ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.82 by root, Fri Nov 9 20:55:09 2007 UTC vs.
Revision 1.255 by root, Mon Jun 9 14:11:30 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <fcntl.h> 136#include <fcntl.h>
66#include <sys/types.h> 143#include <sys/types.h>
67#include <time.h> 144#include <time.h>
68 145
69#include <signal.h> 146#include <signal.h>
70 147
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
77
78#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1
80#endif
81
82#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1
84#endif
85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
90#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1
110#endif
111
112/**/
113
114#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0
122#endif
123
124/**/
125
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130
131#ifdef EV_H 148#ifdef EV_H
132# include EV_H 149# include EV_H
133#else 150#else
134# include "ev.h" 151# include "ev.h"
135#endif 152#endif
136 153
154#ifndef _WIN32
155# include <sys/time.h>
156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
163# endif
164#endif
165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
167
168#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1
171# else
172# define EV_USE_MONOTONIC 0
173# endif
174#endif
175
176#ifndef EV_USE_REALTIME
177# define EV_USE_REALTIME 0
178#endif
179
180#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1
183# else
184# define EV_USE_NANOSLEEP 0
185# endif
186#endif
187
188#ifndef EV_USE_SELECT
189# define EV_USE_SELECT 1
190#endif
191
192#ifndef EV_USE_POLL
193# ifdef _WIN32
194# define EV_USE_POLL 0
195# else
196# define EV_USE_POLL 1
197# endif
198#endif
199
200#ifndef EV_USE_EPOLL
201# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
202# define EV_USE_EPOLL 1
203# else
204# define EV_USE_EPOLL 0
205# endif
206#endif
207
208#ifndef EV_USE_KQUEUE
209# define EV_USE_KQUEUE 0
210#endif
211
212#ifndef EV_USE_PORT
213# define EV_USE_PORT 0
214#endif
215
216#ifndef EV_USE_INOTIFY
217# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
218# define EV_USE_INOTIFY 1
219# else
220# define EV_USE_INOTIFY 0
221# endif
222#endif
223
224#ifndef EV_PID_HASHSIZE
225# if EV_MINIMAL
226# define EV_PID_HASHSIZE 1
227# else
228# define EV_PID_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_INOTIFY_HASHSIZE
233# if EV_MINIMAL
234# define EV_INOTIFY_HASHSIZE 1
235# else
236# define EV_INOTIFY_HASHSIZE 16
237# endif
238#endif
239
240#ifndef EV_USE_EVENTFD
241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
242# define EV_USE_EVENTFD 1
243# else
244# define EV_USE_EVENTFD 0
245# endif
246#endif
247
248#if 0 /* debugging */
249# define EV_VERIFY 3
250# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1
252#endif
253
254#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL
256#endif
257
258#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL
260#endif
261
262#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL
264#endif
265
266/* this block fixes any misconfiguration where we know we run into trouble otherwise */
267
268#ifndef CLOCK_MONOTONIC
269# undef EV_USE_MONOTONIC
270# define EV_USE_MONOTONIC 0
271#endif
272
273#ifndef CLOCK_REALTIME
274# undef EV_USE_REALTIME
275# define EV_USE_REALTIME 0
276#endif
277
278#if !EV_STAT_ENABLE
279# undef EV_USE_INOTIFY
280# define EV_USE_INOTIFY 0
281#endif
282
283#if !EV_USE_NANOSLEEP
284# ifndef _WIN32
285# include <sys/select.h>
286# endif
287#endif
288
289#if EV_USE_INOTIFY
290# include <sys/inotify.h>
291#endif
292
293#if EV_SELECT_IS_WINSOCKET
294# include <winsock.h>
295#endif
296
297#if EV_USE_EVENTFD
298/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
299# include <stdint.h>
300# ifdef __cplusplus
301extern "C" {
302# endif
303int eventfd (unsigned int initval, int flags);
304# ifdef __cplusplus
305}
306# endif
307#endif
308
309/**/
310
311#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
313#else
314# define EV_FREQUENT_CHECK do { } while (0)
315#endif
316
317/*
318 * This is used to avoid floating point rounding problems.
319 * It is added to ev_rt_now when scheduling periodics
320 * to ensure progress, time-wise, even when rounding
321 * errors are against us.
322 * This value is good at least till the year 4000.
323 * Better solutions welcome.
324 */
325#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
326
327#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
328#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
329/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
330
137#if __GNUC__ >= 3 331#if __GNUC__ >= 4
138# define expect(expr,value) __builtin_expect ((expr),(value)) 332# define expect(expr,value) __builtin_expect ((expr),(value))
139# define inline inline 333# define noinline __attribute__ ((noinline))
140#else 334#else
141# define expect(expr,value) (expr) 335# define expect(expr,value) (expr)
142# define inline static 336# define noinline
337# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
338# define inline
339# endif
143#endif 340#endif
144 341
145#define expect_false(expr) expect ((expr) != 0, 0) 342#define expect_false(expr) expect ((expr) != 0, 0)
146#define expect_true(expr) expect ((expr) != 0, 1) 343#define expect_true(expr) expect ((expr) != 0, 1)
344#define inline_size static inline
345
346#if EV_MINIMAL
347# define inline_speed static noinline
348#else
349# define inline_speed static inline
350#endif
147 351
148#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 352#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
149#define ABSPRI(w) ((w)->priority - EV_MINPRI) 353#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
150 354
355#define EMPTY /* required for microsofts broken pseudo-c compiler */
356#define EMPTY2(a,b) /* used to suppress some warnings */
357
151typedef struct ev_watcher *W; 358typedef ev_watcher *W;
152typedef struct ev_watcher_list *WL; 359typedef ev_watcher_list *WL;
153typedef struct ev_watcher_time *WT; 360typedef ev_watcher_time *WT;
154 361
362#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at
364
365#if EV_USE_MONOTONIC
366/* sig_atomic_t is used to avoid per-thread variables or locking but still */
367/* giving it a reasonably high chance of working on typical architetcures */
155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
369#endif
156 370
371#ifdef _WIN32
157#include "ev_win32.c" 372# include "ev_win32.c"
373#endif
158 374
159/*****************************************************************************/ 375/*****************************************************************************/
160 376
161static void (*syserr_cb)(const char *msg); 377static void (*syserr_cb)(const char *msg);
162 378
379void
163void ev_set_syserr_cb (void (*cb)(const char *msg)) 380ev_set_syserr_cb (void (*cb)(const char *msg))
164{ 381{
165 syserr_cb = cb; 382 syserr_cb = cb;
166} 383}
167 384
168static void 385static void noinline
169syserr (const char *msg) 386syserr (const char *msg)
170{ 387{
171 if (!msg) 388 if (!msg)
172 msg = "(libev) system error"; 389 msg = "(libev) system error";
173 390
178 perror (msg); 395 perror (msg);
179 abort (); 396 abort ();
180 } 397 }
181} 398}
182 399
400static void *
401ev_realloc_emul (void *ptr, long size)
402{
403 /* some systems, notably openbsd and darwin, fail to properly
404 * implement realloc (x, 0) (as required by both ansi c-98 and
405 * the single unix specification, so work around them here.
406 */
407
408 if (size)
409 return realloc (ptr, size);
410
411 free (ptr);
412 return 0;
413}
414
183static void *(*alloc)(void *ptr, long size); 415static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
184 416
417void
185void ev_set_allocator (void *(*cb)(void *ptr, long size)) 418ev_set_allocator (void *(*cb)(void *ptr, long size))
186{ 419{
187 alloc = cb; 420 alloc = cb;
188} 421}
189 422
190static void * 423inline_speed void *
191ev_realloc (void *ptr, long size) 424ev_realloc (void *ptr, long size)
192{ 425{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 426 ptr = alloc (ptr, size);
194 427
195 if (!ptr && size) 428 if (!ptr && size)
196 { 429 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 430 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort (); 431 abort ();
209typedef struct 442typedef struct
210{ 443{
211 WL head; 444 WL head;
212 unsigned char events; 445 unsigned char events;
213 unsigned char reify; 446 unsigned char reify;
447#if EV_SELECT_IS_WINSOCKET
448 SOCKET handle;
449#endif
214} ANFD; 450} ANFD;
215 451
216typedef struct 452typedef struct
217{ 453{
218 W w; 454 W w;
219 int events; 455 int events;
220} ANPENDING; 456} ANPENDING;
221 457
458#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */
460typedef struct
461{
462 WL head;
463} ANFS;
464#endif
465
466/* Heap Entry */
467#if EV_HEAP_CACHE_AT
468 typedef struct {
469 ev_tstamp at;
470 WT w;
471 } ANHE;
472
473 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else
477 typedef WT ANHE;
478
479 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he)
482#endif
483
222#if EV_MULTIPLICITY 484#if EV_MULTIPLICITY
223 485
224 struct ev_loop 486 struct ev_loop
225 { 487 {
488 ev_tstamp ev_rt_now;
489 #define ev_rt_now ((loop)->ev_rt_now)
226 #define VAR(name,decl) decl; 490 #define VAR(name,decl) decl;
227 #include "ev_vars.h" 491 #include "ev_vars.h"
228 #undef VAR 492 #undef VAR
229 }; 493 };
230 #include "ev_wrap.h" 494 #include "ev_wrap.h"
231 495
232 struct ev_loop default_loop_struct; 496 static struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop; 497 struct ev_loop *ev_default_loop_ptr;
234 498
235#else 499#else
236 500
501 ev_tstamp ev_rt_now;
237 #define VAR(name,decl) static decl; 502 #define VAR(name,decl) static decl;
238 #include "ev_vars.h" 503 #include "ev_vars.h"
239 #undef VAR 504 #undef VAR
240 505
241 static int default_loop; 506 static int ev_default_loop_ptr;
242 507
243#endif 508#endif
244 509
245/*****************************************************************************/ 510/*****************************************************************************/
246 511
247inline ev_tstamp 512ev_tstamp
248ev_time (void) 513ev_time (void)
249{ 514{
250#if EV_USE_REALTIME 515#if EV_USE_REALTIME
251 struct timespec ts; 516 struct timespec ts;
252 clock_gettime (CLOCK_REALTIME, &ts); 517 clock_gettime (CLOCK_REALTIME, &ts);
256 gettimeofday (&tv, 0); 521 gettimeofday (&tv, 0);
257 return tv.tv_sec + tv.tv_usec * 1e-6; 522 return tv.tv_sec + tv.tv_usec * 1e-6;
258#endif 523#endif
259} 524}
260 525
261inline ev_tstamp 526ev_tstamp inline_size
262get_clock (void) 527get_clock (void)
263{ 528{
264#if EV_USE_MONOTONIC 529#if EV_USE_MONOTONIC
265 if (expect_true (have_monotonic)) 530 if (expect_true (have_monotonic))
266 { 531 {
271#endif 536#endif
272 537
273 return ev_time (); 538 return ev_time ();
274} 539}
275 540
541#if EV_MULTIPLICITY
276ev_tstamp 542ev_tstamp
277ev_now (EV_P) 543ev_now (EV_P)
278{ 544{
279 return rt_now; 545 return ev_rt_now;
280} 546}
547#endif
281 548
282#define array_roundsize(type,n) ((n) | 4 & ~3) 549void
550ev_sleep (ev_tstamp delay)
551{
552 if (delay > 0.)
553 {
554#if EV_USE_NANOSLEEP
555 struct timespec ts;
556
557 ts.tv_sec = (time_t)delay;
558 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
559
560 nanosleep (&ts, 0);
561#elif defined(_WIN32)
562 Sleep ((unsigned long)(delay * 1e3));
563#else
564 struct timeval tv;
565
566 tv.tv_sec = (time_t)delay;
567 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
568
569 select (0, 0, 0, 0, &tv);
570#endif
571 }
572}
573
574/*****************************************************************************/
575
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
577
578int inline_size
579array_nextsize (int elem, int cur, int cnt)
580{
581 int ncur = cur + 1;
582
583 do
584 ncur <<= 1;
585 while (cnt > ncur);
586
587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
589 {
590 ncur *= elem;
591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
592 ncur = ncur - sizeof (void *) * 4;
593 ncur /= elem;
594 }
595
596 return ncur;
597}
598
599static noinline void *
600array_realloc (int elem, void *base, int *cur, int cnt)
601{
602 *cur = array_nextsize (elem, *cur, cnt);
603 return ev_realloc (base, elem * *cur);
604}
283 605
284#define array_needsize(type,base,cur,cnt,init) \ 606#define array_needsize(type,base,cur,cnt,init) \
285 if (expect_false ((cnt) > cur)) \ 607 if (expect_false ((cnt) > (cur))) \
286 { \ 608 { \
287 int newcnt = cur; \ 609 int ocur_ = (cur); \
288 do \ 610 (base) = (type *)array_realloc \
289 { \ 611 (sizeof (type), (base), &(cur), (cnt)); \
290 newcnt = array_roundsize (type, newcnt << 1); \ 612 init ((base) + (ocur_), (cur) - ocur_); \
291 } \
292 while ((cnt) > newcnt); \
293 \
294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
295 init (base + cur, newcnt - cur); \
296 cur = newcnt; \
297 } 613 }
298 614
615#if 0
299#define array_slim(type,stem) \ 616#define array_slim(type,stem) \
300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 617 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
301 { \ 618 { \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \ 619 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 620 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 621 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 } 622 }
306 623#endif
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311 624
312#define array_free(stem, idx) \ 625#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 626 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
314 627
315/*****************************************************************************/ 628/*****************************************************************************/
316 629
317static void 630void noinline
631ev_feed_event (EV_P_ void *w, int revents)
632{
633 W w_ = (W)w;
634 int pri = ABSPRI (w_);
635
636 if (expect_false (w_->pending))
637 pendings [pri][w_->pending - 1].events |= revents;
638 else
639 {
640 w_->pending = ++pendingcnt [pri];
641 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
642 pendings [pri][w_->pending - 1].w = w_;
643 pendings [pri][w_->pending - 1].events = revents;
644 }
645}
646
647void inline_speed
648queue_events (EV_P_ W *events, int eventcnt, int type)
649{
650 int i;
651
652 for (i = 0; i < eventcnt; ++i)
653 ev_feed_event (EV_A_ events [i], type);
654}
655
656/*****************************************************************************/
657
658void inline_size
318anfds_init (ANFD *base, int count) 659anfds_init (ANFD *base, int count)
319{ 660{
320 while (count--) 661 while (count--)
321 { 662 {
322 base->head = 0; 663 base->head = 0;
325 666
326 ++base; 667 ++base;
327 } 668 }
328} 669}
329 670
330void 671void inline_speed
331ev_feed_event (EV_P_ void *w, int revents)
332{
333 W w_ = (W)w;
334
335 if (w_->pending)
336 {
337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
338 return;
339 }
340
341 w_->pending = ++pendingcnt [ABSPRI (w_)];
342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
345}
346
347static void
348queue_events (EV_P_ W *events, int eventcnt, int type)
349{
350 int i;
351
352 for (i = 0; i < eventcnt; ++i)
353 ev_feed_event (EV_A_ events [i], type);
354}
355
356inline void
357fd_event (EV_P_ int fd, int revents) 672fd_event (EV_P_ int fd, int revents)
358{ 673{
359 ANFD *anfd = anfds + fd; 674 ANFD *anfd = anfds + fd;
360 struct ev_io *w; 675 ev_io *w;
361 676
362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 677 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
363 { 678 {
364 int ev = w->events & revents; 679 int ev = w->events & revents;
365 680
366 if (ev) 681 if (ev)
367 ev_feed_event (EV_A_ (W)w, ev); 682 ev_feed_event (EV_A_ (W)w, ev);
369} 684}
370 685
371void 686void
372ev_feed_fd_event (EV_P_ int fd, int revents) 687ev_feed_fd_event (EV_P_ int fd, int revents)
373{ 688{
689 if (fd >= 0 && fd < anfdmax)
374 fd_event (EV_A_ fd, revents); 690 fd_event (EV_A_ fd, revents);
375} 691}
376 692
377/*****************************************************************************/ 693void inline_size
378
379static void
380fd_reify (EV_P) 694fd_reify (EV_P)
381{ 695{
382 int i; 696 int i;
383 697
384 for (i = 0; i < fdchangecnt; ++i) 698 for (i = 0; i < fdchangecnt; ++i)
385 { 699 {
386 int fd = fdchanges [i]; 700 int fd = fdchanges [i];
387 ANFD *anfd = anfds + fd; 701 ANFD *anfd = anfds + fd;
388 struct ev_io *w; 702 ev_io *w;
389 703
390 int events = 0; 704 unsigned char events = 0;
391 705
392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 706 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
393 events |= w->events; 707 events |= (unsigned char)w->events;
394 708
709#if EV_SELECT_IS_WINSOCKET
710 if (events)
711 {
712 unsigned long arg;
713 #ifdef EV_FD_TO_WIN32_HANDLE
714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
715 #else
716 anfd->handle = _get_osfhandle (fd);
717 #endif
718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
719 }
720#endif
721
722 {
723 unsigned char o_events = anfd->events;
724 unsigned char o_reify = anfd->reify;
725
395 anfd->reify = 0; 726 anfd->reify = 0;
396
397 method_modify (EV_A_ fd, anfd->events, events);
398 anfd->events = events; 727 anfd->events = events;
728
729 if (o_events != events || o_reify & EV_IOFDSET)
730 backend_modify (EV_A_ fd, o_events, events);
731 }
399 } 732 }
400 733
401 fdchangecnt = 0; 734 fdchangecnt = 0;
402} 735}
403 736
404static void 737void inline_size
405fd_change (EV_P_ int fd) 738fd_change (EV_P_ int fd, int flags)
406{ 739{
407 if (anfds [fd].reify) 740 unsigned char reify = anfds [fd].reify;
408 return;
409
410 anfds [fd].reify = 1; 741 anfds [fd].reify |= flags;
411 742
743 if (expect_true (!reify))
744 {
412 ++fdchangecnt; 745 ++fdchangecnt;
413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 746 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
414 fdchanges [fdchangecnt - 1] = fd; 747 fdchanges [fdchangecnt - 1] = fd;
748 }
415} 749}
416 750
417static void 751void inline_speed
418fd_kill (EV_P_ int fd) 752fd_kill (EV_P_ int fd)
419{ 753{
420 struct ev_io *w; 754 ev_io *w;
421 755
422 while ((w = (struct ev_io *)anfds [fd].head)) 756 while ((w = (ev_io *)anfds [fd].head))
423 { 757 {
424 ev_io_stop (EV_A_ w); 758 ev_io_stop (EV_A_ w);
425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 759 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
426 } 760 }
427} 761}
428 762
429static int 763int inline_size
430fd_valid (int fd) 764fd_valid (int fd)
431{ 765{
432#ifdef WIN32 766#ifdef _WIN32
433 return !!win32_get_osfhandle (fd); 767 return _get_osfhandle (fd) != -1;
434#else 768#else
435 return fcntl (fd, F_GETFD) != -1; 769 return fcntl (fd, F_GETFD) != -1;
436#endif 770#endif
437} 771}
438 772
439/* called on EBADF to verify fds */ 773/* called on EBADF to verify fds */
440static void 774static void noinline
441fd_ebadf (EV_P) 775fd_ebadf (EV_P)
442{ 776{
443 int fd; 777 int fd;
444 778
445 for (fd = 0; fd < anfdmax; ++fd) 779 for (fd = 0; fd < anfdmax; ++fd)
446 if (anfds [fd].events) 780 if (anfds [fd].events)
447 if (!fd_valid (fd) == -1 && errno == EBADF) 781 if (!fd_valid (fd) && errno == EBADF)
448 fd_kill (EV_A_ fd); 782 fd_kill (EV_A_ fd);
449} 783}
450 784
451/* called on ENOMEM in select/poll to kill some fds and retry */ 785/* called on ENOMEM in select/poll to kill some fds and retry */
452static void 786static void noinline
453fd_enomem (EV_P) 787fd_enomem (EV_P)
454{ 788{
455 int fd; 789 int fd;
456 790
457 for (fd = anfdmax; fd--; ) 791 for (fd = anfdmax; fd--; )
460 fd_kill (EV_A_ fd); 794 fd_kill (EV_A_ fd);
461 return; 795 return;
462 } 796 }
463} 797}
464 798
465/* usually called after fork if method needs to re-arm all fds from scratch */ 799/* usually called after fork if backend needs to re-arm all fds from scratch */
466static void 800static void noinline
467fd_rearm_all (EV_P) 801fd_rearm_all (EV_P)
468{ 802{
469 int fd; 803 int fd;
470 804
471 /* this should be highly optimised to not do anything but set a flag */
472 for (fd = 0; fd < anfdmax; ++fd) 805 for (fd = 0; fd < anfdmax; ++fd)
473 if (anfds [fd].events) 806 if (anfds [fd].events)
474 { 807 {
475 anfds [fd].events = 0; 808 anfds [fd].events = 0;
476 fd_change (EV_A_ fd); 809 fd_change (EV_A_ fd, EV_IOFDSET | 1);
477 } 810 }
478} 811}
479 812
480/*****************************************************************************/ 813/*****************************************************************************/
481 814
482static void 815/*
483upheap (WT *heap, int k) 816 * the heap functions want a real array index. array index 0 uis guaranteed to not
484{ 817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
485 WT w = heap [k]; 818 * the branching factor of the d-tree.
819 */
486 820
487 while (k && heap [k >> 1]->at > w->at) 821/*
488 { 822 * at the moment we allow libev the luxury of two heaps,
489 heap [k] = heap [k >> 1]; 823 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
490 ((W)heap [k])->active = k + 1; 824 * which is more cache-efficient.
491 k >>= 1; 825 * the difference is about 5% with 50000+ watchers.
492 } 826 */
827#if EV_USE_4HEAP
493 828
494 heap [k] = w; 829#define DHEAP 4
495 ((W)heap [k])->active = k + 1; 830#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k))
496 833
497} 834/* away from the root */
498 835void inline_speed
499static void
500downheap (WT *heap, int N, int k) 836downheap (ANHE *heap, int N, int k)
501{ 837{
502 WT w = heap [k]; 838 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0;
503 840
504 while (k < (N >> 1)) 841 for (;;)
505 { 842 {
506 int j = k << 1; 843 ev_tstamp minat;
844 ANHE *minpos;
845 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
507 846
508 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 847 /* find minimum child */
848 if (expect_true (pos + DHEAP - 1 < E))
509 ++j; 849 {
510 850 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
511 if (w->at <= heap [j]->at) 851 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else if (pos < E)
856 {
857 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else
512 break; 863 break;
513 864
865 if (ANHE_at (he) <= minat)
866 break;
867
868 heap [k] = *minpos;
869 ev_active (ANHE_w (*minpos)) = k;
870
871 k = minpos - heap;
872 }
873
874 heap [k] = he;
875 ev_active (ANHE_w (he)) = k;
876}
877
878#else /* 4HEAP */
879
880#define HEAP0 1
881#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p))
883
884/* away from the root */
885void inline_speed
886downheap (ANHE *heap, int N, int k)
887{
888 ANHE he = heap [k];
889
890 for (;;)
891 {
892 int c = k << 1;
893
894 if (c > N + HEAP0 - 1)
895 break;
896
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0;
899
900 if (ANHE_at (he) <= ANHE_at (heap [c]))
901 break;
902
514 heap [k] = heap [j]; 903 heap [k] = heap [c];
515 ((W)heap [k])->active = k + 1; 904 ev_active (ANHE_w (heap [k])) = k;
905
516 k = j; 906 k = c;
517 } 907 }
518 908
519 heap [k] = w; 909 heap [k] = he;
520 ((W)heap [k])->active = k + 1; 910 ev_active (ANHE_w (he)) = k;
911}
912#endif
913
914/* towards the root */
915void inline_speed
916upheap (ANHE *heap, int k)
917{
918 ANHE he = heap [k];
919
920 for (;;)
921 {
922 int p = HPARENT (k);
923
924 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
925 break;
926
927 heap [k] = heap [p];
928 ev_active (ANHE_w (heap [k])) = k;
929 k = p;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
936void inline_size
937adjustheap (ANHE *heap, int N, int k)
938{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
940 upheap (heap, k);
941 else
942 downheap (heap, N, k);
943}
944
945/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size
947reheap (ANHE *heap, int N)
948{
949 int i;
950
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
952 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
953 for (i = 0; i < N; ++i)
954 upheap (heap, i + HEAP0);
521} 955}
522 956
523/*****************************************************************************/ 957/*****************************************************************************/
524 958
525typedef struct 959typedef struct
526{ 960{
527 WL head; 961 WL head;
528 sig_atomic_t volatile gotsig; 962 EV_ATOMIC_T gotsig;
529} ANSIG; 963} ANSIG;
530 964
531static ANSIG *signals; 965static ANSIG *signals;
532static int signalmax; 966static int signalmax;
533 967
534static int sigpipe [2]; 968static EV_ATOMIC_T gotsig;
535static sig_atomic_t volatile gotsig;
536static struct ev_io sigev;
537 969
538static void 970void inline_size
539signals_init (ANSIG *base, int count) 971signals_init (ANSIG *base, int count)
540{ 972{
541 while (count--) 973 while (count--)
542 { 974 {
543 base->head = 0; 975 base->head = 0;
545 977
546 ++base; 978 ++base;
547 } 979 }
548} 980}
549 981
982/*****************************************************************************/
983
984void inline_speed
985fd_intern (int fd)
986{
987#ifdef _WIN32
988 unsigned long arg = 1;
989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
990#else
991 fcntl (fd, F_SETFD, FD_CLOEXEC);
992 fcntl (fd, F_SETFL, O_NONBLOCK);
993#endif
994}
995
996static void noinline
997evpipe_init (EV_P)
998{
999 if (!ev_is_active (&pipeev))
1000 {
1001#if EV_USE_EVENTFD
1002 if ((evfd = eventfd (0, 0)) >= 0)
1003 {
1004 evpipe [0] = -1;
1005 fd_intern (evfd);
1006 ev_io_set (&pipeev, evfd, EV_READ);
1007 }
1008 else
1009#endif
1010 {
1011 while (pipe (evpipe))
1012 syserr ("(libev) error creating signal/async pipe");
1013
1014 fd_intern (evpipe [0]);
1015 fd_intern (evpipe [1]);
1016 ev_io_set (&pipeev, evpipe [0], EV_READ);
1017 }
1018
1019 ev_io_start (EV_A_ &pipeev);
1020 ev_unref (EV_A); /* watcher should not keep loop alive */
1021 }
1022}
1023
1024void inline_size
1025evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1026{
1027 if (!*flag)
1028 {
1029 int old_errno = errno; /* save errno because write might clobber it */
1030
1031 *flag = 1;
1032
1033#if EV_USE_EVENTFD
1034 if (evfd >= 0)
1035 {
1036 uint64_t counter = 1;
1037 write (evfd, &counter, sizeof (uint64_t));
1038 }
1039 else
1040#endif
1041 write (evpipe [1], &old_errno, 1);
1042
1043 errno = old_errno;
1044 }
1045}
1046
550static void 1047static void
1048pipecb (EV_P_ ev_io *iow, int revents)
1049{
1050#if EV_USE_EVENTFD
1051 if (evfd >= 0)
1052 {
1053 uint64_t counter;
1054 read (evfd, &counter, sizeof (uint64_t));
1055 }
1056 else
1057#endif
1058 {
1059 char dummy;
1060 read (evpipe [0], &dummy, 1);
1061 }
1062
1063 if (gotsig && ev_is_default_loop (EV_A))
1064 {
1065 int signum;
1066 gotsig = 0;
1067
1068 for (signum = signalmax; signum--; )
1069 if (signals [signum].gotsig)
1070 ev_feed_signal_event (EV_A_ signum + 1);
1071 }
1072
1073#if EV_ASYNC_ENABLE
1074 if (gotasync)
1075 {
1076 int i;
1077 gotasync = 0;
1078
1079 for (i = asynccnt; i--; )
1080 if (asyncs [i]->sent)
1081 {
1082 asyncs [i]->sent = 0;
1083 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1084 }
1085 }
1086#endif
1087}
1088
1089/*****************************************************************************/
1090
1091static void
551sighandler (int signum) 1092ev_sighandler (int signum)
552{ 1093{
1094#if EV_MULTIPLICITY
1095 struct ev_loop *loop = &default_loop_struct;
1096#endif
1097
553#if WIN32 1098#if _WIN32
554 signal (signum, sighandler); 1099 signal (signum, ev_sighandler);
555#endif 1100#endif
556 1101
557 signals [signum - 1].gotsig = 1; 1102 signals [signum - 1].gotsig = 1;
558 1103 evpipe_write (EV_A_ &gotsig);
559 if (!gotsig)
560 {
561 int old_errno = errno;
562 gotsig = 1;
563#ifdef WIN32
564 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
565#else
566 write (sigpipe [1], &signum, 1);
567#endif
568 errno = old_errno;
569 }
570} 1104}
571 1105
572void 1106void noinline
573ev_feed_signal_event (EV_P_ int signum) 1107ev_feed_signal_event (EV_P_ int signum)
574{ 1108{
575 WL w; 1109 WL w;
576 1110
577#if EV_MULTIPLICITY 1111#if EV_MULTIPLICITY
578 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1112 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
579#endif 1113#endif
580 1114
581 --signum; 1115 --signum;
582 1116
583 if (signum < 0 || signum >= signalmax) 1117 if (signum < 0 || signum >= signalmax)
587 1121
588 for (w = signals [signum].head; w; w = w->next) 1122 for (w = signals [signum].head; w; w = w->next)
589 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1123 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
590} 1124}
591 1125
592static void
593sigcb (EV_P_ struct ev_io *iow, int revents)
594{
595 int signum;
596
597#ifdef WIN32
598 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
599#else
600 read (sigpipe [0], &revents, 1);
601#endif
602 gotsig = 0;
603
604 for (signum = signalmax; signum--; )
605 if (signals [signum].gotsig)
606 ev_feed_signal_event (EV_A_ signum + 1);
607}
608
609static void
610siginit (EV_P)
611{
612#ifndef WIN32
613 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
614 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
615
616 /* rather than sort out wether we really need nb, set it */
617 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
618 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
619#endif
620
621 ev_io_set (&sigev, sigpipe [0], EV_READ);
622 ev_io_start (EV_A_ &sigev);
623 ev_unref (EV_A); /* child watcher should not keep loop alive */
624}
625
626/*****************************************************************************/ 1126/*****************************************************************************/
627 1127
628static struct ev_child *childs [PID_HASHSIZE]; 1128static WL childs [EV_PID_HASHSIZE];
629 1129
630#ifndef WIN32 1130#ifndef _WIN32
631 1131
632static struct ev_signal childev; 1132static ev_signal childev;
1133
1134#ifndef WIFCONTINUED
1135# define WIFCONTINUED(status) 0
1136#endif
1137
1138void inline_speed
1139child_reap (EV_P_ int chain, int pid, int status)
1140{
1141 ev_child *w;
1142 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1143
1144 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1145 {
1146 if ((w->pid == pid || !w->pid)
1147 && (!traced || (w->flags & 1)))
1148 {
1149 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1150 w->rpid = pid;
1151 w->rstatus = status;
1152 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1153 }
1154 }
1155}
633 1156
634#ifndef WCONTINUED 1157#ifndef WCONTINUED
635# define WCONTINUED 0 1158# define WCONTINUED 0
636#endif 1159#endif
637 1160
638static void 1161static void
639child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
640{
641 struct ev_child *w;
642
643 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
644 if (w->pid == pid || !w->pid)
645 {
646 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
647 w->rpid = pid;
648 w->rstatus = status;
649 ev_feed_event (EV_A_ (W)w, EV_CHILD);
650 }
651}
652
653static void
654childcb (EV_P_ struct ev_signal *sw, int revents) 1162childcb (EV_P_ ev_signal *sw, int revents)
655{ 1163{
656 int pid, status; 1164 int pid, status;
657 1165
1166 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
658 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1167 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
659 { 1168 if (!WCONTINUED
1169 || errno != EINVAL
1170 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1171 return;
1172
660 /* make sure we are called again until all childs have been reaped */ 1173 /* make sure we are called again until all children have been reaped */
1174 /* we need to do it this way so that the callback gets called before we continue */
661 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1175 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
662 1176
663 child_reap (EV_A_ sw, pid, pid, status); 1177 child_reap (EV_A_ pid, pid, status);
1178 if (EV_PID_HASHSIZE > 1)
664 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1179 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
665 }
666} 1180}
667 1181
668#endif 1182#endif
669 1183
670/*****************************************************************************/ 1184/*****************************************************************************/
671 1185
1186#if EV_USE_PORT
1187# include "ev_port.c"
1188#endif
672#if EV_USE_KQUEUE 1189#if EV_USE_KQUEUE
673# include "ev_kqueue.c" 1190# include "ev_kqueue.c"
674#endif 1191#endif
675#if EV_USE_EPOLL 1192#if EV_USE_EPOLL
676# include "ev_epoll.c" 1193# include "ev_epoll.c"
693{ 1210{
694 return EV_VERSION_MINOR; 1211 return EV_VERSION_MINOR;
695} 1212}
696 1213
697/* return true if we are running with elevated privileges and should ignore env variables */ 1214/* return true if we are running with elevated privileges and should ignore env variables */
698static int 1215int inline_size
699enable_secure (void) 1216enable_secure (void)
700{ 1217{
701#ifdef WIN32 1218#ifdef _WIN32
702 return 0; 1219 return 0;
703#else 1220#else
704 return getuid () != geteuid () 1221 return getuid () != geteuid ()
705 || getgid () != getegid (); 1222 || getgid () != getegid ();
706#endif 1223#endif
707} 1224}
708 1225
709int 1226unsigned int
710ev_method (EV_P) 1227ev_supported_backends (void)
711{ 1228{
712 return method; 1229 unsigned int flags = 0;
713}
714 1230
715static void 1231 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
716loop_init (EV_P_ int methods) 1232 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1233 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1234 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1235 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1236
1237 return flags;
1238}
1239
1240unsigned int
1241ev_recommended_backends (void)
717{ 1242{
718 if (!method) 1243 unsigned int flags = ev_supported_backends ();
1244
1245#ifndef __NetBSD__
1246 /* kqueue is borked on everything but netbsd apparently */
1247 /* it usually doesn't work correctly on anything but sockets and pipes */
1248 flags &= ~EVBACKEND_KQUEUE;
1249#endif
1250#ifdef __APPLE__
1251 // flags &= ~EVBACKEND_KQUEUE; for documentation
1252 flags &= ~EVBACKEND_POLL;
1253#endif
1254
1255 return flags;
1256}
1257
1258unsigned int
1259ev_embeddable_backends (void)
1260{
1261 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1262
1263 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1264 /* please fix it and tell me how to detect the fix */
1265 flags &= ~EVBACKEND_EPOLL;
1266
1267 return flags;
1268}
1269
1270unsigned int
1271ev_backend (EV_P)
1272{
1273 return backend;
1274}
1275
1276unsigned int
1277ev_loop_count (EV_P)
1278{
1279 return loop_count;
1280}
1281
1282void
1283ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1284{
1285 io_blocktime = interval;
1286}
1287
1288void
1289ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1290{
1291 timeout_blocktime = interval;
1292}
1293
1294static void noinline
1295loop_init (EV_P_ unsigned int flags)
1296{
1297 if (!backend)
719 { 1298 {
720#if EV_USE_MONOTONIC 1299#if EV_USE_MONOTONIC
721 { 1300 {
722 struct timespec ts; 1301 struct timespec ts;
723 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1302 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
724 have_monotonic = 1; 1303 have_monotonic = 1;
725 } 1304 }
726#endif 1305#endif
727 1306
728 rt_now = ev_time (); 1307 ev_rt_now = ev_time ();
729 mn_now = get_clock (); 1308 mn_now = get_clock ();
730 now_floor = mn_now; 1309 now_floor = mn_now;
731 rtmn_diff = rt_now - mn_now; 1310 rtmn_diff = ev_rt_now - mn_now;
732 1311
733 if (methods == EVMETHOD_AUTO) 1312 io_blocktime = 0.;
734 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1313 timeout_blocktime = 0.;
1314 backend = 0;
1315 backend_fd = -1;
1316 gotasync = 0;
1317#if EV_USE_INOTIFY
1318 fs_fd = -2;
1319#endif
1320
1321 /* pid check not overridable via env */
1322#ifndef _WIN32
1323 if (flags & EVFLAG_FORKCHECK)
1324 curpid = getpid ();
1325#endif
1326
1327 if (!(flags & EVFLAG_NOENV)
1328 && !enable_secure ()
1329 && getenv ("LIBEV_FLAGS"))
735 methods = atoi (getenv ("LIBEV_METHODS")); 1330 flags = atoi (getenv ("LIBEV_FLAGS"));
736 else
737 methods = EVMETHOD_ANY;
738 1331
739 method = 0; 1332 if (!(flags & 0x0000ffffU))
740#if EV_USE_WIN32 1333 flags |= ev_recommended_backends ();
741 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1334
1335#if EV_USE_PORT
1336 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
742#endif 1337#endif
743#if EV_USE_KQUEUE 1338#if EV_USE_KQUEUE
744 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1339 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
745#endif 1340#endif
746#if EV_USE_EPOLL 1341#if EV_USE_EPOLL
747 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1342 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
748#endif 1343#endif
749#if EV_USE_POLL 1344#if EV_USE_POLL
750 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1345 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
751#endif 1346#endif
752#if EV_USE_SELECT 1347#if EV_USE_SELECT
753 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1348 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
754#endif 1349#endif
755 1350
756 ev_watcher_init (&sigev, sigcb); 1351 ev_init (&pipeev, pipecb);
757 ev_set_priority (&sigev, EV_MAXPRI); 1352 ev_set_priority (&pipeev, EV_MAXPRI);
758 } 1353 }
759} 1354}
760 1355
761void 1356static void noinline
762loop_destroy (EV_P) 1357loop_destroy (EV_P)
763{ 1358{
764 int i; 1359 int i;
765 1360
1361 if (ev_is_active (&pipeev))
1362 {
1363 ev_ref (EV_A); /* signal watcher */
1364 ev_io_stop (EV_A_ &pipeev);
1365
1366#if EV_USE_EVENTFD
1367 if (evfd >= 0)
1368 close (evfd);
1369#endif
1370
1371 if (evpipe [0] >= 0)
1372 {
1373 close (evpipe [0]);
1374 close (evpipe [1]);
1375 }
1376 }
1377
766#if EV_USE_WIN32 1378#if EV_USE_INOTIFY
767 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1379 if (fs_fd >= 0)
1380 close (fs_fd);
1381#endif
1382
1383 if (backend_fd >= 0)
1384 close (backend_fd);
1385
1386#if EV_USE_PORT
1387 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
768#endif 1388#endif
769#if EV_USE_KQUEUE 1389#if EV_USE_KQUEUE
770 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1390 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
771#endif 1391#endif
772#if EV_USE_EPOLL 1392#if EV_USE_EPOLL
773 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1393 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
774#endif 1394#endif
775#if EV_USE_POLL 1395#if EV_USE_POLL
776 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1396 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
777#endif 1397#endif
778#if EV_USE_SELECT 1398#if EV_USE_SELECT
779 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1399 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
780#endif 1400#endif
781 1401
782 for (i = NUMPRI; i--; ) 1402 for (i = NUMPRI; i--; )
1403 {
783 array_free (pending, [i]); 1404 array_free (pending, [i]);
1405#if EV_IDLE_ENABLE
1406 array_free (idle, [i]);
1407#endif
1408 }
1409
1410 ev_free (anfds); anfdmax = 0;
784 1411
785 /* have to use the microsoft-never-gets-it-right macro */ 1412 /* have to use the microsoft-never-gets-it-right macro */
786 array_free_microshit (fdchange); 1413 array_free (fdchange, EMPTY);
787 array_free_microshit (timer); 1414 array_free (timer, EMPTY);
788 array_free_microshit (periodic); 1415#if EV_PERIODIC_ENABLE
789 array_free_microshit (idle); 1416 array_free (periodic, EMPTY);
790 array_free_microshit (prepare); 1417#endif
791 array_free_microshit (check); 1418#if EV_FORK_ENABLE
1419 array_free (fork, EMPTY);
1420#endif
1421 array_free (prepare, EMPTY);
1422 array_free (check, EMPTY);
1423#if EV_ASYNC_ENABLE
1424 array_free (async, EMPTY);
1425#endif
792 1426
793 method = 0; 1427 backend = 0;
794} 1428}
795 1429
796static void 1430#if EV_USE_INOTIFY
1431void inline_size infy_fork (EV_P);
1432#endif
1433
1434void inline_size
797loop_fork (EV_P) 1435loop_fork (EV_P)
798{ 1436{
1437#if EV_USE_PORT
1438 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1439#endif
1440#if EV_USE_KQUEUE
1441 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1442#endif
799#if EV_USE_EPOLL 1443#if EV_USE_EPOLL
800 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1444 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
801#endif 1445#endif
802#if EV_USE_KQUEUE 1446#if EV_USE_INOTIFY
803 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1447 infy_fork (EV_A);
804#endif 1448#endif
805 1449
806 if (ev_is_active (&sigev)) 1450 if (ev_is_active (&pipeev))
807 { 1451 {
808 /* default loop */ 1452 /* this "locks" the handlers against writing to the pipe */
1453 /* while we modify the fd vars */
1454 gotsig = 1;
1455#if EV_ASYNC_ENABLE
1456 gotasync = 1;
1457#endif
809 1458
810 ev_ref (EV_A); 1459 ev_ref (EV_A);
811 ev_io_stop (EV_A_ &sigev); 1460 ev_io_stop (EV_A_ &pipeev);
1461
1462#if EV_USE_EVENTFD
1463 if (evfd >= 0)
1464 close (evfd);
1465#endif
1466
1467 if (evpipe [0] >= 0)
1468 {
812 close (sigpipe [0]); 1469 close (evpipe [0]);
813 close (sigpipe [1]); 1470 close (evpipe [1]);
1471 }
814 1472
815 while (pipe (sigpipe))
816 syserr ("(libev) error creating pipe");
817
818 siginit (EV_A); 1473 evpipe_init (EV_A);
1474 /* now iterate over everything, in case we missed something */
1475 pipecb (EV_A_ &pipeev, EV_READ);
819 } 1476 }
820 1477
821 postfork = 0; 1478 postfork = 0;
822} 1479}
1480
1481#if EV_MULTIPLICITY
1482
1483struct ev_loop *
1484ev_loop_new (unsigned int flags)
1485{
1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1487
1488 memset (loop, 0, sizeof (struct ev_loop));
1489
1490 loop_init (EV_A_ flags);
1491
1492 if (ev_backend (EV_A))
1493 return loop;
1494
1495 return 0;
1496}
1497
1498void
1499ev_loop_destroy (EV_P)
1500{
1501 loop_destroy (EV_A);
1502 ev_free (loop);
1503}
1504
1505void
1506ev_loop_fork (EV_P)
1507{
1508 postfork = 1; /* must be in line with ev_default_fork */
1509}
1510
1511#if EV_VERIFY
1512void noinline
1513verify_watcher (EV_P_ W w)
1514{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516
1517 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519}
1520
1521static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N)
1523{
1524 int i;
1525
1526 for (i = HEAP0; i < N + HEAP0; ++i)
1527 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 }
1534}
1535
1536static void noinline
1537array_verify (EV_P_ W *ws, int cnt)
1538{
1539 while (cnt--)
1540 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]);
1543 }
1544}
1545#endif
1546
1547void
1548ev_loop_verify (EV_P)
1549{
1550#if EV_VERIFY
1551 int i;
1552 WL w;
1553
1554 assert (activecnt >= -1);
1555
1556 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1559
1560 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next)
1563 {
1564 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 }
1568
1569 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt);
1571
1572#if EV_PERIODIC_ENABLE
1573 assert (periodicmax >= periodiccnt);
1574 verify_heap (EV_A_ periodics, periodiccnt);
1575#endif
1576
1577 for (i = NUMPRI; i--; )
1578 {
1579 assert (pendingmax [i] >= pendingcnt [i]);
1580#if EV_IDLE_ENABLE
1581 assert (idleall >= 0);
1582 assert (idlemax [i] >= idlecnt [i]);
1583 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1584#endif
1585 }
1586
1587#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif
1591
1592#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif
1596
1597 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt);
1599
1600 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt);
1602
1603# if 0
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1606# endif
1607#endif
1608}
1609
1610#endif /* multiplicity */
823 1611
824#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
825struct ev_loop * 1613struct ev_loop *
826ev_loop_new (int methods) 1614ev_default_loop_init (unsigned int flags)
827{
828 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
829
830 memset (loop, 0, sizeof (struct ev_loop));
831
832 loop_init (EV_A_ methods);
833
834 if (ev_method (EV_A))
835 return loop;
836
837 return 0;
838}
839
840void
841ev_loop_destroy (EV_P)
842{
843 loop_destroy (EV_A);
844 ev_free (loop);
845}
846
847void
848ev_loop_fork (EV_P)
849{
850 postfork = 1;
851}
852
853#endif
854
855#if EV_MULTIPLICITY
856struct ev_loop *
857#else 1615#else
858int 1616int
1617ev_default_loop (unsigned int flags)
859#endif 1618#endif
860ev_default_loop (int methods)
861{ 1619{
862 if (sigpipe [0] == sigpipe [1])
863 if (pipe (sigpipe))
864 return 0;
865
866 if (!default_loop) 1620 if (!ev_default_loop_ptr)
867 { 1621 {
868#if EV_MULTIPLICITY 1622#if EV_MULTIPLICITY
869 struct ev_loop *loop = default_loop = &default_loop_struct; 1623 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
870#else 1624#else
871 default_loop = 1; 1625 ev_default_loop_ptr = 1;
872#endif 1626#endif
873 1627
874 loop_init (EV_A_ methods); 1628 loop_init (EV_A_ flags);
875 1629
876 if (ev_method (EV_A)) 1630 if (ev_backend (EV_A))
877 { 1631 {
878 siginit (EV_A);
879
880#ifndef WIN32 1632#ifndef _WIN32
881 ev_signal_init (&childev, childcb, SIGCHLD); 1633 ev_signal_init (&childev, childcb, SIGCHLD);
882 ev_set_priority (&childev, EV_MAXPRI); 1634 ev_set_priority (&childev, EV_MAXPRI);
883 ev_signal_start (EV_A_ &childev); 1635 ev_signal_start (EV_A_ &childev);
884 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1636 ev_unref (EV_A); /* child watcher should not keep loop alive */
885#endif 1637#endif
886 } 1638 }
887 else 1639 else
888 default_loop = 0; 1640 ev_default_loop_ptr = 0;
889 } 1641 }
890 1642
891 return default_loop; 1643 return ev_default_loop_ptr;
892} 1644}
893 1645
894void 1646void
895ev_default_destroy (void) 1647ev_default_destroy (void)
896{ 1648{
897#if EV_MULTIPLICITY 1649#if EV_MULTIPLICITY
898 struct ev_loop *loop = default_loop; 1650 struct ev_loop *loop = ev_default_loop_ptr;
899#endif 1651#endif
900 1652
901#ifndef WIN32 1653#ifndef _WIN32
902 ev_ref (EV_A); /* child watcher */ 1654 ev_ref (EV_A); /* child watcher */
903 ev_signal_stop (EV_A_ &childev); 1655 ev_signal_stop (EV_A_ &childev);
904#endif 1656#endif
905 1657
906 ev_ref (EV_A); /* signal watcher */
907 ev_io_stop (EV_A_ &sigev);
908
909 close (sigpipe [0]); sigpipe [0] = 0;
910 close (sigpipe [1]); sigpipe [1] = 0;
911
912 loop_destroy (EV_A); 1658 loop_destroy (EV_A);
913} 1659}
914 1660
915void 1661void
916ev_default_fork (void) 1662ev_default_fork (void)
917{ 1663{
918#if EV_MULTIPLICITY 1664#if EV_MULTIPLICITY
919 struct ev_loop *loop = default_loop; 1665 struct ev_loop *loop = ev_default_loop_ptr;
920#endif 1666#endif
921 1667
922 if (method) 1668 if (backend)
923 postfork = 1; 1669 postfork = 1; /* must be in line with ev_loop_fork */
924} 1670}
925 1671
926/*****************************************************************************/ 1672/*****************************************************************************/
927 1673
928static int 1674void
929any_pending (EV_P) 1675ev_invoke (EV_P_ void *w, int revents)
930{ 1676{
931 int pri; 1677 EV_CB_INVOKE ((W)w, revents);
932
933 for (pri = NUMPRI; pri--; )
934 if (pendingcnt [pri])
935 return 1;
936
937 return 0;
938} 1678}
939 1679
940static void 1680void inline_speed
941call_pending (EV_P) 1681call_pending (EV_P)
942{ 1682{
943 int pri; 1683 int pri;
944 1684
945 for (pri = NUMPRI; pri--; ) 1685 for (pri = NUMPRI; pri--; )
946 while (pendingcnt [pri]) 1686 while (pendingcnt [pri])
947 { 1687 {
948 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1688 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
949 1689
950 if (p->w) 1690 if (expect_true (p->w))
951 { 1691 {
1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1693
952 p->w->pending = 0; 1694 p->w->pending = 0;
953 EV_CB_INVOKE (p->w, p->events); 1695 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK;
954 } 1697 }
955 } 1698 }
956} 1699}
957 1700
958static void 1701#if EV_IDLE_ENABLE
1702void inline_size
1703idle_reify (EV_P)
1704{
1705 if (expect_false (idleall))
1706 {
1707 int pri;
1708
1709 for (pri = NUMPRI; pri--; )
1710 {
1711 if (pendingcnt [pri])
1712 break;
1713
1714 if (idlecnt [pri])
1715 {
1716 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1717 break;
1718 }
1719 }
1720 }
1721}
1722#endif
1723
1724void inline_size
959timers_reify (EV_P) 1725timers_reify (EV_P)
960{ 1726{
1727 EV_FREQUENT_CHECK;
1728
961 while (timercnt && ((WT)timers [0])->at <= mn_now) 1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
962 { 1730 {
963 struct ev_timer *w = timers [0]; 1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
964 1732
965 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
966 1734
967 /* first reschedule or stop timer */ 1735 /* first reschedule or stop timer */
968 if (w->repeat) 1736 if (w->repeat)
969 { 1737 {
1738 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now;
1741
970 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
971 ((WT)w)->at = mn_now + w->repeat; 1743
1744 ANHE_at_cache (timers [HEAP0]);
972 downheap ((WT *)timers, timercnt, 0); 1745 downheap (timers, timercnt, HEAP0);
973 } 1746 }
974 else 1747 else
975 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
976 1749
1750 EV_FREQUENT_CHECK;
977 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
978 } 1752 }
979} 1753}
980 1754
981static void 1755#if EV_PERIODIC_ENABLE
1756void inline_size
982periodics_reify (EV_P) 1757periodics_reify (EV_P)
983{ 1758{
1759 EV_FREQUENT_CHECK;
1760
984 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
985 { 1762 {
986 struct ev_periodic *w = periodics [0]; 1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
987 1764
988 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
989 1766
990 /* first reschedule or stop timer */ 1767 /* first reschedule or stop timer */
991 if (w->reschedule_cb) 1768 if (w->reschedule_cb)
992 { 1769 {
993 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
994 1771
995 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now)); 1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773
1774 ANHE_at_cache (periodics [HEAP0]);
996 downheap ((WT *)periodics, periodiccnt, 0); 1775 downheap (periodics, periodiccnt, HEAP0);
997 } 1776 }
998 else if (w->interval) 1777 else if (w->interval)
999 { 1778 {
1000 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1001 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1002 downheap ((WT *)periodics, periodiccnt, 0); 1794 downheap (periodics, periodiccnt, HEAP0);
1003 } 1795 }
1004 else 1796 else
1005 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1006 1798
1799 EV_FREQUENT_CHECK;
1007 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1008 } 1801 }
1009} 1802}
1010 1803
1011static void 1804static void noinline
1012periodics_reschedule (EV_P) 1805periodics_reschedule (EV_P)
1013{ 1806{
1014 int i; 1807 int i;
1015 1808
1016 /* adjust periodics after time jump */ 1809 /* adjust periodics after time jump */
1017 for (i = 0; i < periodiccnt; ++i) 1810 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1018 { 1811 {
1019 struct ev_periodic *w = periodics [i]; 1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1020 1813
1021 if (w->reschedule_cb) 1814 if (w->reschedule_cb)
1022 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1023 else if (w->interval) 1816 else if (w->interval)
1024 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1025 }
1026 1818
1027 /* now rebuild the heap */ 1819 ANHE_at_cache (periodics [i]);
1028 for (i = periodiccnt >> 1; i--; )
1029 downheap ((WT *)periodics, periodiccnt, i);
1030}
1031
1032inline int
1033time_update_monotonic (EV_P)
1034{
1035 mn_now = get_clock ();
1036
1037 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1038 { 1820 }
1039 rt_now = rtmn_diff + mn_now;
1040 return 0;
1041 }
1042 else
1043 {
1044 now_floor = mn_now;
1045 rt_now = ev_time ();
1046 return 1;
1047 }
1048}
1049 1821
1050static void 1822 reheap (periodics, periodiccnt);
1051time_update (EV_P) 1823}
1824#endif
1825
1826void inline_speed
1827time_update (EV_P_ ev_tstamp max_block)
1052{ 1828{
1053 int i; 1829 int i;
1054 1830
1055#if EV_USE_MONOTONIC 1831#if EV_USE_MONOTONIC
1056 if (expect_true (have_monotonic)) 1832 if (expect_true (have_monotonic))
1057 { 1833 {
1058 if (time_update_monotonic (EV_A)) 1834 ev_tstamp odiff = rtmn_diff;
1835
1836 mn_now = get_clock ();
1837
1838 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1839 /* interpolate in the meantime */
1840 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1059 { 1841 {
1060 ev_tstamp odiff = rtmn_diff; 1842 ev_rt_now = rtmn_diff + mn_now;
1843 return;
1844 }
1061 1845
1846 now_floor = mn_now;
1847 ev_rt_now = ev_time ();
1848
1062 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1849 /* loop a few times, before making important decisions.
1850 * on the choice of "4": one iteration isn't enough,
1851 * in case we get preempted during the calls to
1852 * ev_time and get_clock. a second call is almost guaranteed
1853 * to succeed in that case, though. and looping a few more times
1854 * doesn't hurt either as we only do this on time-jumps or
1855 * in the unlikely event of having been preempted here.
1856 */
1857 for (i = 4; --i; )
1858 {
1859 rtmn_diff = ev_rt_now - mn_now;
1860
1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1862 return; /* all is well */
1863
1864 ev_rt_now = ev_time ();
1865 mn_now = get_clock ();
1866 now_floor = mn_now;
1867 }
1868
1869# if EV_PERIODIC_ENABLE
1870 periodics_reschedule (EV_A);
1871# endif
1872 /* no timer adjustment, as the monotonic clock doesn't jump */
1873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1874 }
1875 else
1876#endif
1877 {
1878 ev_rt_now = ev_time ();
1879
1880 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1881 {
1882#if EV_PERIODIC_ENABLE
1883 periodics_reschedule (EV_A);
1884#endif
1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1886 for (i = 0; i < timercnt; ++i)
1063 { 1887 {
1064 rtmn_diff = rt_now - mn_now; 1888 ANHE *he = timers + i + HEAP0;
1065 1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1066 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1890 ANHE_at_cache (*he);
1067 return; /* all is well */
1068
1069 rt_now = ev_time ();
1070 mn_now = get_clock ();
1071 now_floor = mn_now;
1072 } 1891 }
1073
1074 periodics_reschedule (EV_A);
1075 /* no timer adjustment, as the monotonic clock doesn't jump */
1076 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1077 } 1892 }
1078 }
1079 else
1080#endif
1081 {
1082 rt_now = ev_time ();
1083 1893
1084 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1085 {
1086 periodics_reschedule (EV_A);
1087
1088 /* adjust timers. this is easy, as the offset is the same for all */
1089 for (i = 0; i < timercnt; ++i)
1090 ((WT)timers [i])->at += rt_now - mn_now;
1091 }
1092
1093 mn_now = rt_now; 1894 mn_now = ev_rt_now;
1094 } 1895 }
1095} 1896}
1096 1897
1097void 1898void
1098ev_ref (EV_P) 1899ev_ref (EV_P)
1109static int loop_done; 1910static int loop_done;
1110 1911
1111void 1912void
1112ev_loop (EV_P_ int flags) 1913ev_loop (EV_P_ int flags)
1113{ 1914{
1114 double block; 1915 loop_done = EVUNLOOP_CANCEL;
1115 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1916
1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1116 1918
1117 do 1919 do
1118 { 1920 {
1921#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A);
1923#endif
1924
1925#ifndef _WIN32
1926 if (expect_false (curpid)) /* penalise the forking check even more */
1927 if (expect_false (getpid () != curpid))
1928 {
1929 curpid = getpid ();
1930 postfork = 1;
1931 }
1932#endif
1933
1934#if EV_FORK_ENABLE
1935 /* we might have forked, so queue fork handlers */
1936 if (expect_false (postfork))
1937 if (forkcnt)
1938 {
1939 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1940 call_pending (EV_A);
1941 }
1942#endif
1943
1119 /* queue check watchers (and execute them) */ 1944 /* queue prepare watchers (and execute them) */
1120 if (expect_false (preparecnt)) 1945 if (expect_false (preparecnt))
1121 { 1946 {
1122 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1947 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1123 call_pending (EV_A); 1948 call_pending (EV_A);
1124 } 1949 }
1125 1950
1951 if (expect_false (!activecnt))
1952 break;
1953
1126 /* we might have forked, so reify kernel state if necessary */ 1954 /* we might have forked, so reify kernel state if necessary */
1127 if (expect_false (postfork)) 1955 if (expect_false (postfork))
1128 loop_fork (EV_A); 1956 loop_fork (EV_A);
1129 1957
1130 /* update fd-related kernel structures */ 1958 /* update fd-related kernel structures */
1131 fd_reify (EV_A); 1959 fd_reify (EV_A);
1132 1960
1133 /* calculate blocking time */ 1961 /* calculate blocking time */
1962 {
1963 ev_tstamp waittime = 0.;
1964 ev_tstamp sleeptime = 0.;
1134 1965
1135 /* we only need this for !monotonic clock or timers, but as we basically 1966 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1136 always have timers, we just calculate it always */
1137#if EV_USE_MONOTONIC
1138 if (expect_true (have_monotonic))
1139 time_update_monotonic (EV_A);
1140 else
1141#endif
1142 { 1967 {
1143 rt_now = ev_time (); 1968 /* update time to cancel out callback processing overhead */
1144 mn_now = rt_now; 1969 time_update (EV_A_ 1e100);
1145 }
1146 1970
1147 if (flags & EVLOOP_NONBLOCK || idlecnt)
1148 block = 0.;
1149 else
1150 {
1151 block = MAX_BLOCKTIME; 1971 waittime = MAX_BLOCKTIME;
1152 1972
1153 if (timercnt) 1973 if (timercnt)
1154 { 1974 {
1155 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1156 if (block > to) block = to; 1976 if (waittime > to) waittime = to;
1157 } 1977 }
1158 1978
1979#if EV_PERIODIC_ENABLE
1159 if (periodiccnt) 1980 if (periodiccnt)
1160 { 1981 {
1161 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1162 if (block > to) block = to; 1983 if (waittime > to) waittime = to;
1163 } 1984 }
1985#endif
1164 1986
1165 if (block < 0.) block = 0.; 1987 if (expect_false (waittime < timeout_blocktime))
1988 waittime = timeout_blocktime;
1989
1990 sleeptime = waittime - backend_fudge;
1991
1992 if (expect_true (sleeptime > io_blocktime))
1993 sleeptime = io_blocktime;
1994
1995 if (sleeptime)
1996 {
1997 ev_sleep (sleeptime);
1998 waittime -= sleeptime;
1999 }
1166 } 2000 }
1167 2001
1168 method_poll (EV_A_ block); 2002 ++loop_count;
2003 backend_poll (EV_A_ waittime);
1169 2004
1170 /* update rt_now, do magic */ 2005 /* update ev_rt_now, do magic */
1171 time_update (EV_A); 2006 time_update (EV_A_ waittime + sleeptime);
2007 }
1172 2008
1173 /* queue pending timers and reschedule them */ 2009 /* queue pending timers and reschedule them */
1174 timers_reify (EV_A); /* relative timers called last */ 2010 timers_reify (EV_A); /* relative timers called last */
2011#if EV_PERIODIC_ENABLE
1175 periodics_reify (EV_A); /* absolute timers called first */ 2012 periodics_reify (EV_A); /* absolute timers called first */
2013#endif
1176 2014
2015#if EV_IDLE_ENABLE
1177 /* queue idle watchers unless io or timers are pending */ 2016 /* queue idle watchers unless other events are pending */
1178 if (idlecnt && !any_pending (EV_A)) 2017 idle_reify (EV_A);
1179 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2018#endif
1180 2019
1181 /* queue check watchers, to be executed first */ 2020 /* queue check watchers, to be executed first */
1182 if (checkcnt) 2021 if (expect_false (checkcnt))
1183 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1184 2023
1185 call_pending (EV_A); 2024 call_pending (EV_A);
1186 } 2025 }
1187 while (activecnt && !loop_done); 2026 while (expect_true (
2027 activecnt
2028 && !loop_done
2029 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2030 ));
1188 2031
1189 if (loop_done != 2) 2032 if (loop_done == EVUNLOOP_ONE)
1190 loop_done = 0; 2033 loop_done = EVUNLOOP_CANCEL;
1191} 2034}
1192 2035
1193void 2036void
1194ev_unloop (EV_P_ int how) 2037ev_unloop (EV_P_ int how)
1195{ 2038{
1196 loop_done = how; 2039 loop_done = how;
1197} 2040}
1198 2041
1199/*****************************************************************************/ 2042/*****************************************************************************/
1200 2043
1201inline void 2044void inline_size
1202wlist_add (WL *head, WL elem) 2045wlist_add (WL *head, WL elem)
1203{ 2046{
1204 elem->next = *head; 2047 elem->next = *head;
1205 *head = elem; 2048 *head = elem;
1206} 2049}
1207 2050
1208inline void 2051void inline_size
1209wlist_del (WL *head, WL elem) 2052wlist_del (WL *head, WL elem)
1210{ 2053{
1211 while (*head) 2054 while (*head)
1212 { 2055 {
1213 if (*head == elem) 2056 if (*head == elem)
1218 2061
1219 head = &(*head)->next; 2062 head = &(*head)->next;
1220 } 2063 }
1221} 2064}
1222 2065
1223inline void 2066void inline_speed
1224ev_clear_pending (EV_P_ W w) 2067clear_pending (EV_P_ W w)
1225{ 2068{
1226 if (w->pending) 2069 if (w->pending)
1227 { 2070 {
1228 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2071 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1229 w->pending = 0; 2072 w->pending = 0;
1230 } 2073 }
1231} 2074}
1232 2075
1233inline void 2076int
2077ev_clear_pending (EV_P_ void *w)
2078{
2079 W w_ = (W)w;
2080 int pending = w_->pending;
2081
2082 if (expect_true (pending))
2083 {
2084 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2085 w_->pending = 0;
2086 p->w = 0;
2087 return p->events;
2088 }
2089 else
2090 return 0;
2091}
2092
2093void inline_size
2094pri_adjust (EV_P_ W w)
2095{
2096 int pri = w->priority;
2097 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2098 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2099 w->priority = pri;
2100}
2101
2102void inline_speed
1234ev_start (EV_P_ W w, int active) 2103ev_start (EV_P_ W w, int active)
1235{ 2104{
1236 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2105 pri_adjust (EV_A_ w);
1237 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1238
1239 w->active = active; 2106 w->active = active;
1240 ev_ref (EV_A); 2107 ev_ref (EV_A);
1241} 2108}
1242 2109
1243inline void 2110void inline_size
1244ev_stop (EV_P_ W w) 2111ev_stop (EV_P_ W w)
1245{ 2112{
1246 ev_unref (EV_A); 2113 ev_unref (EV_A);
1247 w->active = 0; 2114 w->active = 0;
1248} 2115}
1249 2116
1250/*****************************************************************************/ 2117/*****************************************************************************/
1251 2118
1252void 2119void noinline
1253ev_io_start (EV_P_ struct ev_io *w) 2120ev_io_start (EV_P_ ev_io *w)
1254{ 2121{
1255 int fd = w->fd; 2122 int fd = w->fd;
1256 2123
1257 if (ev_is_active (w)) 2124 if (expect_false (ev_is_active (w)))
1258 return; 2125 return;
1259 2126
1260 assert (("ev_io_start called with negative fd", fd >= 0)); 2127 assert (("ev_io_start called with negative fd", fd >= 0));
2128
2129 EV_FREQUENT_CHECK;
1261 2130
1262 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1263 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1264 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1265 2134
1266 fd_change (EV_A_ fd); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1267} 2136 w->events &= ~EV_IOFDSET;
1268 2137
1269void 2138 EV_FREQUENT_CHECK;
2139}
2140
2141void noinline
1270ev_io_stop (EV_P_ struct ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1271{ 2143{
1272 ev_clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1273 if (!ev_is_active (w)) 2145 if (expect_false (!ev_is_active (w)))
1274 return; 2146 return;
1275 2147
2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149
2150 EV_FREQUENT_CHECK;
2151
1276 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1277 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1278 2154
1279 fd_change (EV_A_ w->fd); 2155 fd_change (EV_A_ w->fd, 1);
1280}
1281 2156
1282void 2157 EV_FREQUENT_CHECK;
2158}
2159
2160void noinline
1283ev_timer_start (EV_P_ struct ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1284{ 2162{
1285 if (ev_is_active (w)) 2163 if (expect_false (ev_is_active (w)))
1286 return; 2164 return;
1287 2165
1288 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1289 2167
1290 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1291 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1292 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1293 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1294 timers [timercnt - 1] = w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1295 upheap ((WT *)timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1296 2178
2179 EV_FREQUENT_CHECK;
2180
1297 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1298} 2182}
1299 2183
1300void 2184void noinline
1301ev_timer_stop (EV_P_ struct ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1302{ 2186{
1303 ev_clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1304 if (!ev_is_active (w)) 2188 if (expect_false (!ev_is_active (w)))
1305 return; 2189 return;
1306 2190
2191 EV_FREQUENT_CHECK;
2192
2193 {
2194 int active = ev_active (w);
2195
1307 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1308 2197
1309 if (((W)w)->active < timercnt--) 2198 --timercnt;
2199
2200 if (expect_true (active < timercnt + HEAP0))
1310 { 2201 {
1311 timers [((W)w)->active - 1] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1312 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2203 adjustheap (timers, timercnt, active);
1313 } 2204 }
2205 }
1314 2206
1315 ((WT)w)->at = w->repeat; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1316 2210
1317 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1318} 2212}
1319 2213
1320void 2214void noinline
1321ev_timer_again (EV_P_ struct ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1322{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1323 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1324 { 2220 {
1325 if (w->repeat) 2221 if (w->repeat)
1326 { 2222 {
1327 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
1328 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2224 ANHE_at_cache (timers [ev_active (w)]);
2225 adjustheap (timers, timercnt, ev_active (w));
1329 } 2226 }
1330 else 2227 else
1331 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1332 } 2229 }
1333 else if (w->repeat) 2230 else if (w->repeat)
2231 {
2232 ev_at (w) = w->repeat;
1334 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1335} 2234 }
1336 2235
1337void 2236 EV_FREQUENT_CHECK;
2237}
2238
2239#if EV_PERIODIC_ENABLE
2240void noinline
1338ev_periodic_start (EV_P_ struct ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1339{ 2242{
1340 if (ev_is_active (w)) 2243 if (expect_false (ev_is_active (w)))
1341 return; 2244 return;
1342 2245
1343 if (w->reschedule_cb) 2246 if (w->reschedule_cb)
1344 ((WT)w)->at = w->reschedule_cb (w, rt_now); 2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1345 else if (w->interval) 2248 else if (w->interval)
1346 { 2249 {
1347 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1348 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1349 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1350 } 2253 }
2254 else
2255 ev_at (w) = w->offset;
1351 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1352 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1353 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1354 periodics [periodiccnt - 1] = w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1355 upheap ((WT *)periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1356 2265
2266 EV_FREQUENT_CHECK;
2267
1357 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1358} 2269}
1359 2270
1360void 2271void noinline
1361ev_periodic_stop (EV_P_ struct ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1362{ 2273{
1363 ev_clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1364 if (!ev_is_active (w)) 2275 if (expect_false (!ev_is_active (w)))
1365 return; 2276 return;
1366 2277
2278 EV_FREQUENT_CHECK;
2279
2280 {
2281 int active = ev_active (w);
2282
1367 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1368 2284
1369 if (((W)w)->active < periodiccnt--) 2285 --periodiccnt;
2286
2287 if (expect_true (active < periodiccnt + HEAP0))
1370 { 2288 {
1371 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1372 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2290 adjustheap (periodics, periodiccnt, active);
1373 } 2291 }
2292 }
2293
2294 EV_FREQUENT_CHECK;
1374 2295
1375 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1376} 2297}
1377 2298
1378void 2299void noinline
1379ev_periodic_again (EV_P_ struct ev_periodic *w) 2300ev_periodic_again (EV_P_ ev_periodic *w)
1380{ 2301{
2302 /* TODO: use adjustheap and recalculation */
1381 ev_periodic_stop (EV_A_ w); 2303 ev_periodic_stop (EV_A_ w);
1382 ev_periodic_start (EV_A_ w); 2304 ev_periodic_start (EV_A_ w);
1383} 2305}
1384 2306#endif
1385void
1386ev_idle_start (EV_P_ struct ev_idle *w)
1387{
1388 if (ev_is_active (w))
1389 return;
1390
1391 ev_start (EV_A_ (W)w, ++idlecnt);
1392 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1393 idles [idlecnt - 1] = w;
1394}
1395
1396void
1397ev_idle_stop (EV_P_ struct ev_idle *w)
1398{
1399 ev_clear_pending (EV_A_ (W)w);
1400 if (ev_is_active (w))
1401 return;
1402
1403 idles [((W)w)->active - 1] = idles [--idlecnt];
1404 ev_stop (EV_A_ (W)w);
1405}
1406
1407void
1408ev_prepare_start (EV_P_ struct ev_prepare *w)
1409{
1410 if (ev_is_active (w))
1411 return;
1412
1413 ev_start (EV_A_ (W)w, ++preparecnt);
1414 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1415 prepares [preparecnt - 1] = w;
1416}
1417
1418void
1419ev_prepare_stop (EV_P_ struct ev_prepare *w)
1420{
1421 ev_clear_pending (EV_A_ (W)w);
1422 if (ev_is_active (w))
1423 return;
1424
1425 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1426 ev_stop (EV_A_ (W)w);
1427}
1428
1429void
1430ev_check_start (EV_P_ struct ev_check *w)
1431{
1432 if (ev_is_active (w))
1433 return;
1434
1435 ev_start (EV_A_ (W)w, ++checkcnt);
1436 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1437 checks [checkcnt - 1] = w;
1438}
1439
1440void
1441ev_check_stop (EV_P_ struct ev_check *w)
1442{
1443 ev_clear_pending (EV_A_ (W)w);
1444 if (ev_is_active (w))
1445 return;
1446
1447 checks [((W)w)->active - 1] = checks [--checkcnt];
1448 ev_stop (EV_A_ (W)w);
1449}
1450 2307
1451#ifndef SA_RESTART 2308#ifndef SA_RESTART
1452# define SA_RESTART 0 2309# define SA_RESTART 0
1453#endif 2310#endif
1454 2311
1455void 2312void noinline
1456ev_signal_start (EV_P_ struct ev_signal *w) 2313ev_signal_start (EV_P_ ev_signal *w)
1457{ 2314{
1458#if EV_MULTIPLICITY 2315#if EV_MULTIPLICITY
1459 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2316 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1460#endif 2317#endif
1461 if (ev_is_active (w)) 2318 if (expect_false (ev_is_active (w)))
1462 return; 2319 return;
1463 2320
1464 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1465 2322
2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
2326
2327 {
2328#ifndef _WIN32
2329 sigset_t full, prev;
2330 sigfillset (&full);
2331 sigprocmask (SIG_SETMASK, &full, &prev);
2332#endif
2333
2334 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2335
2336#ifndef _WIN32
2337 sigprocmask (SIG_SETMASK, &prev, 0);
2338#endif
2339 }
2340
1466 ev_start (EV_A_ (W)w, 1); 2341 ev_start (EV_A_ (W)w, 1);
1467 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1468 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2342 wlist_add (&signals [w->signum - 1].head, (WL)w);
1469 2343
1470 if (!((WL)w)->next) 2344 if (!((WL)w)->next)
1471 { 2345 {
1472#if WIN32 2346#if _WIN32
1473 signal (w->signum, sighandler); 2347 signal (w->signum, ev_sighandler);
1474#else 2348#else
1475 struct sigaction sa; 2349 struct sigaction sa;
1476 sa.sa_handler = sighandler; 2350 sa.sa_handler = ev_sighandler;
1477 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
1478 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1479 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
1480#endif 2354#endif
1481 } 2355 }
1482}
1483 2356
1484void 2357 EV_FREQUENT_CHECK;
2358}
2359
2360void noinline
1485ev_signal_stop (EV_P_ struct ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
1486{ 2362{
1487 ev_clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
1488 if (!ev_is_active (w)) 2364 if (expect_false (!ev_is_active (w)))
1489 return; 2365 return;
1490 2366
2367 EV_FREQUENT_CHECK;
2368
1491 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
1492 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
1493 2371
1494 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
1495 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
1496}
1497 2374
2375 EV_FREQUENT_CHECK;
2376}
2377
1498void 2378void
1499ev_child_start (EV_P_ struct ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
1500{ 2380{
1501#if EV_MULTIPLICITY 2381#if EV_MULTIPLICITY
1502 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1503#endif 2383#endif
1504 if (ev_is_active (w)) 2384 if (expect_false (ev_is_active (w)))
1505 return; 2385 return;
1506 2386
2387 EV_FREQUENT_CHECK;
2388
1507 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
1508 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1509}
1510 2391
2392 EV_FREQUENT_CHECK;
2393}
2394
1511void 2395void
1512ev_child_stop (EV_P_ struct ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
1513{ 2397{
1514 ev_clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
1515 if (ev_is_active (w)) 2399 if (expect_false (!ev_is_active (w)))
1516 return; 2400 return;
1517 2401
2402 EV_FREQUENT_CHECK;
2403
1518 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1519 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
1520} 2408}
2409
2410#if EV_STAT_ENABLE
2411
2412# ifdef _WIN32
2413# undef lstat
2414# define lstat(a,b) _stati64 (a,b)
2415# endif
2416
2417#define DEF_STAT_INTERVAL 5.0074891
2418#define MIN_STAT_INTERVAL 0.1074891
2419
2420static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2421
2422#if EV_USE_INOTIFY
2423# define EV_INOTIFY_BUFSIZE 8192
2424
2425static void noinline
2426infy_add (EV_P_ ev_stat *w)
2427{
2428 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2429
2430 if (w->wd < 0)
2431 {
2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2433
2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2438 {
2439 char path [4096];
2440 strcpy (path, w->path);
2441
2442 do
2443 {
2444 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2445 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2446
2447 char *pend = strrchr (path, '/');
2448
2449 if (!pend)
2450 break; /* whoops, no '/', complain to your admin */
2451
2452 *pend = 0;
2453 w->wd = inotify_add_watch (fs_fd, path, mask);
2454 }
2455 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2456 }
2457 }
2458 else
2459 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2460
2461 if (w->wd >= 0)
2462 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2463}
2464
2465static void noinline
2466infy_del (EV_P_ ev_stat *w)
2467{
2468 int slot;
2469 int wd = w->wd;
2470
2471 if (wd < 0)
2472 return;
2473
2474 w->wd = -2;
2475 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2476 wlist_del (&fs_hash [slot].head, (WL)w);
2477
2478 /* remove this watcher, if others are watching it, they will rearm */
2479 inotify_rm_watch (fs_fd, wd);
2480}
2481
2482static void noinline
2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2484{
2485 if (slot < 0)
2486 /* overflow, need to check for all hahs slots */
2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2488 infy_wd (EV_A_ slot, wd, ev);
2489 else
2490 {
2491 WL w_;
2492
2493 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2494 {
2495 ev_stat *w = (ev_stat *)w_;
2496 w_ = w_->next; /* lets us remove this watcher and all before it */
2497
2498 if (w->wd == wd || wd == -1)
2499 {
2500 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2501 {
2502 w->wd = -1;
2503 infy_add (EV_A_ w); /* re-add, no matter what */
2504 }
2505
2506 stat_timer_cb (EV_A_ &w->timer, 0);
2507 }
2508 }
2509 }
2510}
2511
2512static void
2513infy_cb (EV_P_ ev_io *w, int revents)
2514{
2515 char buf [EV_INOTIFY_BUFSIZE];
2516 struct inotify_event *ev = (struct inotify_event *)buf;
2517 int ofs;
2518 int len = read (fs_fd, buf, sizeof (buf));
2519
2520 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2521 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2522}
2523
2524void inline_size
2525infy_init (EV_P)
2526{
2527 if (fs_fd != -2)
2528 return;
2529
2530 fs_fd = inotify_init ();
2531
2532 if (fs_fd >= 0)
2533 {
2534 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2535 ev_set_priority (&fs_w, EV_MAXPRI);
2536 ev_io_start (EV_A_ &fs_w);
2537 }
2538}
2539
2540void inline_size
2541infy_fork (EV_P)
2542{
2543 int slot;
2544
2545 if (fs_fd < 0)
2546 return;
2547
2548 close (fs_fd);
2549 fs_fd = inotify_init ();
2550
2551 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2552 {
2553 WL w_ = fs_hash [slot].head;
2554 fs_hash [slot].head = 0;
2555
2556 while (w_)
2557 {
2558 ev_stat *w = (ev_stat *)w_;
2559 w_ = w_->next; /* lets us add this watcher */
2560
2561 w->wd = -1;
2562
2563 if (fs_fd >= 0)
2564 infy_add (EV_A_ w); /* re-add, no matter what */
2565 else
2566 ev_timer_start (EV_A_ &w->timer);
2567 }
2568
2569 }
2570}
2571
2572#endif
2573
2574#ifdef _WIN32
2575# define EV_LSTAT(p,b) _stati64 (p, b)
2576#else
2577# define EV_LSTAT(p,b) lstat (p, b)
2578#endif
2579
2580void
2581ev_stat_stat (EV_P_ ev_stat *w)
2582{
2583 if (lstat (w->path, &w->attr) < 0)
2584 w->attr.st_nlink = 0;
2585 else if (!w->attr.st_nlink)
2586 w->attr.st_nlink = 1;
2587}
2588
2589static void noinline
2590stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2591{
2592 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2593
2594 /* we copy this here each the time so that */
2595 /* prev has the old value when the callback gets invoked */
2596 w->prev = w->attr;
2597 ev_stat_stat (EV_A_ w);
2598
2599 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2600 if (
2601 w->prev.st_dev != w->attr.st_dev
2602 || w->prev.st_ino != w->attr.st_ino
2603 || w->prev.st_mode != w->attr.st_mode
2604 || w->prev.st_nlink != w->attr.st_nlink
2605 || w->prev.st_uid != w->attr.st_uid
2606 || w->prev.st_gid != w->attr.st_gid
2607 || w->prev.st_rdev != w->attr.st_rdev
2608 || w->prev.st_size != w->attr.st_size
2609 || w->prev.st_atime != w->attr.st_atime
2610 || w->prev.st_mtime != w->attr.st_mtime
2611 || w->prev.st_ctime != w->attr.st_ctime
2612 ) {
2613 #if EV_USE_INOTIFY
2614 infy_del (EV_A_ w);
2615 infy_add (EV_A_ w);
2616 ev_stat_stat (EV_A_ w); /* avoid race... */
2617 #endif
2618
2619 ev_feed_event (EV_A_ w, EV_STAT);
2620 }
2621}
2622
2623void
2624ev_stat_start (EV_P_ ev_stat *w)
2625{
2626 if (expect_false (ev_is_active (w)))
2627 return;
2628
2629 /* since we use memcmp, we need to clear any padding data etc. */
2630 memset (&w->prev, 0, sizeof (ev_statdata));
2631 memset (&w->attr, 0, sizeof (ev_statdata));
2632
2633 ev_stat_stat (EV_A_ w);
2634
2635 if (w->interval < MIN_STAT_INTERVAL)
2636 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2637
2638 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2639 ev_set_priority (&w->timer, ev_priority (w));
2640
2641#if EV_USE_INOTIFY
2642 infy_init (EV_A);
2643
2644 if (fs_fd >= 0)
2645 infy_add (EV_A_ w);
2646 else
2647#endif
2648 ev_timer_start (EV_A_ &w->timer);
2649
2650 ev_start (EV_A_ (W)w, 1);
2651
2652 EV_FREQUENT_CHECK;
2653}
2654
2655void
2656ev_stat_stop (EV_P_ ev_stat *w)
2657{
2658 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w)))
2660 return;
2661
2662 EV_FREQUENT_CHECK;
2663
2664#if EV_USE_INOTIFY
2665 infy_del (EV_A_ w);
2666#endif
2667 ev_timer_stop (EV_A_ &w->timer);
2668
2669 ev_stop (EV_A_ (W)w);
2670
2671 EV_FREQUENT_CHECK;
2672}
2673#endif
2674
2675#if EV_IDLE_ENABLE
2676void
2677ev_idle_start (EV_P_ ev_idle *w)
2678{
2679 if (expect_false (ev_is_active (w)))
2680 return;
2681
2682 pri_adjust (EV_A_ (W)w);
2683
2684 EV_FREQUENT_CHECK;
2685
2686 {
2687 int active = ++idlecnt [ABSPRI (w)];
2688
2689 ++idleall;
2690 ev_start (EV_A_ (W)w, active);
2691
2692 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2693 idles [ABSPRI (w)][active - 1] = w;
2694 }
2695
2696 EV_FREQUENT_CHECK;
2697}
2698
2699void
2700ev_idle_stop (EV_P_ ev_idle *w)
2701{
2702 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w)))
2704 return;
2705
2706 EV_FREQUENT_CHECK;
2707
2708 {
2709 int active = ev_active (w);
2710
2711 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2712 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2713
2714 ev_stop (EV_A_ (W)w);
2715 --idleall;
2716 }
2717
2718 EV_FREQUENT_CHECK;
2719}
2720#endif
2721
2722void
2723ev_prepare_start (EV_P_ ev_prepare *w)
2724{
2725 if (expect_false (ev_is_active (w)))
2726 return;
2727
2728 EV_FREQUENT_CHECK;
2729
2730 ev_start (EV_A_ (W)w, ++preparecnt);
2731 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2732 prepares [preparecnt - 1] = w;
2733
2734 EV_FREQUENT_CHECK;
2735}
2736
2737void
2738ev_prepare_stop (EV_P_ ev_prepare *w)
2739{
2740 clear_pending (EV_A_ (W)w);
2741 if (expect_false (!ev_is_active (w)))
2742 return;
2743
2744 EV_FREQUENT_CHECK;
2745
2746 {
2747 int active = ev_active (w);
2748
2749 prepares [active - 1] = prepares [--preparecnt];
2750 ev_active (prepares [active - 1]) = active;
2751 }
2752
2753 ev_stop (EV_A_ (W)w);
2754
2755 EV_FREQUENT_CHECK;
2756}
2757
2758void
2759ev_check_start (EV_P_ ev_check *w)
2760{
2761 if (expect_false (ev_is_active (w)))
2762 return;
2763
2764 EV_FREQUENT_CHECK;
2765
2766 ev_start (EV_A_ (W)w, ++checkcnt);
2767 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2768 checks [checkcnt - 1] = w;
2769
2770 EV_FREQUENT_CHECK;
2771}
2772
2773void
2774ev_check_stop (EV_P_ ev_check *w)
2775{
2776 clear_pending (EV_A_ (W)w);
2777 if (expect_false (!ev_is_active (w)))
2778 return;
2779
2780 EV_FREQUENT_CHECK;
2781
2782 {
2783 int active = ev_active (w);
2784
2785 checks [active - 1] = checks [--checkcnt];
2786 ev_active (checks [active - 1]) = active;
2787 }
2788
2789 ev_stop (EV_A_ (W)w);
2790
2791 EV_FREQUENT_CHECK;
2792}
2793
2794#if EV_EMBED_ENABLE
2795void noinline
2796ev_embed_sweep (EV_P_ ev_embed *w)
2797{
2798 ev_loop (w->other, EVLOOP_NONBLOCK);
2799}
2800
2801static void
2802embed_io_cb (EV_P_ ev_io *io, int revents)
2803{
2804 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2805
2806 if (ev_cb (w))
2807 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2808 else
2809 ev_loop (w->other, EVLOOP_NONBLOCK);
2810}
2811
2812static void
2813embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2814{
2815 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2816
2817 {
2818 struct ev_loop *loop = w->other;
2819
2820 while (fdchangecnt)
2821 {
2822 fd_reify (EV_A);
2823 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2824 }
2825 }
2826}
2827
2828#if 0
2829static void
2830embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2831{
2832 ev_idle_stop (EV_A_ idle);
2833}
2834#endif
2835
2836void
2837ev_embed_start (EV_P_ ev_embed *w)
2838{
2839 if (expect_false (ev_is_active (w)))
2840 return;
2841
2842 {
2843 struct ev_loop *loop = w->other;
2844 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2845 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2846 }
2847
2848 EV_FREQUENT_CHECK;
2849
2850 ev_set_priority (&w->io, ev_priority (w));
2851 ev_io_start (EV_A_ &w->io);
2852
2853 ev_prepare_init (&w->prepare, embed_prepare_cb);
2854 ev_set_priority (&w->prepare, EV_MINPRI);
2855 ev_prepare_start (EV_A_ &w->prepare);
2856
2857 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2858
2859 ev_start (EV_A_ (W)w, 1);
2860
2861 EV_FREQUENT_CHECK;
2862}
2863
2864void
2865ev_embed_stop (EV_P_ ev_embed *w)
2866{
2867 clear_pending (EV_A_ (W)w);
2868 if (expect_false (!ev_is_active (w)))
2869 return;
2870
2871 EV_FREQUENT_CHECK;
2872
2873 ev_io_stop (EV_A_ &w->io);
2874 ev_prepare_stop (EV_A_ &w->prepare);
2875
2876 ev_stop (EV_A_ (W)w);
2877
2878 EV_FREQUENT_CHECK;
2879}
2880#endif
2881
2882#if EV_FORK_ENABLE
2883void
2884ev_fork_start (EV_P_ ev_fork *w)
2885{
2886 if (expect_false (ev_is_active (w)))
2887 return;
2888
2889 EV_FREQUENT_CHECK;
2890
2891 ev_start (EV_A_ (W)w, ++forkcnt);
2892 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2893 forks [forkcnt - 1] = w;
2894
2895 EV_FREQUENT_CHECK;
2896}
2897
2898void
2899ev_fork_stop (EV_P_ ev_fork *w)
2900{
2901 clear_pending (EV_A_ (W)w);
2902 if (expect_false (!ev_is_active (w)))
2903 return;
2904
2905 EV_FREQUENT_CHECK;
2906
2907 {
2908 int active = ev_active (w);
2909
2910 forks [active - 1] = forks [--forkcnt];
2911 ev_active (forks [active - 1]) = active;
2912 }
2913
2914 ev_stop (EV_A_ (W)w);
2915
2916 EV_FREQUENT_CHECK;
2917}
2918#endif
2919
2920#if EV_ASYNC_ENABLE
2921void
2922ev_async_start (EV_P_ ev_async *w)
2923{
2924 if (expect_false (ev_is_active (w)))
2925 return;
2926
2927 evpipe_init (EV_A);
2928
2929 EV_FREQUENT_CHECK;
2930
2931 ev_start (EV_A_ (W)w, ++asynccnt);
2932 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2933 asyncs [asynccnt - 1] = w;
2934
2935 EV_FREQUENT_CHECK;
2936}
2937
2938void
2939ev_async_stop (EV_P_ ev_async *w)
2940{
2941 clear_pending (EV_A_ (W)w);
2942 if (expect_false (!ev_is_active (w)))
2943 return;
2944
2945 EV_FREQUENT_CHECK;
2946
2947 {
2948 int active = ev_active (w);
2949
2950 asyncs [active - 1] = asyncs [--asynccnt];
2951 ev_active (asyncs [active - 1]) = active;
2952 }
2953
2954 ev_stop (EV_A_ (W)w);
2955
2956 EV_FREQUENT_CHECK;
2957}
2958
2959void
2960ev_async_send (EV_P_ ev_async *w)
2961{
2962 w->sent = 1;
2963 evpipe_write (EV_A_ &gotasync);
2964}
2965#endif
1521 2966
1522/*****************************************************************************/ 2967/*****************************************************************************/
1523 2968
1524struct ev_once 2969struct ev_once
1525{ 2970{
1526 struct ev_io io; 2971 ev_io io;
1527 struct ev_timer to; 2972 ev_timer to;
1528 void (*cb)(int revents, void *arg); 2973 void (*cb)(int revents, void *arg);
1529 void *arg; 2974 void *arg;
1530}; 2975};
1531 2976
1532static void 2977static void
1541 2986
1542 cb (revents, arg); 2987 cb (revents, arg);
1543} 2988}
1544 2989
1545static void 2990static void
1546once_cb_io (EV_P_ struct ev_io *w, int revents) 2991once_cb_io (EV_P_ ev_io *w, int revents)
1547{ 2992{
1548 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2993 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1549} 2994}
1550 2995
1551static void 2996static void
1552once_cb_to (EV_P_ struct ev_timer *w, int revents) 2997once_cb_to (EV_P_ ev_timer *w, int revents)
1553{ 2998{
1554 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2999 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1555} 3000}
1556 3001
1557void 3002void
1558ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3003ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1559{ 3004{
1560 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3005 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1561 3006
1562 if (!once) 3007 if (expect_false (!once))
3008 {
1563 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3009 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1564 else 3010 return;
1565 { 3011 }
3012
1566 once->cb = cb; 3013 once->cb = cb;
1567 once->arg = arg; 3014 once->arg = arg;
1568 3015
1569 ev_watcher_init (&once->io, once_cb_io); 3016 ev_init (&once->io, once_cb_io);
1570 if (fd >= 0) 3017 if (fd >= 0)
1571 { 3018 {
1572 ev_io_set (&once->io, fd, events); 3019 ev_io_set (&once->io, fd, events);
1573 ev_io_start (EV_A_ &once->io); 3020 ev_io_start (EV_A_ &once->io);
1574 } 3021 }
1575 3022
1576 ev_watcher_init (&once->to, once_cb_to); 3023 ev_init (&once->to, once_cb_to);
1577 if (timeout >= 0.) 3024 if (timeout >= 0.)
1578 { 3025 {
1579 ev_timer_set (&once->to, timeout, 0.); 3026 ev_timer_set (&once->to, timeout, 0.);
1580 ev_timer_start (EV_A_ &once->to); 3027 ev_timer_start (EV_A_ &once->to);
1581 }
1582 } 3028 }
1583} 3029}
1584 3030
3031#if EV_MULTIPLICITY
3032 #include "ev_wrap.h"
3033#endif
3034
3035#ifdef __cplusplus
3036}
3037#endif
3038

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines