endif 1918#endif
905 1919
906 ev_ref (EV_A); /* signal watcher */
907 ev_io_stop (EV_A_ &sigev);
908
909 close (sigpipe [0]); sigpipe [0] = 0;
910 close (sigpipe [1]); sigpipe [1] = 0;
911
912 loop_destroy (EV_A); 1920 loop_destroy (EV_A);
913} 1921}
914 1922
915void 1923void
916ev_default_fork (void) 1924ev_default_fork (void)
917{ 1925{
918#if EV_MULTIPLICITY 1926#if EV_MULTIPLICITY
919 struct ev_loop *loop = default_loop; 1927 struct ev_loop *loop = ev_default_loop_ptr;
920#endif 1928#endif
921 1929
922 if (method) 1930 postfork = 1; /* must be in line with ev_loop_fork */
923 postfork = 1;
924} 1931}
925 1932
926/*****************************************************************************/ 1933/*****************************************************************************/
927 1934
928static int 1935void
929any_pending (EV_P) 1936ev_invoke (EV_P_ void *w, int revents)
1937{
1938 EV_CB_INVOKE ((W)w, revents);
1939}
1940
1941unsigned int
1942ev_pending_count (EV_P)
930{ 1943{
931 int pri; 1944 int pri;
1945 unsigned int count = 0;
932 1946
933 for (pri = NUMPRI; pri--; ) 1947 for (pri = NUMPRI; pri--; )
934 if (pendingcnt [pri]) 1948 count += pendingcnt [pri];
935 return 1;
936 1949
937 return 0; 1950 return count;
938} 1951}
939 1952
940static void 1953void noinline
941call_pending (EV_P) 1954ev_invoke_pending (EV_P)
942{ 1955{
943 int pri; 1956 int pri;
944 1957
945 for (pri = NUMPRI; pri--; ) 1958 for (pri = NUMPRI; pri--; )
946 while (pendingcnt [pri]) 1959 while (pendingcnt [pri])
947 { 1960 {
948 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1961 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
949 1962
950 if (p->w) 1963 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
951 { 1964 /* ^ this is no longer true, as pending_w could be here */
1965
952 p->w->pending = 0; 1966 p->w->pending = 0;
953 p->w->cb (EV_A_ p->w, p->events); 1967 EV_CB_INVOKE (p->w, p->events);
954 } 1968 EV_FREQUENT_CHECK;
955 } 1969 }
956} 1970}
957 1971
958static void 1972#if EV_IDLE_ENABLE
1973/* make idle watchers pending. this handles the "call-idle */
1974/* only when higher priorities are idle" logic */
1975inline_size void
1976idle_reify (EV_P)
1977{
1978 if (expect_false (idleall))
1979 {
1980 int pri;
1981
1982 for (pri = NUMPRI; pri--; )
1983 {
1984 if (pendingcnt [pri])
1985 break;
1986
1987 if (idlecnt [pri])
1988 {
1989 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1990 break;
1991 }
1992 }
1993 }
1994}
1995#endif
1996
1997/* make timers pending */
1998inline_size void
959timers_reify (EV_P) 1999timers_reify (EV_P)
960{ 2000{
2001 EV_FREQUENT_CHECK;
2002
961 while (timercnt && ((WT)timers [0])->at <= mn_now) 2003 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
962 { 2004 {
963 struct ev_timer *w = timers [0]; 2005 do
964
965 assert (("inactive timer on timer heap detected", ev_is_active (w)));
966
967 /* first reschedule or stop timer */
968 if (w->repeat)
969 { 2006 {
2007 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2008
2009 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2010
2011 /* first reschedule or stop timer */
2012 if (w->repeat)
2013 {
2014 ev_at (w) += w->repeat;
2015 if (ev_at (w) < mn_now)
2016 ev_at (w) = mn_now;
2017
970 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2018 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
971 ((WT)w)->at = mn_now + w->repeat; 2019
2020 ANHE_at_cache (timers [HEAP0]);
972 downheap ((WT *)timers, timercnt, 0); 2021 downheap (timers, timercnt, HEAP0);
2022 }
2023 else
2024 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2025
2026 EV_FREQUENT_CHECK;
2027 feed_reverse (EV_A_ (W)w);
973 } 2028 }
974 else 2029 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
975 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
976 2030
977 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2031 feed_reverse_done (EV_A_ EV_TIMEOUT);
978 } 2032 }
979} 2033}
980 2034
981static void 2035#if EV_PERIODIC_ENABLE
2036/* make periodics pending */
2037inline_size void
982periodics_reify (EV_P) 2038periodics_reify (EV_P)
983{ 2039{
2040 EV_FREQUENT_CHECK;
2041
984 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 2042 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
985 { 2043 {
986 struct ev_periodic *w = periodics [0]; 2044 int feed_count = 0;
987 2045
2046 do
2047 {
2048 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2049
988 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2050 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
989 2051
990 /* first reschedule or stop timer */ 2052 /* first reschedule or stop timer */
2053 if (w->reschedule_cb)
2054 {
2055 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2056
2057 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2058
2059 ANHE_at_cache (periodics [HEAP0]);
2060 downheap (periodics, periodiccnt, HEAP0);
2061 }
2062 else if (w->interval)
2063 {
2064 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2065 /* if next trigger time is not sufficiently in the future, put it there */
2066 /* this might happen because of floating point inexactness */
2067 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2068 {
2069 ev_at (w) += w->interval;
2070
2071 /* if interval is unreasonably low we might still have a time in the past */
2072 /* so correct this. this will make the periodic very inexact, but the user */
2073 /* has effectively asked to get triggered more often than possible */
2074 if (ev_at (w) < ev_rt_now)
2075 ev_at (w) = ev_rt_now;
2076 }
2077
2078 ANHE_at_cache (periodics [HEAP0]);
2079 downheap (periodics, periodiccnt, HEAP0);
2080 }
2081 else
2082 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2083
2084 EV_FREQUENT_CHECK;
2085 feed_reverse (EV_A_ (W)w);
2086 }
2087 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2088
2089 feed_reverse_done (EV_A_ EV_PERIODIC);
2090 }
2091}
2092
2093/* simply recalculate all periodics */
2094/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2095static void noinline
2096periodics_reschedule (EV_P)
2097{
2098 int i;
2099
2100 /* adjust periodics after time jump */
2101 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2102 {
2103 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2104
991 if (w->reschedule_cb) 2105 if (w->reschedule_cb)
992 {
993 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 2106 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
994
995 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
996 downheap ((WT *)periodics, periodiccnt, 0);
997 }
998 else if (w->interval) 2107 else if (w->interval)
999 { 2108 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1000 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1001 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
1002 downheap ((WT *)periodics, periodiccnt, 0);
1003 }
1004 else
1005 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1006 2109
1007 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2110 ANHE_at_cache (periodics [i]);
1008 } 2111 }
1009}
1010 2112
1011static void 2113 reheap (periodics, periodiccnt);
1012periodics_reschedule (EV_P) 2114}
2115#endif
2116
2117/* adjust all timers by a given offset */
2118static void noinline
2119timers_reschedule (EV_P_ ev_tstamp adjust)
1013{ 2120{
1014 int i; 2121 int i;
1015 2122
1016 /* adjust periodics after time jump */
1017 for (i = 0; i < periodiccnt; ++i) 2123 for (i = 0; i < timercnt; ++i)
1018 {
1019 struct ev_periodic *w = periodics [i];
1020
1021 if (w->reschedule_cb)
1022 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1023 else if (w->interval)
1024 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1025 } 2124 {
1026 2125 ANHE *he = timers + i + HEAP0;
1027 /* now rebuild the heap */ 2126 ANHE_w (*he)->at += adjust;
1028 for (i = periodiccnt >> 1; i--; ) 2127 ANHE_at_cache (*he);
1029 downheap ((WT *)periodics, periodiccnt, i);
1030}
1031
1032inline int
1033time_update_monotonic (EV_P)
1034{
1035 mn_now = get_clock ();
1036
1037 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1038 { 2128 }
1039 rt_now = rtmn_diff + mn_now;
1040 return 0;
1041 }
1042 else
1043 {
1044 now_floor = mn_now;
1045 rt_now = ev_time ();
1046 return 1;
1047 }
1048} 2129}
1049 2130
1050static void 2131/* fetch new monotonic and realtime times from the kernel */
1051time_update (EV_P) 2132/* also detetc if there was a timejump, and act accordingly */
2133inline_speed void
2134time_update (EV_P_ ev_tstamp max_block)
1052{ 2135{
1053 int i;
1054
1055#if EV_USE_MONOTONIC 2136#if EV_USE_MONOTONIC
1056 if (expect_true (have_monotonic)) 2137 if (expect_true (have_monotonic))
1057 { 2138 {
1058 if (time_update_monotonic (EV_A)) 2139 int i;
2140 ev_tstamp odiff = rtmn_diff;
2141
2142 mn_now = get_clock ();
2143
2144 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2145 /* interpolate in the meantime */
2146 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1059 { 2147 {
1060 ev_tstamp odiff = rtmn_diff; 2148 ev_rt_now = rtmn_diff + mn_now;
2149 return;
2150 }
1061 2151
2152 now_floor = mn_now;
2153 ev_rt_now = ev_time ();
2154
1062 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2155 /* loop a few times, before making important decisions.
2156 * on the choice of "4": one iteration isn't enough,
2157 * in case we get preempted during the calls to
2158 * ev_time and get_clock. a second call is almost guaranteed
2159 * to succeed in that case, though. and looping a few more times
2160 * doesn't hurt either as we only do this on time-jumps or
2161 * in the unlikely event of having been preempted here.
2162 */
2163 for (i = 4; --i; )
1063 { 2164 {
1064 rtmn_diff = rt_now - mn_now; 2165 rtmn_diff = ev_rt_now - mn_now;
1065 2166
1066 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2167 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1067 return; /* all is well */ 2168 return; /* all is well */
1068 2169
1069 rt_now = ev_time (); 2170 ev_rt_now = ev_time ();
1070 mn_now = get_clock (); 2171 mn_now = get_clock ();
1071 now_floor = mn_now; 2172 now_floor = mn_now;
1072 } 2173 }
1073 2174
2175 /* no timer adjustment, as the monotonic clock doesn't jump */
2176 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2177# if EV_PERIODIC_ENABLE
2178 periodics_reschedule (EV_A);
2179# endif
2180 }
2181 else
2182#endif
2183 {
2184 ev_rt_now = ev_time ();
2185
2186 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2187 {
2188 /* adjust timers. this is easy, as the offset is the same for all of them */
2189 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2190#if EV_PERIODIC_ENABLE
1074 periodics_reschedule (EV_A); 2191 periodics_reschedule (EV_A);
1075 /* no timer adjustment, as the monotonic clock doesn't jump */ 2192#endif
1076 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1077 } 2193 }
1078 }
1079 else
1080#endif
1081 {
1082 rt_now = ev_time ();
1083 2194
1084 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1085 {
1086 periodics_reschedule (EV_A);
1087
1088 /* adjust timers. this is easy, as the offset is the same for all */
1089 for (i = 0; i < timercnt; ++i)
1090 ((WT)timers [i])->at += rt_now - mn_now;
1091 }
1092
1093 mn_now = rt_now; 2195 mn_now = ev_rt_now;
1094 } 2196 }
1095} 2197}
1096
1097void
1098ev_ref (EV_P)
1099{
1100 ++activecnt;
1101}
1102
1103void
1104ev_unref (EV_P)
1105{
1106 --activecnt;
1107}
1108
1109static int loop_done;
1110 2198
1111void 2199void
1112ev_loop (EV_P_ int flags) 2200ev_loop (EV_P_ int flags)
1113{ 2201{
1114 double block; 2202#if EV_MINIMAL < 2
1115 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2203 ++loop_depth;
2204#endif
2205
2206 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2207
2208 loop_done = EVUNLOOP_CANCEL;
2209
2210 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1116 2211
1117 do 2212 do
1118 { 2213 {
2214#if EV_VERIFY >= 2
2215 ev_loop_verify (EV_A);
2216#endif
2217
2218#ifndef _WIN32
2219 if (expect_false (curpid)) /* penalise the forking check even more */
2220 if (expect_false (getpid () != curpid))
2221 {
2222 curpid = getpid ();
2223 postfork = 1;
2224 }
2225#endif
2226
2227#if EV_FORK_ENABLE
2228 /* we might have forked, so queue fork handlers */
2229 if (expect_false (postfork))
2230 if (forkcnt)
2231 {
2232 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2233 EV_INVOKE_PENDING;
2234 }
2235#endif
2236
1119 /* queue check watchers (and execute them) */ 2237 /* queue prepare watchers (and execute them) */
1120 if (expect_false (preparecnt)) 2238 if (expect_false (preparecnt))
1121 { 2239 {
1122 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2240 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1123 call_pending (EV_A); 2241 EV_INVOKE_PENDING;
1124 } 2242 }
2243
2244 if (expect_false (loop_done))
2245 break;
1125 2246
1126 /* we might have forked, so reify kernel state if necessary */ 2247 /* we might have forked, so reify kernel state if necessary */
1127 if (expect_false (postfork)) 2248 if (expect_false (postfork))
1128 loop_fork (EV_A); 2249 loop_fork (EV_A);
1129 2250
1130 /* update fd-related kernel structures */ 2251 /* update fd-related kernel structures */
1131 fd_reify (EV_A); 2252 fd_reify (EV_A);
1132 2253
1133 /* calculate blocking time */ 2254 /* calculate blocking time */
2255 {
2256 ev_tstamp waittime = 0.;
2257 ev_tstamp sleeptime = 0.;
1134 2258
1135 /* we only need this for !monotonic clock or timers, but as we basically 2259 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1136 always have timers, we just calculate it always */
1137#if EV_USE_MONOTONIC
1138 if (expect_true (have_monotonic))
1139 time_update_monotonic (EV_A);
1140 else
1141#endif
1142 { 2260 {
1143 rt_now = ev_time (); 2261 /* remember old timestamp for io_blocktime calculation */
1144 mn_now = rt_now; 2262 ev_tstamp prev_mn_now = mn_now;
1145 }
1146 2263
1147 if (flags & EVLOOP_NONBLOCK || idlecnt) 2264 /* update time to cancel out callback processing overhead */
1148 block = 0.; 2265 time_update (EV_A_ 1e100);
1149 else 2266
1150 {
1151 block = MAX_BLOCKTIME; 2267 waittime = MAX_BLOCKTIME;
1152 2268
1153 if (timercnt) 2269 if (timercnt)
1154 { 2270 {
1155 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2271 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1156 if (block > to) block = to; 2272 if (waittime > to) waittime = to;
1157 } 2273 }
1158 2274
2275#if EV_PERIODIC_ENABLE
1159 if (periodiccnt) 2276 if (periodiccnt)
1160 { 2277 {
1161 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2278 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1162 if (block > to) block = to; 2279 if (waittime > to) waittime = to;
1163 } 2280 }
2281#endif
1164 2282
1165 if (block < 0.) block = 0.; 2283 /* don't let timeouts decrease the waittime below timeout_blocktime */
2284 if (expect_false (waittime < timeout_blocktime))
2285 waittime = timeout_blocktime;
2286
2287 /* extra check because io_blocktime is commonly 0 */
2288 if (expect_false (io_blocktime))
2289 {
2290 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2291
2292 if (sleeptime > waittime - backend_fudge)
2293 sleeptime = waittime - backend_fudge;
2294
2295 if (expect_true (sleeptime > 0.))
2296 {
2297 ev_sleep (sleeptime);
2298 waittime -= sleeptime;
2299 }
2300 }
1166 } 2301 }
1167 2302
1168 method_poll (EV_A_ block); 2303#if EV_MINIMAL < 2
2304 ++loop_count;
2305#endif
2306 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2307 backend_poll (EV_A_ waittime);
2308 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1169 2309
1170 /* update rt_now, do magic */ 2310 /* update ev_rt_now, do magic */
1171 time_update (EV_A); 2311 time_update (EV_A_ waittime + sleeptime);
2312 }
1172 2313
1173 /* queue pending timers and reschedule them */ 2314 /* queue pending timers and reschedule them */
1174 timers_reify (EV_A); /* relative timers called last */ 2315 timers_reify (EV_A); /* relative timers called last */
2316#if EV_PERIODIC_ENABLE
1175 periodics_reify (EV_A); /* absolute timers called first */ 2317 periodics_reify (EV_A); /* absolute timers called first */
2318#endif
1176 2319
2320#if EV_IDLE_ENABLE
1177 /* queue idle watchers unless io or timers are pending */ 2321 /* queue idle watchers unless other events are pending */
1178 if (idlecnt && !any_pending (EV_A)) 2322 idle_reify (EV_A);
1179 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2323#endif
1180 2324
1181 /* queue check watchers, to be executed first */ 2325 /* queue check watchers, to be executed first */
1182 if (checkcnt) 2326 if (expect_false (checkcnt))
1183 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2327 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1184 2328
1185 call_pending (EV_A); 2329 EV_INVOKE_PENDING;
1186 } 2330 }
1187 while (activecnt && !loop_done); 2331 while (expect_true (
2332 activecnt
2333 && !loop_done
2334 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2335 ));
1188 2336
1189 if (loop_done != 2) 2337 if (loop_done == EVUNLOOP_ONE)
1190 loop_done = 0; 2338 loop_done = EVUNLOOP_CANCEL;
2339
2340#if EV_MINIMAL < 2
2341 --loop_depth;
2342#endif
1191} 2343}
1192 2344
1193void 2345void
1194ev_unloop (EV_P_ int how) 2346ev_unloop (EV_P_ int how)
1195{ 2347{
1196 loop_done = how; 2348 loop_done = how;
1197} 2349}
1198 2350
2351void
2352ev_ref (EV_P)
2353{
2354 ++activecnt;
2355}
2356
2357void
2358ev_unref (EV_P)
2359{
2360 --activecnt;
2361}
2362
2363void
2364ev_now_update (EV_P)
2365{
2366 time_update (EV_A_ 1e100);
2367}
2368
2369void
2370ev_suspend (EV_P)
2371{
2372 ev_now_update (EV_A);
2373}
2374
2375void
2376ev_resume (EV_P)
2377{
2378 ev_tstamp mn_prev = mn_now;
2379
2380 ev_now_update (EV_A);
2381 timers_reschedule (EV_A_ mn_now - mn_prev);
2382#if EV_PERIODIC_ENABLE
2383 /* TODO: really do this? */
2384 periodics_reschedule (EV_A);
2385#endif
2386}
2387
1199/*****************************************************************************/ 2388/*****************************************************************************/
2389/* singly-linked list management, used when the expected list length is short */
1200 2390
1201inline void 2391inline_size void
1202wlist_add (WL *head, WL elem) 2392wlist_add (WL *head, WL elem)
1203{ 2393{
1204 elem->next = *head; 2394 elem->next = *head;
1205 *head = elem; 2395 *head = elem;
1206} 2396}
1207 2397
1208inline void 2398inline_size void
1209wlist_del (WL *head, WL elem) 2399wlist_del (WL *head, WL elem)
1210{ 2400{
1211 while (*head) 2401 while (*head)
1212 { 2402 {
1213 if (*head == elem) 2403 if (*head == elem)
1218 2408
1219 head = &(*head)->next; 2409 head = &(*head)->next;
1220 } 2410 }
1221} 2411}
1222 2412
2413/* internal, faster, version of ev_clear_pending */
1223inline void 2414inline_speed void
1224ev_clear_pending (EV_P_ W w) 2415clear_pending (EV_P_ W w)
1225{ 2416{
1226 if (w->pending) 2417 if (w->pending)
1227 { 2418 {
1228 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2419 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1229 w->pending = 0; 2420 w->pending = 0;
1230 } 2421 }
1231} 2422}
1232 2423
2424int
2425ev_clear_pending (EV_P_ void *w)
2426{
2427 W w_ = (W)w;
2428 int pending = w_->pending;
2429
2430 if (expect_true (pending))
2431 {
2432 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2433 p->w = (W)&pending_w;
2434 w_->pending = 0;
2435 return p->events;
2436 }
2437 else
2438 return 0;
2439}
2440
1233inline void 2441inline_size void
2442pri_adjust (EV_P_ W w)
2443{
2444 int pri = ev_priority (w);
2445 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2446 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2447 ev_set_priority (w, pri);
2448}
2449
2450inline_speed void
1234ev_start (EV_P_ W w, int active) 2451ev_start (EV_P_ W w, int active)
1235{ 2452{
1236 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2453 pri_adjust (EV_A_ w);
1237 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1238
1239 w->active = active; 2454 w->active = active;
1240 ev_ref (EV_A); 2455 ev_ref (EV_A);
1241} 2456}
1242 2457
1243inline void 2458inline_size void
1244ev_stop (EV_P_ W w) 2459ev_stop (EV_P_ W w)
1245{ 2460{
1246 ev_unref (EV_A); 2461 ev_unref (EV_A);
1247 w->active = 0; 2462 w->active = 0;
1248} 2463}
1249 2464
1250/*****************************************************************************/ 2465/*****************************************************************************/
1251 2466
1252void 2467void noinline
1253ev_io_start (EV_P_ struct ev_io *w) 2468ev_io_start (EV_P_ ev_io *w)
1254{ 2469{
1255 int fd = w->fd; 2470 int fd = w->fd;
1256 2471
1257 if (ev_is_active (w)) 2472 if (expect_false (ev_is_active (w)))
1258 return; 2473 return;
1259 2474
1260 assert (("ev_io_start called with negative fd", fd >= 0)); 2475 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2476 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2477
2478 EV_FREQUENT_CHECK;
1261 2479
1262 ev_start (EV_A_ (W)w, 1); 2480 ev_start (EV_A_ (W)w, 1);
1263 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2481 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1264 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2482 wlist_add (&anfds[fd].head, (WL)w);
1265 2483
1266 fd_change (EV_A_ fd); 2484 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1267} 2485 w->events &= ~EV__IOFDSET;
1268 2486
1269void 2487 EV_FREQUENT_CHECK;
2488}
2489
2490void noinline
1270ev_io_stop (EV_P_ struct ev_io *w) 2491ev_io_stop (EV_P_ ev_io *w)
1271{ 2492{
1272 ev_clear_pending (EV_A_ (W)w); 2493 clear_pending (EV_A_ (W)w);
1273 if (!ev_is_active (w)) 2494 if (expect_false (!ev_is_active (w)))
1274 return; 2495 return;
1275 2496
2497 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2498
2499 EV_FREQUENT_CHECK;
2500
1276 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2501 wlist_del (&anfds[w->fd].head, (WL)w);
1277 ev_stop (EV_A_ (W)w); 2502 ev_stop (EV_A_ (W)w);
1278 2503
1279 fd_change (EV_A_ w->fd); 2504 fd_change (EV_A_ w->fd, 1);
1280}
1281 2505
1282void 2506 EV_FREQUENT_CHECK;
2507}
2508
2509void noinline
1283ev_timer_start (EV_P_ struct ev_timer *w) 2510ev_timer_start (EV_P_ ev_timer *w)
1284{ 2511{
1285 if (ev_is_active (w)) 2512 if (expect_false (ev_is_active (w)))
1286 return; 2513 return;
1287 2514
1288 ((WT)w)->at += mn_now; 2515 ev_at (w) += mn_now;
1289 2516
1290 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2517 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1291 2518
2519 EV_FREQUENT_CHECK;
2520
2521 ++timercnt;
1292 ev_start (EV_A_ (W)w, ++timercnt); 2522 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1293 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2523 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1294 timers [timercnt - 1] = w; 2524 ANHE_w (timers [ev_active (w)]) = (WT)w;
1295 upheap ((WT *)timers, timercnt - 1); 2525 ANHE_at_cache (timers [ev_active (w)]);
2526 upheap (timers, ev_active (w));
1296 2527
2528 EV_FREQUENT_CHECK;
2529
1297 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2530 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1298} 2531}
1299 2532
1300void 2533void noinline
1301ev_timer_stop (EV_P_ struct ev_timer *w) 2534ev_timer_stop (EV_P_ ev_timer *w)
1302{ 2535{
1303 ev_clear_pending (EV_A_ (W)w); 2536 clear_pending (EV_A_ (W)w);
1304 if (!ev_is_active (w)) 2537 if (expect_false (!ev_is_active (w)))
1305 return; 2538 return;
1306 2539
2540 EV_FREQUENT_CHECK;
2541
2542 {
2543 int active = ev_active (w);
2544
1307 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2545 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1308 2546
1309 if (((W)w)->active < timercnt--) 2547 --timercnt;
2548
2549 if (expect_true (active < timercnt + HEAP0))
1310 { 2550 {
1311 timers [((W)w)->active - 1] = timers [timercnt]; 2551 timers [active] = timers [timercnt + HEAP0];
1312 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2552 adjustheap (timers, timercnt, active);
1313 } 2553 }
2554 }
1314 2555
1315 ((WT)w)->at = w->repeat; 2556 EV_FREQUENT_CHECK;
2557
2558 ev_at (w) -= mn_now;
1316 2559
1317 ev_stop (EV_A_ (W)w); 2560 ev_stop (EV_A_ (W)w);
1318} 2561}
1319 2562
1320void 2563void noinline
1321ev_timer_again (EV_P_ struct ev_timer *w) 2564ev_timer_again (EV_P_ ev_timer *w)
1322{ 2565{
2566 EV_FREQUENT_CHECK;
2567
1323 if (ev_is_active (w)) 2568 if (ev_is_active (w))
1324 { 2569 {
1325 if (w->repeat) 2570 if (w->repeat)
1326 { 2571 {
1327 ((WT)w)->at = mn_now + w->repeat; 2572 ev_at (w) = mn_now + w->repeat;
1328 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2573 ANHE_at_cache (timers [ev_active (w)]);
2574 adjustheap (timers, timercnt, ev_active (w));
1329 } 2575 }
1330 else 2576 else
1331 ev_timer_stop (EV_A_ w); 2577 ev_timer_stop (EV_A_ w);
1332 } 2578 }
1333 else if (w->repeat) 2579 else if (w->repeat)
2580 {
2581 ev_at (w) = w->repeat;
1334 ev_timer_start (EV_A_ w); 2582 ev_timer_start (EV_A_ w);
1335} 2583 }
1336 2584
1337void 2585 EV_FREQUENT_CHECK;
2586}
2587
2588ev_tstamp
2589ev_timer_remaining (EV_P_ ev_timer *w)
2590{
2591 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2592}
2593
2594#if EV_PERIODIC_ENABLE
2595void noinline
1338ev_periodic_start (EV_P_ struct ev_periodic *w) 2596ev_periodic_start (EV_P_ ev_periodic *w)
1339{ 2597{
1340 if (ev_is_active (w)) 2598 if (expect_false (ev_is_active (w)))
1341 return; 2599 return;
1342 2600
1343 if (w->reschedule_cb) 2601 if (w->reschedule_cb)
1344 ((WT)w)->at = w->reschedule_cb (w, rt_now); 2602 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1345 else if (w->interval) 2603 else if (w->interval)
1346 { 2604 {
1347 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2605 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1348 /* this formula differs from the one in periodic_reify because we do not always round up */ 2606 /* this formula differs from the one in periodic_reify because we do not always round up */
1349 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2607 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1350 } 2608 }
2609 else
2610 ev_at (w) = w->offset;
1351 2611
2612 EV_FREQUENT_CHECK;
2613
2614 ++periodiccnt;
1352 ev_start (EV_A_ (W)w, ++periodiccnt); 2615 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1353 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2616 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1354 periodics [periodiccnt - 1] = w; 2617 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1355 upheap ((WT *)periodics, periodiccnt - 1); 2618 ANHE_at_cache (periodics [ev_active (w)]);
2619 upheap (periodics, ev_active (w));
1356 2620
2621 EV_FREQUENT_CHECK;
2622
1357 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2623 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1358} 2624}
1359 2625
1360void 2626void noinline
1361ev_periodic_stop (EV_P_ struct ev_periodic *w) 2627ev_periodic_stop (EV_P_ ev_periodic *w)
1362{ 2628{
1363 ev_clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
1364 if (!ev_is_active (w)) 2630 if (expect_false (!ev_is_active (w)))
1365 return; 2631 return;
1366 2632
2633 EV_FREQUENT_CHECK;
2634
2635 {
2636 int active = ev_active (w);
2637
1367 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2638 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1368 2639
1369 if (((W)w)->active < periodiccnt--) 2640 --periodiccnt;
2641
2642 if (expect_true (active < periodiccnt + HEAP0))
1370 { 2643 {
1371 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2644 periodics [active] = periodics [periodiccnt + HEAP0];
1372 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2645 adjustheap (periodics, periodiccnt, active);
1373 } 2646 }
2647 }
2648
2649 EV_FREQUENT_CHECK;
1374 2650
1375 ev_stop (EV_A_ (W)w); 2651 ev_stop (EV_A_ (W)w);
1376} 2652}
1377 2653
1378void 2654void noinline
1379ev_periodic_again (EV_P_ struct ev_periodic *w) 2655ev_periodic_again (EV_P_ ev_periodic *w)
1380{ 2656{
2657 /* TODO: use adjustheap and recalculation */
1381 ev_periodic_stop (EV_A_ w); 2658 ev_periodic_stop (EV_A_ w);
1382 ev_periodic_start (EV_A_ w); 2659 ev_periodic_start (EV_A_ w);
1383} 2660}
1384 2661#endif
1385void
1386ev_idle_start (EV_P_ struct ev_idle *w)
1387{
1388 if (ev_is_active (w))
1389 return;
1390
1391 ev_start (EV_A_ (W)w, ++idlecnt);
1392 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1393 idles [idlecnt - 1] = w;
1394}
1395
1396void
1397ev_idle_stop (EV_P_ struct ev_idle *w)
1398{
1399 ev_clear_pending (EV_A_ (W)w);
1400 if (ev_is_active (w))
1401 return;
1402
1403 idles [((W)w)->active - 1] = idles [--idlecnt];
1404 ev_stop (EV_A_ (W)w);
1405}
1406
1407void
1408ev_prepare_start (EV_P_ struct ev_prepare *w)
1409{
1410 if (ev_is_active (w))
1411 return;
1412
1413 ev_start (EV_A_ (W)w, ++preparecnt);
1414 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1415 prepares [preparecnt - 1] = w;
1416}
1417
1418void
1419ev_prepare_stop (EV_P_ struct ev_prepare *w)
1420{
1421 ev_clear_pending (EV_A_ (W)w);
1422 if (ev_is_active (w))
1423 return;
1424
1425 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1426 ev_stop (EV_A_ (W)w);
1427}
1428
1429void
1430ev_check_start (EV_P_ struct ev_check *w)
1431{
1432 if (ev_is_active (w))
1433 return;
1434
1435 ev_start (EV_A_ (W)w, ++checkcnt);
1436 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1437 checks [checkcnt - 1] = w;
1438}
1439
1440void
1441ev_check_stop (EV_P_ struct ev_check *w)
1442{
1443 ev_clear_pending (EV_A_ (W)w);
1444 if (ev_is_active (w))
1445 return;
1446
1447 checks [((W)w)->active - 1] = checks [--checkcnt];
1448 ev_stop (EV_A_ (W)w);
1449}
1450 2662
1451#ifndef SA_RESTART 2663#ifndef SA_RESTART
1452# define SA_RESTART 0 2664# define SA_RESTART 0
1453#endif 2665#endif
1454 2666
1455void 2667void noinline
1456ev_signal_start (EV_P_ struct ev_signal *w) 2668ev_signal_start (EV_P_ ev_signal *w)
1457{ 2669{
1458#if EV_MULTIPLICITY 2670#if EV_MULTIPLICITY
1459 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2671 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1460#endif 2672#endif
1461 if (ev_is_active (w)) 2673 if (expect_false (ev_is_active (w)))
1462 return; 2674 return;
1463 2675
1464 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2676 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2677
2678 EV_FREQUENT_CHECK;
2679
2680#if EV_USE_SIGNALFD
2681 if (sigfd == -2)
2682 {
2683 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2684 if (sigfd < 0 && errno == EINVAL)
2685 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2686
2687 if (sigfd >= 0)
2688 {
2689 fd_intern (sigfd); /* doing it twice will not hurt */
2690
2691 sigemptyset (&sigfd_set);
2692
2693 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2694 ev_set_priority (&sigfd_w, EV_MAXPRI);
2695 ev_io_start (EV_A_ &sigfd_w);
2696 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2697 }
2698 }
2699
2700 if (sigfd >= 0)
2701 {
2702 /* TODO: check .head */
2703 sigaddset (&sigfd_set, w->signum);
2704 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2705
2706 signalfd (sigfd, &sigfd_set, 0);
2707 }
2708 else
2709#endif
2710 evpipe_init (EV_A);
2711
2712 {
2713#ifndef _WIN32
2714 sigset_t full, prev;
2715 sigfillset (&full);
2716 sigprocmask (SIG_SETMASK, &full, &prev);
2717#endif
2718
2719 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2720
2721#ifndef _WIN32
2722# if EV_USE_SIGNALFD
2723 if (sigfd < 0)/*TODO*/
2724# endif
2725 sigdelset (&prev, w->signum);
2726 sigprocmask (SIG_SETMASK, &prev, 0);
2727#endif
2728 }
1465 2729
1466 ev_start (EV_A_ (W)w, 1); 2730 ev_start (EV_A_ (W)w, 1);
1467 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1468 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2731 wlist_add (&signals [w->signum - 1].head, (WL)w);
1469 2732
1470 if (!((WL)w)->next) 2733 if (!((WL)w)->next)
1471 { 2734 {
1472#if WIN32 2735#if _WIN32
1473 signal (w->signum, sighandler); 2736 signal (w->signum, ev_sighandler);
1474#else 2737#else
2738# if EV_USE_SIGNALFD
2739 if (sigfd < 0) /*TODO*/
2740# endif
2741 {
1475 struct sigaction sa; 2742 struct sigaction sa = { };
1476 sa.sa_handler = sighandler; 2743 sa.sa_handler = ev_sighandler;
1477 sigfillset (&sa.sa_mask); 2744 sigfillset (&sa.sa_mask);
1478 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2745 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1479 sigaction (w->signum, &sa, 0); 2746 sigaction (w->signum, &sa, 0);
2747 }
1480#endif 2748#endif
1481 } 2749 }
1482}
1483 2750
1484void 2751 EV_FREQUENT_CHECK;
2752}
2753
2754void noinline
1485ev_signal_stop (EV_P_ struct ev_signal *w) 2755ev_signal_stop (EV_P_ ev_signal *w)
1486{ 2756{
1487 ev_clear_pending (EV_A_ (W)w); 2757 clear_pending (EV_A_ (W)w);
1488 if (!ev_is_active (w)) 2758 if (expect_false (!ev_is_active (w)))
1489 return; 2759 return;
1490 2760
2761 EV_FREQUENT_CHECK;
2762
1491 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2763 wlist_del (&signals [w->signum - 1].head, (WL)w);
1492 ev_stop (EV_A_ (W)w); 2764 ev_stop (EV_A_ (W)w);
1493 2765
1494 if (!signals [w->signum - 1].head) 2766 if (!signals [w->signum - 1].head)
2767#if EV_USE_SIGNALFD
2768 if (sigfd >= 0)
2769 {
2770 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2771 sigdelset (&sigfd_set, w->signum);
2772 signalfd (sigfd, &sigfd_set, 0);
2773 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2774 /*TODO: maybe unblock signal? */
2775 }
2776 else
2777#endif
1495 signal (w->signum, SIG_DFL); 2778 signal (w->signum, SIG_DFL);
1496}
1497 2779
2780 EV_FREQUENT_CHECK;
2781}
2782
1498void 2783void
1499ev_child_start (EV_P_ struct ev_child *w) 2784ev_child_start (EV_P_ ev_child *w)
1500{ 2785{
1501#if EV_MULTIPLICITY 2786#if EV_MULTIPLICITY
1502 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2787 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1503#endif 2788#endif
1504 if (ev_is_active (w)) 2789 if (expect_false (ev_is_active (w)))
1505 return; 2790 return;
1506 2791
2792 EV_FREQUENT_CHECK;
2793
1507 ev_start (EV_A_ (W)w, 1); 2794 ev_start (EV_A_ (W)w, 1);
1508 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2795 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1509}
1510 2796
2797 EV_FREQUENT_CHECK;
2798}
2799
1511void 2800void
1512ev_child_stop (EV_P_ struct ev_child *w) 2801ev_child_stop (EV_P_ ev_child *w)
1513{ 2802{
1514 ev_clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
1515 if (ev_is_active (w)) 2804 if (expect_false (!ev_is_active (w)))
1516 return; 2805 return;
1517 2806
2807 EV_FREQUENT_CHECK;
2808
1518 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2809 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1519 ev_stop (EV_A_ (W)w); 2810 ev_stop (EV_A_ (W)w);
2811
2812 EV_FREQUENT_CHECK;
1520} 2813}
2814
2815#if EV_STAT_ENABLE
2816
2817# ifdef _WIN32
2818# undef lstat
2819# define lstat(a,b) _stati64 (a,b)
2820# endif
2821
2822#define DEF_STAT_INTERVAL 5.0074891
2823#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2824#define MIN_STAT_INTERVAL 0.1074891
2825
2826static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2827
2828#if EV_USE_INOTIFY
2829# define EV_INOTIFY_BUFSIZE 8192
2830
2831static void noinline
2832infy_add (EV_P_ ev_stat *w)
2833{
2834 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2835
2836 if (w->wd < 0)
2837 {
2838 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2839 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2840
2841 /* monitor some parent directory for speedup hints */
2842 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2843 /* but an efficiency issue only */
2844 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2845 {
2846 char path [4096];
2847 strcpy (path, w->path);
2848
2849 do
2850 {
2851 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2852 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2853
2854 char *pend = strrchr (path, '/');
2855
2856 if (!pend || pend == path)
2857 break;
2858
2859 *pend = 0;
2860 w->wd = inotify_add_watch (fs_fd, path, mask);
2861 }
2862 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2863 }
2864 }
2865
2866 if (w->wd >= 0)
2867 {
2868 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2869
2870 /* now local changes will be tracked by inotify, but remote changes won't */
2871 /* unless the filesystem it known to be local, we therefore still poll */
2872 /* also do poll on <2.6.25, but with normal frequency */
2873 struct statfs sfs;
2874
2875 if (fs_2625 && !statfs (w->path, &sfs))
2876 if (sfs.f_type == 0x1373 /* devfs */
2877 || sfs.f_type == 0xEF53 /* ext2/3 */
2878 || sfs.f_type == 0x3153464a /* jfs */
2879 || sfs.f_type == 0x52654973 /* reiser3 */
2880 || sfs.f_type == 0x01021994 /* tempfs */
2881 || sfs.f_type == 0x58465342 /* xfs */)
2882 return;
2883
2884 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2885 ev_timer_again (EV_A_ &w->timer);
2886 }
2887}
2888
2889static void noinline
2890infy_del (EV_P_ ev_stat *w)
2891{
2892 int slot;
2893 int wd = w->wd;
2894
2895 if (wd < 0)
2896 return;
2897
2898 w->wd = -2;
2899 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2900 wlist_del (&fs_hash [slot].head, (WL)w);
2901
2902 /* remove this watcher, if others are watching it, they will rearm */
2903 inotify_rm_watch (fs_fd, wd);
2904}
2905
2906static void noinline
2907infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2908{
2909 if (slot < 0)
2910 /* overflow, need to check for all hash slots */
2911 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2912 infy_wd (EV_A_ slot, wd, ev);
2913 else
2914 {
2915 WL w_;
2916
2917 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2918 {
2919 ev_stat *w = (ev_stat *)w_;
2920 w_ = w_->next; /* lets us remove this watcher and all before it */
2921
2922 if (w->wd == wd || wd == -1)
2923 {
2924 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2925 {
2926 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2927 w->wd = -1;
2928 infy_add (EV_A_ w); /* re-add, no matter what */
2929 }
2930
2931 stat_timer_cb (EV_A_ &w->timer, 0);
2932 }
2933 }
2934 }
2935}
2936
2937static void
2938infy_cb (EV_P_ ev_io *w, int revents)
2939{
2940 char buf [EV_INOTIFY_BUFSIZE];
2941 struct inotify_event *ev = (struct inotify_event *)buf;
2942 int ofs;
2943 int len = read (fs_fd, buf, sizeof (buf));
2944
2945 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2946 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2947}
2948
2949inline_size void
2950check_2625 (EV_P)
2951{
2952 /* kernels < 2.6.25 are borked
2953 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2954 */
2955 struct utsname buf;
2956 int major, minor, micro;
2957
2958 if (uname (&buf))
2959 return;
2960
2961 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2962 return;
2963
2964 if (major < 2
2965 || (major == 2 && minor < 6)
2966 || (major == 2 && minor == 6 && micro < 25))
2967 return;
2968
2969 fs_2625 = 1;
2970}
2971
2972inline_size void
2973infy_init (EV_P)
2974{
2975 if (fs_fd != -2)
2976 return;
2977
2978 fs_fd = -1;
2979
2980 check_2625 (EV_A);
2981
2982 fs_fd = inotify_init ();
2983
2984 if (fs_fd >= 0)
2985 {
2986 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2987 ev_set_priority (&fs_w, EV_MAXPRI);
2988 ev_io_start (EV_A_ &fs_w);
2989 }
2990}
2991
2992inline_size void
2993infy_fork (EV_P)
2994{
2995 int slot;
2996
2997 if (fs_fd < 0)
2998 return;
2999
3000 close (fs_fd);
3001 fs_fd = inotify_init ();
3002
3003 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3004 {
3005 WL w_ = fs_hash [slot].head;
3006 fs_hash [slot].head = 0;
3007
3008 while (w_)
3009 {
3010 ev_stat *w = (ev_stat *)w_;
3011 w_ = w_->next; /* lets us add this watcher */
3012
3013 w->wd = -1;
3014
3015 if (fs_fd >= 0)
3016 infy_add (EV_A_ w); /* re-add, no matter what */
3017 else
3018 ev_timer_again (EV_A_ &w->timer);
3019 }
3020 }
3021}
3022
3023#endif
3024
3025#ifdef _WIN32
3026# define EV_LSTAT(p,b) _stati64 (p, b)
3027#else
3028# define EV_LSTAT(p,b) lstat (p, b)
3029#endif
3030
3031void
3032ev_stat_stat (EV_P_ ev_stat *w)
3033{
3034 if (lstat (w->path, &w->attr) < 0)
3035 w->attr.st_nlink = 0;
3036 else if (!w->attr.st_nlink)
3037 w->attr.st_nlink = 1;
3038}
3039
3040static void noinline
3041stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3042{
3043 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3044
3045 /* we copy this here each the time so that */
3046 /* prev has the old value when the callback gets invoked */
3047 w->prev = w->attr;
3048 ev_stat_stat (EV_A_ w);
3049
3050 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3051 if (
3052 w->prev.st_dev != w->attr.st_dev
3053 || w->prev.st_ino != w->attr.st_ino
3054 || w->prev.st_mode != w->attr.st_mode
3055 || w->prev.st_nlink != w->attr.st_nlink
3056 || w->prev.st_uid != w->attr.st_uid
3057 || w->prev.st_gid != w->attr.st_gid
3058 || w->prev.st_rdev != w->attr.st_rdev
3059 || w->prev.st_size != w->attr.st_size
3060 || w->prev.st_atime != w->attr.st_atime
3061 || w->prev.st_mtime != w->attr.st_mtime
3062 || w->prev.st_ctime != w->attr.st_ctime
3063 ) {
3064 #if EV_USE_INOTIFY
3065 if (fs_fd >= 0)
3066 {
3067 infy_del (EV_A_ w);
3068 infy_add (EV_A_ w);
3069 ev_stat_stat (EV_A_ w); /* avoid race... */
3070 }
3071 #endif
3072
3073 ev_feed_event (EV_A_ w, EV_STAT);
3074 }
3075}
3076
3077void
3078ev_stat_start (EV_P_ ev_stat *w)
3079{
3080 if (expect_false (ev_is_active (w)))
3081 return;
3082
3083 ev_stat_stat (EV_A_ w);
3084
3085 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3086 w->interval = MIN_STAT_INTERVAL;
3087
3088 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3089 ev_set_priority (&w->timer, ev_priority (w));
3090
3091#if EV_USE_INOTIFY
3092 infy_init (EV_A);
3093
3094 if (fs_fd >= 0)
3095 infy_add (EV_A_ w);
3096 else
3097#endif
3098 ev_timer_again (EV_A_ &w->timer);
3099
3100 ev_start (EV_A_ (W)w, 1);
3101
3102 EV_FREQUENT_CHECK;
3103}
3104
3105void
3106ev_stat_stop (EV_P_ ev_stat *w)
3107{
3108 clear_pending (EV_A_ (W)w);
3109 if (expect_false (!ev_is_active (w)))
3110 return;
3111
3112 EV_FREQUENT_CHECK;
3113
3114#if EV_USE_INOTIFY
3115 infy_del (EV_A_ w);
3116#endif
3117 ev_timer_stop (EV_A_ &w->timer);
3118
3119 ev_stop (EV_A_ (W)w);
3120
3121 EV_FREQUENT_CHECK;
3122}
3123#endif
3124
3125#if EV_IDLE_ENABLE
3126void
3127ev_idle_start (EV_P_ ev_idle *w)
3128{
3129 if (expect_false (ev_is_active (w)))
3130 return;
3131
3132 pri_adjust (EV_A_ (W)w);
3133
3134 EV_FREQUENT_CHECK;
3135
3136 {
3137 int active = ++idlecnt [ABSPRI (w)];
3138
3139 ++idleall;
3140 ev_start (EV_A_ (W)w, active);
3141
3142 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3143 idles [ABSPRI (w)][active - 1] = w;
3144 }
3145
3146 EV_FREQUENT_CHECK;
3147}
3148
3149void
3150ev_idle_stop (EV_P_ ev_idle *w)
3151{
3152 clear_pending (EV_A_ (W)w);
3153 if (expect_false (!ev_is_active (w)))
3154 return;
3155
3156 EV_FREQUENT_CHECK;
3157
3158 {
3159 int active = ev_active (w);
3160
3161 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3162 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3163
3164 ev_stop (EV_A_ (W)w);
3165 --idleall;
3166 }
3167
3168 EV_FREQUENT_CHECK;
3169}
3170#endif
3171
3172void
3173ev_prepare_start (EV_P_ ev_prepare *w)
3174{
3175 if (expect_false (ev_is_active (w)))
3176 return;
3177
3178 EV_FREQUENT_CHECK;
3179
3180 ev_start (EV_A_ (W)w, ++preparecnt);
3181 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3182 prepares [preparecnt - 1] = w;
3183
3184 EV_FREQUENT_CHECK;
3185}
3186
3187void
3188ev_prepare_stop (EV_P_ ev_prepare *w)
3189{
3190 clear_pending (EV_A_ (W)w);
3191 if (expect_false (!ev_is_active (w)))
3192 return;
3193
3194 EV_FREQUENT_CHECK;
3195
3196 {
3197 int active = ev_active (w);
3198
3199 prepares [active - 1] = prepares [--preparecnt];
3200 ev_active (prepares [active - 1]) = active;
3201 }
3202
3203 ev_stop (EV_A_ (W)w);
3204
3205 EV_FREQUENT_CHECK;
3206}
3207
3208void
3209ev_check_start (EV_P_ ev_check *w)
3210{
3211 if (expect_false (ev_is_active (w)))
3212 return;
3213
3214 EV_FREQUENT_CHECK;
3215
3216 ev_start (EV_A_ (W)w, ++checkcnt);
3217 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3218 checks [checkcnt - 1] = w;
3219
3220 EV_FREQUENT_CHECK;
3221}
3222
3223void
3224ev_check_stop (EV_P_ ev_check *w)
3225{
3226 clear_pending (EV_A_ (W)w);
3227 if (expect_false (!ev_is_active (w)))
3228 return;
3229
3230 EV_FREQUENT_CHECK;
3231
3232 {
3233 int active = ev_active (w);
3234
3235 checks [active - 1] = checks [--checkcnt];
3236 ev_active (checks [active - 1]) = active;
3237 }
3238
3239 ev_stop (EV_A_ (W)w);
3240
3241 EV_FREQUENT_CHECK;
3242}
3243
3244#if EV_EMBED_ENABLE
3245void noinline
3246ev_embed_sweep (EV_P_ ev_embed *w)
3247{
3248 ev_loop (w->other, EVLOOP_NONBLOCK);
3249}
3250
3251static void
3252embed_io_cb (EV_P_ ev_io *io, int revents)
3253{
3254 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3255
3256 if (ev_cb (w))
3257 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3258 else
3259 ev_loop (w->other, EVLOOP_NONBLOCK);
3260}
3261
3262static void
3263embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3264{
3265 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3266
3267 {
3268 struct ev_loop *loop = w->other;
3269
3270 while (fdchangecnt)
3271 {
3272 fd_reify (EV_A);
3273 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3274 }
3275 }
3276}
3277
3278static void
3279embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3280{
3281 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3282
3283 ev_embed_stop (EV_A_ w);
3284
3285 {
3286 struct ev_loop *loop = w->other;
3287
3288 ev_loop_fork (EV_A);
3289 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3290 }
3291
3292 ev_embed_start (EV_A_ w);
3293}
3294
3295#if 0
3296static void
3297embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3298{
3299 ev_idle_stop (EV_A_ idle);
3300}
3301#endif
3302
3303void
3304ev_embed_start (EV_P_ ev_embed *w)
3305{
3306 if (expect_false (ev_is_active (w)))
3307 return;
3308
3309 {
3310 struct ev_loop *loop = w->other;
3311 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3312 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3313 }
3314
3315 EV_FREQUENT_CHECK;
3316
3317 ev_set_priority (&w->io, ev_priority (w));
3318 ev_io_start (EV_A_ &w->io);
3319
3320 ev_prepare_init (&w->prepare, embed_prepare_cb);
3321 ev_set_priority (&w->prepare, EV_MINPRI);
3322 ev_prepare_start (EV_A_ &w->prepare);
3323
3324 ev_fork_init (&w->fork, embed_fork_cb);
3325 ev_fork_start (EV_A_ &w->fork);
3326
3327 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3328
3329 ev_start (EV_A_ (W)w, 1);
3330
3331 EV_FREQUENT_CHECK;
3332}
3333
3334void
3335ev_embed_stop (EV_P_ ev_embed *w)
3336{
3337 clear_pending (EV_A_ (W)w);
3338 if (expect_false (!ev_is_active (w)))
3339 return;
3340
3341 EV_FREQUENT_CHECK;
3342
3343 ev_io_stop (EV_A_ &w->io);
3344 ev_prepare_stop (EV_A_ &w->prepare);
3345 ev_fork_stop (EV_A_ &w->fork);
3346
3347 EV_FREQUENT_CHECK;
3348}
3349#endif
3350
3351#if EV_FORK_ENABLE
3352void
3353ev_fork_start (EV_P_ ev_fork *w)
3354{
3355 if (expect_false (ev_is_active (w)))
3356 return;
3357
3358 EV_FREQUENT_CHECK;
3359
3360 ev_start (EV_A_ (W)w, ++forkcnt);
3361 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3362 forks [forkcnt - 1] = w;
3363
3364 EV_FREQUENT_CHECK;
3365}
3366
3367void
3368ev_fork_stop (EV_P_ ev_fork *w)
3369{
3370 clear_pending (EV_A_ (W)w);
3371 if (expect_false (!ev_is_active (w)))
3372 return;
3373
3374 EV_FREQUENT_CHECK;
3375
3376 {
3377 int active = ev_active (w);
3378
3379 forks [active - 1] = forks [--forkcnt];
3380 ev_active (forks [active - 1]) = active;
3381 }
3382
3383 ev_stop (EV_A_ (W)w);
3384
3385 EV_FREQUENT_CHECK;
3386}
3387#endif
3388
3389#if EV_ASYNC_ENABLE
3390void
3391ev_async_start (EV_P_ ev_async *w)
3392{
3393 if (expect_false (ev_is_active (w)))
3394 return;
3395
3396 evpipe_init (EV_A);
3397
3398 EV_FREQUENT_CHECK;
3399
3400 ev_start (EV_A_ (W)w, ++asynccnt);
3401 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3402 asyncs [asynccnt - 1] = w;
3403
3404 EV_FREQUENT_CHECK;
3405}
3406
3407void
3408ev_async_stop (EV_P_ ev_async *w)
3409{
3410 clear_pending (EV_A_ (W)w);
3411 if (expect_false (!ev_is_active (w)))
3412 return;
3413
3414 EV_FREQUENT_CHECK;
3415
3416 {
3417 int active = ev_active (w);
3418
3419 asyncs [active - 1] = asyncs [--asynccnt];
3420 ev_active (asyncs [active - 1]) = active;
3421 }
3422
3423 ev_stop (EV_A_ (W)w);
3424
3425 EV_FREQUENT_CHECK;
3426}
3427
3428void
3429ev_async_send (EV_P_ ev_async *w)
3430{
3431 w->sent = 1;
3432 evpipe_write (EV_A_ &gotasync);
3433}
3434#endif
1521 3435
1522/*****************************************************************************/ 3436/*****************************************************************************/
1523 3437
1524struct ev_once 3438struct ev_once
1525{ 3439{
1526 struct ev_io io; 3440 ev_io io;
1527 struct ev_timer to; 3441 ev_timer to;
1528 void (*cb)(int revents, void *arg); 3442 void (*cb)(int revents, void *arg);
1529 void *arg; 3443 void *arg;
1530}; 3444};
1531 3445
1532static void 3446static void
1533once_cb (EV_P_ struct ev_once *once, int revents) 3447once_cb (EV_P_ struct ev_once *once, int revents)
1534{ 3448{
1535 void (*cb)(int revents, void *arg) = once->cb; 3449 void (*cb)(int revents, void *arg) = once->cb;
1536 void *arg = once->arg; 3450 void *arg = once->arg;
1537 3451
1538 ev_io_stop (EV_A_ &once->io); 3452 ev_io_stop (EV_A_ &once->io);
1539 ev_timer_stop (EV_A_ &once->to); 3453 ev_timer_stop (EV_A_ &once->to);
1540 ev_free (once); 3454 ev_free (once);
1541 3455
1542 cb (revents, arg); 3456 cb (revents, arg);
1543} 3457}
1544 3458
1545static void 3459static void
1546once_cb_io (EV_P_ struct ev_io *w, int revents) 3460once_cb_io (EV_P_ ev_io *w, int revents)
1547{ 3461{
1548 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3462 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3463
3464 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1549} 3465}
1550 3466
1551static void 3467static void
1552once_cb_to (EV_P_ struct ev_timer *w, int revents) 3468once_cb_to (EV_P_ ev_timer *w, int revents)
1553{ 3469{
1554 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3470 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3471
3472 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1555} 3473}
1556 3474
1557void 3475void
1558ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3476ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1559{ 3477{
1560 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3478 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1561 3479
1562 if (!once) 3480 if (expect_false (!once))
3481 {
1563 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3482 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1564 else 3483 return;
1565 { 3484 }
3485
1566 once->cb = cb; 3486 once->cb = cb;
1567 once->arg = arg; 3487 once->arg = arg;
1568 3488
1569 ev_watcher_init (&once->io, once_cb_io); 3489 ev_init (&once->io, once_cb_io);
1570 if (fd >= 0) 3490 if (fd >= 0)
3491 {
3492 ev_io_set (&once->io, fd, events);
3493 ev_io_start (EV_A_ &once->io);
3494 }
3495
3496 ev_init (&once->to, once_cb_to);
3497 if (timeout >= 0.)
3498 {
3499 ev_timer_set (&once->to, timeout, 0.);
3500 ev_timer_start (EV_A_ &once->to);
3501 }
3502}
3503
3504/*****************************************************************************/
3505
3506#if EV_WALK_ENABLE
3507void
3508ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3509{
3510 int i, j;
3511 ev_watcher_list *wl, *wn;
3512
3513 if (types & (EV_IO | EV_EMBED))
3514 for (i = 0; i < anfdmax; ++i)
3515 for (wl = anfds [i].head; wl; )
1571 { 3516 {
1572 ev_io_set (&once->io, fd, events); 3517 wn = wl->next;
1573 ev_io_start (EV_A_ &once->io); 3518
3519#if EV_EMBED_ENABLE
3520 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3521 {
3522 if (types & EV_EMBED)
3523 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3524 }
3525 else
3526#endif
3527#if EV_USE_INOTIFY
3528 if (ev_cb ((ev_io *)wl) == infy_cb)
3529 ;
3530 else
3531#endif
3532 if ((ev_io *)wl != &pipe_w)
3533 if (types & EV_IO)
3534 cb (EV_A_ EV_IO, wl);
3535
3536 wl = wn;
1574 } 3537 }
1575 3538
1576 ev_watcher_init (&once->to, once_cb_to); 3539 if (types & (EV_TIMER | EV_STAT))
1577 if (timeout >= 0.) 3540 for (i = timercnt + HEAP0; i-- > HEAP0; )
3541#if EV_STAT_ENABLE
3542 /*TODO: timer is not always active*/
3543 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1578 { 3544 {
1579 ev_timer_set (&once->to, timeout, 0.); 3545 if (types & EV_STAT)
1580 ev_timer_start (EV_A_ &once->to); 3546 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1581 } 3547 }
1582 } 3548 else
1583} 3549#endif
3550 if (types & EV_TIMER)
3551 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1584 3552
3553#if EV_PERIODIC_ENABLE
3554 if (types & EV_PERIODIC)
3555 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3556 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3557#endif
3558
3559#if EV_IDLE_ENABLE
3560 if (types & EV_IDLE)
3561 for (j = NUMPRI; i--; )
3562 for (i = idlecnt [j]; i--; )
3563 cb (EV_A_ EV_IDLE, idles [j][i]);
3564#endif
3565
3566#if EV_FORK_ENABLE
3567 if (types & EV_FORK)
3568 for (i = forkcnt; i--; )
3569 if (ev_cb (forks [i]) != embed_fork_cb)
3570 cb (EV_A_ EV_FORK, forks [i]);
3571#endif
3572
3573#if EV_ASYNC_ENABLE
3574 if (types & EV_ASYNC)
3575 for (i = asynccnt; i--; )
3576 cb (EV_A_ EV_ASYNC, asyncs [i]);
3577#endif
3578
3579 if (types & EV_PREPARE)
3580 for (i = preparecnt; i--; )
3581#if EV_EMBED_ENABLE
3582 if (ev_cb (prepares [i]) != embed_prepare_cb)
3583#endif
3584 cb (EV_A_ EV_PREPARE, prepares [i]);
3585
3586 if (types & EV_CHECK)
3587 for (i = checkcnt; i--; )
3588 cb (EV_A_ EV_CHECK, checks [i]);
3589
3590 if (types & EV_SIGNAL)
3591 for (i = 0; i < signalmax; ++i)
3592 for (wl = signals [i].head; wl; )
3593 {
3594 wn = wl->next;
3595 cb (EV_A_ EV_SIGNAL, wl);
3596 wl = wn;
3597 }
3598
3599 if (types & EV_CHILD)
3600 for (i = EV_PID_HASHSIZE; i--; )
3601 for (wl = childs [i]; wl; )
3602 {
3603 wn = wl->next;
3604 cb (EV_A_ EV_CHILD, wl);
3605 wl = wn;
3606 }
3607/* EV_STAT 0x00001000 /* stat data changed */
3608/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3609}
3610#endif
3611
3612#if EV_MULTIPLICITY
3613 #include "ev_wrap.h"
3614#endif
3615
3616#ifdef __cplusplus
3617}
3618#endif
3619

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines