ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.56 by root, Sun Nov 4 15:58:49 2007 UTC vs.
Revision 1.82 by root, Fri Nov 9 20:55:09 2007 UTC

28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#ifndef EV_STANDALONE 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
47#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
48# include <sys/wait.h> 74# include <sys/wait.h>
49#endif 75#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 76/**/
54 77
55#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
57#endif 80#endif
58 81
59#ifndef EV_USE_SELECT 82#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 83# define EV_USE_SELECT 1
61#endif 84#endif
62 85
63#ifndef EV_USEV_POLL 86#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 88#endif
66 89
67#ifndef EV_USE_EPOLL 90#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
69#endif 92#endif
70 93
71#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
73#endif 106#endif
74 107
75#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
77#endif 110#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 130
131#ifdef EV_H
132# include EV_H
133#else
98#include "ev.h" 134# include "ev.h"
135#endif
99 136
100#if __GNUC__ >= 3 137#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 139# define inline inline
103#else 140#else
115typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
117 154
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119 156
157#include "ev_win32.c"
158
120/*****************************************************************************/ 159/*****************************************************************************/
121 160
161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
122typedef struct 209typedef struct
123{ 210{
124 struct ev_watcher_list *head; 211 WL head;
125 unsigned char events; 212 unsigned char events;
126 unsigned char reify; 213 unsigned char reify;
127} ANFD; 214} ANFD;
128 215
129typedef struct 216typedef struct
132 int events; 219 int events;
133} ANPENDING; 220} ANPENDING;
134 221
135#if EV_MULTIPLICITY 222#if EV_MULTIPLICITY
136 223
137struct ev_loop 224 struct ev_loop
138{ 225 {
139# define VAR(name,decl) decl; 226 #define VAR(name,decl) decl;
140# include "ev_vars.h" 227 #include "ev_vars.h"
141};
142# undef VAR 228 #undef VAR
229 };
143# include "ev_wrap.h" 230 #include "ev_wrap.h"
231
232 struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop;
144 234
145#else 235#else
146 236
147# define VAR(name,decl) static decl; 237 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 238 #include "ev_vars.h"
149# undef VAR 239 #undef VAR
240
241 static int default_loop;
150 242
151#endif 243#endif
152 244
153/*****************************************************************************/ 245/*****************************************************************************/
154 246
185ev_now (EV_P) 277ev_now (EV_P)
186{ 278{
187 return rt_now; 279 return rt_now;
188} 280}
189 281
190#define array_roundsize(base,n) ((n) | 4 & ~3) 282#define array_roundsize(type,n) ((n) | 4 & ~3)
191 283
192#define array_needsize(base,cur,cnt,init) \ 284#define array_needsize(type,base,cur,cnt,init) \
193 if (expect_false ((cnt) > cur)) \ 285 if (expect_false ((cnt) > cur)) \
194 { \ 286 { \
195 int newcnt = cur; \ 287 int newcnt = cur; \
196 do \ 288 do \
197 { \ 289 { \
198 newcnt = array_roundsize (base, newcnt << 1); \ 290 newcnt = array_roundsize (type, newcnt << 1); \
199 } \ 291 } \
200 while ((cnt) > newcnt); \ 292 while ((cnt) > newcnt); \
201 \ 293 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \ 294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
203 init (base + cur, newcnt - cur); \ 295 init (base + cur, newcnt - cur); \
204 cur = newcnt; \ 296 cur = newcnt; \
205 } 297 }
298
299#define array_slim(type,stem) \
300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
301 { \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 }
306
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311
312#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
206 314
207/*****************************************************************************/ 315/*****************************************************************************/
208 316
209static void 317static void
210anfds_init (ANFD *base, int count) 318anfds_init (ANFD *base, int count)
217 325
218 ++base; 326 ++base;
219 } 327 }
220} 328}
221 329
222static void 330void
223event (EV_P_ W w, int events) 331ev_feed_event (EV_P_ void *w, int revents)
224{ 332{
333 W w_ = (W)w;
334
225 if (w->pending) 335 if (w_->pending)
226 { 336 {
227 pendings [ABSPRI (w)][w->pending - 1].events |= events; 337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
228 return; 338 return;
229 } 339 }
230 340
231 w->pending = ++pendingcnt [ABSPRI (w)]; 341 w_->pending = ++pendingcnt [ABSPRI (w_)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
233 pendings [ABSPRI (w)][w->pending - 1].w = w; 343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
234 pendings [ABSPRI (w)][w->pending - 1].events = events; 344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
235} 345}
236 346
237static void 347static void
238queue_events (EV_P_ W *events, int eventcnt, int type) 348queue_events (EV_P_ W *events, int eventcnt, int type)
239{ 349{
240 int i; 350 int i;
241 351
242 for (i = 0; i < eventcnt; ++i) 352 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type); 353 ev_feed_event (EV_A_ events [i], type);
244} 354}
245 355
246static void 356inline void
247fd_event (EV_P_ int fd, int events) 357fd_event (EV_P_ int fd, int revents)
248{ 358{
249 ANFD *anfd = anfds + fd; 359 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 360 struct ev_io *w;
251 361
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
253 { 363 {
254 int ev = w->events & events; 364 int ev = w->events & revents;
255 365
256 if (ev) 366 if (ev)
257 event (EV_A_ (W)w, ev); 367 ev_feed_event (EV_A_ (W)w, ev);
258 } 368 }
369}
370
371void
372ev_feed_fd_event (EV_P_ int fd, int revents)
373{
374 fd_event (EV_A_ fd, revents);
259} 375}
260 376
261/*****************************************************************************/ 377/*****************************************************************************/
262 378
263static void 379static void
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 events |= w->events; 393 events |= w->events;
278 394
279 anfd->reify = 0; 395 anfd->reify = 0;
280 396
281 if (anfd->events != events)
282 {
283 method_modify (EV_A_ fd, anfd->events, events); 397 method_modify (EV_A_ fd, anfd->events, events);
284 anfd->events = events; 398 anfd->events = events;
285 }
286 } 399 }
287 400
288 fdchangecnt = 0; 401 fdchangecnt = 0;
289} 402}
290 403
291static void 404static void
292fd_change (EV_P_ int fd) 405fd_change (EV_P_ int fd)
293{ 406{
294 if (anfds [fd].reify || fdchangecnt < 0) 407 if (anfds [fd].reify)
295 return; 408 return;
296 409
297 anfds [fd].reify = 1; 410 anfds [fd].reify = 1;
298 411
299 ++fdchangecnt; 412 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
301 fdchanges [fdchangecnt - 1] = fd; 414 fdchanges [fdchangecnt - 1] = fd;
302} 415}
303 416
304static void 417static void
305fd_kill (EV_P_ int fd) 418fd_kill (EV_P_ int fd)
307 struct ev_io *w; 420 struct ev_io *w;
308 421
309 while ((w = (struct ev_io *)anfds [fd].head)) 422 while ((w = (struct ev_io *)anfds [fd].head))
310 { 423 {
311 ev_io_stop (EV_A_ w); 424 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 426 }
427}
428
429static int
430fd_valid (int fd)
431{
432#ifdef WIN32
433 return !!win32_get_osfhandle (fd);
434#else
435 return fcntl (fd, F_GETFD) != -1;
436#endif
314} 437}
315 438
316/* called on EBADF to verify fds */ 439/* called on EBADF to verify fds */
317static void 440static void
318fd_ebadf (EV_P) 441fd_ebadf (EV_P)
319{ 442{
320 int fd; 443 int fd;
321 444
322 for (fd = 0; fd < anfdmax; ++fd) 445 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 446 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 447 if (!fd_valid (fd) == -1 && errno == EBADF)
325 fd_kill (EV_A_ fd); 448 fd_kill (EV_A_ fd);
326} 449}
327 450
328/* called on ENOMEM in select/poll to kill some fds and retry */ 451/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 452static void
330fd_enomem (EV_P) 453fd_enomem (EV_P)
331{ 454{
332 int fd = anfdmax; 455 int fd;
333 456
334 while (fd--) 457 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 458 if (anfds [fd].events)
336 { 459 {
337 close (fd);
338 fd_kill (EV_A_ fd); 460 fd_kill (EV_A_ fd);
339 return; 461 return;
340 } 462 }
341} 463}
342 464
343/* susually called after fork if method needs to re-arm all fds from scratch */ 465/* usually called after fork if method needs to re-arm all fds from scratch */
344static void 466static void
345fd_rearm_all (EV_P) 467fd_rearm_all (EV_P)
346{ 468{
347 int fd; 469 int fd;
348 470
349 /* this should be highly optimised to not do anything but set a flag */ 471 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd) 472 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events) 473 if (anfds [fd].events)
352 { 474 {
353 anfds [fd].events = 0; 475 anfds [fd].events = 0;
354 fd_change (fd); 476 fd_change (EV_A_ fd);
355 } 477 }
356} 478}
357 479
358/*****************************************************************************/ 480/*****************************************************************************/
359 481
363 WT w = heap [k]; 485 WT w = heap [k];
364 486
365 while (k && heap [k >> 1]->at > w->at) 487 while (k && heap [k >> 1]->at > w->at)
366 { 488 {
367 heap [k] = heap [k >> 1]; 489 heap [k] = heap [k >> 1];
368 heap [k]->active = k + 1; 490 ((W)heap [k])->active = k + 1;
369 k >>= 1; 491 k >>= 1;
370 } 492 }
371 493
372 heap [k] = w; 494 heap [k] = w;
373 heap [k]->active = k + 1; 495 ((W)heap [k])->active = k + 1;
374 496
375} 497}
376 498
377static void 499static void
378downheap (WT *heap, int N, int k) 500downheap (WT *heap, int N, int k)
388 510
389 if (w->at <= heap [j]->at) 511 if (w->at <= heap [j]->at)
390 break; 512 break;
391 513
392 heap [k] = heap [j]; 514 heap [k] = heap [j];
393 heap [k]->active = k + 1; 515 ((W)heap [k])->active = k + 1;
394 k = j; 516 k = j;
395 } 517 }
396 518
397 heap [k] = w; 519 heap [k] = w;
398 heap [k]->active = k + 1; 520 ((W)heap [k])->active = k + 1;
399} 521}
400 522
401/*****************************************************************************/ 523/*****************************************************************************/
402 524
403typedef struct 525typedef struct
404{ 526{
405 struct ev_watcher_list *head; 527 WL head;
406 sig_atomic_t volatile gotsig; 528 sig_atomic_t volatile gotsig;
407} ANSIG; 529} ANSIG;
408 530
409static ANSIG *signals; 531static ANSIG *signals;
410static int signalmax; 532static int signalmax;
411 533
412static int sigpipe [2]; 534static int sigpipe [2];
413static sig_atomic_t volatile gotsig; 535static sig_atomic_t volatile gotsig;
536static struct ev_io sigev;
414 537
415static void 538static void
416signals_init (ANSIG *base, int count) 539signals_init (ANSIG *base, int count)
417{ 540{
418 while (count--) 541 while (count--)
425} 548}
426 549
427static void 550static void
428sighandler (int signum) 551sighandler (int signum)
429{ 552{
553#if WIN32
554 signal (signum, sighandler);
555#endif
556
430 signals [signum - 1].gotsig = 1; 557 signals [signum - 1].gotsig = 1;
431 558
432 if (!gotsig) 559 if (!gotsig)
433 { 560 {
434 int old_errno = errno; 561 int old_errno = errno;
435 gotsig = 1; 562 gotsig = 1;
563#ifdef WIN32
564 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
565#else
436 write (sigpipe [1], &signum, 1); 566 write (sigpipe [1], &signum, 1);
567#endif
437 errno = old_errno; 568 errno = old_errno;
438 } 569 }
439} 570}
440 571
572void
573ev_feed_signal_event (EV_P_ int signum)
574{
575 WL w;
576
577#if EV_MULTIPLICITY
578 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
579#endif
580
581 --signum;
582
583 if (signum < 0 || signum >= signalmax)
584 return;
585
586 signals [signum].gotsig = 0;
587
588 for (w = signals [signum].head; w; w = w->next)
589 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
590}
591
441static void 592static void
442sigcb (EV_P_ struct ev_io *iow, int revents) 593sigcb (EV_P_ struct ev_io *iow, int revents)
443{ 594{
444 struct ev_watcher_list *w;
445 int signum; 595 int signum;
446 596
597#ifdef WIN32
598 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
599#else
447 read (sigpipe [0], &revents, 1); 600 read (sigpipe [0], &revents, 1);
601#endif
448 gotsig = 0; 602 gotsig = 0;
449 603
450 for (signum = signalmax; signum--; ) 604 for (signum = signalmax; signum--; )
451 if (signals [signum].gotsig) 605 if (signals [signum].gotsig)
452 { 606 ev_feed_signal_event (EV_A_ signum + 1);
453 signals [signum].gotsig = 0;
454
455 for (w = signals [signum].head; w; w = w->next)
456 event (EV_A_ (W)w, EV_SIGNAL);
457 }
458} 607}
459 608
460static void 609static void
461siginit (EV_P) 610siginit (EV_P)
462{ 611{
474 ev_unref (EV_A); /* child watcher should not keep loop alive */ 623 ev_unref (EV_A); /* child watcher should not keep loop alive */
475} 624}
476 625
477/*****************************************************************************/ 626/*****************************************************************************/
478 627
628static struct ev_child *childs [PID_HASHSIZE];
629
479#ifndef WIN32 630#ifndef WIN32
631
632static struct ev_signal childev;
480 633
481#ifndef WCONTINUED 634#ifndef WCONTINUED
482# define WCONTINUED 0 635# define WCONTINUED 0
483#endif 636#endif
484 637
488 struct ev_child *w; 641 struct ev_child *w;
489 642
490 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 643 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
491 if (w->pid == pid || !w->pid) 644 if (w->pid == pid || !w->pid)
492 { 645 {
493 w->priority = sw->priority; /* need to do it *now* */ 646 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
494 w->rpid = pid; 647 w->rpid = pid;
495 w->rstatus = status; 648 w->rstatus = status;
496 event (EV_A_ (W)w, EV_CHILD); 649 ev_feed_event (EV_A_ (W)w, EV_CHILD);
497 } 650 }
498} 651}
499 652
500static void 653static void
501childcb (EV_P_ struct ev_signal *sw, int revents) 654childcb (EV_P_ struct ev_signal *sw, int revents)
503 int pid, status; 656 int pid, status;
504 657
505 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 658 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
506 { 659 {
507 /* make sure we are called again until all childs have been reaped */ 660 /* make sure we are called again until all childs have been reaped */
508 event (EV_A_ (W)sw, EV_SIGNAL); 661 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
509 662
510 child_reap (EV_A_ sw, pid, pid, status); 663 child_reap (EV_A_ sw, pid, pid, status);
511 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 664 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
512 } 665 }
513} 666}
520# include "ev_kqueue.c" 673# include "ev_kqueue.c"
521#endif 674#endif
522#if EV_USE_EPOLL 675#if EV_USE_EPOLL
523# include "ev_epoll.c" 676# include "ev_epoll.c"
524#endif 677#endif
525#if EV_USEV_POLL 678#if EV_USE_POLL
526# include "ev_poll.c" 679# include "ev_poll.c"
527#endif 680#endif
528#if EV_USE_SELECT 681#if EV_USE_SELECT
529# include "ev_select.c" 682# include "ev_select.c"
530#endif 683#endif
582 methods = atoi (getenv ("LIBEV_METHODS")); 735 methods = atoi (getenv ("LIBEV_METHODS"));
583 else 736 else
584 methods = EVMETHOD_ANY; 737 methods = EVMETHOD_ANY;
585 738
586 method = 0; 739 method = 0;
740#if EV_USE_WIN32
741 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
742#endif
587#if EV_USE_KQUEUE 743#if EV_USE_KQUEUE
588 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 744 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
589#endif 745#endif
590#if EV_USE_EPOLL 746#if EV_USE_EPOLL
591 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 747 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
592#endif 748#endif
593#if EV_USEV_POLL 749#if EV_USE_POLL
594 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 750 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
595#endif 751#endif
596#if EV_USE_SELECT 752#if EV_USE_SELECT
597 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 753 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
598#endif 754#endif
755
756 ev_watcher_init (&sigev, sigcb);
757 ev_set_priority (&sigev, EV_MAXPRI);
599 } 758 }
600} 759}
601 760
602void 761void
603loop_destroy (EV_P) 762loop_destroy (EV_P)
604{ 763{
764 int i;
765
766#if EV_USE_WIN32
767 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
768#endif
605#if EV_USE_KQUEUE 769#if EV_USE_KQUEUE
606 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 770 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
607#endif 771#endif
608#if EV_USE_EPOLL 772#if EV_USE_EPOLL
609 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 773 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
610#endif 774#endif
611#if EV_USEV_POLL 775#if EV_USE_POLL
612 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 776 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
613#endif 777#endif
614#if EV_USE_SELECT 778#if EV_USE_SELECT
615 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 779 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
616#endif 780#endif
617 781
782 for (i = NUMPRI; i--; )
783 array_free (pending, [i]);
784
785 /* have to use the microsoft-never-gets-it-right macro */
786 array_free_microshit (fdchange);
787 array_free_microshit (timer);
788 array_free_microshit (periodic);
789 array_free_microshit (idle);
790 array_free_microshit (prepare);
791 array_free_microshit (check);
792
618 method = 0; 793 method = 0;
619 /*TODO*/
620} 794}
621 795
622void 796static void
623loop_fork (EV_P) 797loop_fork (EV_P)
624{ 798{
625 /*TODO*/
626#if EV_USE_EPOLL 799#if EV_USE_EPOLL
627 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 800 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
628#endif 801#endif
629#if EV_USE_KQUEUE 802#if EV_USE_KQUEUE
630 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 803 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
631#endif 804#endif
805
806 if (ev_is_active (&sigev))
807 {
808 /* default loop */
809
810 ev_ref (EV_A);
811 ev_io_stop (EV_A_ &sigev);
812 close (sigpipe [0]);
813 close (sigpipe [1]);
814
815 while (pipe (sigpipe))
816 syserr ("(libev) error creating pipe");
817
818 siginit (EV_A);
819 }
820
821 postfork = 0;
632} 822}
633 823
634#if EV_MULTIPLICITY 824#if EV_MULTIPLICITY
635struct ev_loop * 825struct ev_loop *
636ev_loop_new (int methods) 826ev_loop_new (int methods)
637{ 827{
638 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 828 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
829
830 memset (loop, 0, sizeof (struct ev_loop));
639 831
640 loop_init (EV_A_ methods); 832 loop_init (EV_A_ methods);
641 833
642 if (ev_methods (EV_A)) 834 if (ev_method (EV_A))
643 return loop; 835 return loop;
644 836
645 return 0; 837 return 0;
646} 838}
647 839
648void 840void
649ev_loop_destroy (EV_P) 841ev_loop_destroy (EV_P)
650{ 842{
651 loop_destroy (EV_A); 843 loop_destroy (EV_A);
652 free (loop); 844 ev_free (loop);
653} 845}
654 846
655void 847void
656ev_loop_fork (EV_P) 848ev_loop_fork (EV_P)
657{ 849{
658 loop_fork (EV_A); 850 postfork = 1;
659} 851}
660 852
661#endif 853#endif
662 854
663#if EV_MULTIPLICITY 855#if EV_MULTIPLICITY
664struct ev_loop default_loop_struct;
665static struct ev_loop *default_loop;
666
667struct ev_loop * 856struct ev_loop *
668#else 857#else
669static int default_loop;
670
671int 858int
672#endif 859#endif
673ev_default_loop (int methods) 860ev_default_loop (int methods)
674{ 861{
675 if (sigpipe [0] == sigpipe [1]) 862 if (sigpipe [0] == sigpipe [1])
686 873
687 loop_init (EV_A_ methods); 874 loop_init (EV_A_ methods);
688 875
689 if (ev_method (EV_A)) 876 if (ev_method (EV_A))
690 { 877 {
691 ev_watcher_init (&sigev, sigcb);
692 ev_set_priority (&sigev, EV_MAXPRI);
693 siginit (EV_A); 878 siginit (EV_A);
694 879
695#ifndef WIN32 880#ifndef WIN32
696 ev_signal_init (&childev, childcb, SIGCHLD); 881 ev_signal_init (&childev, childcb, SIGCHLD);
697 ev_set_priority (&childev, EV_MAXPRI); 882 ev_set_priority (&childev, EV_MAXPRI);
707} 892}
708 893
709void 894void
710ev_default_destroy (void) 895ev_default_destroy (void)
711{ 896{
897#if EV_MULTIPLICITY
712 struct ev_loop *loop = default_loop; 898 struct ev_loop *loop = default_loop;
899#endif
713 900
901#ifndef WIN32
714 ev_ref (EV_A); /* child watcher */ 902 ev_ref (EV_A); /* child watcher */
715 ev_signal_stop (EV_A_ &childev); 903 ev_signal_stop (EV_A_ &childev);
904#endif
716 905
717 ev_ref (EV_A); /* signal watcher */ 906 ev_ref (EV_A); /* signal watcher */
718 ev_io_stop (EV_A_ &sigev); 907 ev_io_stop (EV_A_ &sigev);
719 908
720 close (sigpipe [0]); sigpipe [0] = 0; 909 close (sigpipe [0]); sigpipe [0] = 0;
722 911
723 loop_destroy (EV_A); 912 loop_destroy (EV_A);
724} 913}
725 914
726void 915void
727ev_default_fork (EV_P) 916ev_default_fork (void)
728{ 917{
729 loop_fork (EV_A); 918#if EV_MULTIPLICITY
919 struct ev_loop *loop = default_loop;
920#endif
730 921
731 ev_io_stop (EV_A_ &sigev); 922 if (method)
732 close (sigpipe [0]); 923 postfork = 1;
733 close (sigpipe [1]);
734 pipe (sigpipe);
735
736 ev_ref (EV_A); /* signal watcher */
737 siginit (EV_A);
738} 924}
739 925
740/*****************************************************************************/ 926/*****************************************************************************/
927
928static int
929any_pending (EV_P)
930{
931 int pri;
932
933 for (pri = NUMPRI; pri--; )
934 if (pendingcnt [pri])
935 return 1;
936
937 return 0;
938}
741 939
742static void 940static void
743call_pending (EV_P) 941call_pending (EV_P)
744{ 942{
745 int pri; 943 int pri;
750 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 948 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
751 949
752 if (p->w) 950 if (p->w)
753 { 951 {
754 p->w->pending = 0; 952 p->w->pending = 0;
755 p->w->cb (EV_A_ p->w, p->events); 953 EV_CB_INVOKE (p->w, p->events);
756 } 954 }
757 } 955 }
758} 956}
759 957
760static void 958static void
761timers_reify (EV_P) 959timers_reify (EV_P)
762{ 960{
763 while (timercnt && timers [0]->at <= mn_now) 961 while (timercnt && ((WT)timers [0])->at <= mn_now)
764 { 962 {
765 struct ev_timer *w = timers [0]; 963 struct ev_timer *w = timers [0];
964
965 assert (("inactive timer on timer heap detected", ev_is_active (w)));
766 966
767 /* first reschedule or stop timer */ 967 /* first reschedule or stop timer */
768 if (w->repeat) 968 if (w->repeat)
769 { 969 {
770 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 970 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
771 w->at = mn_now + w->repeat; 971 ((WT)w)->at = mn_now + w->repeat;
772 downheap ((WT *)timers, timercnt, 0); 972 downheap ((WT *)timers, timercnt, 0);
773 } 973 }
774 else 974 else
775 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 975 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
776 976
777 event (EV_A_ (W)w, EV_TIMEOUT); 977 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
778 } 978 }
779} 979}
780 980
781static void 981static void
782periodics_reify (EV_P) 982periodics_reify (EV_P)
783{ 983{
784 while (periodiccnt && periodics [0]->at <= rt_now) 984 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
785 { 985 {
786 struct ev_periodic *w = periodics [0]; 986 struct ev_periodic *w = periodics [0];
787 987
988 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
989
788 /* first reschedule or stop timer */ 990 /* first reschedule or stop timer */
789 if (w->interval) 991 if (w->reschedule_cb)
790 { 992 {
993 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
994
995 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
996 downheap ((WT *)periodics, periodiccnt, 0);
997 }
998 else if (w->interval)
999 {
791 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1000 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
792 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1001 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
793 downheap ((WT *)periodics, periodiccnt, 0); 1002 downheap ((WT *)periodics, periodiccnt, 0);
794 } 1003 }
795 else 1004 else
796 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1005 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
797 1006
798 event (EV_A_ (W)w, EV_PERIODIC); 1007 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
799 } 1008 }
800} 1009}
801 1010
802static void 1011static void
803periodics_reschedule (EV_P) 1012periodics_reschedule (EV_P)
807 /* adjust periodics after time jump */ 1016 /* adjust periodics after time jump */
808 for (i = 0; i < periodiccnt; ++i) 1017 for (i = 0; i < periodiccnt; ++i)
809 { 1018 {
810 struct ev_periodic *w = periodics [i]; 1019 struct ev_periodic *w = periodics [i];
811 1020
1021 if (w->reschedule_cb)
1022 ((WT)w)->at = w->reschedule_cb (w, rt_now);
812 if (w->interval) 1023 else if (w->interval)
813 {
814 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1024 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
815
816 if (fabs (diff) >= 1e-4)
817 {
818 ev_periodic_stop (EV_A_ w);
819 ev_periodic_start (EV_A_ w);
820
821 i = 0; /* restart loop, inefficient, but time jumps should be rare */
822 }
823 }
824 } 1025 }
1026
1027 /* now rebuild the heap */
1028 for (i = periodiccnt >> 1; i--; )
1029 downheap ((WT *)periodics, periodiccnt, i);
825} 1030}
826 1031
827inline int 1032inline int
828time_update_monotonic (EV_P) 1033time_update_monotonic (EV_P)
829{ 1034{
880 { 1085 {
881 periodics_reschedule (EV_A); 1086 periodics_reschedule (EV_A);
882 1087
883 /* adjust timers. this is easy, as the offset is the same for all */ 1088 /* adjust timers. this is easy, as the offset is the same for all */
884 for (i = 0; i < timercnt; ++i) 1089 for (i = 0; i < timercnt; ++i)
885 timers [i]->at += rt_now - mn_now; 1090 ((WT)timers [i])->at += rt_now - mn_now;
886 } 1091 }
887 1092
888 mn_now = rt_now; 1093 mn_now = rt_now;
889 } 1094 }
890} 1095}
916 { 1121 {
917 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1122 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
918 call_pending (EV_A); 1123 call_pending (EV_A);
919 } 1124 }
920 1125
1126 /* we might have forked, so reify kernel state if necessary */
1127 if (expect_false (postfork))
1128 loop_fork (EV_A);
1129
921 /* update fd-related kernel structures */ 1130 /* update fd-related kernel structures */
922 fd_reify (EV_A); 1131 fd_reify (EV_A);
923 1132
924 /* calculate blocking time */ 1133 /* calculate blocking time */
925 1134
926 /* we only need this for !monotonic clockor timers, but as we basically 1135 /* we only need this for !monotonic clock or timers, but as we basically
927 always have timers, we just calculate it always */ 1136 always have timers, we just calculate it always */
928#if EV_USE_MONOTONIC 1137#if EV_USE_MONOTONIC
929 if (expect_true (have_monotonic)) 1138 if (expect_true (have_monotonic))
930 time_update_monotonic (EV_A); 1139 time_update_monotonic (EV_A);
931 else 1140 else
941 { 1150 {
942 block = MAX_BLOCKTIME; 1151 block = MAX_BLOCKTIME;
943 1152
944 if (timercnt) 1153 if (timercnt)
945 { 1154 {
946 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1155 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
947 if (block > to) block = to; 1156 if (block > to) block = to;
948 } 1157 }
949 1158
950 if (periodiccnt) 1159 if (periodiccnt)
951 { 1160 {
952 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1161 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
953 if (block > to) block = to; 1162 if (block > to) block = to;
954 } 1163 }
955 1164
956 if (block < 0.) block = 0.; 1165 if (block < 0.) block = 0.;
957 } 1166 }
964 /* queue pending timers and reschedule them */ 1173 /* queue pending timers and reschedule them */
965 timers_reify (EV_A); /* relative timers called last */ 1174 timers_reify (EV_A); /* relative timers called last */
966 periodics_reify (EV_A); /* absolute timers called first */ 1175 periodics_reify (EV_A); /* absolute timers called first */
967 1176
968 /* queue idle watchers unless io or timers are pending */ 1177 /* queue idle watchers unless io or timers are pending */
969 if (!pendingcnt) 1178 if (idlecnt && !any_pending (EV_A))
970 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1179 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
971 1180
972 /* queue check watchers, to be executed first */ 1181 /* queue check watchers, to be executed first */
973 if (checkcnt) 1182 if (checkcnt)
974 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1183 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1049 return; 1258 return;
1050 1259
1051 assert (("ev_io_start called with negative fd", fd >= 0)); 1260 assert (("ev_io_start called with negative fd", fd >= 0));
1052 1261
1053 ev_start (EV_A_ (W)w, 1); 1262 ev_start (EV_A_ (W)w, 1);
1054 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1263 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1055 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1264 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1056 1265
1057 fd_change (EV_A_ fd); 1266 fd_change (EV_A_ fd);
1058} 1267}
1059 1268
1074ev_timer_start (EV_P_ struct ev_timer *w) 1283ev_timer_start (EV_P_ struct ev_timer *w)
1075{ 1284{
1076 if (ev_is_active (w)) 1285 if (ev_is_active (w))
1077 return; 1286 return;
1078 1287
1079 w->at += mn_now; 1288 ((WT)w)->at += mn_now;
1080 1289
1081 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1290 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1082 1291
1083 ev_start (EV_A_ (W)w, ++timercnt); 1292 ev_start (EV_A_ (W)w, ++timercnt);
1084 array_needsize (timers, timermax, timercnt, ); 1293 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1085 timers [timercnt - 1] = w; 1294 timers [timercnt - 1] = w;
1086 upheap ((WT *)timers, timercnt - 1); 1295 upheap ((WT *)timers, timercnt - 1);
1296
1297 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1087} 1298}
1088 1299
1089void 1300void
1090ev_timer_stop (EV_P_ struct ev_timer *w) 1301ev_timer_stop (EV_P_ struct ev_timer *w)
1091{ 1302{
1092 ev_clear_pending (EV_A_ (W)w); 1303 ev_clear_pending (EV_A_ (W)w);
1093 if (!ev_is_active (w)) 1304 if (!ev_is_active (w))
1094 return; 1305 return;
1095 1306
1307 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1308
1096 if (w->active < timercnt--) 1309 if (((W)w)->active < timercnt--)
1097 { 1310 {
1098 timers [w->active - 1] = timers [timercnt]; 1311 timers [((W)w)->active - 1] = timers [timercnt];
1099 downheap ((WT *)timers, timercnt, w->active - 1); 1312 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1100 } 1313 }
1101 1314
1102 w->at = w->repeat; 1315 ((WT)w)->at = w->repeat;
1103 1316
1104 ev_stop (EV_A_ (W)w); 1317 ev_stop (EV_A_ (W)w);
1105} 1318}
1106 1319
1107void 1320void
1109{ 1322{
1110 if (ev_is_active (w)) 1323 if (ev_is_active (w))
1111 { 1324 {
1112 if (w->repeat) 1325 if (w->repeat)
1113 { 1326 {
1114 w->at = mn_now + w->repeat; 1327 ((WT)w)->at = mn_now + w->repeat;
1115 downheap ((WT *)timers, timercnt, w->active - 1); 1328 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1116 } 1329 }
1117 else 1330 else
1118 ev_timer_stop (EV_A_ w); 1331 ev_timer_stop (EV_A_ w);
1119 } 1332 }
1120 else if (w->repeat) 1333 else if (w->repeat)
1125ev_periodic_start (EV_P_ struct ev_periodic *w) 1338ev_periodic_start (EV_P_ struct ev_periodic *w)
1126{ 1339{
1127 if (ev_is_active (w)) 1340 if (ev_is_active (w))
1128 return; 1341 return;
1129 1342
1343 if (w->reschedule_cb)
1344 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1345 else if (w->interval)
1346 {
1130 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1347 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1131
1132 /* this formula differs from the one in periodic_reify because we do not always round up */ 1348 /* this formula differs from the one in periodic_reify because we do not always round up */
1133 if (w->interval)
1134 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1349 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1350 }
1135 1351
1136 ev_start (EV_A_ (W)w, ++periodiccnt); 1352 ev_start (EV_A_ (W)w, ++periodiccnt);
1137 array_needsize (periodics, periodicmax, periodiccnt, ); 1353 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1138 periodics [periodiccnt - 1] = w; 1354 periodics [periodiccnt - 1] = w;
1139 upheap ((WT *)periodics, periodiccnt - 1); 1355 upheap ((WT *)periodics, periodiccnt - 1);
1356
1357 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1140} 1358}
1141 1359
1142void 1360void
1143ev_periodic_stop (EV_P_ struct ev_periodic *w) 1361ev_periodic_stop (EV_P_ struct ev_periodic *w)
1144{ 1362{
1145 ev_clear_pending (EV_A_ (W)w); 1363 ev_clear_pending (EV_A_ (W)w);
1146 if (!ev_is_active (w)) 1364 if (!ev_is_active (w))
1147 return; 1365 return;
1148 1366
1367 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1368
1149 if (w->active < periodiccnt--) 1369 if (((W)w)->active < periodiccnt--)
1150 { 1370 {
1151 periodics [w->active - 1] = periodics [periodiccnt]; 1371 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1152 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1372 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1153 } 1373 }
1154 1374
1155 ev_stop (EV_A_ (W)w); 1375 ev_stop (EV_A_ (W)w);
1156} 1376}
1157 1377
1158void 1378void
1379ev_periodic_again (EV_P_ struct ev_periodic *w)
1380{
1381 ev_periodic_stop (EV_A_ w);
1382 ev_periodic_start (EV_A_ w);
1383}
1384
1385void
1159ev_idle_start (EV_P_ struct ev_idle *w) 1386ev_idle_start (EV_P_ struct ev_idle *w)
1160{ 1387{
1161 if (ev_is_active (w)) 1388 if (ev_is_active (w))
1162 return; 1389 return;
1163 1390
1164 ev_start (EV_A_ (W)w, ++idlecnt); 1391 ev_start (EV_A_ (W)w, ++idlecnt);
1165 array_needsize (idles, idlemax, idlecnt, ); 1392 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1166 idles [idlecnt - 1] = w; 1393 idles [idlecnt - 1] = w;
1167} 1394}
1168 1395
1169void 1396void
1170ev_idle_stop (EV_P_ struct ev_idle *w) 1397ev_idle_stop (EV_P_ struct ev_idle *w)
1171{ 1398{
1172 ev_clear_pending (EV_A_ (W)w); 1399 ev_clear_pending (EV_A_ (W)w);
1173 if (ev_is_active (w)) 1400 if (ev_is_active (w))
1174 return; 1401 return;
1175 1402
1176 idles [w->active - 1] = idles [--idlecnt]; 1403 idles [((W)w)->active - 1] = idles [--idlecnt];
1177 ev_stop (EV_A_ (W)w); 1404 ev_stop (EV_A_ (W)w);
1178} 1405}
1179 1406
1180void 1407void
1181ev_prepare_start (EV_P_ struct ev_prepare *w) 1408ev_prepare_start (EV_P_ struct ev_prepare *w)
1182{ 1409{
1183 if (ev_is_active (w)) 1410 if (ev_is_active (w))
1184 return; 1411 return;
1185 1412
1186 ev_start (EV_A_ (W)w, ++preparecnt); 1413 ev_start (EV_A_ (W)w, ++preparecnt);
1187 array_needsize (prepares, preparemax, preparecnt, ); 1414 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1188 prepares [preparecnt - 1] = w; 1415 prepares [preparecnt - 1] = w;
1189} 1416}
1190 1417
1191void 1418void
1192ev_prepare_stop (EV_P_ struct ev_prepare *w) 1419ev_prepare_stop (EV_P_ struct ev_prepare *w)
1193{ 1420{
1194 ev_clear_pending (EV_A_ (W)w); 1421 ev_clear_pending (EV_A_ (W)w);
1195 if (ev_is_active (w)) 1422 if (ev_is_active (w))
1196 return; 1423 return;
1197 1424
1198 prepares [w->active - 1] = prepares [--preparecnt]; 1425 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1199 ev_stop (EV_A_ (W)w); 1426 ev_stop (EV_A_ (W)w);
1200} 1427}
1201 1428
1202void 1429void
1203ev_check_start (EV_P_ struct ev_check *w) 1430ev_check_start (EV_P_ struct ev_check *w)
1204{ 1431{
1205 if (ev_is_active (w)) 1432 if (ev_is_active (w))
1206 return; 1433 return;
1207 1434
1208 ev_start (EV_A_ (W)w, ++checkcnt); 1435 ev_start (EV_A_ (W)w, ++checkcnt);
1209 array_needsize (checks, checkmax, checkcnt, ); 1436 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1210 checks [checkcnt - 1] = w; 1437 checks [checkcnt - 1] = w;
1211} 1438}
1212 1439
1213void 1440void
1214ev_check_stop (EV_P_ struct ev_check *w) 1441ev_check_stop (EV_P_ struct ev_check *w)
1215{ 1442{
1216 ev_clear_pending (EV_A_ (W)w); 1443 ev_clear_pending (EV_A_ (W)w);
1217 if (ev_is_active (w)) 1444 if (ev_is_active (w))
1218 return; 1445 return;
1219 1446
1220 checks [w->active - 1] = checks [--checkcnt]; 1447 checks [((W)w)->active - 1] = checks [--checkcnt];
1221 ev_stop (EV_A_ (W)w); 1448 ev_stop (EV_A_ (W)w);
1222} 1449}
1223 1450
1224#ifndef SA_RESTART 1451#ifndef SA_RESTART
1225# define SA_RESTART 0 1452# define SA_RESTART 0
1235 return; 1462 return;
1236 1463
1237 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1464 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1238 1465
1239 ev_start (EV_A_ (W)w, 1); 1466 ev_start (EV_A_ (W)w, 1);
1240 array_needsize (signals, signalmax, w->signum, signals_init); 1467 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1241 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1468 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1242 1469
1243 if (!w->next) 1470 if (!((WL)w)->next)
1244 { 1471 {
1472#if WIN32
1473 signal (w->signum, sighandler);
1474#else
1245 struct sigaction sa; 1475 struct sigaction sa;
1246 sa.sa_handler = sighandler; 1476 sa.sa_handler = sighandler;
1247 sigfillset (&sa.sa_mask); 1477 sigfillset (&sa.sa_mask);
1248 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1478 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1249 sigaction (w->signum, &sa, 0); 1479 sigaction (w->signum, &sa, 0);
1480#endif
1250 } 1481 }
1251} 1482}
1252 1483
1253void 1484void
1254ev_signal_stop (EV_P_ struct ev_signal *w) 1485ev_signal_stop (EV_P_ struct ev_signal *w)
1304 void (*cb)(int revents, void *arg) = once->cb; 1535 void (*cb)(int revents, void *arg) = once->cb;
1305 void *arg = once->arg; 1536 void *arg = once->arg;
1306 1537
1307 ev_io_stop (EV_A_ &once->io); 1538 ev_io_stop (EV_A_ &once->io);
1308 ev_timer_stop (EV_A_ &once->to); 1539 ev_timer_stop (EV_A_ &once->to);
1309 free (once); 1540 ev_free (once);
1310 1541
1311 cb (revents, arg); 1542 cb (revents, arg);
1312} 1543}
1313 1544
1314static void 1545static void
1324} 1555}
1325 1556
1326void 1557void
1327ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1558ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1328{ 1559{
1329 struct ev_once *once = malloc (sizeof (struct ev_once)); 1560 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1330 1561
1331 if (!once) 1562 if (!once)
1332 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1563 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1333 else 1564 else
1334 { 1565 {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines